1
|
Lachgar M, Morín M, Villamar M, del Castillo I, Moreno-Pelayo MÁ. A Novel Truncating Mutation in HOMER2 Causes Nonsyndromic Progressive DFNA68 Hearing Loss in a Spanish Family. Genes (Basel) 2021; 12:411. [PMID: 33809266 PMCID: PMC8001007 DOI: 10.3390/genes12030411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/02/2022] Open
Abstract
Nonsyndromic hereditary hearing loss is a common sensory defect in humans that is clinically and genetically highly heterogeneous. So far, 122 genes have been associated with this disorder and 50 of them have been linked to autosomal dominant (DFNA) forms like DFNA68, a rare subtype of hearing impairment caused by disruption of a stereociliary scaffolding protein (HOMER2) that is essential for normal hearing in humans and mice. In this study, we report a novel HOMER2 variant (c.832_836delCCTCA) identified in a Spanish family by using a custom NGS targeted gene panel (OTO-NGS-v2). This frameshift mutation produces a premature stop codon that may lead in the absence of NMD to a shorter variant (p.Pro278Alafs*10) that truncates HOMER2 at the CDC42 binding domain (CBD) of the coiled-coil structure, a region that is essential for protein multimerization and HOMER2-CDC42 interaction. c.832_836delCCTCA mutation is placed close to the previously identified c.840_840dup mutation found in a Chinese family that truncates the protein (p.Met281Hisfs*9) at the CBD. Functional assessment of the Chinese mutant revealed decreased protein stability, reduced ability to multimerize, and altered distribution pattern in transfected cells when compared with wild-type HOMER2. Interestingly, the Spanish and Chinese frameshift mutations might exert a similar effect at the protein level, leading to truncated mutants with the same Ct aberrant protein tail, thus suggesting that they can share a common mechanism of pathogenesis. Indeed, age-matched patients in both families display quite similar hearing loss phenotypes consisting of early-onset, moderate-to-profound progressive hearing loss. In summary, we have identified the third variant in HOMER2, which is the first one identified in the Spanish population, thus contributing to expanding the mutational spectrum of this gene in other populations, and also to clarifying the genotype-phenotype correlations of DFNA68 hearing loss.
Collapse
Affiliation(s)
- María Lachgar
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.L.); (M.M.); (M.V.); (I.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Matías Morín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.L.); (M.M.); (M.V.); (I.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Manuela Villamar
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.L.); (M.M.); (M.V.); (I.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.L.); (M.M.); (M.V.); (I.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Miguel Ángel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.L.); (M.M.); (M.V.); (I.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| |
Collapse
|
2
|
Yang YM, Jang Y, Lee SH, Kang B, Lim SM. AXL/MET dual inhibitor, CB469, has activity in non-small cell lung cancer with acquired resistance to EGFR TKI with AXL or MET activation. Lung Cancer 2020; 146:70-77. [PMID: 32521387 DOI: 10.1016/j.lungcan.2020.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES In non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations, acquired resistance to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) may occur via bypass signals such as AXL or MET activation. We investigated the antitumor activity of CB469, a newly developed drug that targets both AXL and MET, in EGFR TKI-resistant NSCLC cells. MATERIALS AND METHODS We generated EGFR TKI-resistant NSCLC cell lines with acquired resistance to erlotinib, gefitinib, and osimertinib (PC9/ER, HCC827/GR and HCC827/OR, respectively). We characterized the mechanisms of CB469 action in resistant cells and investigated the antitumor efficacy of CB469 both in vitro and in vivo. RESULTS Resistant cells showed activation of phosphorylated EGFR, as well as AXL and MET activation and phosphorylation. The combination of CB469 and EGFR TKIs synergistically inhibited cell proliferation and colony formation rates in resistant cell lines. The combination of CB469 and erlotinib induced apoptosis of PC9/ER cells. Mechanistically, resistant cells showed an interaction of AXL and MET. CB469 and EGFR TKI also demonstrated antitumor activity by reducing phosphorylated AXL and MET in mouse xenograft models with HCC827/GR cells. CONCLUSION The combination of CB469 and EGFR TKI can overcome the acquired resistance to EGFR TKI mediated by AXL and MET activation. We anticipate that the dual inhibitory actions of CB469 will assist with the development of targeted therapy for EGFR-mutant NSCLC patients who fail initial EGFR TKI therapy.
Collapse
Affiliation(s)
- Yu-Mi Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yoon Jang
- CHA University, Seongnam, South Korea
| | | | - Beodeul Kang
- Division of Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Wasilewska I, Gupta RK, Wojtaś B, Palchevska O, Kuźnicki J. stim2b Knockout Induces Hyperactivity and Susceptibility to Seizures in Zebrafish Larvae. Cells 2020; 9:cells9051285. [PMID: 32455839 PMCID: PMC7291033 DOI: 10.3390/cells9051285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
In neurons, stromal interaction molecule (STIM) proteins regulate store-operated Ca2+ entry (SOCE) and are involved in calcium signaling pathways. However, STIM activity in neurological diseases is unclear and should be clarified by studies that are performed in vivo rather than in cultured cells in vitro. The present study investigated the role of neuronal Stim2b protein in zebrafish. We generated stim2b knockout zebrafish, which were fertile and had a regular lifespan. Using various behavioral tests, we found that stim2b−/− zebrafish larvae were hyperactive compared with wild-type fish. The mutants exhibited increases in mobility and thigmotaxis and disruptions of phototaxis. They were also more sensitive to pentylenetetrazol and glutamate treatments. Using lightsheet microscopy, a higher average oscillation frequency and higher average amplitude of neuronal Ca2+ oscillations were observed in stim2b−/− larvae. RNA sequencing detected upregulation of the annexin 3a and gpr39 genes and downregulation of the rrm2, neuroguidin, and homer2 genes. The latter gene encodes a protein that is involved in several processes that are involved in Ca2+ homeostasis in neurons, including metabotropic glutamate receptors. We propose that Stim2b deficiency in neurons dysregulates SOCE and triggers changes in gene expression, thereby causing abnormal behavior, such as hyperactivity and susceptibility to seizures.
Collapse
Affiliation(s)
- Iga Wasilewska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Oksana Palchevska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Jacek Kuźnicki
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
- Correspondence:
| |
Collapse
|
4
|
Ahuja M, Chung WY, Lin WY, McNally BA, Muallem S. Ca 2+ Signaling in Exocrine Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035279. [PMID: 31636079 DOI: 10.1101/cshperspect.a035279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) and cyclic AMP (cAMP) signaling cross talk and synergize to stimulate the cardinal functions of exocrine cells, regulated exocytosis, and fluid and electrolyte secretion. This physiological process requires the organization of the two signaling pathways into complexes at defined cellular domains and close placement. Such domains are formed by membrane contact sites (MCS). This review discusses the basic properties of Ca2+ signaling in exocrine cells, the role of MCS in the organization of cell signaling and in cross talk and synergism between the Ca2+ and cAMP signaling pathways and, finally, the mechanism by which the Ca2+ and cAMP pathways synergize to stimulate epithelial fluid and electrolyte secretion.
Collapse
Affiliation(s)
- Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Wei-Yin Lin
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Beth A McNally
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Reibring CG, Hallberg K, Linde A, Gritli-Linde A. Distinct and Overlapping Expression Patterns of the Homer Family of Scaffolding Proteins and Their Encoding Genes in Developing Murine Cephalic Tissues. Int J Mol Sci 2020; 21:ijms21041264. [PMID: 32070057 PMCID: PMC7072945 DOI: 10.3390/ijms21041264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Public Dental Service, Region Västra Götaland, SE-45131 Uddevalla, Sweden
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Correspondence: ; Tel.: +46-31-7863392
| |
Collapse
|
6
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Lu X, Wang Q, Gu H, Zhang X, Qi Y, Liu Y. Whole exome sequencing identified a second pathogenic variant in HOMER2 for autosomal dominant non-syndromic deafness. Clin Genet 2019; 94:419-428. [PMID: 30047143 DOI: 10.1111/cge.13422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
Abstract
Hearing loss is one of the most common sensory disorders worldwide, and about half of all occurrences are attributable to genetic factors. Here, we have identified a novel pathogenic variant in HOMER2 in a Chinese family with autosomal dominant, non-syndromic hearing loss. This is the second family reported globally with hearing loss caused by a variant in HOMER2. The pathogenic variant c.840_841insC in HOMER2 (NM_199330), segregating with the hearing-loss phenotype in the family, leads to a premature stop codon producing a truncated protein. The coiled-coil domain in the C-terminal of HOMER2 protein is essential for protein multimerization and HOMER2-CDC42 interaction. We compared the phenotypes in the two families and found that hearing impairment in this Chinese family was more severe. Furthermore, we found that the ability of this insertion mutant type HOMER2 (HOMER2MU ) to multimerize decreased more significantly than wild-type HOMER2 (HOMER2WT ) and the reported c.554G>C (NM_004839) mutant HOMER2. HOMER2MU protein tended to be distributed in a diffuse manner, whereas HOMER2WT and the reported mutant HOMER2 tended to cluster together. Our research provides a validating second family for variants in HOMER2 causing non-syndromic sensorineural hearing loss. HOMER2 homo-/hetero-multimerization might be the first step in exerting its normal function.
Collapse
Affiliation(s)
- X Lu
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Q Wang
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - H Gu
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - X Zhang
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Y Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Y Liu
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Son A, Kang N, Oh SY, Kim KW, Muallem S, Yang YM, Shin DM. Homer2 and Homer3 modulate RANKL-induced NFATc1 signaling in osteoclastogenesis and bone metabolism. J Endocrinol 2019; 242:241-249. [PMID: 31319381 PMCID: PMC9883806 DOI: 10.1530/joe-19-0123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 01/31/2023]
Abstract
The receptor activator of nuclear factor-kappa B ligand (RANKL) induces osteoclastogenesis by induction of Ca2+ oscillation, calcineurin activation and translocation into the nucleus of nuclear factor of activated T cells type c1 (NFATc1). Homer proteins are scaffold proteins. They regulate Ca2+ signaling by modulating the activity of multiple Ca2+ signaling proteins. Homers 2 and 3, but not Homer1, also independently affect the interaction between NFATc1 and calcineurin. However, to date, whether and how the Homers are involved in osteoclastogenesis remains unknown. In the present study, we investigated Homer2 and Homer3 roles in Ca2+ signaling and NFATc1 function during osteoclast differentiation. Deletion of Homer2/Homer3 (Homer2/3) markedly decreased the bone density of the tibia, resulting in bone erosion. RANKL-induced osteoclast differentiation is greatly facilitated in Homer2/3 DKO bone marrow-derived monocytes/macrophages (BMMs) due to increased NFATc1 expression and nuclear translocation. However, these findings did not alter RANKL-induced Ca2+ oscillations. Of note, RANKL treatment inhibited Homer proteins interaction with NFATc1, but it was restored by cyclosporine A treatment to inhibit calcineurin. Finally, RANKL treatment of Homer2/3 DKO BMMs significantly increased the formation of multinucleated cells. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation. Specifically, we found that Homer2 and Homer3 regulate NFATc1 function through its interaction with calcineurin to regulate RANKL-induced osteoclastogenesis and bone metabolism.
Collapse
Affiliation(s)
- Aran Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Namju Kang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sue Young Oh
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Ki Woo Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Yu-Mi Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
9
|
Kolodecik TR, Reed AM, Date K, Shugrue CA, Patel V, Chung SL, Desir GV, Gorelick FS. The serum protein renalase reduces injury in experimental pancreatitis. J Biol Chem 2017; 292:21047-21059. [PMID: 29042438 DOI: 10.1074/jbc.m117.789776] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis is a disease associated with inflammation and tissue damage. One protein that protects against acute injury, including ischemic injury to both the kidney and heart, is renalase, which is secreted into the blood by the kidney and other tissues. However, whether renalase reduces acute injury associated with pancreatitis is unknown. Here, we used both in vitro and in vivo murine models of acute pancreatitis to study renalase's effects on this condition. In isolated pancreatic lobules, pretreatment with recombinant human renalase (rRNLS) blocked zymogen activation caused by cerulein, carbachol, and a bile acid. Renalase also blocked cerulein-induced cell injury and histological changes. In the in vivo cerulein model of pancreatitis, genetic deletion of renalase resulted in more severe disease, and administering rRNLS to cerulein-exposed WT mice after pancreatitis onset was protective. Because pathological increases in acinar cell cytosolic calcium levels are central to the initiation of acute pancreatitis, we also investigated whether rRNLS could function through its binding protein, plasma membrane calcium ATPase 4b (PMCA4b), which excretes calcium from cells. We found that PMCA4b is expressed in both murine and human acinar cells and that a PMCA4b-selective inhibitor worsens pancreatitis-induced injury and blocks the protective effects of rRNLS. These findings suggest that renalase is a protective plasma protein that reduces acinar cell injury through a plasma membrane calcium ATPase. Because exogenous rRNLS reduces the severity of acute pancreatitis, it has potential as a therapeutic agent.
Collapse
Affiliation(s)
- Thomas R Kolodecik
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Anamika M Reed
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Kimie Date
- Ochanomizu University, Tokyo 112-8610, Japan
| | - Christine A Shugrue
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Vikhil Patel
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Shang-Lin Chung
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Gary V Desir
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Fred S Gorelick
- From the Yale University School of Medicine, New Haven, Connecticut 06510, .,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| |
Collapse
|
10
|
Goulding SP, Szumlinski KK, Contet C, MacCoss MJ, Wu CC. A mass spectrometry-based proteomic analysis of Homer2-interacting proteins in the mouse brain. J Proteomics 2017; 166:127-137. [PMID: 28728878 DOI: 10.1016/j.jprot.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022]
Abstract
In the brain, the Homer protein family modulates excitatory signal transduction and receptor plasticity through interactions with other proteins in dendritic spines. Homer proteins are implicated in a variety of psychiatric disorders such as schizophrenia and addiction. Since long Homers serve as scaffolding proteins, identifying their interacting partners is an important first step in understanding their biological function and could help to guide the design of new therapeutic strategies. The present study set out to document Homer2-interacting proteins in the mouse brain using a co-immunoprecipitation-based mass spectrometry approach where Homer2 knockout samples were used to filter out non-specific interactors. We found that in the mouse brain, Homer2 interacts with a limited subset of its previously reported interacting partners (3 out of 31). Importantly, we detected an additional 15 novel Homer2-interacting proteins, most of which are part of the N-methyl-D-aspartate receptor signaling pathway. These results corroborate the central role Homer2 plays in glutamatergic transmission and expand the network of proteins potentially contributing to the behavioral abnormalities associated with altered Homer2 expression. SIGNIFICANCE Long Homer proteins are scaffolding proteins that regulate signal transduction in neurons. Identifying their interacting partners is key to understanding their function. We used co-immunoprecipitation in combination with mass spectrometry to establish the first comprehensive list of Homer2-interacting partners in the mouse brain. The specificity of interactions was evaluated using Homer2 knockout brain tissue as a negative control. The set of proteins that we identified minimally overlaps with previously reported interacting partners of Homer2; however, we identified novel interactors that are part of a signaling cascade activated by glutamatergic transmission, which improves our mechanistic understanding of the role of Homer2 in behavior.
Collapse
Affiliation(s)
- Scott P Goulding
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States; Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States.
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Molecular, Cellular and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Christine C Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Calì T, Brini M, Carafoli E. Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:259-296. [PMID: 28526135 DOI: 10.1016/bs.ircmb.2017.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The plasma membrane Ca2+ ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It has 10 transmembrane helices and 2 cytosolic loops, one of which contains the catalytic center. Its most distinctive feature is a C-terminal tail that contains most of the regulatory sites including that for calmodulin. The pump is also regulated by acidic phospholipids, kinases, a dimerization process, and numerous protein interactors. In mammals, four genes code for the four basic isoforms. Isoform complexity is increased by alternative splicing of primary transcripts. Pumps 2 and 3 are expressed preferentially in the nervous system. The pumps coexist with more powerful systems that clear Ca2+ from the bulk cytosol: their role is thus the regulation of Ca2+ in selected subplasma membrane microdomains, where a number of important Ca2+-dependent enzymes interact with them. Malfunctions of the pump lead to disease phenotypes that affect the nervous system preferentially.
Collapse
Affiliation(s)
- T Calì
- University of Padova, Padova, Italy
| | - M Brini
- University of Padova, Padova, Italy
| | - E Carafoli
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
12
|
Son A, Park S, Shin DM, Muallem S. Orai1 and STIM1 in ER/PM junctions: roles in pancreatic cell function and dysfunction. Am J Physiol Cell Physiol 2016; 310:C414-22. [PMID: 26739495 DOI: 10.1152/ajpcell.00349.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane contact sites (MCS) are critical junctions that form between the endoplasmic reticulum (ER) and membranes of various organelles, including the plasma membrane (PM). Signaling complexes, including mediators of Ca(2+) signaling, are assembled within MCS, such as the ER/PM junction. This is most evident in polarized epithelial cells, such as pancreatic cells. Core Ca(2+) signaling proteins cluster at the apical pole, the site of inositol 1,4,5-trisphosphate-mediated Ca(2+) release and Orai1/transient receptor potential canonical-mediated store-dependent Ca(2+) entry. Recent advances have characterized the proteins that tether the membranes at MCS and the role of these proteins in modulating physiological and pathological intracellular signaling. This review discusses recent advances in the characterization of Ca(2+) signaling at ER/PM junctions and the relation of these junctions to physiological and pathological Ca(2+) signaling in pancreatic acini.
Collapse
Affiliation(s)
- Aran Son
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Seonghee Park
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
13
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|
14
|
Cao X, Choi S, Maléth JJ, Park S, Ahuja M, Muallem S. The ER/PM microdomain, PI(4,5)P₂ and the regulation of STIM1-Orai1 channel function. Cell Calcium 2015; 58:342-8. [PMID: 25843208 PMCID: PMC4564333 DOI: 10.1016/j.ceca.2015.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
Abstract
All forms of cell signaling occur in discreet cellular microdomains in which the ER is the main participant and include microdomains formed by the ER with lysosomes, endosomes, the nucleus, mitochondria and the plasma membrane. In the microdomains the two opposing organelles transfer and exchange constituents including lipids and ions. As is the case for other forms of signaling pathways, many components of the receptor-evoked Ca(2+) signal are clustered at the ER/PM microdomain, including the Orai1-STIM1 complex. This review discusses recent advances in understanding the molecular components that tether the ER and plasma membrane to form the ER/PM microdomains in which PI(4,5)P2 is enriched, and how dynamic targeting of the Orai1-STIM1 complex to PI(4,5)P2-poor and PI(4,5)P2-rich microdomains controls the activity of Orai1 and its regulation by Ca(2+) that is mediated by SARAF.
Collapse
Affiliation(s)
- Xu Cao
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, 501-375, Republic of Korea
| | - Jozsef J Maléth
- First Department of Medicine, University of Szeged, Szeged H-6725, Hungary
| | - Seonghee Park
- Department of Physiology, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul 158-710, Republic of Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
15
|
Wang P, Wu J, Liu L, Zhou P, Ge Y, Liu D, Liu W, Tang Y. A peptide-based fluorescent chemosensor for measuring cadmium ions in aqueous solutions and live cells. Dalton Trans 2015; 44:18057-64. [PMID: 26411376 DOI: 10.1039/c5dt03156g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel peptide fluorescent chemosensor (H2L) with a lysine backbone and both -NH2 sites conjugated with cysteine and dansyl groups has been designed and synthesized by solid phase peptide synthesis with Fmoc chemistry. This chemosensor is a promising analytical tool for detecting Cd(2+) based on the photo-induced electron transfer (PET) effect by turn-on response in 100% aqueous solutions. As designed, H2L exhibits excellent cell permeation and low biotoxicity as well as displaying relatively high selectivity and sensitivity. The chemosensor penetrated live HeLa cells and detected intracellular Cd(2+) by turn-on response. The binding stoichiometry and affinity, interference test, pH sensitivity, fluorescence quantum yield, quantum mechanical calculations, lifetimes, and cytotoxicity of the chemosensor H2L to Cd(2+) were also investigated. Moreover, H2L exhibits low biotoxicity with a limit of detection (LOD) for Cd(2+) of about 52 nM, implying that H2L can be used as a highly selective and sensitive peptide fluorescent chemosensor in biological systems.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Strehler EE. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.). Biochem Biophys Res Commun 2015; 460:26-33. [PMID: 25998731 DOI: 10.1016/j.bbrc.2015.01.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Guggenheim 16-11A1, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Azaiez H, Decker AR, Booth KT, Simpson AC, Shearer AE, Huygen PLM, Bu F, Hildebrand MS, Ranum PT, Shibata SB, Turner A, Zhang Y, Kimberling WJ, Cornell RA, Smith RJH. HOMER2, a stereociliary scaffolding protein, is essential for normal hearing in humans and mice. PLoS Genet 2015; 11:e1005137. [PMID: 25816005 PMCID: PMC4376867 DOI: 10.1371/journal.pgen.1005137] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 12/29/2022] Open
Abstract
Hereditary hearing loss is a clinically and genetically heterogeneous disorder. More than 80 genes have been implicated to date, and with the advent of targeted genomic enrichment and massively parallel sequencing (TGE+MPS) the rate of novel deafness-gene identification has accelerated. Here we report a family segregating post-lingual progressive autosomal dominant non-syndromic hearing loss (ADNSHL). After first excluding plausible variants in known deafness-causing genes using TGE+MPS, we completed whole exome sequencing in three hearing-impaired family members. Only a single variant, p.Arg185Pro in HOMER2, segregated with the hearing-loss phenotype in the extended family. This amino acid change alters a highly conserved residue in the coiled-coil domain of HOMER2 that is essential for protein multimerization and the HOMER2-CDC42 interaction. As a scaffolding protein, HOMER2 is involved in intracellular calcium homeostasis and cytoskeletal organization. Consistent with this function, we found robust expression in stereocilia of hair cells in the murine inner ear and observed that over-expression of mutant p.Pro185 HOMER2 mRNA causes anatomical changes of the inner ear and neuromasts in zebrafish embryos. Furthermore, mouse mutants homozygous for the targeted deletion of Homer2 present with early-onset rapidly progressive hearing loss. These data provide compelling evidence that HOMER2 is required for normal hearing and that its sequence alteration in humans leads to ADNSHL through a dominant-negative mode of action. The most frequent sensory disorder worldwide is hearing impairment. It impacts over 5% of the world population (360 million persons), and is characterized by extreme genetic heterogeneity. Over 80 genes have been implicated in isolated (also referred to as ‘non-syndromic’) hearing loss, and abundant evidence supports the existence of many more ‘deafness-causing’ genes. In this study, we used a sequential screening strategy to first exclude causal mutations in known deafness-causing genes in a family segregating autosomal dominant non-syndromic hearing loss. We next turned to whole exome sequencing and identified a single variant—p.Arg185Pro in HOMER2—that segregated with the phenotype in the extended family. To validate the pathological significance of this mutation, we studied two animal models. In zebrafish, we overexpressed mutant HOMER2 and observed inner ear defects; and in mice we documented robust expression in stereocilia of cochlear hair cells and demonstrated that its absence causes early-onset progressive deafness. Our data offer novel insights into gene pathways essential for normal auditory function and the maintenance of cochlear hair cells.
Collapse
Affiliation(s)
- Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Amanda R. Decker
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kevin T. Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Allen C. Simpson
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - A. Eliot Shearer
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick L. M. Huygen
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Fengxiao Bu
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Michael S. Hildebrand
- Austin Health, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Paul T. Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Seiji B. Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Ann Turner
- Self-employed physician, Menlo Park, California, United States of America
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - William J. Kimberling
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
| | - Robert A. Cornell
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology University of Iowa, Iowa City, Iowa, United States of America
- Interdepartmental PhD Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|