1
|
Xu C, Yang L, Cheng T, Wang Z, Liu C, Shao J. Sodium Houttuyfonate Ameliorates DSS-induced Colitis Aggravated by Candida albicans through Dectin-1/NF-κB/miR-32-5p/NFKBIZ Axis Based on Intestinal microRNA Profiling. Inflammation 2024:10.1007/s10753-024-02091-6. [PMID: 38963571 DOI: 10.1007/s10753-024-02091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C. albicans, and the total colonic miRNAs were assessed. Furthermore, the differentially expressed miRNAs were enriched, clustered, and analyzed. Moreover, based on the dual luciferase analysis of NFKBIZ modulation by miR-32-5p, the in vitro and in vivo therapeutic effects of SH on inflammatory response, fungal burden, oxidative stress, and apoptosis were assessed at transcriptional and translational levels in the presence of agonist and antagonist. A total of 1157 miRNAs were identified, 84 of which were differentially expressed. Furthermore, qRT-PCR validated that SH treatment improved 17 differentially expressed miRNAs with > fourfold upregulation or > sixfold downregulation. Similar to most differentially altered miRNA, C. albicans significantly increased Dectin-1, NF-κB, TNF-α, IL-1β, IL-17A, and decreased miR-32-5p which negatively targeted NFKBIZ. In addition, SH treatment reduced inflammatory response and fungal burden in a colitis model with C. albicans infection. Further analyses indicated that in C. albicans infected Caco2 cells, SH inhibited fungal growth, oxidative stress, and apoptosis by increasing Dectin-1, NF-κB, NFKBIZ, TNF-α, IL-1β, IL-17A, and decreasing miR-32-5p. Therefore, SH can ameliorate the severity of colitis aggravated by C. albicans via the Dectin-1/NF-κB/miR-32-5p/NFKBIZ axis.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Liu Yang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Ting Cheng
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Chengcheng Liu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
| |
Collapse
|
2
|
Asai H, Kato K, Miyasaka M, Hatsukawa K, Murakami N, Takeda N, Abe J, Aoyagi Y, Kohda Y, Gui MY, Jin YR, Li XW, Hitotsuyanagi Y, Takeya K, Andoh T, Kurosaki H, Fukuishi N. Kamebakaurin Suppresses Antigen-Induced Mast Cell Activation by Inhibition of FcεRI Signaling Pathway. Int Arch Allergy Immunol 2024; 185:836-847. [PMID: 38797160 DOI: 10.1159/000536334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Kamebakaurin is an active constituent of both Rabdosia japonica and Rabdosia excisa, which are utilized in Chinese traditional medicine for improving symptoms in patients with allergies. We investigated the molecular mechanisms of the anti-allergic effects of kamebakaurin using BMMCs. METHODS The degranulation ratio, histamine release, and the interleukin (IL)-4, leukotriene B4 (LTB4), and cysteinyl leukotriene productions on antigen-triggered BMMC were investigated. Additionally, the effects of kamebakaurin on signal transduction proteins were examined by Western blot and binding to the Syk and Lyn kinase domain was calculated. The effects of kamebakaurin on antigen-induced hyperpermeability were investigated using mouse model. RESULTS At 10 μm, kamebakaurin partially inhibited degranulation, histamine release, and IL-4 production. At 30 μm, kamebakaurin partially reduced LTB4 and cysteinyl leukotriene productions and suppressed degranulation, histamine release, and IL-4 production. Phosphorylation of both Syk Y519/520 and its downstream protein, Gab2, was reduced by kamebakaurin, and complete inhibition was observed with 30 μm kamebakaurin. In contrast, phosphorylation of Erk was only partially inhibited, even in the presence of 30 μm kamebakaurin. Syk Y519/520 is known to be auto-phosphorylated via intramolecular ATP present in its own ATP-binding site, and this auto-phosphorylation triggers degranulation, histamine release, and IL-4 production. Docking simulation study indicated kamebakaurin blocked ATP binding to the ATP-binding site in Syk. Therefore, inhibition of Syk auto-phosphorylation by kamebakaurin binding to the Syk ATP-binding site appeared to cause a reduction of histamine release and IL-4 production. Kamebakaurin inhibited antigen-induced vascular hyperpermeability in a dose-dependent fashion but did not reduce histamine-induced vascular hyperpermeability. CONCLUSION Kamebakaurin ameliorates allergic symptoms via inhibition of Syk phosphorylation; thus, kamebakaurin could be a lead compound for the new anti-allergic drug.
Collapse
Affiliation(s)
- Haruka Asai
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan,
| | - Koichi Kato
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Mayu Miyasaka
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Kaho Hatsukawa
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Nanami Murakami
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Naoko Takeda
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Junna Abe
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Yutaka Aoyagi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Yuka Kohda
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Ming-Yu Gui
- Department of Chemistry, Jilin University, Jilin, China
| | - Yong-Ri Jin
- Department of Chemistry, Jilin University, Jilin, China
| | - Xu-Wen Li
- Department of Chemistry, Jilin University, Jilin, China
| | - Yukio Hitotsuyanagi
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Koichi Takeya
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Tsugunobu Andoh
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacology and Pathophysiology, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Hiromasa Kurosaki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Nobuyuki Fukuishi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| |
Collapse
|
3
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
4
|
Yang Z, Wang X, Dong T, Zhao WJ, Li H. Impact of glucocorticoids and rapamycin on autophagy in Candida glabrata-infected macrophages from BALB/c mice. Front Immunol 2024; 15:1367048. [PMID: 38585259 PMCID: PMC10995521 DOI: 10.3389/fimmu.2024.1367048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Objective In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Feng Y, Chen Z, Xu Y, Han Y, Jia X, Wang Z, Zhang N, Lv W. The central inflammatory regulator IκBζ: induction, regulation and physiological functions. Front Immunol 2023; 14:1188253. [PMID: 37377955 PMCID: PMC10291074 DOI: 10.3389/fimmu.2023.1188253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
IκBζ (encoded by NFKBIZ) is the most recently identified IkappaB family protein. As an atypical member of the IkappaB protein family, NFKBIZ has been the focus of recent studies because of its role in inflammation. Specifically, it is a key gene in the regulation of a variety of inflammatory factors in the NF-KB pathway, thereby affecting the progression of related diseases. In recent years, investigations into NFKBIZ have led to greater understanding of this gene. In this review, we summarize the induction of NFKBIZ and then elucidate its transcription, translation, molecular mechanism and physiological function. Finally, the roles played by NFKBIZ in psoriasis, cancer, kidney injury, autoimmune diseases and other diseases are described. NFKBIZ functions are universal and bidirectional, and therefore, this gene may exert a great influence on the regulation of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Yanpeng Feng
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhiyuan Chen
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yi Xu
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yuxuan Han
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiujuan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nannan Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Lv
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
van Thiel I, de Jonge W, van den Wijngaard R. Fungal feelings in the irritable bowel syndrome: the intestinal mycobiome and abdominal pain. Gut Microbes 2023; 15:2168992. [PMID: 36723172 PMCID: PMC9897793 DOI: 10.1080/19490976.2023.2168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the gut microbiota consists of bacteria, viruses, and fungi, most publications addressing the microbiota-gut-brain axis in irritable bowel syndrome (IBS) have a sole focus on bacteria. This may relate to the relatively low presence of fungi and viruses as compared to bacteria. Yet, in the field of inflammatory bowel disease research, the publication of several papers addressing the role of the intestinal mycobiome now suggested that these low numbers do not necessarily translate to irrelevance. In this review, we discuss the available clinical and preclinical IBS mycobiome data, and speculate how these recent findings may relate to earlier observations in IBS. By surveying literature from the broader mycobiome research field, we identified questions open to future IBS-oriented investigations.
Collapse
Affiliation(s)
- Iam van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Wj de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Rm van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,CONTACT RM van den Wijngaard Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 69-71, Amsterdam1105 BK, The Netherlands
| |
Collapse
|
7
|
Itoh K, Tsutani H, Iwasaki H. Multifaceted efficacy of caspofungin against fungal infections in COVID-19 patients. Med Hypotheses 2022; 164:110876. [PMID: 35620530 PMCID: PMC9121645 DOI: 10.1016/j.mehy.2022.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Fungal co-infections of coronavirus disease 2019 (COVID-19) are generally infrequent, but are more common among patients with hematological diseases or severe cases in the intensive care unit (ICU). As fungal infections often carry a high mortality rate, preventing their development is considered important for patients with COVID-19. Caspofungin covers Candida spp. and Aspergillus spp. as causative pathogens of fungal infections associated with COVID-19, and is known to have few side effects among antifungal drugs. Recent studies have shown that caspofungin is expected to inhibit the growth of severe acute respiratory syndrome coronavirus 2. In addition, the inhibitory effects of caspofungin on spleen tyrosine kinase-related intracellular signaling are anticipated to suppress the overproduction of proinflammatory cytokines and immune thrombosis, which are problems in severe COVID-19. Early use of caspofungin in patients with COVID-19 with hematological diseases or in the ICU may help prevent fungal infections and reduce severe cases in COVID-19 patients.
Collapse
Affiliation(s)
- Kazuhiro Itoh
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Hiroshi Tsutani
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Hiromichi Iwasaki
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
8
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
9
|
Song P, Peng G, Yue H, Ogawa T, Ikeda S, Okumura K, Ogawa H, Niyonsaba F. Candidalysin, a Virulence Factor of Candida albicans, Stimulates Mast Cells by Mediating Cross-Talk Between Signaling Pathways Activated by the Dectin-1 Receptor and MAPKs. J Clin Immunol 2022; 42:1009-1025. [PMID: 35420364 DOI: 10.1007/s10875-022-01267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Although mast cells (MCs) modulate the activity of effector cells during Candida albicans infection, their role in the pathogenesis of candidiasis remains unclear. Candidalysin, a C. albicans-derived peptide toxin, is a crucial factor in fungal infections. We aimed to investigate the effect of candidalysin on MC activation and the underlying molecular mechanism. METHODS Serum from candidalysin-immunized mice was used to measure candidalysin expression in patients infected with C. albicans. MC degranulation and migration were evaluated by β-hexosaminidase release assay and chemotaxis assay, respectively. EIA and ELISA were used to evaluate the production of eicosanoids and cytokines/chemokines, respectively. The production of nitric oxide (NO) was measured with a DAF-FM diacetate kit, while reactive oxygen species (ROS) production was analyzed by flow cytometry. MAPK activation was evaluated by Western blotting. RESULTS We detected high candidalysin expression in the lesions of patients infected with C. albicans, and the MC number was increased in these lesions. LL-37 colocalized with MCs in the lesions of candidiasis patients. Candidalysin-enhanced MC accumulation in mice and treating LAD2 and HMC-1 cells with candidalysin induced their degranulation, migration, and production of pro- and anti-inflammatory cytokines/chemokines, eicosanoids, ROS, NO, and LL-37. Interestingly, C. albicans strains lacking candidalysin failed to induce MC activation. Moreover, candidalysin increased dectin-1 expression, and the inhibition of dectin-1 decreased MC activation. Downstream dectin-1 signaling involved the MAPK pathways. CONCLUSION The finding that candidalysin causes cutaneous MC activation may improve our understanding of the role of MCs in the pathology of cutaneous C. albicans infection.
Collapse
Affiliation(s)
- Pu Song
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
10
|
Adaptor protein 3BP2 regulates dectin-1-mediated cellular signalling to induce cytokine expression and NF-κB activation. Biochem J 2022; 479:503-523. [PMID: 35129602 DOI: 10.1042/bcj20210707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
The adaptor protein c-Abl Src homology 3 domain-binding protein-2 (3BP2) is phosphorylated by spleen tyrosine kinase (Syk), and the phosphorylation of Tyr183 is important in the regulation of immune responses. Recently, we reported that 3BP2 plays important roles in phagocytosis and chemokine expression mediated by the Fc receptor for IgG. Although it is well established that various phagocytic cells express Syk-coupled C-type lectin receptors (CLRs) to induce innate immune responses, the functions of 3BP2 and the physiological relevance of the phosphorylation of Tyr183 remain elusive. In this study, we generated genome-edited mice and observed that 3BP2 influenced the development of bone marrow-derived dendritic cells (BMDCs) induced by granulocyte-macrophage colony-stimulating factor. In addition, we found that 3BP2 was critical for cytokine expression induced by Syk-coupled CLRs-dectin-1 and macrophage-inducible C-type lectin. Immunoblotting analyses revealed that 3BP2 was required for the dectin-1-induced activation of NF-κB p65. The impaired expression of cytokines and activation of NF-κB in 3BP2-mutant cells were restored by wild-type 3BP2, suggesting that 3BP2 was involved in the dectin-1-mediated signalling that led to NF-κB activation. Furthermore, we found that the phosphorylation of Tyr183 is not essential for cytokine expression and that 3BP2 in combination with caspase recruitment domain family member 9 activates NF-κB in HEK-293T cells. Collectively, these results indicate that in addition to the development of BMDCs, 3BP2 plays an important role in the dectin-1-induced activation of NF-κB and cytokine expression.
Collapse
|
11
|
Do Mast Cells Contribute to the Antifungal Host Defense? Cells 2021; 10:cells10102510. [PMID: 34685489 PMCID: PMC8534142 DOI: 10.3390/cells10102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The fungal kingdom includes a group of microorganisms that are widely distributed in the environment, and therefore the exposure to them is almost constant. Furthermore, fungal components of the microbiome, i.e., mycobiome, could serve as a reservoir of potentially opportunistic pathogens. Despite close encounters with fungi, defense mechanisms that develop during fungal infections remain unexplored. The strategic location of mast cells (MCs) close to the external environment places them among the first cells to encounter pathogens along with the other innate immune cells. MCs are directly involved in the host defense through the ability to destroy pathogens or indirectly by activating other immune cells. Most available data present MCs’ involvement in antibacterial, antiviral, or antiparasitic defense mechanisms. However, less is known about their contribution in defense mechanisms against fungi. MCs may support immune responses to fungi or their specific molecules through initiated degranulation, synthesis and release of cytokines, chemokines, mediators, and generation of reactive oxygen species (ROS), as well as immune cells’ recruitment, phagocytosis, or provision of extracellular DNA traps. This review summarizes current knowledge on host defense mechanisms against fungi and MCs’ involvement in those processes. It also describes the effects of fungi or fungus-derived constituents on MCs’ activity.
Collapse
|
12
|
Agier J, Brzezińska-Błaszczyk E, Różalska S, Wiktorska M, Kozłowska E, Żelechowska P. Mast cell phenotypic plasticity and their activity under the influence of cathelicidin-related antimicrobial peptide (CRAMP) and IL-33 alarmins. Cell Immunol 2021; 369:104424. [PMID: 34469845 DOI: 10.1016/j.cellimm.2021.104424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Invading pathogens are contained/eliminated by orchestrated actions of different humoral components of the innate immune response. One of them is endogenous molecules called alarmins, which contribute to diverse processes from danger sense until the infection extinction. Considering the participation of mast cells (MCs) in many aspects of the body's defense and, on the other hand, the importance of alarmins as molecules that signal damage/danger, in this study, we evaluated the effect of alarmins on MC phenotype and activity. We found that cathelicidin CRAMP and cytokine IL-33 significantly affect the appearance of Dectin-1, Dectin-2, RIG-I, and NOD1 receptors in mature MCs and modulate their inflammatory response. We established that chosen alarmins might stimulate MCs to release pro-inflammatory and immunoregulatory mediators and induce a migratory response. In conclusion, our data highlight that alarmins CRAMP and IL-33 might strongly influence MC features and activity, mainly by strengthening their role in the inflammatory mechanisms and controlling the activity of cells participating in antimicrobial processes.
Collapse
Affiliation(s)
- Justyna Agier
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Paulina Żelechowska
- Department of Microbiology and Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Wang T, Xu Y, Liu X, Zeng Y, Liu L. miR-96-5p is the tumor suppressor in osteosarcoma via targeting SYK. Biochem Biophys Res Commun 2021; 572:49-56. [PMID: 34343834 DOI: 10.1016/j.bbrc.2021.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Osteosarcoma is a multiple malignant tumor in adolescents. MicroRNAs (MiRNAs) have been found to express abnormally in OS tissues and are considered as potential targets for OS prognosis and treatment. METHODS MiR-96-5p and SYK expression in clinical samples, osteoblast and OS cell lines were detected. The changes of cell proliferation, apoptosis, adhesion and metastasis of OS cells were detected by CCK-8, BrdU, caspase-3 activity and transwell assay. Dual luciferase report analysis and RNA pull-down were used to confirm binding relation of miR-96-5p and SYK. RESULTS MiR-96-5p was increased in OS tissue and cells. Moreover, miR-96-5p inhibits proliferation, adhesion and migration of HOS and Saos-2 cells, and promotes cell apoptosis. SYK has been identified to be targeted by miR-96-5p. Overexpressed SYK inhibits the suppressive impact of miR-96-5 on OS cells. CONCLUSION MiR-96-5p may function as an effective target in OS treatment.
Collapse
Affiliation(s)
- Taiping Wang
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China.
| | - Yong Xu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Xin Liu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Yong Zeng
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Lei Liu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| |
Collapse
|
14
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
15
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Native and IgE-primed rat peritoneal mast cells exert pro-inflammatory activity and migrate in response to yeast zymosan upon Dectin-1 engagement. Immunol Res 2021; 69:176-188. [PMID: 33704666 PMCID: PMC8106611 DOI: 10.1007/s12026-021-09183-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 01/12/2023]
Abstract
Mast cells (MCs) play an essential role in host defense, primarily because of their location, their ability to pathogen destruction via several mechanisms, and the pattern recognition receptors they express. Even though most data is available regarding MC activation by various bacteria- or virus-derived molecules, those cells' activity in response to constituents associated with fungi is not recognized enough. Our research aimed to address whether Saccharomyces cerevisiae-derived zymosan, i.e., β-(1,3)-glucan containing mannan particles, impacts MC activity aspects. Overall, the obtained results indicate that zymosan has the potential to elicit a pro-inflammatory response of rat peritoneal MCs. For the first time ever, we provided evidence that zymosan induces fully mature MC migration, even in the absence of extracellular matrix (ECM) proteins. Moreover, the zymosan-induced migratory response of MCs is almost entirely a result of directional migration, i.e., chemotaxis. We found that zymosan stimulates MCs to degranulate and generate lipid mediators (cysLTs), cytokines (IFN-α, IFN-β, IFN-γ, GM-CSF, TNF), and chemokine (CCL2). Zymosan also upregulated mRNA transcripts for several cytokines/chemokines with pro-inflammatory/immunoregulatory activity. Moreover, we documented that zymosan activates MCs to produce reactive oxygen species (ROS). Lastly, we established that the zymosan-induced MC response is mediated through activation of the Dectin-1 receptor. In general, our results strongly support the notion that MCs contribute to innate antifungal immunity and bring us closer to elucidate their role in host-pathogenic fungi interactions. Besides, provided findings on IgE-sensitized MCs appear to indicate that exposure to fungal zymosan could affect the severity of IgE-dependent disorders, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
16
|
Itoh K, Shigemi H, Chihara K, Sada K, Yamauchi T, Iwasaki H. Caspofungin suppresses zymosan-induced cytokine and chemokine release in THP-1 cells: possible involvement of the spleen tyrosine kinase pathway. Transl Res 2021; 227:53-63. [PMID: 32687976 DOI: 10.1016/j.trsl.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Systemic inflammatory response syndrome and sepsis are considered to contribute to hypercytokinemia in both patients with severe infection and immunocompromised condition. Past research has demonstrated that antibiotics and antifungals not only have antimicrobial efficacy but also affect the immune system. We previously examined whether immune cells were modulated by antibiotics such as tetracyclines or macrolides. The modulation of lipopolysaccharide-stimulated cells by those agents was elucidated. However, few reports about the modulation of the immune system by antifungal agents were found. In this study, the production of pro-inflammatory cytokines and chemokines and signaling pathways involved were investigated in zymosan-activated THP-1 cells. The effects were examined using antifungal agents such as echinocandin including caspofungin (CAS) and micafungin. Pro-inflammatory cytokine and chemokine levels were determined using enzyme-linked immunosorbent assay. Protein phosphorylation was evaluated by western blot analysis. CAS significantly decreased zymosan-induced pro-inflammatory cytokine and chemokine release in THP-1 cells. CAS (30 µg/mL) also downregulated tumor necrosis factor alpha levels, as shown by enzyme-linked immunosorbent assay. In western blot analysis, inhibitor of nuclear factor-kappa-B alpha, p38, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and nuclear factor of activated T-cells phosphorylation and activation of caspase-1 and spleen tyrosine kinase (Syk) were downregulated. The major underlying mechanism of pro-inflammatory cytokine and chemokine suppression by CAS is to inhibit activation of Syk and its downstream signaling molecules. Based on the results, it can be concluded that CAS activity possibly involves Syk signaling pathways and has potential to prevent hypercytokinemia in fungal sepsis.
Collapse
Affiliation(s)
- Kazuhiro Itoh
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan.
| | - Hiroko Shigemi
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| | - Kazuyasu Chihara
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiromichi Iwasaki
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
17
|
AlKhater SA. Dynamic Interplay Between Microbiota and Mucosal Immunity in Early Shaping of Asthma and its Implication for the COVID-19 Pandemic. J Asthma Allergy 2020; 13:369-383. [PMID: 33061464 PMCID: PMC7532070 DOI: 10.2147/jaa.s272705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
The crosstalk between host immunity and the external environment in the mucous membranes of the gastrointestinal and respiratory tracts in bronchial asthma has recently been scrutinized. There is compelling evidence that the microbiota at these sites may play an important role in the pathogenesis of this chronic airway disease. The appearance of bacteria early in life in the gut before dissemination to the airways plays a pivotal role in shaping mucosal immunity. Loss of microbial diversity or dysbiosis can result in aberrant immune-mediated inflammation and mucosal barrier disruption, which coincides clinically with the successive development of the "allergic march" in asthma. Microbial manipulation may be effective in curbing asthma development by indirectly preserving homeostatic epithelial barrier functions. The protective effects and mechanisms of immunity-microbiome crosstalk at mucosal sites require further investigation to identify therapeutic and preventive measures in asthma. This topical review aims to highlight new evidence that compromised epithelial barrier function, which results in deregulated crosstalk between the microbiome and host mucosal immune system, is an important disease mechanism in asthma. In the light of current COVID-19 pandemic, the collective findings on the impact of mucosal microbiota on the suceptibility to SARS-CoV-2 infection and severity of COVID-19 is explored. The possible therapeutic implications to target these abnormalities are further discussed.
Collapse
Affiliation(s)
- Suzan A AlKhater
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia
| |
Collapse
|
18
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020; 10:472. [PMID: 33014894 PMCID: PMC7498577 DOI: 10.3389/fcimb.2020.00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Host-associated bacteria and fungi, comprising the microbiota, are critical to host health. In the airways, the composition and diversity of the mucosal microbiota of patients are associated with airway health status. However, the relationship between airway microbiota and respiratory inflammation is not well-understood. Chronic rhinosinusitis (CRS) is a complex disease that affects up to 14% of the US population. Previous studies have shown decreased microbial diversity in CRS patients and enrichment of either Staphylococcus aureus or Pseudomonas aeruginosa. Although bacterial community composition is variable across CRS patients, Malassezia is a dominant fungal genus in the upper airways of the majority of healthy and CRS subjects. We hypothesize that distinct bacterial-fungal interactions differentially influence host mucosal immune response. Thus, we investigated in vitro and in vivo interactions between Malassezia sympodialis, P. aeruginosa, and S. aureus. The in vitro interactions were evaluated using the modified Kirby-Bauer Assay, Crystal Violet assay for biofilm, and FISH. A pilot murine model of acute sinusitis was used to investigate relationships with the host immune response. S. aureus and P. aeruginosa were intranasally instilled in the presence or absence of M. sympodialis (n = 66 total mice; 3–5/group). Changes in the microbiota were determined using 16S rRNA gene sequencing and host immune response was measured using quantitative real-time PCR (qRT-PCR). In vitro, only late stage planktonic P. aeruginosa and its biofilms inhibited M. sympodialis. Co-infection of mice with M. sympodialis and P. aeruginosa or S. aureus differently influenced the immune response. In co-infected mice, we demonstrate different expression of fungal sensing (Dectin-1), allergic responses (IL-5, and IL-13) and inflammation (IL-10, and IL-17) in murine sinus depending on the bacterial species that co-infected with M. sympodialis (p < 0.05). The pilot results suggest that species-specific interactions in airway-associated microbiota may be implicated driving immune responses. The understanding of the role of bacterial-fungal interactions in CRS will contribute to development of novel therapies toward manipulation of the airway microbiota.
Collapse
Affiliation(s)
- Keehoon Lee
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Irene Zhang
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Shari Kyman
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Oliver Kask
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily Kathryn Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
19
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020. [DOI: 10.10.3389/fcimb.2020.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Wang P, Yao J, Deng L, Yang X, Luo W, Zhou W. Pretreatment with Antibiotics Impairs Th17-Mediated Antifungal Immunity in Newborn Rats. Inflammation 2020; 43:2202-2208. [PMID: 32623554 DOI: 10.1007/s10753-020-01287-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical studies have confirmed that the use of antibiotics, especially carbapenems, is a high-risk factor for fungal infection in preterm infants. However, it is not entirely clear whether the increased risk for fungal infection is due to the immune differences in preterm infants or antibiotic usage. We found that after newborn rats received antibiotics, they exhibited significantly impaired anti-Candida albicans immunity in comparison with those without treatment, as shown by significantly increased levels of fungal glucan in the peripheral blood, multiple caseous fungal infections in the abdominal cavity, intestinal congestion, ischemia, and a decrease in the number of intestinal villi. Mechanistically, pretreatment with antibiotics diminished antifungal innate immunity by TLR2 and inhibited IL-17A release and neutrophil recruitment, leading to increased susceptibility to fungi. In summary, we demonstrate that antibiotic usage impairs antifungal immunity in neonates and suggest that antifungal prophylaxis may be required after antibiotic treatment in high-risk preterm babies.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Jie Yao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Deng
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqi Yang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Chi Y, Li C, Wu LH, Wang HH. The relationship between dectin-1 and mast cells in patients with diarrhea-predominant irritable bowel syndrome. Scand J Gastroenterol 2020; 55:762-768. [PMID: 32493087 DOI: 10.1080/00365521.2020.1774925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background/Aims: Currently, the role of the microbiome GBA is being widely studied in the pathogenesis of visceral hypersensitivity in IBS. To investigate the role of fungus, the current study aimed to i) investigate the expression of Syk/CARD9-coupled Dectin-1 receptors in the ileocecal mucosa in D-IBS patients and (ii) explore the relationships between Dectin-1 and plasma MCT levels as well as anorectal sensory function in patients with D-IBS.Methods: Thirty-eight D-IBS patients who met the Rome III criteria and 2 groups of age- and sex-matched asymptomatic healthy controls were recruited from March 2015 to January 2017. Anorectal sensory function was quantified by HR-ARM. Plasma MCT titers were identified by ELISA, while the expression of Syk/CARD9 Dectin-1 receptors in ileocecal mucosa was identified by RT-qPCR.Results: (i) The expression of Syk/CARD9-coupled Dectin-1 receptors was significantly higher in D-IBS patients than in controls (p < .001). ii) The threshold values of first sensation and desire to defecate were significantly lower in D-IBS patientsthan in controls (the P value was0.007 and 0.001 respectively). (iii) There were negative correlations between plasma MCT levels and first sensation thresholds in D-IBS patients (r = -0.513, p = .012) and the desire to defecate thresholds (r = -0.423, p = .044). (iiii) There was a positive correlation between plasma MCT titers and the expression of Dectin-1 receptors in D-IBS patients (r = 0.565, p = .005).Conclusions: These results suggested that fungi may partially participate in the genesis of visceral hypersensitivity by activating mast cells, which is mediated by activation of the Dectin-1 receptor-mediated Syk/CARD9 signaling pathway.
Collapse
Affiliation(s)
- Yan Chi
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Chao Li
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Li-Hong Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Hua-Hong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Żelechowska P, Różalska S, Wiktorska M, Brzezińska-Błaszczyk E, Agier J. Curdlan stimulates tissue mast cells to synthesize pro-inflammatory mediators, generate ROS, and migrate via Dectin-1 receptor. Cell Immunol 2020; 351:104079. [PMID: 32115182 DOI: 10.1016/j.cellimm.2020.104079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/10/2023]
Abstract
Mast cells (MCs) are engaged in host defense against various pathogens as they are equipped with pattern recognition receptors (PRRs). Among PRRs expressed on MCs, there are also molecules recognizing components of the fungal cell wall, which are able to induce cellular activation and response. However, little information is available concerning the MC activation by various fungal-derived components. The aim of the study was to determine whether curdlan, a model fungal particle of β-(1,3)-glucan, can directly stimulate tissue MCs. We demonstrated that curdlan triggers MCs to initiate pro-inflammatory response as it activates these cells to synthesize essential pro-inflammatory and/or immunoregulatory factors. We also showed that curdlan serves as a potent chemoattractant for MCs and stimulates those cells to generate reactive oxygen species (ROS). Finally, we documented that curdlan induces MC response via Dectin-1. Our observations support the idea that MCs serve as important sentinels modulating immune response during fungal infection.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, 92-213 Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
23
|
Wang L, Wang YJ, Hao D, Wen X, Du D, He G, Jiang X. The Theranostics Role of Mast Cells in the Pathophysiology of Rosacea. Front Med (Lausanne) 2020; 6:324. [PMID: 32047752 PMCID: PMC6997331 DOI: 10.3389/fmed.2019.00324] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
Rosacea is a chronic inflammatory cutaneous disorder that adversely affects patient's health and quality of life due to the complex course and the need for repeated treatment. The exact molecular mechanisms of rosacea are unclear. Mast cells are innate immune cells that can be found in virtually all tissues. Recently, increasing evidence has indicated that mast cells have important effects on the pathogenesis of rosacea. In this review article, we describe recent advances of skin mast cells in the development of rosacea. These studies suggested that mast cells can be an important immune cell that connected innate immunity, nerves, and blood vessels in the development of rosacea. Moreover, we review the inhibition of mast cells for the potential treatment of rosacea.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Jia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Guo Y, Huang S, Ma Y, Zhang J, Wen Y, Zhou L, Yuan G, Cheng J. MiR-377 mediates the expression of Syk to attenuate atherosclerosis lesion development in ApoE−/− mice. Biomed Pharmacother 2019; 118:109332. [DOI: 10.1016/j.biopha.2019.109332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023] Open
|
25
|
Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. Carbohydr Polym 2019; 218:53-62. [DOI: 10.1016/j.carbpol.2019.04.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
|
26
|
Pure yeast beta-glucan and two types of yeast cell wall extracts enhance cell migration in porcine intestine model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Li TH, Liu L, Hou YY, Shen SN, Wang TT. C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut. Gastroenterol Rep (Oxf) 2019; 7:312-321. [PMID: 31687150 PMCID: PMC6821170 DOI: 10.1093/gastro/goz028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
C-type lectin receptors (CLRs) are powerful pattern-recognition receptors that discern ‘self’ and ‘non-self’ in our body and protect us from invasive pathogens by mediating immune recognition and response. The gastrointestinal tract is very important for the maintenance of homeostasis; it is the largest shelter for the billions of microorganisms in the body and CLRs play a crucial regulatory role in this system. This study focuses on several CLRs, including Dectin-1, Dectin-2, Dectin-3 and Mincle. We summarize the roles of CLRs in maintaining gastrointestinal immune-system homeostasis, especially their functions in mediating immune recognition and responses in the gut, discuss their relationships to some diseases, highlight the significance of CLR-mediated sensing of microbial and non-microbial compounds in the gut immune system and identify new therapeutic targets.
Collapse
Affiliation(s)
- Tian-Hang Li
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ling Liu
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ya-Yi Hou
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Su-Nan Shen
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ting-Ting Wang
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
28
|
Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol 2018; 142:353-363. [PMID: 30080527 PMCID: PMC6083885 DOI: 10.1016/j.jaci.2018.06.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Fungi are ubiquitous outdoors and indoors. Exposure, sensitization, or both to fungi are strongly associated with development of asthma and allergic airway diseases. Furthermore, global climate change will likely increase the prevalence of fungi and enhance their antigenicity. Major progress has been made during the past several years regarding our understanding of antifungal immunity. Fungi contain cell-wall molecules, such as β-glucan and chitin, and secrete biologically active proteases and glycosidases. Airway epithelial cells and innate immune cells, such as dendritic cells, are equipped with cell-surface molecules that react to these fungal products, resulting in production of cytokines and proinflammatory mediators. As a result, the adaptive arm of antifungal immunity, including TH1-, TH2-, and TH17-type CD4+ T cells, is established, reinforcing protection against fungal infection and causing detrimental immunopathology in certain subjects. We are only in the beginning stages of understanding the complex biology of fungi and detailed mechanisms of how they activate the immune response that can protect against or drive diseases in human subjects. Here we describe our current understanding with an emphasis on airway allergic immune responses. The gaps in our knowledge and desirable future directions are also discussed.
Collapse
Affiliation(s)
- Kathleen R Bartemes
- Division of Allergic Diseases, Department of Internal Medicine, and the Department of Immunology, Mayo Clinic, Rochester, Minn
| | - Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, and the Department of Immunology, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
29
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
30
|
Moioli B, Steri R, Catillo G. Genomic Regions in Local Endangered Sheep Encode Potentially Favorable Genes. Anim Biotechnol 2018; 29:12-19. [PMID: 28346054 DOI: 10.1080/10495398.2017.1286351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The economic evaluation of farm animal genetic resources plays a key role in developing conservation programs. However, to date, the link between diversity as assessed by neutral genetic markers and the functional diversity is not yet understood. Two genome-wide comparisons, using over 44,000 Single Nucleotide Polymorphisms, identified the markers with the highest difference in allele frequency between the Alpago endangered breed and two clusters, composed of four specialized dairy sheep, and four meat breeds respectively. The genes in proximity of these markers were mapped to known pathways of the Gene Ontology to determine which ones were most represented. Our results indicated that the differences of the Alpago breed from the more productive sheep rely upon genes involved in cellular defense and repair mechanisms. A higher number of different markers and genes were detected in the comparison with the specialized dairy sheep. These genes play a role in complex biological processes: metabolic, homeostatic, neurological system, and macromolecular organization; such processes may possibly explain the evolution of gene function as a result of selection to improve milk yield.
Collapse
Affiliation(s)
- Bianca Moioli
- a Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria , Monterotondo , Italy
| | - Roberto Steri
- a Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria , Monterotondo , Italy
| | - Gennaro Catillo
- a Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria , Monterotondo , Italy
| |
Collapse
|
31
|
A computational model for regulation of nanoscale glucan exposure in Candida albicans. PLoS One 2017; 12:e0188599. [PMID: 29232689 PMCID: PMC5726713 DOI: 10.1371/journal.pone.0188599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is a virulent human opportunistic pathogen. It evades innate immune surveillance by masking an immunogenic cell wall polysaccharide, β-glucan, from recognition by the immunoreceptor Dectin-1. Glucan unmasking by the antifungal drug caspofungin leads to changes in the nanostructure of glucan exposure accessible to Dectin-1. The physical mechanism that regulates glucan exposure is poorly understood, but it controls the nanobiology of fungal pathogen recognition. We created computational models to simulate hypothetical physical processes of unmasking glucan in a biologically realistic distribution of cell wall glucan fibrils. We tested the predicted glucan exposure nanostructural features arising from these models against experimentally measured values. A completely spatially random unmasking process, reflective of random environmental damage to the cell wall, cannot account for experimental observations of glucan unmasking. However, the introduction of partially edge biased unmasking processes, consistent with an unmasking contribution from active, local remodeling at glucan exposure sites, produces markedly more accurate predictions of experimentally observed glucan nanoexposures in untreated and caspofungin-treated yeast. These findings suggest a model of glucan unmasking wherein cell wall remodeling processes in the local nanoscale neighborhood of glucan exposure sites are an important contributor to the physical process of drug-induced glucan unmasking in C. albicans.
Collapse
|
32
|
Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells. Sci Rep 2017; 7:11480. [PMID: 28904407 PMCID: PMC5597638 DOI: 10.1038/s41598-017-11915-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/31/2017] [Indexed: 11/24/2022] Open
Abstract
The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.
Collapse
|
33
|
Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk. Sci Rep 2017; 7:46064. [PMID: 28393919 PMCID: PMC5385489 DOI: 10.1038/srep46064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/09/2017] [Indexed: 11/08/2022] Open
Abstract
Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6′-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions are still uncertain. In this study, we examined the Mincle-mediated signaling pathway and cellular responses using RBL-2H3 cells. Mincle formed a protein complex with not only FcεRIγ but also FcεRIβ in a stable cell line expressing myc-tagged Mincle. In addition, engagement of Mincle increased the levels of protein tyrosine phosphorylation and ERK phosphorylation. A pull-down assay demonstrated that cross-linking of Mincle induced binding of FcεRIβγ subunits to the Src homology 2 domain of Syk. Pharmacological and genetic studies indicated that activation of Syk was critical for Mincle-mediated activation of phospholipase Cγ2, leading to the activation of ERK and nuclear factor of activated T cells. Moreover, engagement of Mincle efficiently induced up-regulation of characteristic mast cell genes in addition to degranulation. Taken together, our present results suggest that mast cells contribute to Mincle-mediated immunity through Syk activation triggered by association with the FcεRIβγ complex.
Collapse
|
34
|
Wang XC, Zhao GQ, Lin J, Li C, Jiang N, Zhang J. Effects of retinoic acid receptor-γ on the Aspergillus fumigatus induced innate immunity response in human corneal epithelial cells. Int J Ophthalmol 2016; 9:1713-1718. [PMID: 28003968 DOI: 10.18240/ijo.2016.12.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/28/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the effects of retinoic acid receptor-γ (RARγ) on innate immune responses against Aspergillus fumigatus (A. fumigatus) in cultured human corneal epithelial cells (HCECs). METHODS The HCECs were stimulated with A. fumigatus hyphae for 0, 2, 4, 8, 12 and 16h. RARγ mRNA and protein levels were tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Then HCECs were pretreated with or without BMS961 (RARγ agonist, 1 µg/mL). The mRNA and protein expression of Dectin-1 and the downstream cytokines (TNF-α and IL-6) were determined by qRT-PCR, Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS The expression of RARγ was upregulated after stimulation with A. fumigatus. RARγ mRNA began to rise at 4h and peaked at 8h (P<0.001). The protein of RARγ reached to the peak at 16h (P<0.001). Pretreated with BMS961 before A. fumigatus hyphae stimulation, expression of Dectin-1, TNF-α and IL-6 decreased dramatically at mRNA and protein levels. CONCLUSION HCECs can express RARγ and A. fumigatus hyphae infection can increase RARγ expression. BMS961 can inhibit the expression of Dectin-1 and pro-inflammatory cytokines, and play an anti-inflammatory role in innate immune responses against A. fumigatus.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jie Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
35
|
STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α. Sci Rep 2016; 6:38336. [PMID: 27929099 PMCID: PMC5144079 DOI: 10.1038/srep38336] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022] Open
Abstract
Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway.
Collapse
|
36
|
Barbosa-Lorenzi VC, Peyda S, Scheynius A, Nilsson G, Lunderius-Andersson C. Curdlan induces selective mast cell degranulation without concomitant release of LTC 4, IL-6 or CCL2. Immunobiology 2016; 222:647-650. [PMID: 27989425 DOI: 10.1016/j.imbio.2016.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/04/2016] [Indexed: 01/19/2023]
Abstract
Mast cells are sentinel cells with a tissue-specific localization in the interface between the host and the external environment. Their quick and selective response upon encountering pathogens is part of the innate host response and typically initiates the following adaptive immune response. Among several pattern recognition receptors (PRRs) involved in the recognition of pathogens by mast cells, the C-type lectin receptor Dectin-1 has been associated with the recognition of fungi. Our previous studies have shown that mast cells are the predominant cell type expressing Dectin-1 in human skin, and they also recognize and respond to Malassezia sympodialis by producing cytokines connected to the innate host response and upregulating the expression of Dectin-1. In the present study, we investigated mast cell responses to Curdlan, a β-glucan that acts as an agonist for the fungi receptor Dectin-1, and found a unique response pattern with induced degranulation, but surprisingly without synthesis of Leukotriene C4, IL-6 or CCL2. Since mast cells are the predominant Dectin-1 expressing cell in the human skin, this study suggests that mast cell degranulation in response to fungi is an important part of the first line of defense against these pathogens.
Collapse
Affiliation(s)
- Valéria C Barbosa-Lorenzi
- Clincial Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Simon Peyda
- Clincial Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gunnar Nilsson
- Clincial Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Carolina Lunderius-Andersson
- Clincial Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
37
|
Cuong DV, Kim HK, Marquez J, Kim N, Ko KS, Rhee BD, Han J. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:213-20. [PMID: 26937218 PMCID: PMC4770112 DOI: 10.4196/kjpp.2016.20.2.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 12/03/2022]
Abstract
Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation.
Collapse
Affiliation(s)
- Dang Van Cuong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
| | - Jubert Marquez
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
38
|
Williams PB, Barnes CS, Portnoy JM. Innate and Adaptive Immune Response to Fungal Products and Allergens. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:386-95. [PMID: 26755096 DOI: 10.1016/j.jaip.2015.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Exposure to fungi and their products is practically ubiquitous, yet most of this is of little consequence to most healthy individuals. This is because there are a number of elaborate mechanisms to deal with these exposures. Most of these mechanisms are designed to recognize and neutralize such exposures. However, in understanding these mechanisms it has become clear that many of them overlap with our ability to respond to disruptions in tissue function caused by trauma or deterioration. These responses involve the innate and adaptive immune systems usually through the activation of nuclear factor kappa B and the production of cytokines that are considered inflammatory accompanied by other factors that can moderate these reactivities. Depending on different genetic backgrounds and the extent of activation of these mechanisms, various pathologies with resulting symptoms can ensue. Complicating this is the fact that these mechanisms can bias toward type 2 innate and adaptive immune responses. Thus, to understand what we refer to as allergens from fungal sources, we must first understand how they influence these innate mechanisms. In doing so it has become clear that many of the proteins that are described as fungal allergens are essentially homologues of our own proteins that signal or cause tissue disruptions.
Collapse
Affiliation(s)
- P Brock Williams
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Charles S Barnes
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Jay M Portnoy
- Division of Allergy/Immunology, Children's Mercy Hospital, Kansas City, Mo.
| | | |
Collapse
|
39
|
Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells. Sci Rep 2015; 5:12287. [PMID: 26192381 PMCID: PMC4507480 DOI: 10.1038/srep12287] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/19/2015] [Indexed: 12/29/2022] Open
Abstract
Immunosuppressed patients are frequently afflicted with severe mycoses caused by opportunistic fungal pathogens. Besides being a commensal, colonizing predominantly skin and mucosal surfaces, Candida albicans is the most common human fungal pathogen. Mast cells are present in tissues prone to fungal colonization being expectedly among the first immune cells to get into contact with C. albicans. However, mast cell-fungus interaction remains a neglected area of study. Here we show that human mast cells mounted specific responses towards C. albicans. Collectively, mast cell responses included the launch of initial, intermediate and late phase components determined by the secretion of granular proteins and cytokines. Initially mast cells reduced fungal viability and occasionally internalized yeasts. C. albicans could evade ingestion by intracellular growth leading to cellular death. Furthermore, secreted factors in the supernatants of infected cells recruited neutrophils, but not monocytes. Late stages were marked by the release of cytokines that are known to be anti-inflammatory suggesting a modulation of initial responses. C. albicans-infected mast cells formed extracellular DNA traps, which ensnared but did not kill the fungus. Our results suggest that mast cells serve as tissue sentinels modulating antifungal immune responses during C. albicans infection. Consequently, these findings open new doors for understanding fungal pathogenicity.
Collapse
|