1
|
Xiang C, Chen L, Zhu S, Chen Y, Huang H, Yang C, Chi Y, Wang Y, Lei Y, Cai X. CRLF1 bridges AKT and mTORC2 through SIN1 to inhibit pyroptosis and enhance chemo-resistance in ovarian cancer. Cell Death Dis 2024; 15:662. [PMID: 39256356 PMCID: PMC11387770 DOI: 10.1038/s41419-024-07035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Ovarian cancer, the second most leading cause of gynecologic cancer mortality worldwide, is challenged by chemotherapy resistance, presenting a significant hurdle. Pyroptosis, an inflammation-linked programmed cell death mediated by gasdermins, has been shown to impact chemoresistance when dysregulated. However, the mechanisms connecting pyroptosis to chemotherapy resistance in ovarian cancer are unclear. We found that cytokine receptor-like factor 1 (CRLF1) is a novel component of mTORC2, enhancing AKT Ser473 phosphorylation through strengthening the interaction between AKT and stress-activated protein kinase interacting protein 1 (SIN1), which in turn inhibits the mitogen-activated protein kinase kinase kinase 5 (ASK1)-JNK-caspase-3-gasdermin E pyroptotic pathway and ultimately confers chemoresistance. High CRLF1-expressing tumors showed sensitivity to AKT inhibition but tolerance to cisplatin. Remarkably, overexpression of binding-defective CRLF1 variants impaired AKT-SIN1 interaction, promoting pyroptosis and chemosensitization. Thus, CRLF1 critically regulates chemoresistance in ovarian cancer by modulating AKT/SIN1-dependent pyroptosis. Binding-defective CRLF1 variants could be developed as tumor-specific polypeptide drugs to enhance chemotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Cong Xiang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Shilei Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Chen
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Haodong Huang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Chunmao Yang
- Department of Gynecology, Southwest Hospital, Chongqing, China
| | - Yugang Chi
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Yanzhou Wang
- Department of Gynecology, Southwest Hospital, Chongqing, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiongwei Cai
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China.
| |
Collapse
|
2
|
Griffith M, Araújo A, Travasso R, Salvador A. The architecture of redox microdomains: Cascading gradients and peroxiredoxins' redox-oligomeric coupling integrate redox signaling and antioxidant protection. Redox Biol 2024; 69:103000. [PMID: 38150990 PMCID: PMC10829873 DOI: 10.1016/j.redox.2023.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
In the cytosol of human cells under low oxidative loads, hydrogen peroxide is confined to microdomains around its supply sites, due to its fast consumption by peroxiredoxins. So are the sulfenic and disulfide forms of the 2-Cys peroxiredoxins, according to a previous theoretical analysis [Travasso et al., Redox Biology 15 (2017) 297]. Here, an extended reaction-diffusion model that for the first time considers the differential properties of human peroxiredoxins 1 and 2 and the thioredoxin redox cycle predicts important new aspects of the dynamics of redox microdomains. The peroxiredoxin 1 sulfenates and disulfides are more localized than the corresponding peroxiredoxin 2 forms, due to the former peroxiredoxin's faster resolution step. The thioredoxin disulfides are also localized. As the H2O2 supply rate (vsup) approaches and then surpasses the maximal rate of the thioredoxin/thioredoxin reductase system (V), these concentration gradients become shallower, and then vanish. At low vsup the peroxiredoxin concentration determines the H2O2 concentrations and gradient length scale, but as vsup approaches V, the thioredoxin reductase activity gains influence. A differential mobility of peroxiredoxin disulfide dimers vs. reduced decamers enhances the redox polarity of the cytosol: as vsup approaches V, reduced decamers are preferentially retained far from H2O2 sources, attenuating the local H2O2 buildup. Substantial total protein concentration gradients of both peroxiredoxins emerge under these conditions, and the concentration of reduced peroxiredoxin 1 far from the H2O2 sources even increases with vsup. Altogether, the properties of 2-Cys peroxiredoxins and thioredoxin are such that localized H2O2 supply induces a redox and functional polarization between source-proximal regions (redox microdomains) that facilitate peroxiredoxin-mediated signaling and distal regions that maximize antioxidant protection.
Collapse
Affiliation(s)
- Matthew Griffith
- CNC - Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 8, 3060-197, Cantanhede, Portugal; Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adérito Araújo
- CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3004-143, Coimbra, Portugal.
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
| | - Armindo Salvador
- CNC - Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 8, 3060-197, Cantanhede, Portugal; Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789, Coimbra, Portugal.
| |
Collapse
|
3
|
Ntallis C, Tzoupis H, Tselios T, Chasapis CT, Vlamis-Gardikas A. Distinct or Overlapping Areas of Mitochondrial Thioredoxin 2 May Be Used for Its Covalent and Strong Non-Covalent Interactions with Protein Ligands. Antioxidants (Basel) 2023; 13:15. [PMID: 38275635 PMCID: PMC10812433 DOI: 10.3390/antiox13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
In silico approaches were employed to examine the characteristics of interactions between human mitochondrial thioredoxin 2 (HsTrx2) and its 38 previously identified mitochondrial protein ligands. All interactions appeared driven mainly by electrostatic forces. The statistically significant residues of HsTrx2 for interactions were characterized as "contact hot spots". Since these were identical/adjacent to putative thermodynamic hot spots, an energy network approach identified their neighbors to highlight possible contact interfaces. Three distinct areas for binding emerged: (i) one around the active site for covalent interactions, (ii) another antipodal to the active site for strong non-covalent interactions, and (iii) a third area involved in both kinds of interactions. The contact interfaces of HsTrx2 were projected as respective interfaces for Escherichia coli Trx1 (EcoTrx1), 2, and HsTrx1. Comparison of the interfaces and contact hot spots of HsTrx2 to the contact residues of EcoTx1 and HsTrx1 from existing crystal complexes with protein ligands supported the hypothesis, except for a part of the cleft/groove adjacent to Trp30 preceding the active site. The outcomes of this study raise the possibility for the rational design of selective inhibitors for the interactions of HsTrx2 with specific protein ligands without affecting the entirety of the functions of the Trx system.
Collapse
Affiliation(s)
- Charalampos Ntallis
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (C.N.); (H.T.); (T.T.)
| | - Haralampos Tzoupis
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (C.N.); (H.T.); (T.T.)
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (C.N.); (H.T.); (T.T.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou 48, 11635 Athens, Greece;
| | | |
Collapse
|
4
|
Li J, Ruan S, Jia J, Li Q, Jia R, Wan L, Yang X, Teng P, Peng Q, Shi YD, Yu P, Pan Y, Duan ML, Liu WT, Zhang L, Hu L. Hydrogen attenuates postoperative pain through Trx1/ASK1/MMP9 signaling pathway. J Neuroinflammation 2023; 20:22. [PMID: 36737785 PMCID: PMC9896749 DOI: 10.1186/s12974-022-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Postoperative pain is a serious clinical problem with a poorly understood mechanism, and lacks effective treatment. Hydrogen (H2) can reduce neuroinflammation; therefore, we hypothesize that H2 may alleviate postoperative pain, and aimed to investigate the underlying mechanism. METHODS Mice were used to establish a postoperative pain model using plantar incision surgery. Mechanical allodynia was measured using the von Frey test. Cell signaling was assayed using gelatin zymography, western blotting, immunohistochemistry, and immunofluorescence staining. Animals or BV-2 cells were received with/without ASK1 and Trx1 inhibitors to investigate the effects of H2 on microglia. RESULTS Plantar incision surgery increased MMP-9 activity and ASK1 phosphorylation in the spinal cord of mice. MMP-9 knockout and the ASK1 inhibitor, NQDI-1, attenuated postoperative pain. H2 increased the expression of Trx1 in the spinal cord and in BV-2 cells. H2 treatment mimicked NQDI1 in decreasing the phosphorylation of ASK1, p38 and JNK. It also reduced MMP-9 activity, downregulated pro-IL-1β maturation and IBA-1 expression in the spinal cord of mice, and ameliorated postoperative pain. The protective effects of H2 were abolished by the Trx1 inhibitor, PX12. In vitro, in BV-2 cells, H2 also mimicked NQDI1 in inhibiting the phosphorylation of ASK1, p38, and JNK, and also reduced MMP-9 activity and decreased IBA-1 expression induced by LPS. The Trx1 inhibitor, PX12, abolished the protective effects of H2 in BV-2 cells. CONCLUSIONS For the first time, the results of our study confirm that H2 can be used as a therapeutic agent to alleviate postoperative pain through the Trx1/ASK1/MMP9 signaling pathway. MMP-9 and ASK1 may be the target molecules for relieving postoperative pain.
Collapse
Affiliation(s)
- Juan Li
- grid.89957.3a0000 0000 9255 8984Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019 Jiangsu China ,grid.41156.370000 0001 2314 964XDepartment of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Shirong Ruan
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Jinhui Jia
- grid.412676.00000 0004 1799 0784Department of Orthopedics, Jiangsu Province Hospital of Integration of Chinese and Western Medicine, Nanjing, 210029 Jiangsu China
| | - Qian Li
- grid.89957.3a0000 0000 9255 8984Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Rumeng Jia
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Li Wan
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Xing Yang
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Peng Teng
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Qilin Peng
- grid.89957.3a0000 0000 9255 8984Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Ya-dan Shi
- grid.89957.3a0000 0000 9255 8984Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Pan Yu
- grid.41156.370000 0001 2314 964XDepartment of Burn and Plastic, Jingling Hospital, School of Medicine, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Yinbing Pan
- grid.412676.00000 0004 1799 0784Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Man-lin Duan
- grid.89957.3a0000 0000 9255 8984Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019 Jiangsu China ,grid.41156.370000 0001 2314 964XDepartment of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China.
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
5
|
Ball DP, Tsamouri LP, Wang AE, Huang HC, Warren CD, Wang Q, Edmondson IH, Griswold AR, Rao SD, Johnson DC, Bachovchin DA. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci Immunol 2022; 7:eabm7200. [PMID: 36332009 PMCID: PMC9850498 DOI: 10.1126/sciimmunol.abm7200] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The danger signals that activate the NLRP1 inflammasome have not been established. Here, we report that the oxidized, but not the reduced, form of thioredoxin-1 (TRX1) binds to NLRP1. We found that oxidized TRX1 associates with the NACHT-LRR region of NLRP1 in an ATP-dependent process, forming a stable complex that restrains inflammasome activation. Consistent with these findings, patient-derived and ATPase-inactivating mutations in the NACHT-LRR region that cause hyperactive inflammasome formation interfere with TRX1 binding. Overall, this work strongly suggests that reductive stress, the cellular perturbation that will eliminate oxidized TRX1 and abrogate the TRX1-NLRP1 interaction, is a danger signal that activates the NLRP1 inflammasome.
Collapse
Affiliation(s)
- Daniel P. Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lydia P. Tsamouri
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Alvin E. Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Charles D. Warren
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qinghui Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Isabelle H. Edmondson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Andrew R. Griswold
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, USA
| | - Sahana D. Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Darren C. Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Daniel A. Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
6
|
Obsilova V, Honzejkova K, Obsil T. Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms222413395. [PMID: 34948191 PMCID: PMC8705584 DOI: 10.3390/ijms222413395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer’s, Parkinson’s and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| |
Collapse
|
7
|
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun Biol 2021; 4:899. [PMID: 34294877 PMCID: PMC8298602 DOI: 10.1038/s42003-021-02419-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer. Pohl et al. investigated the structural basis of Nedd4-2 regulation by 14-3-3 and found that phosphorylated Ser342 and Ser448 are the main residues that facilitate 14-3-3 binding to Nedd4-2. The authors propose that the Nedd4-2:14-3-3 complex then stimulates a structural rearrangement of Nedd4-2 through inhibiting interaction of its structured domains.
Collapse
|
8
|
Vo TN, Malo Pueyo J, Wahni K, Ezeriņa D, Bolduc J, Messens J. Prdx1 Interacts with ASK1 upon Exposure to H 2O 2 and Independently of a Scaffolding Protein. Antioxidants (Basel) 2021; 10:antiox10071060. [PMID: 34209102 PMCID: PMC8300624 DOI: 10.3390/antiox10071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Hydrogen peroxide (H2O2) is a key redox signaling molecule that selectively oxidizes cysteines on proteins. It can accomplish this even in the presence of highly efficient and abundant H2O2 scavengers, peroxiredoxins (Prdxs), as it is the Prdxs themselves that transfer oxidative equivalents to specific protein thiols on target proteins via their redox-relay functionality. The first evidence of a mammalian cytosolic Prdx-mediated redox-relay—Prdx1 with the kinase ASK1—was presented a decade ago based on the outcome of a co-immunoprecipitation experiment. A second such redox-relay—Prdx2:STAT3—soon followed, for which further studies provided insights into its specificity, organization, and mechanism. The Prdx1:ASK1 redox-relay, however, has never undergone such a characterization. Here, we combine cellular and in vitro protein–protein interaction methods to investigate the Prdx1:ASK1 interaction more thoroughly. We show that, contrary to the Prdx2:STAT3 redox-relay, Prdx1 interacts with ASK1 at elevated H2O2 concentrations, and that this interaction can happen independently of a scaffolding protein. We also provide evidence of a Prdx2:ASK1 interaction, and demonstrate that it requires a facilitator that, however, is not annexin A2. Our results reveal that cytosolic Prdx redox-relays can be organized in different ways and yet again highlight the differentiated roles of Prdx1 and Prdx2.
Collapse
Affiliation(s)
- Trung Nghia Vo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Jesalyn Bolduc
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050 Brussels, Belgium; (T.N.V.); (J.M.P.); (K.W.); (D.E.); (J.B.)
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
9
|
Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, Mei C, Jiang X, Chen Y, Wang G, Wang K, Liu Y, Guo Y, Liu Z, Yuan Y. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis 2021; 12:425. [PMID: 33931585 PMCID: PMC8087765 DOI: 10.1038/s41419-021-03711-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
Serum deprivation-response protein (SDPR), a phosphatidylserine-binding protein, which is known to have a promising role in caveolar biogenesis and morphology. However, its function in hepatocellular carcinoma (HCC) was still largely unknown. In this study, we discussed the characterization and identification of SDPR, and to present it as a novel apoptosis candidate in the incidence of HCC. We identified 81 HCC cases with lower SDPR expression in the tumor tissues with the help of qRT-PCR assay, and lower SDPR expression was potentially associated with poor prognostication. The phenotypic assays revealed that cell proliferation, invasion, and migration were profoundly connected with SDPR, both in vivo and in vitro. The data obtained from the gene set enrichment analysis (GSEA) carried out on the liver hepatocellular carcinoma (LIHC), and also The Cancer Genome Atlas (TCGA) findings indicated that SDPR was involved in apoptosis and flow cytometry experiments further confirmed this. Furthermore, we identified the interaction between SDPR and apoptosis signal-regulating kinase 1 (ASK1), which facilitated the ASK1 N-terminus-mediated dimerization and increased ASK1-mediated signaling, thereby activating the JNK/p38 mitogen-activated protein kinases (MAPKs) and finally enhanced cell apoptosis. Overall, this work identified SDPR as a tumor suppressor, because it promoted apoptosis by activating ASK1-JNK/p38 MAPK pathways in HCC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Ye Yao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Qi Zhang
- Department of General Medicine, Renmin Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jinghua Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Chengjie Mei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yiran Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yonghua Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
10
|
Lentini Santo D, Petrvalska O, Obsilova V, Ottmann C, Obsil T. Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins. ACS Chem Biol 2020; 15:3060-3071. [PMID: 33146997 DOI: 10.1021/acschembio.0c00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates several key physiological and pathophysiological processes, and its dysregulation has been implicated in obesity, diabetes, and cancer. CaMKK2 is inhibited through phosphorylation in a process involving binding to the scaffolding 14-3-3 protein, which maintains CaMKK2 in the phosphorylation-mediated inhibited state. The previously reported structure of the N-terminal CaMKK2 14-3-3-binding motif bound to 14-3-3 suggested that the interaction between 14-3-3 and CaMKK2 could be stabilized by small-molecule compounds. Thus, we investigated the stabilization of interactions between CaMKK2 and 14-3-3γ by Fusicoccin A and other fusicoccanes-diterpene glycosides that bind at the interface between the 14-3-3 ligand binding groove and the 14-3-3 binding motif of the client protein. Our data reveal that two of five tested fusicoccanes considerably increase the binding of phosphopeptide representing the 14-3-3 binding motif of CaMKK2 to 14-3-3γ. Crystal structures of two ternary complexes suggest that the steric contacts between the C-terminal part of the CaMKK2 14-3-3 binding motif and the adjacent fusicoccane molecule are responsible for differences in stabilization potency between the study compounds. Moreover, our data also show that fusicoccanes enhance the binding affinity of phosphorylated full-length CaMKK2 to 14-3-3γ, which in turn slows down CaMKK2 dephosphorylation, thus keeping this protein in its phosphorylation-mediated inhibited state. Therefore, targeting the fusicoccin binding cavity of 14-3-3 by small-molecule compounds may offer an alternative strategy to suppress CaMKK2 activity by stabilizing its phosphorylation-mediated inhibited state.
Collapse
Affiliation(s)
- Domenico Lentini Santo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| |
Collapse
|
11
|
Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. J Bacteriol 2020; 202:JB.00365-20. [PMID: 32868406 DOI: 10.1128/jb.00365-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-activated effector deployment, prototyped by interferon-dependent immunity, is a common mechanistic theme shared by immune systems of several animals and prokaryotes. Prokaryotic versions include CRISPR-Cas with the CRISPR polymerase domain, their minimal variants, and systems with second messenger oligonucleotide or dinucleotide synthetase (SMODS). Cyclic or linear oligonucleotide signals in these systems help set a threshold for the activation of potentially deleterious downstream effectors in response to invader detection. We establish such a regulatory mechanism to be a more general principle of immune systems, which can also operate independently of such messengers. Using sensitive sequence analysis and comparative genomics, we identify 12 new prokaryotic immune systems, which we unify by this principle of threshold-dependent effector activation. These display regulatory mechanisms paralleling physiological signaling based on 3'-5' cyclic mononucleotides, NAD+-derived messengers, two- and one-component signaling that includes histidine kinase-based signaling, and proteolytic activation. Furthermore, these systems allowed the identification of multiple new sensory signal sensory components, such as a tetratricopeptide repeat (TPR) scaffold predicted to recognize NAD+-derived signals, unreported versions of the STING domain, prokaryotic YEATS domains, and a predicted nucleotide sensor related to receiver domains. We also identify previously unrecognized invader detection components and effector components, such as prokaryotic versions of the Wnt domain. Finally, we show that there have been multiple acquisitions of unidentified STING domains in eukaryotes, while the TPR scaffold was incorporated into the animal immunity/apoptosis signal-regulating kinase (ASK) signalosome.IMPORTANCE Both prokaryotic and eukaryotic immune systems face the dangers of premature activation of effectors and degradation of self-molecules in the absence of an invader. To mitigate this, they have evolved threshold-setting regulatory mechanisms for the triggering of effectors only upon the detection of a sufficiently strong invader signal. This work defines general templates for such regulation in effector-based immune systems. Using this, we identify several previously uncharacterized prokaryotic immune mechanisms that accomplish the regulation of downstream effector deployment by using nucleotide, NAD+-derived, two-component, and one-component signals paralleling physiological homeostasis. This study has also helped identify several previously unknown sensor and effector modules in these systems. Our findings also augment the growing evidence for the emergence of key animal immunity and chromatin regulatory components from prokaryotic progenitors.
Collapse
|
12
|
Neves JF, Petrvalská O, Bosica F, Cantrelle FX, Merzougui H, O'Mahony G, Hanoulle X, Obšil T, Landrieu I. Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer. FEBS J 2020; 288:1918-1934. [PMID: 32979285 DOI: 10.1111/febs.15574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.
Collapse
Affiliation(s)
- João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Olivia Petrvalská
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francesco Bosica
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Hamida Merzougui
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Gavin O'Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xavier Hanoulle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Tomáš Obšil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| |
Collapse
|
13
|
Yadav DK, Adhikari M, Kumar S, Ghimire B, Han I, Kim MH, Choi EH. Cold atmospheric plasma generated reactive species aided inhibitory effects on human melanoma cells: an in vitro and in silico study. Sci Rep 2020; 10:3396. [PMID: 32099012 PMCID: PMC7042335 DOI: 10.1038/s41598-020-60356-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Malignant melanoma is considered to be a heterogeneous disease that arises from altered genes and transformed melanocytes. In this study, special softjet cold atmospheric plasma was used to treat three different human melanoma cells using air and N2 gases to check the anti-melanoma activity. The physical effects by plasma revealed an increase in the temperature with the gradual reduction in pH at 60 sec, 180 sec and 300 sec air and N2 plasma treatment. Cellular toxicity revealed a decreased in cell survival (~50% cell survival using air gas and <~60% cell survival using N2 gas at 60 sec plasma treatment in G-361 cells). Gene analysis by q-PCR revealed that 3 min and 5 min air and N2 plasma treatment activated apoptotic pathways by triggering apoptotic genes in all three melanoma cell lines. The apoptosis was confirmed by DAPI staining and its related pathways were further explored according to protein-protein docking, and their probable activation mechanism was revealed. The pathways highlighted that activation of apoptosis which leads to cellular cascades and hence stimulation ASK1 (docking method) revealed that softjet plasma can be an effective modality for human melanoma treatment.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| | - Manish Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Bhagirath Ghimire
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Psenakova K, Hexnerova R, Srb P, Obsilova V, Veverka V, Obsil T. The redox‐active site of thioredoxin is directly involved in apoptosis signal‐regulating kinase 1 binding that is modulated by oxidative stress. FEBS J 2019; 287:1626-1644. [DOI: 10.1111/febs.15101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Katarina Psenakova
- Department of Physical and Macromolecular Chemistry Faculty of Science Charles University Prague Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Vestec Czech Republic
| | - Rozalie Hexnerova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Vestec Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry Faculty of Science Charles University Prague Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Vestec Czech Republic
| |
Collapse
|
15
|
Yang D, Liu X, Xu W, Gu Z, Yang C, Zhang L, Tan J, Zheng X, Wang Z, Quan S, Zhang Y, Liu Q. The Edwardsiella piscicida thioredoxin-like protein inhibits ASK1-MAPKs signaling cascades to promote pathogenesis during infection. PLoS Pathog 2019; 15:e1007917. [PMID: 31314784 PMCID: PMC6636751 DOI: 10.1371/journal.ppat.1007917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/14/2019] [Indexed: 12/02/2022] Open
Abstract
It is important that bacterium can coordinately deliver several effectors into host cells to disturb the cellular progress during infection, however, the precise role of effectors in host cell cytosol remains to be resolved. In this study, we identified a new bacterial virulence effector from pathogenic Edwardsiella piscicida, which presents conserved crystal structure to thioredoxin family members and is defined as a thioredoxin-like protein (Trxlp). Unlike the classical bacterial thioredoxins, Trxlp can be translocated into host cells, mimicking endogenous thioredoxin to abrogate ASK1 homophilic interaction and phosphorylation, then suppressing the phosphorylation of downstream Erk1/2- and p38-MAPK signaling cascades. Moreover, Trxlp-mediated inhibition of ASK1-Erk/p38-MAPK axis promotes the pathogenesis of E. piscicida in zebrafish larvae infection model. Taken together, these data provide insights into the mechanism underlying the bacterial thioredoxin as a virulence effector in downmodulating the innate immune responses during E. piscicida infection. Thioredoxin (Trx) is universally conserved thiol-oxidoreductase that regulates numerous cellular pathways under thiol-based redox control in both prokaryotic and eukaryotic organisms. Despite its central importance, the mechanism of bacterial Trx recognizes its target proteins in host cellular signaling remains unknown. Here, we uncover a bacterial thioredoxin-like protein that can be translocated into host cells and mimic the endogenous TRX1 to target ASK1-MAPK signaling, finally facilitating bacterial pathogenesis. This work expands our understanding of bacterial thioredoxins in manipulating host innate immunity.
Collapse
Affiliation(s)
- Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyan Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Cuiting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
16
|
Alblova M, Smidova A, Kalabova D, Lentini Santo D, Obsil T, Obsilova VO. Allosteric activation of yeast enzyme neutral trehalase by calcium and 14-3-3 protein. Physiol Res 2019; 68:147-160. [DOI: 10.33549/physiolres.933950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neutral trehalase 1 (Nth1) from Saccharomyces cerevisiae catalyzes disaccharide trehalose hydrolysis and helps yeast to survive adverse conditions, such as heat shock, starvation or oxidative stress. 14-3-3 proteins, master regulators of hundreds of partner proteins, participate in many key cellular processes. Nth1 is activated by phosphorylation followed by 14-3-3 protein (Bmh) binding. The activation mechanism is also potentiated by Ca(2+) binding within the EF-hand-like motif. This review summarizes the current knowledge about trehalases and the molecular and structural basis of Nth1 activation. The crystal structure of fully active Nth1 bound to 14-3-3 protein provided the first high-resolution view of a trehalase from a eukaryotic organism and showed 14-3-3 proteins as structural modulators and allosteric effectors of multi-domain binding partners.
Collapse
Affiliation(s)
- M. Alblova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| | | | | | | | | | | |
Collapse
|
17
|
Zhou D, Zhang S, Hu L, Gu YF, Cai Y, Wu D, Liu WT, Jiang CY, Kong X, Zhang GQ. Inhibition of apoptosis signal-regulating kinase by paeoniflorin attenuates neuroinflammation and ameliorates neuropathic pain. J Neuroinflammation 2019; 16:83. [PMID: 30975172 PMCID: PMC6458750 DOI: 10.1186/s12974-019-1476-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuropathic pain is a serious clinical problem that needs to be solved urgently. ASK1 is an upstream protein of p38 and JNK which plays important roles in neuroinflammation during the induction and maintenance of chronic pain. Therefore, inhibition of ASK1 may be a novel therapeutic approach for neuropathic pain. Here, we aim to investigate the effects of paeoniflorin on ASK1 and neuropathic pain. METHODS The mechanical and thermal thresholds of rats were measured using the Von Frey test. Cell signaling was assayed using western blotting and immunohistochemistry. RESULTS Chronic constrictive injury (CCI) surgery successfully decreased the mechanical and thermal thresholds of rats and decreased the phosphorylation of ASK1 in the rat spinal cord. ASK1 inhibitor NQDI1 attenuated neuropathic pain and decreased the expression of p-p38 and p-JNK. Paeoniflorin mimicked ASK1 inhibitor NQDI1 and inhibited ASK1 phosphorylation. Paeoniflorin decreased the expression of p-p38 and p-JNK, delayed the progress of neuropathic pain, and attenuated neuropathic pain. Paeoniflorin reduced the response of astrocytes and microglia to injury, decreased the expression of IL-1β and TNF-α, and downregulated the expression of CGRP induced by CCI. CONCLUSIONS Paeoniflorin is an effective drug for the treatment of neuropathic pain in rats via inhibiting the phosphorylation of ASK1, suggesting it may be effective in patients with neuropathic pain.
Collapse
Affiliation(s)
- Danli Zhou
- Department of Clinical Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Siqi Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yu-Feng Gu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yimei Cai
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wen-Tao Liu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chun-Yi Jiang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China. .,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guang-Qin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
Eberle RJ, Kawai LA, de Moraes FR, Olivier D, do Amaral MS, Tasic L, Arni RK, Coronado MA. Inhibition of thioredoxin A1 from Corynebacterium pseudotuberculosis by polyanions and flavonoids. Int J Biol Macromol 2018; 117:1066-1073. [DOI: 10.1016/j.ijbiomac.2018.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022]
|
20
|
Kylarova S, Psenakova K, Herman P, Obsilova V, Obsil T. CaMKK2 kinase domain interacts with the autoinhibitory region through the N-terminal lobe including the RP insert. Biochim Biophys Acta Gen Subj 2018; 1862:2304-2313. [PMID: 30053538 DOI: 10.1016/j.bbagen.2018.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), a member of the Ca2+/calmodulin-dependent kinase (CaMK) family, functions as an upstream activator of CaMKI, CaMKIV and AMP-activated protein kinase. Thus, CaMKK2 is involved in the regulation of several key physiological and pathophysiological processes. Previous studies have suggested that Ca2+/CaM binding may cause unique conformational changes in the CaMKKs compared with other CaMKs. However, the underlying mechanistic details remain unclear. METHODS In this study, hydrogen-deuterium exchange coupled to mass spectrometry, time-resolved fluorescence spectroscopy, small-angle x-ray scattering and chemical cross-linking were used to characterize Ca2+/CaM binding-induced structural changes in CaMKK2. RESULTS Our data suggest that: (i) the CaMKK2 kinase domain interacts with the autoinhibitory region (AID) through the N-terminal lobe of the kinase domain including the RP insert, a segment important for targeting downstream substrate kinases; (ii) Ca2+/CaM binding affects the structure of several regions surrounding the ATP-binding pocket, including the activation segment; (iii) although the CaMKK2:Ca2+/CaM complex shows high conformational flexibility, most of its molecules are rather compact; and (iv) AID-bound Ca2+/CaM transiently interacts with the CaMKK2 kinase domain. CONCLUSIONS Interactions between the CaMKK2 kinase domain and the AID differ from those of other CaMKs. In the absence of Ca2+/CaM binding the autoinhibitory region inhibits CaMKK2 by both blocking access to the RP insert and by affecting the structure of the ATP-binding pocket. GENERAL SIGNIFICANCE Our results corroborate the hypothesis that Ca2+/CaM binding causes unique conformational changes in the CaMKKs relative to other CaMKs.
Collapse
Affiliation(s)
- Salome Kylarova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Katarina Psenakova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Herman
- Institute of Physics, Charles University, Prague, Czech Republic
| | - Veronika Obsilova
- BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic.
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
21
|
14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochim Biophys Acta Gen Subj 2018; 1862:1612-1625. [DOI: 10.1016/j.bbagen.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
|
22
|
Selvaggio G, Coelho PMBM, Salvador A. Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types. Redox Biol 2018; 15:297-315. [PMID: 29304480 PMCID: PMC5975082 DOI: 10.1016/j.redox.2017.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
The system (PTTRS) formed by typical 2-Cys peroxiredoxins (Prx), thioredoxin (Trx), Trx reductase (TrxR), and sulfiredoxin (Srx) is central in antioxidant protection and redox signaling in the cytoplasm of eukaryotic cells. Understanding how the PTTRS integrates these functions requires tracing phenotypes to molecular properties, which is non-trivial. Here we analyze this problem based on a model that captures the PTTRS' conserved features. We have mapped the conditions that generate each distinct response to H2O2 supply rates (vsup), and estimated the parameters for thirteen human cell types and for Saccharomyces cerevisiae. The resulting composition-to-phenotype map yielded the following experimentally testable predictions. The PTTRS permits many distinct responses including ultra-sensitivity and hysteresis. However, nearly all tumor cell lines showed a similar response characterized by limited Trx-S- depletion and a substantial but self-limited gradual accumulation of hyperoxidized Prx at high vsup. This similarity ensues from strong correlations between the TrxR, Srx and Prx activities over cell lines, which contribute to maintain the Prx-SS reduction capacity in slight excess over the maximal steady state Prx-SS production. In turn, in erythrocytes, hepatocytes and HepG2 cells high vsup depletes Trx-S- and oxidizes Prx mainly to Prx-SS. In all nucleated human cells the Prx-SS reduction capacity defined a threshold separating two different regimes. At sub-threshold vsup the cytoplasmic H2O2 concentration is determined by Prx, nM-range and spatially localized, whereas at supra-threshold vsup it is determined by much less active alternative sinks and μM-range throughout the cytoplasm. The yeast shows a distinct response where the Prx Tsa1 accumulates in sulfenate form at high vsup. This is mainly due to an exceptional stability of Tsa1's sulfenate. The implications of these findings for thiol redox regulation and cell physiology are discussed. All estimates were thoroughly documented and provided, together with analytical approximations for system properties, as a resource for quantitative redox biology.
Collapse
Affiliation(s)
- Gianluca Selvaggio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; MIT-Portugal Program Bioengineering Systems Doctoral Program, Portugal
| | - Pedro M B M Coelho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Armindo Salvador
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CQC, Department of Chemistry, University of Coimbra, Portugal.
| |
Collapse
|
23
|
Kekulandara DN, Nagi S, Seo H, Chow CS, Ahn YH. Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling. Biochemistry 2018; 57:772-780. [PMID: 29261301 DOI: 10.1021/acs.biochem.7b01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thioredoxin 1 (Trx1) and glutaredoxin 1 (Grx1) are two ubiquitous redox enzymes that are central for redox homeostasis but also are implicated in many other processes, including stress sensing, inflammation, and apoptosis. In addition to their enzymatic redox activity, a growing body of evidence shows that Trx1 and Grx1 play regulatory roles via protein-protein interactions with specific proteins, including Ask1. The currently available inhibitors of Trx1 and Grx1 are thiol-reactive electrophiles or disulfides that may suffer from low selectivity because of their thiol reactivity. In this report, we used a phage peptide library to identify a 7-mer peptide, 2GTP1, that binds to both Trx1 and Grx1. We further showed that a cell-permeable derivative of 2GTP1, TAT-2GTP1, disrupts the Trx1-Ask1 interaction, which induces Ask1 phosphorylation with subsequent activation of JNK, stabilization of p53, and reduced viability of cancer cells. Notably, as opposed to a disulfide-derived Trx1 inhibitor (PX-12), TAT-2GTP1 was selective for activating the Ask1 pathway without affecting other stress signaling pathways, such as endoplasmic reticulum stress and AMPK activation. Overall, 2GTP1 will serve as a useful probe for investigating protein interactions of Trx1.
Collapse
Affiliation(s)
- Dilini N Kekulandara
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Shima Nagi
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Hyosuk Seo
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
24
|
Structural aspects of protein kinase ASK1 regulation. Adv Biol Regul 2017; 66:31-36. [PMID: 29066278 DOI: 10.1016/j.jbior.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, activates the p38 mitogen-activated protein kinase and the c-Jun N-terminal kinase (JNK) signaling cascades in response to various stressors. ASK1 activity is tightly regulated through phosphorylation and interaction with various binding partners. However, the mechanistic details underlying the ASK1 regulation are still not fully understood. This review focuses on recent advances in structural studies of protein kinase ASK1 and on the insights they provide into its mechanism of regulation. In addition, we also discuss protein-protein interactions between ASK1 and its binding partners thioredoxin (TRX) and 14-3-3 protein.
Collapse
|
25
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
26
|
Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc Natl Acad Sci U S A 2017; 114:E2096-E2105. [PMID: 28242696 PMCID: PMC5358389 DOI: 10.1073/pnas.1620813114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptosis signal-regulating kinases (ASK1-3) are apical kinases of the p38 and JNK MAP kinase pathways. They are activated by diverse stress stimuli, including reactive oxygen species, cytokines, and osmotic stress; however, a molecular understanding of how ASK proteins are controlled remains obscure. Here, we report a biochemical analysis of the ASK1 kinase domain in conjunction with its N-terminal thioredoxin-binding domain, along with a central regulatory region that links the two. We show that in solution the central regulatory region mediates a compact arrangement of the kinase and thioredoxin-binding domains and the central regulatory region actively primes MKK6, a key ASK1 substrate, for phosphorylation. The crystal structure of the central regulatory region reveals an unusually compact tetratricopeptide repeat (TPR) region capped by a cryptic pleckstrin homology domain. Biochemical assays show that both a conserved surface on the pleckstrin homology domain and an intact TPR region are required for ASK1 activity. We propose a model in which the central regulatory region promotes ASK1 activity via its pleckstrin homology domain but also facilitates ASK1 autoinhibition by bringing the thioredoxin-binding and kinase domains into close proximity. Such an architecture provides a mechanism for control of ASK-type kinases by diverse activators and inhibitors and demonstrates an unexpected level of autoregulatory scaffolding in mammalian stress-activated MAP kinase signaling.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Abhishek Kumar
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Chontelle M King
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | - Elizabeth C Ledgerwood
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
27
|
Pleiotropic properties of ASK1. Biochim Biophys Acta Gen Subj 2016; 1861:3030-3038. [PMID: 27693599 DOI: 10.1016/j.bbagen.2016.09.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/16/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), has the potential to induce cellular apoptosis under various physiological conditions. It has long been suggested that ASK1 is highly sensitive to oxidative stress and contributes substantially to apoptosis. However, recent studies have indicated that ASK1 has pleiotropic roles in living organisms through other mechanisms in addition to apoptosis. SCOPE OF THE REVIEW This review describes the physiological functions of ASK1 in living organisms, focusing on the regulatory mechanisms of ASK1 activity and its importance in the pathogenesis of various diseases. We also highlight recent works published within the past few years. MAJOR CONCLUSIONS ASK1 forms a high-molecular-mass complex within the cell, designated as the ASK1 signalosome. Soon after the discovery of ASK1, several regulatory components of the ASK1 signalosome have been revealed, including thioredoxin (Trx), tumor-necrosis factor α receptor-associated factors (TRAFs) and 14-3-3s. In parallel with the precise analyses unveiling the molecular basis of ASK1 regulation, the physiological or pathophysiological significance of ASK1 in diverse organs has been elucidated. In addition to the generation of global knockout mice or tissue-specific knockout mice, ASK1-specific inhibitors have illuminated the biological roles of ASK1. GENERAL SIGNIFICANCE The multi-faceted features of the function of ASK1 have been discovered over the past two decades, revealing that ASK1 is a crucial molecule for maintaining cellular homeostasis, especially under conditions of stress. Based on the results that ASK1 deficiency provides beneficial effects for several diseases, modulating ASK1 activity is a promising method to ameliorate a subset of diseases.
Collapse
|
28
|
Kylarova S, Kosek D, Petrvalska O, Psenakova K, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. FEBS J 2016; 283:3821-3838. [DOI: 10.1111/febs.13893] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/01/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Salome Kylarova
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Dalibor Kosek
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Katarina Psenakova
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Petr Man
- BioCeV - Institute of Microbiology; The Czech Academy of Sciences; Vestec Czech Republic
- Department of Biochemistry; Faculty of Science; Charles University; Prague Czech Republic
| | - Jaroslav Vecer
- Institute of Physics; Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Petr Herman
- Institute of Physics; Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Veronika Obsilova
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry; Faculty of Science; Charles University; Prague Czech Republic
- Institute of Physiology; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
29
|
Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1). J Biol Chem 2016; 291:20753-65. [PMID: 27514745 DOI: 10.1074/jbc.m116.724310] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, regulates diverse physiological processes. The activity of ASK1 is triggered by various stress stimuli and is involved in the pathogenesis of cancer, neurodegeneration, inflammation, and diabetes. ASK1 forms a high molecular mass complex whose activity is, under non-stress conditions, suppressed through interaction with thioredoxin and the scaffolding protein 14-3-3. The 14-3-3 protein binds to the phosphorylated Ser-966 motif downstream of the ASK1 kinase domain. The role of 14-3-3 in the inhibition of ASK1 has yet to be elucidated. In this study we performed structural analysis of the complex between the ASK1 kinase domain phosphorylated at Ser-966 (pASK1-CD) and the 14-3-3ζ protein. Small angle x-ray scattering (SAXS) measurements and chemical cross-linking revealed that the pASK1-CD·14-3-3ζ complex is dynamic and conformationally heterogeneous. In addition, structural analysis coupled with the results of phosphorus NMR and time-resolved tryptophan fluorescence measurements suggest that 14-3-3ζ interacts with the kinase domain of ASK1 in close proximity to its active site, thus indicating this interaction might block its accessibility and/or affect its conformation.
Collapse
Affiliation(s)
- Olivia Petrvalska
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| | - Dalibor Kosek
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| | - Zdenek Kukacka
- the Institute of Microbiology, The Czech Academy of Sciences, 14220 Prague, and
| | - Zdenek Tosner
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and
| | - Petr Man
- the Institute of Microbiology, The Czech Academy of Sciences, 14220 Prague, and Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague
| | - Jaroslav Vecer
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | - Petr Herman
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | | | - Tomas Obsil
- From the Department of Physical and Macromolecular Chemistry, Faculty of Science, and Institute of Physiology and
| |
Collapse
|
30
|
GUO YAXIONG, LIN DONGJING, ZHANG MINGZI, ZHANG XIAOWEI, LI YANRU, YANG RUAN, LU YAN, JIN XIANGSHU, YANG MINLAN, WANG MIAOMIAO, ZHAO SHUAI, QUAN CHENGSHI. CLDN6-induced apoptosis via regulating ASK1-p38/JNK signaling in breast cancer MCF-7 cells. Int J Oncol 2016; 48:2435-44. [DOI: 10.3892/ijo.2016.3469] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
|
31
|
Chen M, Qu X, Zhang Z, Wu H, Qin X, Li F, Liu Z, Tian L, Miao J, Shu W. Cross-talk between Arg methylation and Ser phosphorylation modulates apoptosis signal-regulating kinase 1 activation in endothelial cells. Mol Biol Cell 2016; 27:1358-66. [PMID: 26912789 PMCID: PMC4831888 DOI: 10.1091/mbc.e15-10-0738] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
Protein arginine methyltransferase 5 interacts with and methylates apoptosis signal–regulating kinase 1 at arginine residue 89, thereby negatively regulating its activity by promoting the interaction between ASK1 and Akt and thus phosphorylating ASK1 at serine residue 83. We describe a novel functional interaction between ASK1 and PRMT5. We show that PRMT5 interacts with and methylates ASK1 at arginine residue 89 and thereby negatively regulates its activity by promoting the interaction between ASK1 and Akt and thus phosphorylating ASK1 at serine residue 83. Furthermore, the association between ASK1 and Akt is enhanced by VEGF stimulation, and PRMT5 is required for this association. Moreover, PRMT5-mediated ASK1 methylation impaired the H2O2-induced activity of ASK1, and this inhibitory effect of PRMT5 was abolished by replacement of arginine 89 with Trp or depletion of PRMT5 expression by RNA interference. Together the results demonstrate cross-talk between arginine methylation and serine phosphorylation in ASK1.
Collapse
Affiliation(s)
- Ming Chen
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China Tianjin Institute of Hygiene and Environmental Medicine, Tianjin 300050, China
| | - Xiaosheng Qu
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Zhiqing Zhang
- Tianjin Institute of Hygiene and Environmental Medicine, Tianjin 300050, China
| | - Huayu Wu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Xia Qin
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Fuji Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liyuan Tian
- Department of Specific Diagnosis, General Hospital of Airforce, Beijing 100142, China
| | - Jianhua Miao
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Wei Shu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
32
|
Kacirova M, Kosek D, Kadek A, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. J Biol Chem 2015; 290:16246-60. [PMID: 25971962 PMCID: PMC4481224 DOI: 10.1074/jbc.m115.636563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/21/2015] [Indexed: 11/06/2022] Open
Abstract
Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.
Collapse
Affiliation(s)
- Miroslava Kacirova
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Dalibor Kosek
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Alan Kadek
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Petr Man
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Jaroslav Vecer
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | - Petr Herman
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | | | - Tomas Obsil
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| |
Collapse
|
33
|
Obsil T, Kosek D, Kylarova S, Obsilova V. Biophysical Characterization of Interaction between the Thioredoxin‐Binding Domain of Protein Kinase ASK1 and Reduced Thioredoxin. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.724.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomas Obsil
- Dept. of Physical and Macromolecular Chemistry Faculty of ScienceCharles UniversityPragueCzech Republic
- Dept. of Protein StructureInstitute of Physiology, AS CRPragueCzech Republic
| | - Dalibor Kosek
- Dept. of Physical and Macromolecular Chemistry Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Salome Kylarova
- Dept. of Protein StructureInstitute of Physiology, AS CRPragueCzech Republic
| | - Veronika Obsilova
- Dept. of Protein StructureInstitute of Physiology, AS CRPragueCzech Republic
| |
Collapse
|