1
|
Wang WL, Lian H, Liang Y, Ye Y, Tam PKH, Chen Y. Molecular Mechanisms of Fibrosis in Cholestatic Liver Diseases and Regenerative Medicine-Based Therapies. Cells 2024; 13:1997. [PMID: 39682745 DOI: 10.3390/cells13231997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this review is to explore the potential of new regenerative medicine approaches in the treatment of cholestatic liver fibrosis. Cholestatic liver diseases, such as primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and biliary atresia (BA), due to the accumulation of bile, often progress to liver fibrosis, cirrhosis, and liver failure. When the disease becomes severe enough to require liver transplantation. Deeply understanding the disease's progression and fibrosis formation is crucial for better diagnosis and treatment. Current liver fibrosis treatments mainly target the root causes and no direct treatment method in fibrosis itself. Recent advances in regenerative medicine offer a potential approach that may help find the ways to target fibrosis directly, offering hope for improved outcomes. We also summarize, analyze, and discuss the current state and benefits of regenerative medicine therapies such as mesenchymal stem cell (MSC) therapy, induced pluripotent stem cells (iPSCs), and organoid technology, which may help the treatment of cholestatic liver diseases. Focusing on the latest research may reveal new targets and enhance therapeutic efficacy, potentially leading to more effective management and even curative strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Wei-Lu Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Haoran Lian
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yingyu Liang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yongqin Ye
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Paul Kwong Hang Tam
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| | - Yan Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
2
|
Reshetnyak VI, Maev IV. Mechanism of formation and significance of antimitochondrial autoantibodies in the pathogenesis of primary biliary cholangitis. EXPLORATION OF IMMUNOLOGY 2024:624-639. [DOI: 10.37349/ei.2024.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/24/2024] [Indexed: 01/03/2025]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic progressive liver disease associated with cholangiopathies. The detection of antimitochondrial autoantibodies (AMAs) plays an important role in the diagnosis of classical PBC. AMAs are formed against the antigenic component associated with the dihydrolipoyl transacetylase of pyruvate dehydrogenase complex (E2 PDC) localized on the inner membrane of mitochondria. The loss of immune tolerance of E2 PDC in PBC is thought to be the cause of the mechanism of AMA formation and immune-mediated destruction of biliary epithelial cells (BECs) of the small- and medium-sized intrahepatic bile ducts. E2 PDC is not only present in BECs, but is also abundant in the mitochondria of all nucleated cells. The question remains as to why E2 PDC of only small BECs is the target of autoimmune attack. There is no evidence that AMAs have a deleterious effect on BECs. New scientific data has emerged that explains the damage to BECs in PBC by the defect of the biliary bicarbonate (HCO3–) “umbrella” that protects BECs from the detergent action of bile acids under physiological conditions. Disruption of HCO3– production by BECs in PBC leads to changes in the pH of hepatic bile, accompanied by accumulation of bile acids in the small BECs. The detergent action of bile acids leads to damage of membrane structures of BECs and their apoptosis, development of ductulopenia, and intrahepatic cholestasis. For the first time, it has been suggested that under the influence of bile acids, the E2 PDC antigen may undergo conformational changes that alter its immunological properties. E2 PDC becomes a neoantigen that is recognized by the normal (“healthy”) immune system as a foreign antigen, leading to the production of AMAs. For the first time, the authors of this review provide an explanation for why only small BECs are damaged in PBC.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, 127473 Moscow, Russian Federation
| | - Igor Veniaminovich Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, 127473 Moscow, Russian Federation
| |
Collapse
|
3
|
Qiu ZX, Huang LX, Wang XX, Wang ZL, Li XH, Feng B. Exploring the Pathogenesis of Autoimmune Liver Diseases from the Heterogeneity of Target Cells. J Clin Transl Hepatol 2024; 12:659-666. [PMID: 38993508 PMCID: PMC11233981 DOI: 10.14218/jcth.2023.00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 07/13/2024] Open
Abstract
The incidence of autoimmune liver diseases (ALDs) and research on their pathogenesis are increasing annually. However, except for autoimmune hepatitis, which responds well to immunosuppression, primary biliary cholangitis and primary sclerosing cholangitis are insensitive to immunosuppressive therapy. Besides the known effects of the environment, genetics, and immunity on ALDs, the heterogeneity of target cells provides new insights into their pathogenesis. This review started by exploring the heterogeneity in the development, structures, and functions of hepatocytes and epithelial cells of the small and large bile ducts. For example, cytokeratin (CK) 8 and CK18 are primarily expressed in hepatocytes, while CK7 and CK19 are primarily expressed in intrahepatic cholangiocytes. Additionally, emerging technologies of single-cell RNA sequencing and spatial transcriptomic are being applied to study ALDs. This review offered a new perspective on understanding the pathogenic mechanisms and potential treatment strategies for ALDs.
Collapse
Affiliation(s)
| | | | - Xiao-Xiao Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Zi-Long Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiao-He Li
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Bo Feng
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
4
|
Zhang Y, Liu Y, Huo W, He L, Li B, Wang H, Meng F, Duan C, Zhou B, Wu J, Chen R, Xing J, Wan Y. The Role of miRNA and Long Noncoding RNA in Cholestatic Liver Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:879-893. [PMID: 38417698 DOI: 10.1016/j.ajpath.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.
Collapse
Affiliation(s)
- Yudian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wen Huo
- Functional Experiment Center, College of Basic and Legal Medicine, North Sichuan Medical College, Nanchong, China
| | - Longfei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bowen Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hui Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Chenggang Duan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bingru Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinbo Wu
- Department of Otolaryngology-Head and Neck Surgery, Luzhou Maternal and Child Health Hospital (Luzhou Second People's Hospital), Luzhou, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Xing
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Ma D, Ma J, Zhao C, Tai W. Reasons why women are more likely to develop primary biliary cholangitis. Heliyon 2024; 10:e25634. [PMID: 38384574 PMCID: PMC10878884 DOI: 10.1016/j.heliyon.2024.e25634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune disease of biliary stasis in which immune factors cause the gradual destruction of small bile ducts, biliary stasis, and eventually the development of liver fibrosis, cirrhosis, and even liver failure. One of the main characteristics of PBC is that it primarily affects middle-aged women, but the precise cause is still unknown. This article analyzes the unique causes and mechanisms of the female predominance of PBC and summarizes the potential causes.The female domination of PBC is reported to be primarily caused by sex hormones, environmental circumstances, and epigenetic changes, each of which has a different subtle impact on patients' gender disparities.
Collapse
Affiliation(s)
- Di Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaxuan Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunmei Zhao
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Tai
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Held A, Lapka J, Sargeant J, Hojanazarova J, Shaheen A, Galindo S, Madreiter-Sokolowski C, Malli R, Graier WF, Hay JC. Steady-state regulation of COPII-dependent secretory cargo sorting by inositol trisphosphate receptors, calcium, and penta EF hand proteins. J Biol Chem 2023; 299:105471. [PMID: 37979918 PMCID: PMC10750190 DOI: 10.1016/j.jbc.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.
Collapse
Affiliation(s)
- Aaron Held
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Jacob Lapka
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - John Sargeant
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Jennet Hojanazarova
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Alaa Shaheen
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Samuel Galindo
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Corina Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences, Center for Structural & Functional Neuroscience, University of Montana, Missoula, Montana, USA.
| |
Collapse
|
7
|
Reshetnyak VI, Maev IV. New insights into the pathogenesis of primary biliary cholangitis asymptomatic stage. World J Gastroenterol 2023; 29:5292-5304. [PMID: 37899787 PMCID: PMC10600802 DOI: 10.3748/wjg.v29.i37.5292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic progressive liver disease and one of the most important progressive cholangiopathies in adults. Damage to cholangiocytes triggers the development of intrahepatic cholestasis, which progresses to cirrhosis in the terminal stage of the disease. Accumulating data indicate that damage to biliary epithelial cells [(BECs), cholangiocytes] is most likely associated with the intracellular accumulation of bile acids, which have potent detergent properties and damaging effects on cell membranes. The mechanisms underlying uncontrolled bile acid intake into BECs in PBC are associated with pH change in the bile duct lumen, which is controlled by the bicarbonate (HCO3-) buffer system "biliary HCO3- umbrella". The impaired production and entry of HCO3- from BECs into the bile duct lumen is due to epigenetic changes in expression of the X-linked microRNA 506. Based on the growing body of knowledge on the molecular mechanisms of cholangiocyte damage in patients with PBC, we propose a hypothesis explaining the pathogenesis of the first morphologic (ductulopenia), immunologic (antimitochondrial autoantibodies) and clinical (weakness, malaise, rapid fatigue) signs of the disease in the asymptomatic stage. This review focuses on the consideration of these mechanisms.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor Veniaminovich Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
8
|
Zhao Y, Wei S, Chen L, Zhou X, Ma X. Primary biliary cholangitis: molecular pathogenesis perspectives and therapeutic potential of natural products. Front Immunol 2023; 14:1164202. [PMID: 37457696 PMCID: PMC10349375 DOI: 10.3389/fimmu.2023.1164202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is a chronic cholestatic immune liver disease characterized by persistent cholestasis, interlobular bile duct damage, portal inflammation, liver fibrosis, eventual cirrhosis, and death. Existing clinical and animal studies have made a good progress in bile acid metabolism, intestinal flora disorder inflammatory response, bile duct cell damage, and autoimmune response mechanisms. However, the pathogenesis of PBC has not been clearly elucidated. We focus on the pathological mechanism and new drug research and development of PBC in clinical and laboratory in the recent 20 years, to discuss the latest understanding of the pathological mechanism, treatment options, and drug discovery of PBC. Current clinical treatment mode and symptomatic drug support obviously cannot meet the urgent demand of patients with PBC, especially for the patients who do not respond to the current treatment drugs. New treatment methods are urgently needed. Drug candidates targeting reported targets or signals of PBC are emerging, albeit with some success and some failure. Single-target drugs cannot achieve ideal clinical efficacy. Multitarget drugs are the trend of future research and development of PBC drugs.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Pharmacy, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lisheng Chen
- Department of Pharmacy, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Secretin alleviates biliary and liver injury during late-stage primary biliary cholangitis via restoration of secretory processes. J Hepatol 2023; 78:99-113. [PMID: 35987275 DOI: 10.1016/j.jhep.2022.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.
Collapse
|
10
|
Nsengimana B, Okpara ES, Hou W, Yan C, Han S. Involvement of oxidative species in cyclosporine-mediated cholestasis. Front Pharmacol 2022; 13:1004844. [DOI: 10.3389/fphar.2022.1004844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Cyclosporine is an established medication for the prevention of transplant rejection. However, adverse consequences such as nephrotoxicity, hepatotoxicity, and cholestasis have been associated with prolonged usage. In cyclosporine-induced obstructive and chronic cholestasis, for example, the overproduction of oxidative stress is significantly increased. Additionally, cyclosporine exerts adverse effects on liver function and redox balance responses in treated rats, as evidenced by its increasing levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and bilirubin while also decreasing the levels of glutathione and NADPH. Cyclosporine binds to cyclophilin to produce its therapeutic effects, and the resulting complex inhibits calcineurin, causing calcium to accumulate in the mitochondria. Accumulating calcium with concomitant mitochondrial abnormalities induces oxidative stress, perturbation in ATP balance, and failure of calcium pumps. Also, cyclosporine-induced phagocyte oxidative stress generation via the interaction of phagocytes with Toll-like receptor-4 has been studied. The adverse effect of cyclosporine may be amplified by the release of mitochondrial DNA, mediated by oxidative stress-induced mitochondrial damage. Given the uncertainty surrounding the mechanism of cyclosporine-induced oxidative stress in cholestasis, we aim to illuminate the involvement of oxidative stress in cyclosporine-mediated cholestasis and also explore possible strategic interventions that may be applied in the future.
Collapse
|
11
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Arige V, Yule DI. Spatial and temporal crosstalk between the cAMP and Ca 2+ signaling systems. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119293. [PMID: 35588944 DOI: 10.1016/j.bbamcr.2022.119293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022]
Abstract
The ubiquitous secondary messengers, Ca2+ and cAMP, play a vital role in shaping a diverse array of physiological processes. More significantly, accumulating evidence over the past several decades underpin extensive crosstalk between these two canonical messengers in discrete sub-cellular nanodomains across various cell types. Within such specialized nanodomains, each messenger fine-tunes signaling to maintain homeostasis by manipulating the activities of cellular machinery accountable for the metabolism or activity of the complementary pathway. Interaction between these messengers is ensured by scaffolding proteins which tether components of the signaling machinery in close proximity. Disruption of dynamic communications between Ca2+ and cAMP at these loci consequently is linked to several pathological conditions. This review summarizes recent novel mechanisms underlying effective crosstalk between Ca2+ and cAMP in such nanodomains.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA..
| |
Collapse
|
13
|
Zhang Y, Jiao Z, Chen M, Shen B, Shuai Z. Roles of Non-Coding RNAs in Primary Biliary Cholangitis. Front Mol Biosci 2022; 9:915993. [PMID: 35874606 PMCID: PMC9305664 DOI: 10.3389/fmolb.2022.915993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune-mediated chronic cholestatic liver disease, fatigue, and skin itching are the most common clinical symptoms. Its main pathological feature is the progressive damage and destruction of bile duct epithelial cells. Non-coding RNA (NcRNA, mainly including microRNA, long non-coding RNA and circular RNA) plays a role in the pathological and biological processes of various diseases, especially autoimmune diseases. Many validated ncRNAs are expected to be biomarkers for the diagnosis or treatment of PBC. This review will elucidate the pathogenesis of PBC and help to identify potential ncRNA biomarkers for PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zongwen Shuai,
| |
Collapse
|
14
|
Paschou M, Papazafiri P, Charalampous C, Zachariadis M, Dedos SG, Doxakis E. Neuronal microRNAs safeguard ER Ca 2+ homeostasis and attenuate the unfolded protein response upon stress. Cell Mol Life Sci 2022; 79:373. [PMID: 35727337 PMCID: PMC11073139 DOI: 10.1007/s00018-022-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/23/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Ca2+ is a critical mediator of neurotransmitter release, synaptic plasticity, and gene expression, but also excitotoxicity. Ca2+ signaling and homeostasis are coordinated by an intricate network of channels, pumps, and calcium-binding proteins, which must be rapidly regulated at all expression levels. Τhe role of neuronal miRNAs in regulating ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs) was investigated to understand the underlying mechanisms that modulate ER Ca2+ release. RyRs and IP3Rs are critical in mounting and propagating cytosolic Ca2+ signals by functionally linking the ER Ca2+ content, while excessive ER Ca2+ release via these receptors is central to the pathophysiology of a wide range of neurological diseases. Herein, two brain-restricted microRNAs, miR-124-3p and miR-153-3p, were found to bind to RyR1-3 and IP3R3 3'UTRs, and suppress their expression at both the mRNA and protein level. Ca2+ imaging studies revealed that overexpression of these miRNAs reduced ER Ca2+ release upon RyR/IP3R activation, but had no effect on [Ca2+]i under resting conditions. Interestingly, treatments that cause excessive ER Ca2+ release decreased expression of these miRNAs and increased expression of their target ER Ca2+ channels, indicating interdependence of miRNAs, RyRs, and IP3Rs in Ca2+ homeostasis. Furthermore, by maintaining the ER Ca2+ content, miR-124 and miR-153 reduced cytosolic Ca2+ overload and preserved protein-folding capacity by attenuating PERK signaling. Overall, this study shows that miR-124-3p and miR-153-3p fine-tune ER Ca2+ homeostasis and alleviate ER stress responses.
Collapse
Affiliation(s)
- Maria Paschou
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
| | - Panagiota Papazafiri
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
| | - Chrysanthi Charalampous
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece
| | - Michael Zachariadis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece
- Material and Chemical Characterization Facility (MC2), Faculty of Science, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Skarlatos G Dedos
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, 15784, Athens, Greece.
| | - Epaminondas Doxakis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
15
|
Cholangiopathies and the noncoding revolution. Curr Opin Gastroenterol 2022; 38:128-135. [PMID: 35098934 DOI: 10.1097/mog.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) among others, have attracted a great deal of attention for their potential role as master regulators of gene expression and as therapeutic targets. This review focuses on recent advances on the role of ncRNAs in the pathogenesis, diagnosis and treatment of diseases of the cholangiocytes (i.e. cholangiopathies). RECENT FINDINGS In the recent years, there has been an exponential growth in the knowledge on ncRNAs and their role in cholangiopathies, particularly cholangiocarcinoma. SUMMARY Although several studies focused on miRNAs as noninvasive biomarkers for diagnosis and staging, several studies also highlighted their functions and provided new insights into disease mechanisms.
Collapse
|
16
|
Arige V, Terry LE, Malik S, Knebel TR, Wagner II LE, Yule DI. CREB regulates the expression of type 1 inositol 1,4,5-trisphosphate receptors. J Cell Sci 2021; 134:jcs258875. [PMID: 34533188 PMCID: PMC8601716 DOI: 10.1242/jcs.258875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a central role in regulating intracellular Ca2+ signals in response to a variety of internal and external cues. Dysregulation of IP3R signaling is the underlying cause for numerous pathological conditions. It is well established that the activities of IP3Rs are governed by several post-translational modifications, including phosphorylation by protein kinase A (PKA). However, the long-term effects of PKA activation on expression of IP3R subtypes remains largely unexplored. In this report, we investigate the effects of chronic stimulation and tonic activity of PKA on the expression of IP3R subtypes. We demonstrate that expression of the type 1 IP3R (IP3R1) is augmented upon prolonged activation of PKA or upon ectopic overexpression of cyclic AMP-response element-binding protein (CREB) without altering IP3R2 and IP3R3 abundance. By contrast, inhibition of PKA or blocking CREB diminished IP3R1 expression. We also demonstrate that agonist-induced Ca2+-release mediated by IP3R1 is significantly attenuated upon blocking of CREB. Moreover, CREB - by regulating the expression of KRAS-induced actin-interacting protein (KRAP) - ensures correct localization and licensing of IP3R1. Overall, we report a crucial role for CREB in governing both the expression and correct localization of IP3R1. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | | | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Boyer JL, Soroka CJ. Bile formation and secretion: An update. J Hepatol 2021; 75:190-201. [PMID: 33617926 DOI: 10.1016/j.jhep.2021.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
Bile formation is a fundamental physiological process that is vital to the survival of all vertebrates. However, little was known about the mechanisms of this secretion until after World War II. Initial studies involved classic physiologic studies in animal models and humans, which progressed to include studies in isolated cells and membrane vesicles. The advent of molecular biology then led to the identification of specific transport systems that are the determinants of this secretion. Progress in this field was reviewed in the American Physiologic Society's series on "Comprehensive Physiology" in 2013. Herein, we provide an in-depth update of progress since that time.
Collapse
Affiliation(s)
- James Lorenzen Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Carol Jean Soroka
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Kempinska-Podhorodecka A, Adamowicz M, Ostrycharz E, Chmielarz M, Wójcicki M, Milkiewicz P, Milkiewicz M. Role of miR-506 in ulcerative colitis associated with primary sclerosing cholangitis. Sci Rep 2021; 11:10134. [PMID: 33980925 PMCID: PMC8114918 DOI: 10.1038/s41598-021-89631-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is commonly accompanied by ulcerative colitis (UC). MicroRNA-506 modulates expression of genes which are essential for sphingosine-mediated signaling pathway and intestinal mucosa protection. We investigated whether miR-506 and its target genes are involved in phenotypic presentations of colonic inflammation and/or neoplasia. We analyzed serum and colon tissue samples collected from patients with PSC, PSC with concurrent UC (PSC + UC), UC alone, and healthy controls (n = 10 each). MiR-506 was substantially upregulated in ascending colons of PSC and PSC + UC patients, in contrast to sigmoid colons of PSC and UC patients. Upregulation of miR-506 was associated with inhibition of SPHK1, AE2, InsP3R3, and p53. Colonic suppression of miR-506 presented in UC was accompanied by substantially increased DNMT1, SPHK1, and S1P lyase expressions. A functional in vitro analysis in Caco-2 cells showed that the induction of miR-506 activity by miR-506 mimic or GDCDA bile acid suppressed, whereas inhibition of miR-506 by miR-506 inhibitor or lipopolysaccharide (LPS) upregulated the expression of the examined target genes. A different phenotypic presentation of colitis may be related to miR-506 expression. In ascending colons with PSC + UC, upregulation of miR-506 may result in failure of bicarbonate secretion and inhibition of p53, which predisposes to pro-tumorigenic transformation. In contrast, downregulation of miR-506 enhances S1P production, leading to pro-inflammatory signaling.
Collapse
Affiliation(s)
| | - Monika Adamowicz
- Department of Medical Biology, Pomeranian Medical University, 70-111, Szczecin, Poland
| | - Ewa Ostrycharz
- Department of Medical Biology, Pomeranian Medical University, 70-111, Szczecin, Poland
| | - Mateusz Chmielarz
- Department of Medical Biology, Pomeranian Medical University, 70-111, Szczecin, Poland
| | - Maciej Wójcicki
- Liver and Internal Medicine Unit, Medical University of Warsaw, 02-097, Warsaw, Poland
- European Reference Network (ERN) Rare-Liver, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, 02-097, Warsaw, Poland
- European Reference Network (ERN) Rare-Liver, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, 70-111, Szczecin, Poland
| | - Malgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University, 70-111, Szczecin, Poland
| |
Collapse
|
19
|
Jin C, Kumar P, Gracia-Sancho J, Dufour JF. Calcium transfer between endoplasmic reticulum and mitochondria in liver diseases. FEBS Lett 2021; 595:1411-1421. [PMID: 33752262 DOI: 10.1002/1873-3468.14078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/07/2023]
Abstract
Calcium (Ca2+ ) is a second messenger essential for cellular homeostasis. Inside the cell, Ca2+ is compartmentalized and exchanged among organelles in response to both external and internal stimuli. Mitochondria-associated membranes (MAMs) provide a platform for proteins and channels involved in Ca2+ transfer between the endoplasmic reticulum (ER) and mitochondria. Deregulated Ca2+ signaling and proteins regulating ER-mitochondria interactions have been linked to liver diseases and intensively investigated in recent years. In this review, we summarize the role of MAM-resident proteins in Ca2+ transfer and their association with different liver diseases.
Collapse
Affiliation(s)
- Chaonan Jin
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland
| | - Pavitra Kumar
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland
| | - Jordi Gracia-Sancho
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland.,Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, Barcelona, Spain
| | - Jean-François Dufour
- Hepatology, Department for BioMedical Research, University of Bern, Switzerland.,University Clinic of Visceral Surgery and Medicine, Inselspital, Bern, Switzerland
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Primary biliary cholangitis (PBC) is characterized by autoimmune damage of intrahepatic bile ducts associated with a loss of tolerance to mitochondrial antigens. PBC etiopathogenesis is intriguing because of different perplexing features, namely: a) although mitochondria are present in all cell types and tissues, the damage is mainly restricted to biliary epithelial cells (BECs); b) despite being an autoimmune disorder, it does not respond to immunosuppressive drugs but rather to ursodeoxycholic acid, a bile salt that induces HCO3- rich choleresis; c) the overwhelming female preponderance of the disease remains unexplained. Here we present an etiopathogenic view of PBC which sheds light on these puzzling facts of the disease. RECENT FINDINGS PBC develops in patients with genetic predisposition to autoimmunity in whom epigenetic mechanisms silence the Cl-/HCO3- exchanger AE2 in both cholangiocytes and lymphoid cells. Defective AE2 function can produce BECs damage as a result of decreased biliary HCO3- secretion with disruption of the protective alkaline umbrella that normally prevents the penetration of toxic apolar bile salts into cholangiocytes. AE2 dysfunction also causes increased intracellular pH (pHi) in cholangiocytes, leading to the activation of soluble adenylyl cyclase, which sensitizes BECs to bile salt-induced apoptosis. Recently, mitophagy was found to be inhibited by cytosolic alkalization and stimulated by acidification. Accordingly, we propose that AE2 deficiency may disturb mitophagy in BECs, thus, promoting the accumulation of defective mitochondria, oxidative stress and presentation of mitochondrial antigens to the immune cells. As women possess a more acidic endolysosomal milieu than men, mitophagy might be more affected in women in an AE2-defective background. Apart from affecting BECs function, AE2 downregulation in lymphocytes may also contribute to alter immunoregulation facilitating autoreactive T-cell responses. SUMMARY PBC can be considered as a disorder of Cl-/HCO3- exchange in individuals with genetic predisposition to autoimmunity.
Collapse
Affiliation(s)
- Jesús Prieto
- Center for Applied Medical Research (Centro de Investigación Médica Aplicada, CIMA), University of Navarra, Pamplona
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital – University of the Basque Country (UPV/EHU), San Sebastian
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, ‘Instituto de Salud Carlos III’)
- IKERBASQUE, Basque Foundation for Science, Bilbao
| | - Juan F. Medina
- Unit of Medical Training, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
21
|
Zhang M, Wang L, Yue Y, Zhang L, Liu T, Jing M, Liang X, Ma M, Xu S, Wang K, Wang X, Fan J. ITPR3 facilitates tumor growth, metastasis and stemness by inducing the NF-ĸB/CD44 pathway in urinary bladder carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:65. [PMID: 33573671 PMCID: PMC7877014 DOI: 10.1186/s13046-021-01866-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Background Bladder carcinoma is one of the most common urological cancers. ITPR3, as a ubiquitous endoplasmic reticulum calcium channel protein, was reported to be involved in the development and progression of various types of cancer. However, the potential roles and molecular mechanism of ITPR3 in bladder cancer are still unclear. Herein, we elucidated a novel role of ITPR3 in regulating the proliferation, metastasis, and stemness of bladder cancer cells. Methods The expression of ITPR3 in bladder cancer was analyzed using public databases and bladder cancer tissue microarrays. To demonstrate the role of ITPR3 in regulating the NF-ĸB/CD44 pathway and the progression of bladder cancer, a series of molecular biology and biochemistry methods was performed on clinical tissues, along with in vivo and in vitro experiments. The methods used included western blot assay, quantitative RT-PCR assay, immunofluorescence assay, immunohistochemistry (IHC) assays, wound healing assay, Transwell assay, colony formation assay, tumorsphere formation assay, cell flow cytometry analysis, EdU assay, MTT assay, cell transfection, bisulfite sequencing PCR (BSP), a xenograft tumor model and a tail vein cancer metastasis model. Results Higher ITPR3 expression was found in bladder cancer tissues and bladder cancer cells compared with the corresponding normal peritumor tissues and SV-HUC-1 cells, which was attributed to demethylation in the ITPR3 promoter region. ITPR3 promoted the proliferation of bladder cancer by accelerating cell cycle transformation and promoted local invasion and distant metastasis by inducing epithelial-to-mesenchymal transition (EMT). Meanwhile, ITPR3 maintained the cancer stemness phenotype by regulating CD44 expression. NF-κB, which is upstream of CD44, also played a critical role in this process. Conclusions Our study clarifies that ITPR3 serves as an oncogene in bladder cancer cells and represents a novel candidate for bladder cancer diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01866-1.
Collapse
Affiliation(s)
- Mengzhao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Xiao Liang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, 710061, China. .,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of education, Xi'an, China.
| |
Collapse
|
22
|
Takeuchi M, Vidigal PT, Guerra MT, Hundt MA, Robert ME, Olave-Martinez M, Aoki S, Khamphaya T, Kersten R, Kruglov E, de la Rosa Rodriguez R, Banales JM, Nathanson MH, Weerachayaphorn J. Neutrophils interact with cholangiocytes to cause cholestatic changes in alcoholic hepatitis. Gut 2021; 70:342-356. [PMID: 33214166 PMCID: PMC7906004 DOI: 10.1136/gutjnl-2020-322540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & OBJECTIVES Alcoholic hepatitis (AH) is a common but life-threatening disease with limited treatment options. It is thought to result from hepatocellular damage, but the presence of cholestasis worsens prognosis, so we examined whether bile ducts participate in the pathogenesis of this disease. DESIGN Cholangiocytes derived from human bile ducts were co-cultured with neutrophils from patients with AH or controls. Loss of type 3 inositol 1,4,5-trisphosphate receptor (ITPR3), an apical intracellular calcium channel necessary for cholangiocyte secretion, was used to reflect cholestatic changes. Neutrophils in contact with bile ducts were quantified in liver biopsies from patients with AH and controls and correlated with clinical and pathological findings. RESULTS Liver biopsies from patients with AH revealed neutrophils in contact with bile ducts, which correlated with biochemical and histological parameters of cholestasis. Cholangiocytes co-cultured with neutrophils lost ITPR3, and neutrophils from patients with AH were more potent than control neutrophils. Biochemical and histological findings were recapitulated in an AH animal model. Loss of ITPR3 was attenuated by neutrophils in which surface membrane proteins were removed. RNA-seq analysis implicated integrin β1 (ITGB1) in neutrophil-cholangiocyte interactions and interference with ITGB1 on cholangiocytes blocked the ability of neutrophils to reduce cholangiocyte ITPR3 expression. Cell adhesion molecules on neutrophils interacted with ITGB1 to trigger RAC1-induced JNK activation, causing a c-Jun-mediated decrease in ITPR3 in cholangiocytes. CONCLUSIONS Neutrophils bind to ITGB1 on cholangiocytes to contribute to cholestasis in AH. This previously unrecognised role for cholangiocytes in this disease alters our understanding of its pathogenesis and identifies new therapeutic targets.
Collapse
Affiliation(s)
- Masahiro Takeuchi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paula T Vidigal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathological Anatomy and Forensic Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T Guerra
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Melanie A Hundt
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Olave-Martinez
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Satoshi Aoki
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tanaporn Khamphaya
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Remco Kersten
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randolph de la Rosa Rodriguez
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Michael H Nathanson
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jittima Weerachayaphorn
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Melatonin Protects Cholangiocytes from Oxidative Stress-Induced Proapoptotic and Proinflammatory Stimuli via miR-132 and miR-34. Int J Mol Sci 2020; 21:ijms21249667. [PMID: 33352965 PMCID: PMC7766218 DOI: 10.3390/ijms21249667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Biosynthesis of melatonin by cholangiocytes is essential for maintaining the function of biliary epithelium. However, this cytoprotective mechanism appears to be impaired in primary biliary cholangitis (PBC). MiR-132 has emerged as a mediator of inflammation in chronic liver diseases. The effect of melatonin on oxidative stress and bile acid-induced apoptosis was also examined in cholangiocyes overexpressing miR506, as a PBC-like cellular model. In PBC patients the serum levels of melatonin were found increased in comparison to healthy controls. Whereas, in cholangiocytes within cirrhotic PBC livers the melatonin biosynthetic pathway was substantially suppressed even though the expressions of melatonin rate-limiting enzyme aralkylamine N-acetyltransferase (AANAT), and CK-19 (marker of cholangiocytes) were enhanced. In cholangiocytes exposed to mitochondrial oxidative stress melatonin decreased the expression of proapoptotic stimuli (PTEN, Bax, miR-34), which was accompanied by the inhibition of a pivotal mediator of inflammatory response Nf-κB-p65 and the activation of antiapoptotic signaling (miR-132, Bcl2). Similarly, melatonin reduced bile acid-induced proapoptotic caspase 3 and Bim levels. In summary, the insufficient hepatic expression of melatonin in PBC patients may predispose cholangiocytes to oxidative stress-related damage. Melatonin, via epigenetic modulation, was able to suppress NF-κB signaling activation and protect against biliary cells apoptotic signaling.
Collapse
|
24
|
Lemos FO, Guerra MT, Leite MDF. Inositol 1,4,5 trisphosphate receptors in secretory epithelial cells of the gastrointestinal tract. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Rostami Yasuj S, Obeidi N, Khamisipou G, Gharehdaghi Z, Zangeneh Z. Overexpression of MiR-506 in Jurkat (Acute T Cell Leukemia) Cell Line. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:282-291. [PMID: 32944040 PMCID: PMC7477680 DOI: 10.30699/ijp.2020.119627.2298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Background & Objective: Acute lymphoblastic leukemia (ALL) is a malignant disease that arises from various mutations in B or T-lymphoid progenitors. MicroRNAs (miRNAs) regulate gene expression by binding to the 3' untranslated region of protein-coding genes. Dysregulation of miRNA expression may result in the development of cancerous phenotypes. Therefore, for the first time in this field, the present study aims to investigate the effect of overexpression of miR-506 in Jurkat (acute T cell leukemia) cell line. Methods: In this study, Jurkat cell lines were cultured in RPMI-1640 medium. Next, miR-506 was transfected with concentrations of 50 and 100 nM with Lipofectamine 2000. The accuracy of the transfection was confirmed by the transfection of siRNA conjugated with FITC. 48 h after transfection, the cells were prepared for other tests (flow cytometry, MTT assay, and RNA extraction). The expression level of miR-506 in the cells was analyzed using the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Finally, SPSS 21 software was used for the data analysis. Results: According to our results, the viability of cells in concentrations of 50 and 100 nM was significantly higher than the control group. By overexpression of miR-506, the expressions of pro-apoptotic genes (p53, p21) and anti-apoptotic gene B-cell lymphoma-2 (BCL-2) are decreased and increased, respectively. Conclusion: This study showed that miR-506 may function as an oncogenic miRNA in the T- ALL cell line. In conclusion, overexpression of miR-506 leads to an increase in viable cancer cells.
Collapse
Affiliation(s)
- Shaghayegh Rostami Yasuj
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Obeidi
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamreza Khamisipou
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zeynab Gharehdaghi
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zivar Zangeneh
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
26
|
Lima Filho ACM, França A, Florentino RM, Dos Santos ML, de Oliveira Lemos F, Missiaggia DG, Fonseca RC, Gustavo Oliveira A, Ananthanarayanan M, Guerra MT, de Castro Fonseca M, Vidigal PVT, Lima CX, Nathanson MH, Fatima Leite M. Inositol 1,4,5-trisphosphate receptor type 3 plays a protective role in hepatocytes during hepatic ischemia-reperfusion injury. Cell Calcium 2020; 91:102264. [PMID: 32957029 DOI: 10.1016/j.ceca.2020.102264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/02/2023]
Abstract
Hepatic ischemia-reperfusion injury is seen in a variety of clinical conditions, including hepatic thrombosis, systemic hypotension, and liver transplantation. Calcium (Ca2+) signaling mediates several pathophysiological processes in the liver, but it is not known whether and how intracellular Ca2+ channels are involved in the hepatocellular events secondary to ischemia-reperfusion. Using an animal model of hepatic ischemia-reperfusion injury, we observed a progressive increase in expression of the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular Ca2+ channel that is not normally expressed in healthy hepatocytes. ITPR3 expression was upregulated, at least in part, by a combination of demethylation of the ITPR3 promoter region and the increased transcriptional activity of the nuclear factor of activated T-cells (NFAT). Additionally, expression of pro-inflammatory interleukins and necrotic surface area were less pronounced in livers of control animals compared to liver-specific ITPR3 KO mice subjected to hepatic damage. Corroborating these findings, ITPR3 expression and activation of NFAT were observed in hepatocytes of liver biopsies from patients who underwent liver ischemia caused by thrombosis after organ transplant. Together, these results are consistent with the idea that ITPR3 expression in hepatocytes plays a protective role during hepatic injury induced by ischemia-reperfusion.
Collapse
Affiliation(s)
| | - Andressa França
- Department of Molecular Medicine, Federal University of Minas Gerais (UFMG), MG, Brazil.
| | - Rodrigo M Florentino
- Department of Biophysics and Physiology, Federal University of Minas Gerais (UFMG), MG, Brazil.
| | | | | | | | | | - André Gustavo Oliveira
- Department of Biophysics and Physiology, Federal University of Minas Gerais (UFMG), MG, Brazil.
| | | | - Mateus T Guerra
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, CT, United States.
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, SP, Brazil.
| | | | - Cristiano Xavier Lima
- Department of Surgery, Medicine School of Federal University of Minas Gerais (UFMG), MG, United States.
| | - Michael H Nathanson
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, CT, United States.
| | - M Fatima Leite
- Department of Biophysics and Physiology, Federal University of Minas Gerais (UFMG), MG, Brazil.
| |
Collapse
|
27
|
Huang C, Xing X, Xiang X, Fan X, Men R, Ye T, Yang L. MicroRNAs in autoimmune liver diseases: from diagnosis to potential therapeutic targets. Biomed Pharmacother 2020; 130:110558. [PMID: 32781357 DOI: 10.1016/j.biopha.2020.110558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023] Open
Abstract
Autoimmune liver diseases (AILDs) are a group of liver disorders composed of autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) characterized by chronic hepatic and biliary inflammation. Although several genetic factors, such as HLA alleles, TNFA, and CTLA-4, have been reported in the pathogenesis of AILDs, many details remain unknown. In recent years, microRNAs (miRNAs) have emerged as crucial components in the diagnosis and therapeutic applications of various autoimmune diseases, including systemic lupus erythematosus (SLE), glomerulonephritis, and AILDs. MiRNAs comprise a class of small, noncoding molecules of 19--25 nucleotides that modulate multiple genes by suppressing or degrading target mRNAs. Altered miRNA profiles have been identified in serum, immune cells, and live tissues from AILD patients. Elevated serum miR-21 and miR-122 levels in AIH patients as well as decreased miR-200c levels in PSC patients indicate their diagnostic utility. Highly expressed miR-122 and miR-378f as well as downregulated miR-4311 and miR-4714-3p in serum samples from refractory PBC patients suggest their potential to evaluate treatment efficacy. Moreover, miRNAs have been reported to participate in AILD development. Increased miR-506 levels may impair bile secretion in PBC by inhibiting Cl-/HCO3-anion exchanger 2 (AE2) and type III inositol 1,4,5-trisphosphate receptor-3 (InsP3R3). Additionally, different miRNA mimics or antagonists, such as atagomiR-155 and miR-223 mimics, have been widely applied in experimental AILD murine models with great efficacy. Here, we provide an overview of miRNAs in AILDs, aiming to summarize their potential roles in diagnosis and therapeutic interventions, and we discuss the challenges and future applications of miRNAs in clinical practice.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Xing
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Xiang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with non-suppurative destruction of the intrahepatic bile ducts. The interplay of genetics and environmental triggers contributes to the onset of the disease and subsequently results in cholestasis and progressive fibrosis. Recently, genome-wide association studies (GWAS) have identified multiple genes influencing the susceptibility to PBC in HLA and non-HLA loci. However, it is estimated that the known risk variants merely account for no more than 20% of the heritability of PBC and causes of the remaining heritability remain uncertain. Increasing evidence suggests that the presence of epigenetic abnormalities may explain the "missing heritability" that cannot be captured by GWAS. Among these epigenetic mechanisms, DNA methylation, histone modification, and noncoding RNAs (i.e. miRNA and lncRNA) are involved in the pathogenesis of PBC. Additionally, telomere dysregulation in biliary epithelial cells (BECs) may play a role in disease onset, whereas a deficiency in sex chromosome and skewed gene expression in the X chromosome may to some extent explain the female dominance in PBC.
Collapse
|
29
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
30
|
Ueasilamongkol P, Khamphaya T, Guerra MT, Rodrigues M, Gomes DA, Kong Y, Wei W, Jain D, Trampert DC, Ananthanarayanan M, Banales JM, Roberts LR, Farshidfar F, Nathanson MH, Weerachayaphorn J. Type 3 Inositol 1,4,5-Trisphosphate Receptor Is Increased and Enhances Malignant Properties in Cholangiocarcinoma. Hepatology 2020; 71:583-599. [PMID: 31251815 PMCID: PMC6934938 DOI: 10.1002/hep.30839] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is the second most common malignancy arising in the liver. It carries a poor prognosis, in part because its pathogenesis is not well understood. The type 3 inositol 1,4,5-trisphosphate receptor (ITPR3) is the principal intracellular calcium ion (Ca2+ ) release channel in cholangiocytes, and its increased expression has been related to the pathogenesis of malignancies in other types of tissues, so we investigated its role in CCA. ITPR3 expression was increased in both hilar and intrahepatic CCA samples as well as in CCA cell lines. Deletion of ITPR3 from CCA cells impaired proliferation and cell migration. A bioinformatic analysis suggested that overexpression of ITPR3 in CCA would have a mitochondrial phenotype, so this was also examined. ITPR3 normally is concentrated in a subapical region of endoplasmic reticulum (ER) in cholangiocytes, but both immunogold electron microscopy and super-resolution microscopy showed that ITPR3 in CCA cells was also in regions of ER in close association with mitochondria. Deletion of ITPR3 from these cells impaired mitochondrial Ca2+ signaling and led to cell death. Conclusion: ITPR3 expression in cholangiocytes becomes enhanced in CCA. This contributes to malignant features, including cell proliferation and migration and enhanced mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
| | - Tanaporn Khamphaya
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mateus T. Guerra
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michele Rodrigues
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dawidson A. Gomes
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yong Kong
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Wei Wei
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David C. Trampert
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Lewis R. Roberts
- Divisions of Gastroenterology and Hepatology and Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Farshad Farshidfar
- Department of Oncology, Cumming School of Medicine, University of Calgary, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Michael H. Nathanson
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Lemos FDO, Florentino RM, Lima Filho ACM, Santos MLD, Leite MF. Inositol 1,4,5-trisphosphate receptor in the liver: Expression and function. World J Gastroenterol 2019; 25:6483-6494. [PMID: 31802829 PMCID: PMC6886013 DOI: 10.3748/wjg.v25.i44.6483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is a complex organ that performs several functions to maintain homeostasis. These functions are modulated by calcium, a second messenger that regulates several intracellular events. In hepatocytes and cholangiocytes, which are the epithelial cell types in the liver, inositol 1,4,5-trisphosphate (InsP3) receptors (ITPR) are the only intracellular calcium release channels. Three isoforms of the ITPR have been described, named type 1, type 2 and type 3. These ITPR isoforms are differentially expressed in liver cells where they regulate distinct physiological functions. Changes in the expression level of these receptors correlate with several liver diseases and hepatic dysfunctions. In this review, we highlight how the expression level, modulation, and localization of ITPR isoforms in hepatocytes and cholangiocytes play a role in hepatic homeostasis and liver pathology.
Collapse
Affiliation(s)
- Fernanda de Oliveira Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rodrigo M Florentino
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Antônio Carlos Melo Lima Filho
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Marcone Loiola dos Santos
- Department of Cell Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - M Fatima Leite
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
32
|
Type 3 inositol 1,4,5-trisphosphate receptor: A calcium channel for all seasons. Cell Calcium 2019; 85:102132. [PMID: 31790953 DOI: 10.1016/j.ceca.2019.102132] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Inositol 1,4,5 trisphosphate receptors (ITPRs) are a family of endoplasmic reticulum Ca2+ channels essential for the control of intracellular Ca2+ levels in virtually every mammalian cell type. The three isoforms (ITPR1, ITPR2 and ITPR3) are highly homologous in amino acid sequence, but they differ considerably in terms of biophysical properties, subcellular localization, and tissue distribution. Such differences underscore the variety of cellular responses triggered by each isoform and suggest that the expression/activity of specific isoforms might be linked to particular pathophysiological states. Indeed, recent findings demonstrate that changes in expression of ITPR isoforms are associated with a number of human diseases ranging from fatty liver disease to cancer. ITPR3 is emerging as the isoform that is particularly important in the pathogenesis of various human diseases. Here we review the physiological and pathophysiological roles of ITPR3 in various tissues and the mechanisms by which the expression of this isoform is modulated in health and disease.
Collapse
|
33
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019; 105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino, Lugano, Switzerland; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; European Reference Network ERN RARE-LIVER.
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David Adams
- Birmingham NIHR Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesMedical School, University of Birmingham, Birmingham, UK
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Ulrich Beuers
- European Reference Network ERN RARE-LIVER; Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Einar Björnsson
- Division of Gastroenterology and Hepatology, Landspitali the National University Hospital of Iceland, Reykjavík, Iceland
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Marco Carbone
- Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - Olivier Chazouillères
- European Reference Network ERN RARE-LIVER; Service d'Hépatologie, Hôpital Saint-Antoine, Paris, France
| | - George Dalekos
- Institute of Internal Medicine and Hepatology, Department of Medicine and Research, Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andrea De Gottardi
- European Reference Network ERN RARE-LIVER; Epatocentro Ticino & Division of Gastroenterology and Hepatology Ente Ospedaliero Cantonale and Università della Svizzera Italiana, Lugano, Switzerland
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Pietro Invernizzi
- European Reference Network ERN RARE-LIVER; Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - David Jones
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Zhe-Xiong Lian
- Institutes for Life Sciences, South China University of Technology, Higher Education Mega Center, Guangzhou, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Eamon Mm Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Shinji Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Mark Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ehud Zigmond
- Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA.
| |
Collapse
|
34
|
Guerra MT, Florentino RM, Franca A, Filho ACL, dos Santos ML, Fonseca RC, Lemos FO, Fonseca MC, Kruglov E, Mennone A, Njei B, Gibson J, Guan F, Cheng YC, Ananthanarayanam M, Gu J, Jiang J, Zhao H, Lima CX, Vidigal PT, Oliveira AG, Nathanson MH, Leite MF. Expression of the type 3 InsP 3 receptor is a final common event in the development of hepatocellular carcinoma. Gut 2019; 68:1676-1687. [PMID: 31315892 PMCID: PMC7087395 DOI: 10.1136/gutjnl-2018-317811] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVES Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Several types of chronic liver disease predispose to HCC, and several different signalling pathways have been implicated in its pathogenesis, but no common molecular event has been identified. Ca2+ signalling regulates the proliferation of both normal hepatocytes and liver cancer cells, so we investigated the role of intracellular Ca2+ release channels in HCC. DESIGN Expression analyses of the type 3 isoform of the inositol 1, 4, 5-trisphosphate receptor (ITPR3) in human liver samples, liver cancer cells and mouse liver were combined with an evaluation of DNA methylation profiles of ITPR3 promoter in HCC and characterisation of the effects of ITPR3 expression on cellular proliferation and apoptosis. The effects of de novo ITPR3 expression on hepatocyte calcium signalling and liver growth were evaluated in mice. RESULTS ITPR3 was absent or expressed in low amounts in hepatocytes from normal liver, but was expressed in HCC specimens from three independent patient cohorts, regardless of the underlying cause of chronic liver disease, and its increased expression level was associated with poorer survival. The ITPR3 gene was heavily methylated in control liver specimens but was demethylated at multiple sites in specimens of patient with HCC. Administration of a demethylating agent in a mouse model resulted in ITPR3 expression in discrete areas of the liver, and Ca2+ signalling was enhanced in these regions. In addition, cell proliferation and liver regeneration were enhanced in the mouse model, and deletion of ITPR3 from human HCC cells enhanced apoptosis. CONCLUSIONS These results provide evidence that de novo expression of ITPR3 typically occurs in HCC and may play a role in its pathogenesis.
Collapse
MESH Headings
- Adult
- Animals
- Apoptosis/physiology
- Calcium Signaling/physiology
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/physiology
- Cells, Cultured
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic/physiology
- Hepatocytes/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/deficiency
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Liver/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Regeneration/physiology
- Male
- Mice, Knockout
- Middle Aged
- Survival Analysis
Collapse
Affiliation(s)
- Mateus T Guerra
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rodrigo M Florentino
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andressa Franca
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio C Lima Filho
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcone L dos Santos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberta C Fonseca
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda O Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus C Fonseca
- Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Emma Kruglov
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert Mennone
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Basile Njei
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joanna Gibson
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jianlei Gu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, China
| | - Jianping Jiang
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cristiano X Lima
- Department of Surgery, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula T Vidigal
- Department of Pathological Anatomy and Forensic Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andre G Oliveira
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael H Nathanson
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Fatima Leite
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
35
|
Epigenetic Modifications in Generalized Autoimmune Epithelitis: Sjögren's Syndrome and Primary Biliary Cholangitis. EPIGENOMES 2019; 3:epigenomes3030015. [PMID: 34968227 PMCID: PMC8594719 DOI: 10.3390/epigenomes3030015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
Sjögren's syndrome (SjS) and primary biliary cholangitis (PBC) can be classified as a model of generalized autoimmune epithelitis based on their frequent coexistence in clinical practice and the highly specific immune mediated injury of target epithelial cells. Both of these autoimmune diseases are characterized by female predominance, highly specific circulating autoantibodies, and immune-mediated destruction of the salivary and lachrymal glands and the biliary epithelial cells, respectively. Although the genetic predisposition has been well described for both diseases, genetic studies have failed to completely elucidate their pathogenesis. The recent integration of epigenetic data, analyzing the different cellular partners, opens new perspectives and allows for better understanding of these complex and still incurable diseases. Epigenetic studies on SjS have elucidated the role of DNA methylation alterations in disease pathogenesis, while epigenetic changes that influence expression of genes on the X chromosome have been implicated in the geo-variability and occurrence of PBC. The aim of this review is to describe the advances in epigenetics in the field of autoimmune epithelitis as well as to highlight how epigenetic changes could contribute to better understanding of disease pathogenesis and progression. These advances could yield insights on novel therapeutic interventions.
Collapse
|
36
|
MiR-204 regulates type 1 IP 3R to control vascular smooth muscle cell contractility and blood pressure. Cell Calcium 2019; 80:18-24. [PMID: 30925290 DOI: 10.1016/j.ceca.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/17/2019] [Accepted: 03/17/2019] [Indexed: 01/11/2023]
Abstract
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204-/- mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204-/- mice compared to WT mice. Aortas and MRA of miR-204-/- mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204-/- mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204-/- and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204-/- mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204-/- and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.
Collapse
|
37
|
Cholangiocyte death in ductopenic cholestatic cholangiopathies: Mechanistic basis and emerging therapeutic strategies. Life Sci 2019; 218:324-339. [DOI: 10.1016/j.lfs.2018.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
|
38
|
Franca A, Filho ACML, Guerra MT, Weerachayaphorn J, dos Santos ML, Njei B, Robert M, Lima CX, Vidigal PVT, Banales JM, Ananthanarayanam M, Leite MF, Nathanson MH. Effects of Endotoxin on Type 3 Inositol 1,4,5-Trisphosphate Receptor in Human Cholangiocytes. Hepatology 2019; 69:817-830. [PMID: 30141207 PMCID: PMC6351171 DOI: 10.1002/hep.30228] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Clinical conditions that result in endotoxemia, such as sepsis and alcoholic hepatitis (AH), often are accompanied by cholestasis. Although hepatocellular changes in response to lipopolysaccharide (LPS) have been well characterized, less is known about whether and how cholangiocytes contribute to this form of cholestasis. We examined effects of endotoxin on expression and function of the type 3 inositol trisphosphate receptor (ITPR3), because this is the main intracellular Ca2+ release channel in cholangiocytes, and loss of it impairs ductular bicarbonate secretion. Bile duct cells expressed the LPS receptor, Toll-like receptor 4 (TLR4), which links to activation of nuclear factor-κB (NF-κB). Analysis of the human ITPR3 promoter revealed five putative response elements to NF-κB, and promoter activity was inhibited by p65/p50. Nested 0.5- and 1.0-kilobase (kb) deletion fragments of the ITPR3 promoter were inhibited by NF-κB subunits. Chromatin immunoprecipitation (ChIP) assay showed that NF-κB interacts with the ITPR3 promoter, with an associated increase in H3K9 methylation. LPS decreased ITPR3 mRNA and protein expression and also decreased sensitivity of bile duct cells to calcium agonist stimuli. This reduction was reversed by inhibition of TLR4. ITPR3 expression was decreased or absent in cholangiocytes from patients with cholestasis of sepsis and from those with severe AH. Conclusion: Stimulation of TLR4 by LPS activates NF-κB to down-regulate ITPR3 expression in human cholangiocytes. This may contribute to the cholestasis that can be observed in conditions such as sepsis or AH.
Collapse
Affiliation(s)
- Andressa Franca
- Federal University of Minas Gerais (UFMG), Belo Horizonte, MG
| | | | - Mateus T. Guerra
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Jittima Weerachayaphorn
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Basile Njei
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Marie Robert
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | | | | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | | | - M. Fatima Leite
- Federal University of Minas Gerais (UFMG), Belo Horizonte, MG
| | - Michael H. Nathanson
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
39
|
Rodrigues MA, Gomes DA, Nathanson MH. Calcium Signaling in Cholangiocytes: Methods, Mechanisms, and Effects. Int J Mol Sci 2018; 19:ijms19123913. [PMID: 30563259 PMCID: PMC6321159 DOI: 10.3390/ijms19123913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Calcium (Ca2+) is a versatile second messenger that regulates a number of cellular processes in virtually every type of cell. The inositol 1,4,5-trisphosphate receptor (ITPR) is the only intracellular Ca2+ release channel in cholangiocytes, and is therefore responsible for Ca2+-mediated processes in these cells. This review will discuss the machinery responsible for Ca2+ signals in these cells, as well as experimental models used to investigate cholangiocyte Ca2+ signaling. We will also discuss the role of Ca2+ in the normal and abnormal regulation of secretion and apoptosis in cholangiocytes, two of the best characterized processes mediated by Ca2+ in this cell type.
Collapse
Affiliation(s)
- Michele Angela Rodrigues
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| | - Dawidson Assis Gomes
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
- Department of Biochemistry and Immunology, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Belo Horizonte-MG 31270-901, Brazil.
| | - Michael Harris Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
40
|
Rodrigues PM, Perugorria MJ, Santos-Laso A, Bujanda L, Beuers U, Banales JM. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure? J Hepatol 2018; 69:1371-1383. [PMID: 30193962 DOI: 10.1016/j.jhep.2018.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease associated with autoimmune-related destruction of small to medium size intrahepatic bile ducts. The aetiology of PBC is unknown and its pathogenesis remains obscure. Both genetic variants and environmental factors have been linked to increased PBC susceptibility, with other alterations known to cooperate in disease pathobiology. Increasing evidence indicates the presence of epigenetic abnormalities in PBC, particularly alterations of cholangiocellular microRNAs (miRNAs or miRs). This review highlights and discusses the most relevant epigenetic alterations found in patients with PBC, focusing on the role of miR-506 in the promotion of cholestasis and immune activation.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Amsterdam Gastroenterology and Metabolism, AMC, Amsterdam, The Netherlands
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
41
|
van Niekerk J, Kersten R, Beuers U. Role of Bile Acids and the Biliary HCO 3- Umbrella in the Pathogenesis of Primary Biliary Cholangitis. Clin Liver Dis 2018; 22:457-479. [PMID: 30259847 DOI: 10.1016/j.cld.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The biliary HCO3- umbrella hypothesis states that human cholangiocytes and hepatocytes create a protective apical alkaline barrier against millimolar concentrations of potentially toxic glycine-conjugated bile salts in bile by secreting HCO3- into the bile duct lumen. This alkaline barrier may retain biliary bile salts in their polar, deprotonated, and membrane-impermeant state to avoid uncontrolled invasion of apolar toxic bile acids, which initiate apoptosis, autophagy and senescence. In primary biliary cholangitis, defects of the biliary HCO3- umbrella, leading to impaired biliary HCO3- secretion have been identified. Current medical therapies stabilize the putatively defective biliary HCO3- umbrella and improve long-term prognosis.
Collapse
Affiliation(s)
- Jorrit van Niekerk
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Remco Kersten
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
42
|
Abstract
Primary biliary cholangitis (PBC) is a chronic progressive cholestatic disease characterized by destruction of small- and medium-sized intrahepatic bile ducts. It is no longer a rare disease, since many new asymptomatic cases are incidentally identified. Liver biopsy is diagnostically critical but not always feasible or practical to be performed. Many potential, noninvasive, markers have been proposed to replace liver biopsy and further provide the assessment of disease severity and ultimate prognosis. In this review, we evaluated serum biomarkers proposed for diagnosis, extent of fibrosis, disease prognosis and attempts for early prediction of treatment response. Older biochemical and immunological markers are presented along with recent reports including the role of microRNAs and promising results based on proteomics and metabolomics.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, University Hospital and Medical School, University of Crete, Heraklion, Crete, Greece
| | - Demetrius Samonakis
- Department of Gastroenterology, University Hospital of Heraklion, Crete, Greece
| | | |
Collapse
|
43
|
Pathophysiological consequences of isoform-specific IP 3 receptor mutations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1707-1717. [PMID: 29906486 DOI: 10.1016/j.bbamcr.2018.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Ca2+ signaling governs a diverse range of cellular processes and, as such, is subject to tight regulation. A main component of the complex intracellular Ca2+-signaling network is the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a tetrameric channel that mediates Ca2+ release from the endoplasmic reticulum (ER) in response to IP3. IP3R function is controlled by a myriad of factors, such as Ca2+, ATP, kinases and phosphatases and a plethora of accessory and regulatory proteins. Further complexity in IP3R-mediated Ca2+ signaling is the result of the existence of three main isoforms (IP3R1, IP3R2 and IP3R3) that display distinct functional characteristics and properties. Despite their abundant and overlapping expression profiles, IP3R1 is highly expressed in neurons, IP3R2 in cardiomyocytes and hepatocytes and IP3R3 in rapidly proliferating cells as e.g. epithelial cells. As a consequence, dysfunction and/or dysregulation of IP3R isoforms will have distinct pathophysiological outcomes, ranging from neurological disorders for IP3R1 to dysfunctional exocrine tissues and autoimmune diseases for IP3R2 and -3. Over the past years, several IP3R mutations have surfaced in the sequence analysis of patient-derived samples. Here, we aimed to provide an integrative overview of the clinically most relevant mutations for each IP3R isoform and the subsequent molecular mechanisms underlying the etiology of the disease.
Collapse
|
44
|
Zhang P, Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol 2018; 15:575-585. [PMID: 29503444 PMCID: PMC6079019 DOI: 10.1038/cmi.2017.137] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/23/2022] Open
Abstract
Immunological tolerance loss is fundamental to the development of autoimmunity; however, the underlying mechanisms remain elusive. Immune tolerance consists of central and peripheral tolerance. Central tolerance, which occurs in the thymus for T cells and bone marrow for B cells, is the primary way that the immune system discriminates self from non-self. Peripheral tolerance, which occurs in tissues and lymph nodes after lymphocyte maturation, controls self-reactive immune cells and prevents over-reactive immune responses to various environment factors. Loss of tolerance results in autoimmune disorders, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D) and primary biliary cirrhosis (PBC). The etiology and pathogenesis of autoimmune diseases are highly complicated. Both genetic predisposition and epigenetic modifications are implicated in the loss of tolerance and autoimmunity. In this review, we will discuss the genetic and epigenetic influences on tolerance breakdown in autoimmunity. Genetic and epigenetic influences on autoimmune diseases, such as SLE, RA, T1D and PBC, will also be briefly discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, 410011, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, 410011, Changsha, Hunan, China.
| |
Collapse
|
45
|
Gulamhusein AF, Hirschfield GM. Pathophysiology of primary biliary cholangitis. Best Pract Res Clin Gastroenterol 2018; 34-35:17-25. [PMID: 30343706 DOI: 10.1016/j.bpg.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis is a prototypical autoimmune disease characterized by an overwhelming female predominance, a distinct clinical phenotype, and disease specific anti-mitochondrial antibodies targeted against a well-defined auto-antigen. In a genetically susceptible host, multi-lineage loss of tolerance to the E2 component of the 2-oxo-dehydrogenase pathway and dysregulated immune pathways directed at biliary epithelial cells leads to cholestasis, progressive biliary fibrosis, and cirrhosis in a subset of patients. Several key insights have shed light on the complex pathogenesis of disease. First, characteristic anti-mitochondrial antibodies (AMAs) target lipoic acid containing immunodominant epitopes, particularly pyruvate dehydrogenase complex (PDC-E2), on the inner mitochondrial membrane of BECs. Next, breakdown of the protective apical bicarbonate rich umbrella may sensitize BECs to aberrant apoptotic pathways leaving the antigenic PDC-E2 epitope immunologically tact within an apoptotic bleb. A multi-lineage immune response ensues characterized by an imbalance between effector and regulatory activity resulting in progressive and self-perpetuating biliary injury. Genome wide studies shed light on important pathways involved in disease, key among them being IL-12. Epigenetic mechanisms and microRNAs may play help shed light on the missing heritability and female preponderance of disease. Taken together, these findings have dramatically advanced our understanding of disease and may lead to important therapeutic advances.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, 200 Elizabeth Street, Toronto, ON, Canada.
| | - Gideon M Hirschfield
- Centre for Liver Research and NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
46
|
Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1761-1770. [PMID: 29787781 DOI: 10.1016/j.bbamcr.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Calcium (Ca2+) signaling controls secretion in many types of cells and tissues. In the liver, Ca2+ regulates secretion in both hepatocytes, which are responsible for primary formation of bile, and cholangiocytes, which line the biliary tree and further condition the bile before it is secreted. Cholestatic liver diseases, which are characterized by impaired bile secretion, may result from impaired Ca2+ signaling mechanisms in either hepatocytes or cholangiocytes. This review will discuss the Ca2+ signaling machinery and mechanisms responsible for regulation of secretion in both hepatocytes and cholangiocytes, and the pathophysiological changes in Ca2+ signaling that can occur in each of these cell types to result in cholestasis.
Collapse
Affiliation(s)
- David C Trampert
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
47
|
Afonso MB, Rodrigues CMP. MicroRevolution in understanding primary biliary cholangitis pathophysiology. Hepatology 2018; 67:1213-1215. [PMID: 29140540 DOI: 10.1002/hep.29653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 12/07/2022]
Affiliation(s)
- Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
48
|
MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1293-1307. [PMID: 28711597 DOI: 10.1016/j.bbadis.2017.06.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
|
49
|
Chang JC, Go S, Verhoeven AJ, Beuers U, Oude Elferink RP. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1232-1239. [DOI: 10.1016/j.bbadis.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023]
|
50
|
Erice O, Munoz-Garrido P, Vaquero J, Perugorria MJ, Fernandez-Barrena MG, Saez E, Santos-Laso A, Arbelaiz A, Jimenez-Agüero R, Fernandez-Irigoyen J, Santamaria E, Torrano V, Carracedo A, Ananthanarayanan M, Marzioni M, Prieto J, Beuers U, Oude Elferink RP, LaRusso NF, Bujanda L, Marin JJG, Banales JM. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation. Hepatology 2018; 67:1420-1440. [PMID: 28922472 PMCID: PMC5857422 DOI: 10.1002/hep.29533] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/07/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease associated with autoimmune phenomena targeting intrahepatic bile duct cells (cholangiocytes). Although its etiopathogenesis remains obscure, development of antimitochondrial autoantibodies against pyruvate dehydrogenase complex E2 is a common feature. MicroRNA (miR) dysregulation occurs in liver and immune cells of PBC patients, but its functional relevance is largely unknown. We previously reported that miR-506 is overexpressed in PBC cholangiocytes and directly targets both Cl- / HCO3- anion exchanger 2 and type III inositol 1,4,5-trisphosphate receptor, leading to cholestasis. Here, the regulation of miR-506 gene expression and its role in cholangiocyte pathophysiology and immune activation was studied. Several proinflammatory cytokines overexpressed in PBC livers (such as interleukin-8 [IL8], IL12, IL17, IL18, and tumor necrosis factor alpha) stimulated miR-506 promoter activity in human cholangiocytes, as revealed by luciferase reporter assays. Experimental overexpression of miR-506 in cholangiocytes dysregulated the cell proteomic profile (by mass spectrometry), affecting proteins involved in different biological processes including mitochondrial metabolism. In cholangiocytes, miR-506 (1) induced dedifferentiation with down-regulation of biliary and epithelial markers together with up-regulation of mesenchymal, proinflammatory, and profibrotic markers; (2) impaired cell proliferation and adhesion; (3) increased oxidative and endoplasmic reticulum stress; (4) caused DNA damage; and (5) sensitized to caspase-3-dependent apoptosis induced by cytotoxic bile acids. These events were also associated with impaired energy metabolism in mitochondria (proton leak and less adenosine triphosphate production) and pyruvate dehydrogenase complex E2 overexpression. Coculture of miR-506 overexpressing cholangiocytes with PBC immunocytes induced activation and proliferation of PBC immunocytes. CONCLUSION Different proinflammatory cytokines enhance the expression of miR-506 in biliary epithelial cells; miR-506 induces PBC-like features in cholangiocytes and promotes immune activation, representing a potential therapeutic target for PBC patients. (Hepatology 2018;67:1420-1440).
Collapse
Affiliation(s)
- Oihane Erice
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Patricia Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Javier Vaquero
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Saint-Antoine Research Center, Paris, and Fondation ARC, Villejuif, France
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Maite G Fernandez-Barrena
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Division of Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Elena Saez
- Division of Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Joaquin Fernandez-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Verónica Torrano
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- CIBERONC
| | - Arkaitz Carracedo
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- CIBERONC
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Jesus Prieto
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Division of Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P Oude Elferink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|