1
|
Sen S, Ali R, Onkar A, Verma S, Ahmad QT, Bhadauriya P, Sinha P, Nair NN, Ganesh S, Verma S. Synthesis of a highly thermostable insulin by phenylalanine conjugation at B29 Lysine. Commun Chem 2024; 7:161. [PMID: 39043846 PMCID: PMC11266353 DOI: 10.1038/s42004-024-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Globally, millions of diabetic patients require daily life-saving insulin injections. Insulin heat-lability and fibrillation pose significant challenges, especially in parts of the world without ready access to uninterrupted refrigeration. Here, we have synthesized four human insulin analogs by conjugating ε-amine of B29 lysine of insulin with acetic acid, phenylacetic acid, alanine, and phenylalanine residues. Of these, phenylalanine-conjugated insulin, termed FHI, was the most stable under high temperature (65 °C), elevated salt stress (25 mM NaCl), and varying pH levels (ranging from highly acidic pH 1.6 to physiological pH 7.4). It resists fibrillation for a significantly longer duration with sustained biological activity in in vitro, ex vivo, and in vivo and displays prolonged stability over its native counterpart. We further unravel the critical interactions, such as additional aromatic π-π interactions and hydrogen bonding in FHI, that are notably absent in native insulin. These interactions confer enhanced structural stability of FHI and offer a promising solution to the challenges associated with insulin heat sensitivity.
Collapse
Affiliation(s)
- Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Akanksha Onkar
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, 94143, CA, USA
| | - Shivani Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Quazi Taushif Ahmad
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Pratibha Bhadauriya
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Pradip Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, 208016, UP, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, 208016, UP, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, 208016, UP, India.
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, 208016, UP, India.
| |
Collapse
|
2
|
Breunig SL, Chapman AM, LeBon J, Quijano JC, Ranasinghe M, Rawson J, Demeler B, Ku HT, Tirrell DA. 4S-fluorination of ProB29 in insulin lispro slows fibril formation. J Biol Chem 2024; 300:107332. [PMID: 38703998 PMCID: PMC11154709 DOI: 10.1016/j.jbc.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
Recombinant insulin is a life-saving therapeutic for millions of patients affected by diabetes mellitus. Standard mutagenesis has led to insulin variants with improved control of blood glucose; for instance, the fast-acting insulin lispro contains two point mutations that suppress dimer formation and expedite absorption. However, insulins undergo irreversible denaturation, a process accelerated for the insulin monomer. Here we replace ProB29 of insulin lispro with 4R-fluoroproline, 4S-fluoroproline, and 4,4-difluoroproline. All three fluorinated lispro variants reduce blood glucose in diabetic mice, exhibit similar secondary structure as measured by CD, and rapidly dissociate from the zinc- and resorcinol-bound hexamer upon dilution. Notably, however, we find that 4S-fluorination of ProB29 delays the formation of undesired insulin fibrils that can accumulate at the injection site in vivo and can complicate insulin production and storage. These results demonstrate how subtle molecular changes achieved through non-canonical amino acid mutagenesis can improve the stability of protein therapeutics.
Collapse
Affiliation(s)
- Stephanie L Breunig
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Alex M Chapman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Jeanne LeBon
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA
| | - Janine C Quijano
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA
| | - Maduni Ranasinghe
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope, Duarte, California, USA; Irell & Manella Graduate School of Biological Science, City of Hope, Duarte, California, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
3
|
Zhang YW, Lin NP, Guo X, Szabo-Fresnais N, Ortoleva PJ, Chou DHC. Omniligase-1-Mediated Phage-Peptide Library Modification and Insulin Engineering. ACS Chem Biol 2024; 19:506-515. [PMID: 38266161 DOI: 10.1021/acschembio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Chemical and enzymatic modifications of peptide-displayed libraries have been successfully employed to expand the phage display library. However, the requirement of specific epitopes and scaffolds has limited the scope of protein engineering using phage display. In this study, we present a novel approach utilizing omniligase-1-mediated selective and specific ligation on the phage pIII protein, offering a high conversion rate and compatibility with commercially available phage libraries. We applied this method to perform high-throughput engineering of insulin analogues with randomized B chain C-terminal regions. Insulin analogues with different B chain C-terminal segments were selected and exhibited biological activity equivalent to that of human insulin. Molecular dynamics studies of insulin analogues revealed a novel interaction between the insulin B27 residue and insulin receptor L1 domain. In summary, our findings highlight the potential of omniligase-1-mediated phage display in the development and screening of disulfide-rich peptides and proteins. This approach holds promise for the creation of novel insulin analogues with enhanced therapeutic properties and exhibits potential for the development of other therapeutic compounds.
Collapse
Affiliation(s)
- Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nai-Pin Lin
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| | - Xu Guo
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicolas Szabo-Fresnais
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Peter J Ortoleva
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
4
|
Zhang YW, Zheng N, Chou DHC. Serine-mediated hydrazone ligation displaying insulin-like peptides on M13 phage pIII. Org Biomol Chem 2023; 21:8902-8909. [PMID: 37905463 DOI: 10.1039/d3ob01487h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Phage display has emerged as a tool for the discovery of therapeutic antibodies and proteins. However, the effective display and engineering of structurally complex proteins, such as insulin, pose significant challenges due to the sequence of insulin, which is composed of two peptide chains linked by three disulfide bonds. In this study, we developed a new approach for the display of insulin-like peptides on M13 phage pIII, employing N-terminal serine-mediated hydrazone ligation. The insulin-displaying phage retains the biological binding affinity of human insulin. To address the viability loss after ligation, we introduced a trypsin-cleavable spacer on pIII, enabling insulin-displayed phage library selection. This method offers a general pathway for the display of structurally complex proteins on pIII, enhancing the practicality of selecting chemically modified phage libraries and opening avenues for the engineering of new insulin analogs for the treatment of diabetes by using phage display.
Collapse
Affiliation(s)
- Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
5
|
Sen S, Ali R, Onkar A, Ganesh S, Verma S. Strategies for interference of insulin fibrillogenesis: challenges and advances. Chembiochem 2022; 23:e202100678. [PMID: 35025120 DOI: 10.1002/cbic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The discovery of insulin came up with very high hopes for diabetic patients. In the year 2021, the world celebrated the 100 th anniversary of the discovery of this vital hormone. However, external use of insulin is highly affected by its aggregating tendency that occurs during its manufacturing, transportation, and improper handling which ultimately leads its pharmaceutically and biologically ineffective form. In this review, we aim to discuss the various approaches used for decelerating insulin aggregation which results in the enhancement of its overall structural stability and usage. The approaches that are discussed are broadly classified as either a measure through excipient additions or by intrinsic modifications in the insulin native structure.
Collapse
Affiliation(s)
- Shantanu Sen
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| | - Rafat Ali
- Indian Institute of Technology Kanpur, Chemistry, Room No 131 Lab No2, CESE department IIT Kanpur, 208016, Kanpur, INDIA
| | - Akanksha Onkar
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Subramaniam Ganesh
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Sandeep Verma
- Indian Institute of Technology-Kanpur, Department of Chemistry, IIT-Kanpur, 208016, Kanpur, INDIA
| |
Collapse
|
6
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Rege NK, Liu M, Yang Y, Dhayalan B, Wickramasinghe NP, Chen YS, Rahimi L, Guo H, Haataja L, Sun J, Ismail-Beigi F, Phillips NB, Arvan P, Weiss MA. Evolution of insulin at the edge of foldability and its medical implications. Proc Natl Acad Sci U S A 2020; 117:29618-29628. [PMID: 33154160 PMCID: PMC7703552 DOI: 10.1073/pnas.2010908117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to β-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
- Nischay K Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 300052 Tianjin, China
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Yanwu Yang
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Balamurugan Dhayalan
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Yen-Shan Chen
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Leili Rahimi
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Jinhong Sun
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106;
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
8
|
Lai N, Kummitha CM, Loy F, Isola R, Hoppel CL. Bioenergetic functions in subpopulations of heart mitochondria are preserved in a non-obese type 2 diabetes rat model (Goto-Kakizaki). Sci Rep 2020; 10:5444. [PMID: 32214195 PMCID: PMC7096416 DOI: 10.1038/s41598-020-62370-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
A distinct bioenergetic impairment of heart mitochondrial subpopulations in diabetic cardiomyopathy is associated with obesity; however, many type 2 diabetic (T2DM) patients with high-risk for cardiovascular disease are not obese. In the absence of obesity, it is unclear whether bioenergetic function in the subpopulations of mitochondria is affected in heart with T2DM. To address this issue, a rat model of non-obese T2DM was used to study heart mitochondrial energy metabolism, measuring bioenergetics and enzyme activities of the electron transport chain (ETC). Oxidative phosphorylation in the presence of substrates for ETC and ETC activities in both populations of heart mitochondria in T2DM rats were unchanged. Despite the preservation of mitochondrial function, aconitase activity in T2DM heart was reduced, suggesting oxidative stress in mitochondria. Our study indicate that metabolic function of heart mitochondria is unchanged in the face of oxidative stress and point to a critical role of obesity in T2DM cardiomyopathy.
Collapse
Affiliation(s)
- N Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, USA. .,Department of Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, USA. .,Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, USA. .,Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, USA. .,Department of Mechanical, Chemical, and Materials Engineering, University of Cagliari, Cagliari, USA.
| | - C M Kummitha
- Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - F Loy
- Department of Biomedical Sciences, University of Cagliari, Cagliari, USA
| | - R Isola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, USA
| | - C L Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, USA.,Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
9
|
Dhayalan B, Chen YS, Phillips NB, Swain M, Rege NK, Mirsalehi A, Jarosinski M, Ismail-Beigi F, Metanis N, Weiss MA. Reassessment of an Innovative Insulin Analogue Excludes Protracted Action yet Highlights the Distinction between External and Internal Diselenide Bridges. Chemistry 2020; 26:4695-4700. [PMID: 31958351 DOI: 10.1002/chem.202000309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 01/31/2023]
Abstract
Long-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U). Relative to wild type (WT), Se-insulin[C7UA , C7UB ] was reported to be protected from proteolysis by insulin-degrading enzyme (IDE), predicting prolonged activity. Because of this strategy's novelty and potential clinical importance, we sought to validate these findings and test their therapeutic utility in an animal model of diabetes mellitus. Surprisingly, the analogue did not exhibit enhanced stability, and its susceptibility to cleavage by either IDE or a canonical serine protease (glutamyl endopeptidase Glu-C) was similar to WT. Moreover, the analogue's pharmacodynamic profile in rats was not prolonged relative to a rapid-acting clinical analogue (insulin lispro). Although [C7UA , C7UB ] does not confer protracted action, nonetheless its comparison to internal diselenide bridges promises to provide broad biophysical insight.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mamuni Swain
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Nischay K Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Ali Mirsalehi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mark Jarosinski
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Michael A Weiss
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
10
|
Rege NK, Liu M, Dhayalan B, Chen YS, Smith NA, Rahimi L, Sun J, Guo H, Yang Y, Haataja L, Phillips NFB, Whittaker J, Smith BJ, Arvan P, Ismail-Beigi F, Weiss MA. "Register-shift" insulin analogs uncover constraints of proteotoxicity in protein evolution. J Biol Chem 2020; 295:3080-3098. [PMID: 32005662 DOI: 10.1074/jbc.ra119.011389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Globular protein sequences encode not only functional structures (the native state) but also protein foldability, i.e. a conformational search that is both efficient and robustly minimizes misfolding. Studies of mutations associated with toxic misfolding have yielded insights into molecular determinants of protein foldability. Of particular interest are residues that are conserved yet dispensable in the native state. Here, we exploited the mutant proinsulin syndrome (a major cause of permanent neonatal-onset diabetes mellitus) to investigate whether toxic misfolding poses an evolutionary constraint. Our experiments focused on an invariant aromatic motif (PheB24-PheB25-TyrB26) with complementary roles in native self-assembly and receptor binding. A novel class of mutations provided evidence that insulin can bind to the insulin receptor (IR) in two different modes, distinguished by a "register shift" in this motif, as visualized by molecular dynamics (MD) simulations. Register-shift variants are active but defective in cellular foldability and exquisitely susceptible to fibrillation in vitro Indeed, expression of the corresponding proinsulin variant induced endoplasmic reticulum stress, a general feature of the mutant proinsulin syndrome. Although not present among vertebrate insulin and insulin-like sequences, a prototypical variant ([GlyB24]insulin) was as potent as WT insulin in a rat model of diabetes. Although in MD simulations the shifted register of receptor engagement is compatible with the structure and allosteric reorganization of the IR-signaling complex, our results suggest that this binding mode is associated with toxic misfolding and so is disallowed in evolution. The implicit threat of proteotoxicity limits sequence variation among vertebrate insulins and insulin-like growth factors.
Collapse
Affiliation(s)
- Nischay K Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, Heping District, 300052 China
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Leili Rahimi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jinhong Sun
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Huan Guo
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Nelson F B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jonathan Whittaker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
11
|
Majid N, Siddiqi MK, Khan AN, Shabnam S, Malik S, Alam A, Uversky VN, Khan RH. Biophysical Elucidation of Amyloid Fibrillation Inhibition and Prevention of Secondary Nucleation by Cholic Acid: An Unexplored Function of Cholic Acid. ACS Chem Neurosci 2019; 10:4704-4715. [PMID: 31661243 DOI: 10.1021/acschemneuro.9b00482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein misfolding and its deviant self-assembly to converge into amyloid fibrils is associated with the perturbation of cellular functions and thus with debilitating neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, etc. A great deal of research has already been carried out to discover a potential amyloid inhibitor that can slow down, prevent, or remodel toxic amyloids. In the present study with the help of a combination of biophysical, imaging, and computational techniques, we investigated the mechanism of interaction of cholic acid (CA), a primary bile acid, with human insulin and Aβ-42 and found CA to be effective in inhibiting amyloid formation. From ThT data, we inferred that CA encumbers amyloid fibrillation up to 90% chiefly by targeting elongation of fibrils with an insignificant effect on lag time, while in the case of Aβ-42, CA stabilizes the peptide in its native state preventing its fibrillation. Strikingly upon adding initially at the secondary nucleation stage, CA also detained the progression/growth of insulin fibrils. CA is unable to prevent the conformational changes completely during fibrillation but tends to resist and maintain an α helical structure up to a significant extent at a primary nucleation stage while reducing the β sheet rich content at the secondary nucleation stage. Moreover, CA treated samples exhibited reduced cytotoxicity and different morphology. Furthermore, the results obtained after molecular docking indicated that CA is interacting with insulin via hydrogen bonds. For future research, this study can be considered as preliminary research for the development of CA, a metabolite of our body, as a potential therapeutic agent against Alzheimer's disease without even stimulating the immunological responses.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Shabnam Shabnam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Vladimir N. Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Moscow 142290, Russia
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
12
|
Enzyme kinetics from circular dichroism of insulin reveals mechanistic insights into the regulation of insulin-degrading enzyme. Biosci Rep 2018; 38:BSR20181416. [PMID: 30305381 PMCID: PMC6239264 DOI: 10.1042/bsr20181416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a zinc metalloprotease that selectively degrades biologically important substrates associated with type 2 diabetes and Alzheimer’s disease (AD). As such, IDE is an attractive target for therapeutic innovations. A major requirement is an understanding of how other molecules present in cells regulate the activity of the enzyme toward insulin, IDE’s most important physiologically relevant substrate. Previous kinetic studies of the IDE-dependent degradation of insulin in the presence of potential regulators have used iodinated insulin, a chemical modification that has been shown to alter the biological and biochemical properties of insulin. Here, we present a novel kinetic assay that takes advantage of the loss of helical circular dichroic signals of insulin with IDE-dependent degradation. As proof of concept, the resulting Michaelis–Menten kinetic constants accurately predict the known regulation of IDE by adenosine triphosphate (ATP). Intriguingly, we found that when Mg2+ is present with ATP, the regulation is abolished. The implication of this result for the development of preventative and therapeutic strategies for AD is discussed. We anticipate that the new assay presented here will lead to the identification of other small molecules that regulate the activity of IDE toward insulin.
Collapse
|
13
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
14
|
Rege NK, Wickramasinghe NP, Tustan AN, Phillips NFB, Yee VC, Ismail-Beigi F, Weiss MA. Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions. J Biol Chem 2018; 293:10895-10910. [PMID: 29880646 PMCID: PMC6052209 DOI: 10.1074/jbc.ra118.003650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly.
Collapse
Affiliation(s)
| | | | - Alisar N Tustan
- Medicine, Case Western Reserve University, Cleveland, Ohio 44106 and
| | | | | | | | - Michael A Weiss
- From the Departments of Biochemistry and
- the Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
15
|
Glidden MD, Yang Y, Smith NA, Phillips NB, Carr K, Wickramasinghe NP, Ismail-Beigi F, Lawrence MC, Smith BJ, Weiss MA. Solution structure of an ultra-stable single-chain insulin analog connects protein dynamics to a novel mechanism of receptor binding. J Biol Chem 2018; 293:69-88. [PMID: 29114034 PMCID: PMC5766920 DOI: 10.1074/jbc.m117.808667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Domain-minimized insulin receptors (IRs) have enabled crystallographic analysis of insulin-bound "micro-receptors." In such structures, the C-terminal segment of the insulin B chain inserts between conserved IR domains, unmasking an invariant receptor-binding surface that spans both insulin A and B chains. This "open" conformation not only rationalizes the inactivity of single-chain insulin (SCI) analogs (in which the A and B chains are directly linked), but also suggests that connecting (C) domains of sufficient length will bind the IR. Here, we report the high-resolution solution structure and dynamics of such an active SCI. The hormone's closed-to-open transition is foreshadowed by segmental flexibility in the native state as probed by heteronuclear NMR spectroscopy and multiple conformer simulations of crystallographic protomers as described in the companion article. We propose a model of the SCI's IR-bound state based on molecular-dynamics simulations of a micro-receptor complex. In this model, a loop defined by the SCI's B and C domains encircles the C-terminal segment of the IR α-subunit. This binding mode predicts a conformational transition between an ultra-stable closed state (in the free hormone) and an active open state (on receptor binding). Optimization of this switch within an ultra-stable SCI promises to circumvent insulin's complex global cold chain. The analog's biphasic activity, which serendipitously resembles current premixed formulations of soluble insulin and microcrystalline suspension, may be of particular utility in the developing world.
Collapse
Affiliation(s)
- Michael D Glidden
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kelley Carr
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
16
|
Glidden MD, Aldabbagh K, Phillips NB, Carr K, Chen YS, Whittaker J, Phillips M, Wickramasinghe NP, Rege N, Swain M, Peng Y, Yang Y, Lawrence MC, Yee VC, Ismail-Beigi F, Weiss MA. An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein. J Biol Chem 2017; 293:47-68. [PMID: 29114035 DOI: 10.1074/jbc.m117.808626] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
Thermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling in vivo, of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin. Here, we describe the structure, function, and stability of such an analog, a 57-residue single-chain insulin (SCI) with multiple acidic substitutions. Cell-based studies revealed native-like signaling properties with negligible mitogenic activity. Its crystal structure, determined as a novel zinc-free hexamer at 2.8 Å, revealed a native insulin fold with incomplete or absent electron density in the C domain; complementary NMR studies are described in the accompanying article. The stability of the analog (ΔGU 5.0(±0.1) kcal/mol at 25 °C) was greater than that of WT insulin (3.3(±0.1) kcal/mol). On gentle agitation, the SCI retained full activity for >140 days at 45 °C and >48 h at 75 °C. These findings indicate that marked resistance to thermal inactivation in vitro is compatible with native duration of activity in vivo Further, whereas WT insulin forms large and heterogeneous aggregates above the standard 0.6 mm pharmaceutical strength, perturbing the pharmacokinetic properties of concentrated formulations, dynamic light scattering, and size-exclusion chromatography revealed only limited SCI self-assembly and aggregation in the concentration range 1-7 mm Such a combination of favorable biophysical and biological properties suggests that SCIs could provide a global therapeutic platform without a cold chain.
Collapse
Affiliation(s)
- Michael D Glidden
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Khadijah Aldabbagh
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kelley Carr
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yen-Shan Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jonathan Whittaker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Manijeh Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Nischay Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Mamuni Swain
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yi Peng
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yanwu Yang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vivien C Yee
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
17
|
Lieblich SA, Fang KY, Cahn JKB, Rawson J, LeBon J, Ku HT, Tirrell DA. 4S-Hydroxylation of Insulin at ProB28 Accelerates Hexamer Dissociation and Delays Fibrillation. J Am Chem Soc 2017; 139:8384-8387. [PMID: 28598606 PMCID: PMC5812673 DOI: 10.1021/jacs.7b00794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Daily injections of insulin provide lifesaving benefits to millions of diabetics. But currently available prandial insulins are suboptimal: The onset of action is delayed by slow dissociation of the insulin hexamer in the subcutaneous space, and insulin forms amyloid fibrils upon storage in solution. Here we show, through the use of noncanonical amino acid mutagenesis, that replacement of the proline residue at position 28 of the insulin B-chain (ProB28) by (4S)-hydroxyproline (Hzp) yields an active form of insulin that dissociates more rapidly, and fibrillates more slowly, than the wild-type protein. Crystal structures of dimeric and hexameric insulin preparations suggest that a hydrogen bond between the hydroxyl group of Hzp and a backbone amide carbonyl positioned across the dimer interface may be responsible for the altered behavior. The effects of hydroxylation are stereospecific; replacement of ProB28 by (4R)-hydroxyproline (Hyp) causes little change in the rates of fibrillation and hexamer disassociation. These results demonstrate a new approach that fuses the concepts of medicinal chemistry and protein design, and paves the way to further engineering of insulin and other therapeutic proteins.
Collapse
Affiliation(s)
- Seth A. Lieblich
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katharine Y. Fang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jackson K. B. Cahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jeanne LeBon
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - H. Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
18
|
El Hage K, Pandyarajan V, Phillips NB, Smith BJ, Menting JG, Whittaker J, Lawrence MC, Meuwly M, Weiss MA. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY. J Biol Chem 2016; 291:27023-27041. [PMID: 27875310 PMCID: PMC5207135 DOI: 10.1074/jbc.m116.761015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-TyrB26]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (TyrB16, PheB24, PheB25, 3-I-TyrB26, and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-TyrB26]insulin analog (determined as an R6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins.
Collapse
Affiliation(s)
- Krystel El Hage
- From the Department of Chemistry, University of Basel, Klingelbergstrasse 80 CH-4056 Basel, Switzerland
| | | | | | - Brian J Smith
- the La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - John G Menting
- the The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
| | | | - Michael C Lawrence
- the The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
- the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Markus Meuwly
- From the Department of Chemistry, University of Basel, Klingelbergstrasse 80 CH-4056 Basel, Switzerland,
| | - Michael A Weiss
- the Departments of Biochemistry,
- Medicine, and
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
19
|
D'Addio SM, Bothe JR, Neri C, Walsh PL, Zhang J, Pierson E, Mao Y, Gindy M, Leone A, Templeton AC. New and Evolving Techniques for the Characterization of Peptide Therapeutics. J Pharm Sci 2016; 105:2989-3006. [DOI: 10.1016/j.xphs.2016.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 01/31/2023]
|
20
|
Hédin F, El Hage K, Meuwly M. A Toolkit to Fit Nonbonded Parameters from and for Condensed Phase Simulations. J Chem Inf Model 2016; 56:1479-89. [PMID: 27438992 DOI: 10.1021/acs.jcim.6b00280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quality of atomistic simulations depends decisively on the accuracy of the underlying energy function (force field). Of particular importance for condensed-phase properties are nonbonded interactions, including the electrostatic and Lennard-Jones terms. Permanent atomic multipoles (MTPs) are an extension to common point-charge (PC) representations in atomistic simulations. MTPs are commonly determined from and fitted to an ab initio Electrostatic Potential (ESP), and Lennard-Jones (LJ) parameters are obtained from comparison of experimental and computed observables using molecular dynamics (MD) simulations. For this a set of thermodynamic observables such as density, heat of vaporization, and hydration free energy is chosen, to which the parametrization is fitted. The current work introduces a comprehensive computing environment (Fitting Wizard (FW)) for optimizing nonbonded interactions for atomistic force fields of different qualities. The FW supports fitting of standard PC-based force fields and more physically motivated multipolar (MTP) force fields. A broader study including 20 molecules ranging from N-methyl-acetamide and benzene to halogenated benzenes, phenols, anilines, and pyridines yields a root mean squared deviation for hydration free energies of 0.36 kcal/mol over a range of 8 kcal/mol. It is furthermore shown that PC-based force fields are not necessarily inferior compared to MTP parametrizations depending on the molecule considered.
Collapse
Affiliation(s)
- Florent Hédin
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Krystel El Hage
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland.,Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
21
|
El Hage K, Bereau T, Jakobsen S, Meuwly M. Impact of Quadrupolar Electrostatics on Atoms Adjacent to the Sigma-Hole in Condensed-Phase Simulations. J Chem Theory Comput 2016; 12:3008-19. [PMID: 27158892 DOI: 10.1021/acs.jctc.6b00202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogenation is one of the cases for which advanced molecular simulation methods are mandatory for quantitative and predictive studies. The present work provides a systematic investigation of the importance of higher-order multipoles on specific sites of halobenzenes, other than the halogen, for static and dynamic properties in condensed-phase simulations. For that purpose, solute-solvent interactions using point charge (PC), multipole (MTP), and hybrid point charge/multipole (HYB) electrostatic models are analyzed in regions of halogen bonding and extended to regions of π orbitals of phenyl carbons. Using molecular dynamics simulations and quantum chemical methods, it is found that the sigma-hole does not only affect the halogen and the carbon bound to it but its effect extends to the carbons adjacent to the CX bond. This effect increases with the magnitude of the positive potential of the sigma-hole. With the MTP and HYB3 models, all hydration free energies of the PhX compounds are reproduced within 0.1 kcal/mol. Analysis of pair distribution functions and hydration free energies of halogenated benzenes provides a microscopic explanation why "point charge"-based representations with off-site charges fail in reproducing thermodynamic properties of the sigma-hole. Application of the hybrid models to study protein-ligand binding demonstrates both their accuracy and computational efficiency.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Tristan Bereau
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Sofie Jakobsen
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Pandyarajan V, Smith BJ, Phillips NB, Whittaker L, Cox GP, Wickramasinghe N, Menting JG, Wan ZL, Whittaker J, Ismail-Beigi F, Lawrence MC, Weiss MA. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design. J Biol Chem 2014; 289:34709-27. [PMID: 25305014 DOI: 10.1074/jbc.m114.608562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.
Collapse
Affiliation(s)
| | - Brian J Smith
- the La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | - John G Menting
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
| | | | | | | | - Michael C Lawrence
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael A Weiss
- From the Departments of Biochemistry, Medicine, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|