1
|
S K, George S, Soman A, Jo S, Beegum F, Habibullah MA. Salivary Proteinase 3 as a Biomarker for Caries Severity in Children: A Cross-sectional Study. J Contemp Dent Pract 2024; 25:236-240. [PMID: 38690696 DOI: 10.5005/jp-journals-10024-3648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
AIM This study aims to evaluate the relation between salivary proteinase 3 (PR3) concentration and caries severity in children. MATERIALS AND METHODS Six-to-eight-year age group children, from the Outpatient Department of Pediatric and Preventive dentistry at PMS Dental College were selected for the study. From these children, three groups each consisting of 28 children were selected according to the dental caries severity. Three groups were: (1) No Dental Caries group, (2) Low Dental Caries group with DMFT/DEFT score of 1-4, and (3) High Dental Caries group with DMFT/DEFT score of 5-15. Thus, a total of 84 children who satisfied the inclusion criteria were selected. The concentration of PR3 in saliva of the donors were analyzed using an ELISA kit. One way ANOVA was used for finding the relation of salivary PR3 concentration with caries severity. Pairwise comparison of PR3 concentration and caries severity were analyzed using post hoc Tukey test. RESULTS Severity of caries and concentration of salivary PR3 showed an inverse relation. As the caries severity increases there was a decrease in PR3 concentration and vice versa. CONCLUSION The children with high caries severity showed lower concentration of PR3 in their saliva compared with those with lower caries severity which indicates that PR3 can be used as a biomarker for assessing caries severity and also paves way to use PR3 as a caries vaccine in future. Nowadays, interest toward noninvasive and personalized dentistry has been increased. Molecular assays using salivary biomarkers can be an effective tool in detecting the caries in earlier stages and assessing a patient's caries risk. CLINICAL SIGNIFICANCE Salivary PR3 can be used as prognostic biomarker for assessing caries severity and after treatment the value of PR3 can be used as a assessment tool to confirm its relation with caries. How to cite this article: Karthika S, George S, Soman A, et al. Salivary Proteinase 3 as a Biomarker for Caries Severity in Children: A Cross-sectional Study. J Contemp Dent Pract 2024;25(3):236-240.
Collapse
Affiliation(s)
- Karthika S
- Department of Pediatric and Preventive Dentistry, PMS College of Dental Science & Research, Vattappara, Thiruvananthapuram, Kerala, India
| | - Sageena George
- Department of Pediatric and Preventive Dentistry, PMS College of Dental Science & Research, Vattappara, Thiruvananthapuram, Kerala, India
| | - Anandaraj Soman
- Department of Pediatric and Preventive Dentistry, PMS College of Dental Science & Research, Vattappara, Thiruvananthapuram, Kerala, India
| | - Shiana Jo
- Department of Oral Medicine and Radiology, PMS College of Dental Science & Research, Vattappara, Thiruvananthapuram, Kerala, India
| | - Fahanna Beegum
- Department of Preventive Dental Sciences, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Kingdom of Saudi Arabia, Phone: +966 552801065, e-mail:
| | - Mohammed A Habibullah
- Department of Orthodontic and Pediatric Dentistry, College of Dentistry, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Blin T, Parent C, Pichon G, Guillon A, Jouan Y, Allouchi H, Aubrey N, Boursin F, Domain R, Korkmaz B, Sécher T, Heuzé-Vourc'h N. The proteolytic airway environment associated with pneumonia acts as a barrier for treatment with anti-infective antibodies. Eur J Pharm Biopharm 2024; 195:114163. [PMID: 38086491 DOI: 10.1016/j.ejpb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/29/2024]
Abstract
Like pneumonia, coronavirus disease 2019 (COVID-19) is characterized by a massive infiltration of innate immune cells (such as polymorphonuclear leukocytes) into the airways and alveolar spaces. These cells release proteases that may degrade therapeutic antibodies and thus limit their effectiveness. Here, we investigated the in vitro and ex vivo impact on anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) IgG1s and other IgG subclasses (IgG2 and IgG4) of the neutrophil elastase, proteinase 3 and cathepsin G (the three main neutrophil serine proteases) found in endotracheal aspirates from patients with severe COVID-19. Although the IgGs were sensitive to neutrophil serine proteases, IgG2 was most resistant to proteolytic degradation. The two anti-SARS CoV2 antibodies (casirivimab and imdevimab) were sensitive to the lung's proteolytic environment, although neutrophil serine protease inhibitors only partly limited the degradation. Overall, our results show that the pneumonia-associated imbalance between proteases and their inhibitors in the airways contributes to degradation of antiviral antibodies.
Collapse
Affiliation(s)
- Timothée Blin
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Department of Pulmonary Medicine, Cystic Fibrosis Resource Center, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Gabrielle Pichon
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Antoine Guillon
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Critical Care Department, F-37032 Tours, France
| | - Youenn Jouan
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Cardiac Surgery Department, F-37032 Tours, France
| | - Hassan Allouchi
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Pharmacy Department, F-37032 Tours, France
| | - Nicolas Aubrey
- University of Tours, F-37032 Tours, France; UMR INRA ISP 1282, BioMap Team, F-37032 Tours, France
| | - Fanny Boursin
- University of Tours, F-37032 Tours, France; UMR INRA ISP 1282, BioMap Team, F-37032 Tours, France
| | - Roxane Domain
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Baris Korkmaz
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France.
| |
Collapse
|
3
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
4
|
Carla Guarino, Seren S, Lemoine R, Hummel A, Margotin JE, El-Benna J, Hoarau C, Specks U, Jenne D, Korkmaz B. Constitutive and induced forms of membrane-bound proteinase 3 interact with antineutrophil cytoplasmic antibodies and promote immune activation of neutrophils. J Biol Chem 2023; 299:103072. [PMID: 36849007 PMCID: PMC10124916 DOI: 10.1016/j.jbc.2023.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Proteinase 3 (PR3) is the main target antigen of anti-neutrophil cytoplasmic antibodies (ANCA) in PR3-ANCA-associated vasculitis. A small fraction of PR3 is constitutively exposed on the surface of quiescent blood neutrophils in a proteolytically inactive form. When activated, neutrophils expose an induced form of membrane-bound PR3 (PR3mb) on their surface as well, which is enzymatically less active than unbound PR3 in solution due to its altered conformation. In this work, our objective was to understand the respective role of constitutive and induced PR3mb in the immune activation of neutrophils triggered by murine anti-PR3 mAbs and human PR3-ANCA. We quantified immune activation of neutrophils by the measurement of the production of superoxide anions and secreted protease activity in the cell supernatant before and after treatment of the cells by alpha-1 protease inhibitor (α1PI) that clears induced PR3mb from the cell surface. Incubation of TNFα-primed neutrophils with anti-PR3 antibodies resulted in a significant increase in superoxide anion production, membrane activation marker exposition, and secreted protease activity. When primed neutrophils were first treated with α1PI, we observed a partial reduction in antibody-induced neutrophil activation, suggesting that constitutive PR3mb is sufficient to activate neutrophils. The pre-treatment of primed neutrophils with purified antigen-binding fragments used as competitor significantly reduced cell activation by whole antibodies. This led us to the conclusion that PR3mb promoted immune activation of neutrophils. We propose that blocking and/or elimination of PR3mb offers a new therapeutic strategy to attenuate neutrophil activation in patients with PR3-ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France
| | - Seda Seren
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France
| | - Roxane Lemoine
- EA4245 "Transplantation, Immunology and Inflammation", University of Tours, France and Clinical immunology and allergology Service, Tours University Hospital, F-37032, Tours, France
| | - AmberM Hummel
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Jean-Edouard Margotin
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France
| | - Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018, Paris, France
| | - Cyrille Hoarau
- EA4245 "Transplantation, Immunology and Inflammation", University of Tours, France and Clinical immunology and allergology Service, Tours University Hospital, F-37032, Tours, France
| | - Ulrich Specks
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - DieterE Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, F-37032, Tours, France.
| |
Collapse
|
5
|
von Richthofen HJ, Westerlaken GH, Gollnast D, Besteman S, Delemarre EM, Rodenburg K, Moerer P, Stapels DA, Andiappan AK, Rötzschke O, Nierkens S, Leavis HL, Bont LJ, Rooijakkers SH, Meyaard L. Soluble Signal Inhibitory Receptor on Leukocytes-1 Is Released from Activated Neutrophils by Proteinase 3 Cleavage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:389-397. [PMID: 36637221 PMCID: PMC9915861 DOI: 10.4049/jimmunol.2200169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human granulocytes and monocytes that dampens antimicrobial functions. We previously showed that sputum neutrophils from infants with severe respiratory syncytial virus (RSV) bronchiolitis have decreased SIRL-1 surface expression compared with blood neutrophils and that SIRL-1 surface expression is rapidly lost from in vitro activated neutrophils. This led us to hypothesize that activated neutrophils lose SIRL-1 by ectodomain shedding. Here, we developed an ELISA and measured the concentration of soluble SIRL-1 (sSIRL-1) in patients with RSV bronchiolitis and hospitalized patients with COVID-19, which are both characterized by neutrophilic inflammation. In line with our hypothesis, sSIRL-1 concentration was increased in sputum compared with plasma of patients with RSV bronchiolitis and in serum of hospitalized patients with COVID-19 compared with control serum. In addition, we show that in vitro activated neutrophils release sSIRL-1 by proteolytic cleavage and that this diminishes the ability to inhibit neutrophilic reactive oxygen species production via SIRL-1. Finally, we found that SIRL-1 shedding is prevented by proteinase 3 inhibition and by extracellular adherence protein from Staphylococcus aureus. Notably, we recently showed that SIRL-1 is activated by PSMα3 from S. aureus, suggesting that S. aureus may counteract SIRL-1 shedding to benefit from preserved inhibitory function of SIRL-1. In conclusion, we report that SIRL-1 is released from activated neutrophils by proteinase 3 cleavage and that endogenous sSIRL-1 protein is present in vivo.
Collapse
Affiliation(s)
- Helen J. von Richthofen
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Geertje H.A. Westerlaken
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Doron Gollnast
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Sjanna Besteman
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eveline M. Delemarre
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karlijn Rodenburg
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Petra Moerer
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daphne A.C. Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anand K. Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
| | - Stefan Nierkens
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Helen L. Leavis
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Louis J. Bont
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Linde Meyaard
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
6
|
Bourgon C, Albin AS, Ando-Grard O, Da Costa B, Domain R, Korkmaz B, Klonjkowski B, Le Poder S, Meunier N. Neutrophils play a major role in the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol Life Sci 2022; 79:616. [PMID: 36460750 PMCID: PMC9734468 DOI: 10.1007/s00018-022-04643-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
The loss of smell (anosmia) related to SARS-CoV-2 infection is one of the most common symptoms of COVID-19. Olfaction starts in the olfactory epithelium mainly composed of olfactory sensory neurons surrounded by supporting cells called sustentacular cells. It is now clear that the loss of smell is related to the massive infection by SARS-CoV-2 of the sustentacular cells in the olfactory epithelium leading to its desquamation. However, the molecular mechanism behind the destabilization of the olfactory epithelium is less clear. Using golden Syrian hamsters infected with an early circulating SARS-CoV-2 strain harboring the D614G mutation in the spike protein; we show here that rather than being related to a first wave of apoptosis as proposed in previous studies, the innate immune cells play a major role in the destruction of the olfactory epithelium. We observed that while apoptosis remains at a low level in the damaged area of the infected epithelium, the latter is invaded by Iba1+ cells, neutrophils and macrophages. By depleting the neutrophil population or blocking the activity of neutrophil elastase-like proteinases, we could reduce the damage induced by the SARS-CoV-2 infection. Surprisingly, the impairment of neutrophil activity led to a decrease in SARS-CoV-2 infection levels in the olfactory epithelium. Our results indicate a counterproductive role of neutrophils leading to the release of infected cells in the lumen of the nasal cavity and thereby enhanced spreading of the virus in the early phase of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey St Albin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ophélie Ando-Grard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Sophie Le Poder
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
7
|
Ferguson TEG, Reihill JA, Martin SL, Walker B. Novel inhibitors and activity-based probes targeting serine proteases. Front Chem 2022; 10:1006618. [PMID: 36247662 PMCID: PMC9555310 DOI: 10.3389/fchem.2022.1006618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases play varied and manifold roles in important biological, physiological, and pathological processes. These include viral, bacterial, and parasitic infection, allergic sensitization, tumor invasion, and metastasis. The use of activity-based profiling has been foundational in pinpointing the precise roles of serine proteases across this myriad of processes. A broad range of serine protease-targeted activity-based probe (ABP) chemotypes have been developed and we have recently introduced biotinylated and "clickable" peptides containing P1 N-alkyl glycine arginine N-hydroxy succinimidyl (NHS) carbamates as ABPs for detection/profiling of trypsin-like serine proteases. This present study provides synthetic details for the preparation of additional examples of this ABP chemotype, which function as potent irreversible inhibitors of their respective target serine protease. We describe their use for the activity-based profiling of a broad range of serine proteases including trypsin, the trypsin-like protease plasmin, chymotrypsin, cathepsin G, and neutrophil elastase (NE), including the profiling of the latter protease in clinical samples obtained from patients with cystic fibrosis.
Collapse
Affiliation(s)
| | | | | | - Brian Walker
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
8
|
Gruba N, Stachurski L, Lesner A. Chemical tools to monitor bladder cancer progression. Biomarkers 2022; 27:568-578. [PMID: 35532038 DOI: 10.1080/1354750x.2022.2076153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BackgroundBladder cancer (BCa) is the most common cancer of the urinary system. Due to its high incidence and recurrence, as well as limited progress in the effective treatment, BCa is a challenge for today's medicine.Materials and MethodsWe used a set of chromogenic substrates to differentiate between the stages of bladder cancer progression (G1 (n = 10), G2 (n = 10), G3 (n = 10)). The proteolytic activity in individual the urine samples was determined by absorbance measurements. Then inhibitors of particular classes of enzymes were used to determine which enzymes dominate at a given stage of the neoplastic disease.ResultsThe specific activity of enzymes in the urine of patients with confirmed bladder cancer was determined separately for three (G1, G2, G3) stages of the disease development. What is more, no activity was observed in urine of healthy people (n = 10).DiscussionResearch shows that specific enzymes are associated with the development of specific stages of cancer. We suspect that the differences in the proteolytic activity of urine samples are due to the presence of a different set of enzymes, that are directly related to the particular stage of the disease.ConclusionWe obtained three substrates for monitoring individual stages of bladder cancer development.
Collapse
Affiliation(s)
- Natalia Gruba
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| | - Lech Stachurski
- City Hospital St. Vincent de Paul, Wójta Radtkiego 1 Street, PL 81-348 Gdynia, Poland
| | - Adam Lesner
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
9
|
Korkmaz B, Lamort AS, Domain R, Beauvillain C, Gieldon A, Yildirim AÖ, Stathopoulos GT, Rhimi M, Jenne DE, Kettritz R. Cathepsin C inhibition as a potential treatment strategy in cancer. Biochem Pharmacol 2021; 194:114803. [PMID: 34678221 DOI: 10.1016/j.bcp.2021.114803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France.
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France
| | - Céline Beauvillain
- University of Angers, University of Nantes, Angers University Hospital, INSERM UMR-1232, CRCINA, Innate Immunity and Immunotherapy, SFR ICAT, 49000 Angers, France
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2); Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
10
|
Saidi A, Wartenberg M, Madinier JB, Ilango G, Seren S, Korkmaz B, Lecaille F, Aucagne V, Lalmanach G. Monitoring Human Neutrophil Activation by a Proteinase 3 Near-Infrared Fluorescence Substrate-Based Probe. Bioconjug Chem 2021; 32:1782-1790. [PMID: 34269060 DOI: 10.1021/acs.bioconjchem.1c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A near-infrared fluorescent (NIRF) substrate-based probe (SBP) was conceived to monitor secreted human proteinase 3 (hPR3) activity. This probe, called pro3-SBP, is shaped by a fused peptide hairpin loop structure, which associates a hPR3 recognition domain (Val-Ala-Asp-Nva-Ala-Asp-Tyr-Gln, where Nva is norvaline) and an electrostatic zipper (consisting of complementary polyanionic (d-Glu)5 and polycationic (d-Arg)5 sequences) in close vicinity of the N- and C-terminal FRET couple (fluorescent donor, sulfoCy5.5; dark quencher, QSY21). Besides its subsequent stability, no intermolecular fluorescence quenching was detected following its complete hydrolysis by hPR3, advocating that pro3-SBP could further afford unbiased imaging. Pro3-SBP was specifically hydrolyzed by hPR3 (kcat/Km= 440 000 ± 5500 M-1·s-1) and displayed a sensitive detection threshold for hPR3 (subnanomolar concentration range), while neutrophil elastase showed a weaker potency. Conversely, pro3-SBP was not cleaved by cathepsin G. Pro3-SBP was successfully hydrolyzed by conditioned media of activated human neutrophils but not by quiescent neutrophils. Moreover, unlike unstimulated neutrophils, a strong NIRF signal was specifically detected by confocal microscopy following neutrophil ionomycin-induced degranulation. Fluorescence release was abolished in the presence of a selective hPR3 inhibitor, indicating that pro3-SBP is selectively cleaved by extracellular hPR3. Taken together, the present data support that pro3-SBP could be a convenient tool, allowing straightforward monitoring of human neutrophil activation.
Collapse
Affiliation(s)
- Ahlame Saidi
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Mylène Wartenberg
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Guy Ilango
- IBiSA Electron Microscopy Platform, Université de Tours, Tours 37032, France
| | - Seda Seren
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Brice Korkmaz
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Fabien Lecaille
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Vincent Aucagne
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Gilles Lalmanach
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| |
Collapse
|
11
|
Gruba N, Stachurski L, Lesner A. Elastolytic activity is associated with inflammation in bladder cancer. J Biochem 2021; 170:547-558. [PMID: 34165535 DOI: 10.1093/jb/mvab075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023] Open
Abstract
Cancer development and progression is often associated with inflammation. Late diagnosis of inflammation that directly leads to the development of neoplasm - cancer is associated with a reduction in the chance of successful treatment or is associated with therapeutic difficulties. A panel of chromogenic substrates was used for the qualitative determination of specific activity of enzymes in urine of patients with confirmed inflammatory reaction and/or epithelial neoplasms in particular tumors at various stages of development. Urine of people with excluded inflammation was used as a control group. Proteolytic activity was determined in urine samples collected from patients with epithelial neoplasms and/or inflammation. What is more, we determine human neutrophil elastase (HNE) activity related inflammation based on the examination of urine samples. We suspect that the proteolytical activity of urine samples is due to neutrophil response to inflammation, which is directly related to cancer. This is the first study to determine elastolytic activity in bladder cancer urine samples. It supports wider use of urine for inflammation screening.
Collapse
Affiliation(s)
- Natalia Gruba
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| | - Lech Stachurski
- City Hospital St. Vincent de Paul, Wójta Radtkiego 1 Street, PL 81-348 Gdynia, Poland
| | - Adam Lesner
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308 Gdańsk, Poland
| |
Collapse
|
12
|
Walczak M, Chryplewicz A, Olewińska S, Psurski M, Winiarski Ł, Torzyk K, Oleksyszyn J, Sieńczyk M. Phosphonic Analogs of Alanine as Acylpeptide Hydrolase Inhibitors. Chem Biodivers 2021; 18:e2001004. [PMID: 33427376 DOI: 10.1002/cbdv.202001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022]
Abstract
Acylpeptide hydrolase is a serine protease, which, together with prolyl oligopeptidase, dipeptidyl peptidase IV and oligopeptidase B, belongs to the prolyl oligopeptidase family. Its primary function is associated with the removal of N-acetylated amino acid residues from proteins and peptides. Although the N-acylation occurs in 50-90 % of eukaryotic proteins, the precise functions of this modification remains unclear. Recent findings have indicated that acylpeptide hydrolase participates in various events including oxidized proteins degradation, amyloid β-peptide cleavage, and response to DNA damage. Considering the protein degradation cycle cross-talk between acylpeptide hydrolase and proteasome, inhibition of the first enzyme resulted in down-regulation of the ubiquitin-proteasome system and induction of cancer cell apoptosis. Acylpeptide hydrolase has been proposed as an interesting target for the development of new potential anticancer agents. Here, we present the synthesis of simple derivatives of (1-aminoethyl)phosphonic acid diaryl esters, phosphonic analogs of alanine diversified at the N-terminus and ester rings, as inhibitors of acylpeptide hydrolase and discuss the ability of the title compounds to induce apoptosis of U937 and MV-4-11 tumor cell lines.
Collapse
Affiliation(s)
- Maciej Walczak
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Agnieszka Chryplewicz
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Sandra Olewińska
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Łukasz Winiarski
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Karolina Torzyk
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Józef Oleksyszyn
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Sieńczyk
- Wroclaw University of Science and Technology, Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
13
|
N'Guessan K, Grzywa R, Seren S, Gabant G, Juliano MA, Moniatte M, van Dorsselaer A, Bieth JG, Kellenberger C, Gauthier F, Wysocka M, Lesner A, Sienczyk M, Cadene M, Korkmaz B. Human proteinase 3 resistance to inhibition extends to alpha-2 macroglobulin. FEBS J 2020; 287:4068-4081. [PMID: 31995266 DOI: 10.1111/febs.15229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/12/2019] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
Polymorphonuclear neutrophils contain at least four serine endopeptidases, namely neutrophil elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and NSP4, which contribute to the regulation of infection and of inflammatory processes. In physiological conditions, endogenous inhibitors including α2-macroglobulin (α2-M), serpins [α1-proteinase inhibitor (α1-PI)], monocyte neutrophil elastase inhibitor (MNEI), α1-antichymotrypsin, and locally produced chelonianins (elafin, SLPI) control excessive proteolytic activity of neutrophilic serine proteinases. In contrast to human NE (hNE), hPR3 is weakly inhibited by α1-PI and MNEI but not by SLPI. α2-M is a large spectrum inhibitor that traps a variety of proteinases in response to cleavage(s) in its bait region. We report here that α2-M was more rapidly processed by hNE than hPR3 or hCatG. This was confirmed by the observation that the association between α2-M and hPR3 is governed by a kass in the ≤ 105 m-1 ·s-1 range. Since α2-M-trapped proteinases retain peptidase activity, we first predicted the putative cleavage sites within the α2-M bait region (residues 690-728) using kinetic and molecular modeling approaches. We then identified by mass spectrum analysis the cleavage sites of hPR3 in a synthetic peptide spanning the 39-residue bait region of α2-M (39pep-α2-M). Since the 39pep-α2-M peptide and the corresponding bait area in the whole protein do not contain sequences with a high probability of specific cleavage by hPR3 and were indeed only slowly cleaved by hPR3, it can be concluded that α2-M is a poor inhibitor of hPR3. The resistance of hPR3 to inhibition by endogenous inhibitors explains at least in part its role in tissue injury during chronic inflammatory diseases and its well-recognized function of major target autoantigen in granulomatosis with polyangiitis.
Collapse
Affiliation(s)
- Koffi N'Guessan
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | - Renata Grzywa
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wroclaw University of Science and Technology, Poland
| | - Seda Seren
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire, UPR4301, CNRS, Affiliated with Université d'Orléans, Orléans, France
| | - Maria A Juliano
- Departamento de Biofísica, Escola Paulista Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marc Moniatte
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alain van Dorsselaer
- LSMBO, CNRS UMR-7178 (CNRS-UdS), ECPM, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Joseph G Bieth
- Laboratoire d'Enzymologie, INSERM U392, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | - Francis Gauthier
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | | | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Marcin Sienczyk
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wroclaw University of Science and Technology, Poland
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301, CNRS, Affiliated with Université d'Orléans, Orléans, France
| | - Brice Korkmaz
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| |
Collapse
|
14
|
|
15
|
Tian S, Swedberg JE, Li CY, Craik DJ, de Veer SJ. Iterative Optimization of the Cyclic Peptide SFTI-1 Yields Potent Inhibitors of Neutrophil Proteinase 3. ACS Med Chem Lett 2019; 10:1234-1239. [PMID: 31413811 DOI: 10.1021/acsmedchemlett.9b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Neutrophils produce at least four serine proteases that are packaged within azurophilic granules. These enzymes contribute to antimicrobial defense and inflammation but can be destructive if their activities are not properly regulated. Accordingly, they represent therapeutic targets for several diseases, including chronic obstructive pulmonary disease, cystic fibrosis, and rheumatoid arthritis. In this study, we focused on proteinase 3 (PR3), a neutrophil protease with elastase-like specificity, and engineered potent PR3 inhibitors based on the cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1). We used an iterative optimization approach to screen targeted substitutions at the P1, P2, P2', and P4 positions of SFTI-1, and generated several new inhibitors with K i values in the low nanomolar range. These SFTI-variants show high stability in human serum and are attractive leads for further optimization.
Collapse
Affiliation(s)
- Sixin Tian
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J. de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals (Basel) 2019; 12:ph12020086. [PMID: 31185654 PMCID: PMC6631691 DOI: 10.3390/ph12020086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022] Open
Abstract
This review presents current achievements in peptidyl diaryl phosphonates as covalent, specific mechanism-based inhibitors of serine proteases. Along three decades diaryl phosphonates have emerged as invaluable tools in fundamental and applicative studies involving these hydrolases. Such an impact has been promoted by advantageous features that characterize the phosphonate compounds and their use. First, the synthesis is versatile and allows comprehensive structural modification and diversification. Accordingly, reactivity and specificity of these bioactive molecules can be easily controlled by appropriate adjustments of the side chains and the leaving groups. Secondly, the phosphonates target exclusively serine proteases and leave other oxygen and sulfur nucleophiles intact. Synthetic accessibility, lack of toxicity, and promising pharmacokinetic properties make them good drug candidates. In consequence, the utility of peptidyl diaryl phosphonates continuously increases and involves novel enzymatic targets and innovative aspects of application. For example, conjugation of the structures of specific inhibitors with reporter groups has become a convenient approach to construct activity-based molecular probes capable of monitoring location and distribution of serine proteases.
Collapse
|
17
|
Late-Stage Conversion of Diphenylphosphonate to Fluorophosphonate Probes for the Investigation of Serine Hydrolases. Cell Chem Biol 2019; 26:878-884.e8. [PMID: 30982751 DOI: 10.1016/j.chembiol.2019.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/04/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
Abstract
Diphenylphosphonates (DPPs) have been used for 50 years to inactivate serine hydrolases, creating adducts representative of tetrahedral intermediates of this important class of enzymes. Failure to react at active site serine residues, however, can thwart their usefulness. Here, we describe a facile route and allied mechanistic studies to highly reactive, structurally complex organofluorophosphonates (FPs) by direct fluorinative hydrolysis of DPPs. Advantages over current preparations of FPs are exemplified by the synthesis of a β-lactam-containing peptide substrate analog capable of modifying the C-terminal, dual-function thioesterase involved in nocardicin A biosynthesis. Although this serine hydrolase was found to resist modification by classic DPP inhibitors, active site selective phosphonylation by the corresponding FP occurs rapidly to form a stable adduct. This simple, late-stage method enables the ready preparation of FP probes that retain important structural motifs of native substrates, thus promoting efforts in mechanistic enzymology by accessing biologically relevant enzyme-inhibitor co-structures.
Collapse
|
18
|
Guillon A, Brea D, Luczka E, Hervé V, Hasanat S, Thorey C, Pérez-Cruz M, Hordeaux J, Mankikian J, Gosset P, Coraux C, Si-Tahar M. Inactivation of the interleukin-22 pathway in the airways of cystic fibrosis patients. Cytokine 2019; 113:470-474. [PMID: 30377053 DOI: 10.1016/j.cyto.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022]
Abstract
Interleukin (IL)-22 plays a critical role in regulating the maintenance of the mucosal barrier. As airway epithelial regeneration is abnormal in cystic fibrosis (CF), we investigated IL-22 integrity in CF. We first demonstrated, using Il-22-/- mice, that IL-22 is important to prevent lung damage induced by the CF pathogen Pseudomonas aeruginosa. Next, IL-22 receptor was found normally expressed at the airway epithelial surfaces of CF patients. In wound-healing assays, IL-22-treated CF cultures had higher wound-closure rate than controls, suggesting that IL-22 signaling per se could be functional in a CF context. However, persistence of neutrophil-derived serine-proteases is a major feature of CF airways. Remarkably, IL-22 was found altered in this protease-rich inflammatory microenvironment; the serine protease-3 being the most prone to fully degrade IL-22. Consequently, we suspect an acquired deficiency of the IL-22 pathway in the lungs of CF patients due to IL-22 cleavage by the surrounding neutrophil serine-proteases.
Collapse
Affiliation(s)
- Antoine Guillon
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France; CHRU de Tours, Service de Médecine Intensive Réanimation, 37000 Tours, France
| | - Deborah Brea
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Emilie Luczka
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 1250, 51100 Reims, France; Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Virginie Hervé
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Soujoud Hasanat
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Camille Thorey
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Magdiel Pérez-Cruz
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, LI3, Team 12, 59019 Lille, France; Université Lille Nord de France, 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, 59021 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59019 Lille, France
| | | | | | - Philippe Gosset
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, LI3, Team 12, 59019 Lille, France; Université Lille Nord de France, 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, 59021 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59019 Lille, France
| | - Christelle Coraux
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 1250, 51100 Reims, France; Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France.
| |
Collapse
|
19
|
Thorlacius-Ussing J, Kehlet SN, Rønnow SR, Karsdal MA, Willumsen N. Non-invasive profiling of protease-specific elastin turnover in lung cancer: biomarker potential. J Cancer Res Clin Oncol 2018; 145:383-392. [PMID: 30467633 DOI: 10.1007/s00432-018-2799-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Elastin is a signature protein of lungs. Increased elastin turnover driven by altered proteolytic activity is an important part of lung tumorigenesis. Elastin-derived fragments have been shown to be pro-tumorigenic, however, little is known regarding the biomarker potential of such elastin fragments. Here, we present an elastin turnover profile by non-invasively quantifying five specific elastin degradation fragments generated by different proteases. METHODS Elastin fragments were assessed in serum from patients with stage I-IV non-small cell lung cancer (NSCLC) (n = 40) and healthy controls (n = 30) using competitive ELISAs targeting different protease-generated fragments of elastin: ELM12 (generated by matrix metalloproteinase MMP-9 and -12), ELM7 (MMP-7), EL-NE (neutrophil elastase), EL-CG (cathepsin G) and ELP-3 (proteinase 3). RESULTS ELM12, ELM7, EL-NE and EL-CG were all significantly elevated in NSCLC patients (n = 40) when compared to healthy controls (n = 30) (ELM12, p = 0.0191; ELM7, p < 0.0001; EL-NE, p < 0.0001; EL-CG, p < 0.0001). ELP-3 showed no significant difference between patients and controls (p = 0.8735). All fragments correlated positively (Spearman, r: 0.69-0.81) when compared pairwise, except ELM12 (Spearman, r: 0.042-0.097). In general, all fragments were detectable across all stages of the disease. CONCLUSIONS Elastin fragments generated by different proteases are elevated in lung cancer patients compared to healthy controls but differ in their presence. This demonstrates non-invasive biomarker potential of elastin fragments in serum from lung cancer patients and suggests that different pathological mechanisms may be responsible for the elastin turnover, warranting further validation in clinical trials.
Collapse
Affiliation(s)
- Jeppe Thorlacius-Ussing
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Stephanie Nina Kehlet
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Sarah Rank Rønnow
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten Asser Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
20
|
Seren S, Rashed Abouzaid M, Eulenberg-Gustavus C, Hirschfeld J, Nasr Soliman H, Jerke U, N'Guessan K, Dallet-Choisy S, Lesner A, Lauritzen C, Schacher B, Eickholz P, Nagy N, Szell M, Croix C, Viaud-Massuard MC, Al Farraj Aldosari A, Ragunatha S, Ibrahim Mostafa M, Giampieri F, Battino M, Cornillier H, Lorette G, Stephan JL, Goizet C, Pedersen J, Gauthier F, Jenne DE, Marchand-Adam S, Chapple IL, Kettritz R, Korkmaz B. Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis. J Biol Chem 2018; 293:12415-12428. [PMID: 29925593 DOI: 10.1074/jbc.ra118.001922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Membrane-bound proteinase 3 (PR3m) is the main target antigen of anti-neutrophil cytoplasmic autoantibodies (ANCA) in granulomatosis with polyangiitis, a systemic small-vessel vasculitis. Binding of ANCA to PR3m triggers neutrophil activation with the secretion of enzymatically active PR3 and related neutrophil serine proteases, thereby contributing to vascular damage. PR3 and related proteases are activated from pro-forms by the lysosomal cysteine protease cathepsin C (CatC) during neutrophil maturation. We hypothesized that pharmacological inhibition of CatC provides an effective measure to reduce PR3m and therefore has implications as a novel therapeutic approach in granulomatosis with polyangiitis. We first studied neutrophilic PR3 from 24 patients with Papillon-Lefèvre syndrome (PLS), a genetic form of CatC deficiency. PLS neutrophil lysates showed a largely reduced but still detectable (0.5-4%) PR3 activity when compared with healthy control cells. Despite extremely low levels of cellular PR3, the amount of constitutive PR3m expressed on the surface of quiescent neutrophils and the typical bimodal membrane distribution pattern were similar to what was observed in healthy neutrophils. However, following cell activation, there was no significant increase in the total amount of PR3m on PLS neutrophils, whereas the total amount of PR3m on healthy neutrophils was significantly increased. We then explored the effect of pharmacological CatC inhibition on PR3 stability in normal neutrophils using a potent cell-permeable CatC inhibitor and a CD34+ hematopoietic stem cell model. Human CD34+ hematopoietic stem cells were treated with the inhibitor during neutrophil differentiation over 10 days. We observed strong reductions in PR3m, cellular PR3 protein, and proteolytic PR3 activity, whereas neutrophil differentiation was not compromised.
Collapse
Affiliation(s)
- Seda Seren
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | | | - Claudia Eulenberg-Gustavus
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany
| | - Josefine Hirschfeld
- the Institute of Clinical Sciences, College of Medical and Dental Sciences, Periodontal Research Group, University of Birmingham and Birmingham Community Health Trust, Edgbaston, Birmingham B5 7EG, United Kingdom
| | - Hala Nasr Soliman
- Medical Molecular Genetics, National Research Centre, Cairo 12622, Egypt
| | - Uwe Jerke
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany
| | - Koffi N'Guessan
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Sandrine Dallet-Choisy
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Adam Lesner
- the Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Beate Schacher
- the Department of Periodontology, Johann Wolfgang Goethe-University Frankfurt, 60323 Frankfurt, Germany
| | - Peter Eickholz
- the Department of Periodontology, Johann Wolfgang Goethe-University Frankfurt, 60323 Frankfurt, Germany
| | - Nikoletta Nagy
- the Department of Medical Genetics, University of Szeged, Szeged 6720, Hungary
| | - Marta Szell
- the Department of Medical Genetics, University of Szeged, Szeged 6720, Hungary
| | - Cécile Croix
- UMR-CNRS 7292 "Génétique, Immunothérapie, Chimie et Cancer" and Université François Rabelais, 37000 Tours, France
| | - Marie-Claude Viaud-Massuard
- UMR-CNRS 7292 "Génétique, Immunothérapie, Chimie et Cancer" and Université François Rabelais, 37000 Tours, France
| | - Abdullah Al Farraj Aldosari
- the Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 12372, Kingdom of Saudi Arabia
| | - Shivanna Ragunatha
- the Department of Dermatology, Venereology, and Leprosy, ESIC Medical College and PGIMSR Rajajinagar, Bengaluru, Karnataka 560010, India
| | | | - Francesca Giampieri
- the Department of Clinical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Maurizio Battino
- the Department of Clinical Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Hélène Cornillier
- Service de Dermatologie, Centre Hospitalier Universitaire de Tours, Université de Tours, 37000 Tours, France
| | - Gérard Lorette
- UMR-INRA1282 "Laboratoire de Virologie et Immunologie Moléculaires," Université de Tours, 37000 Tours, France
| | - Jean-Louis Stephan
- the Service d'Hématologie Immunologie et Rhumatologie Pédiatrique, Centre Hospitalier Universitaire de Saint-Etienne, 42270 Saint-Priest-en-Jarez, France
| | - Cyril Goizet
- INSERM U-1211, Rare Diseases, Genetic and Metabolism, MRGM Laboratory, Pellegrin Hospital and University, 33000 Bordeaux, France
| | | | - Francis Gauthier
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Dieter E Jenne
- the Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich, Germany.,the Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany, and
| | - Sylvain Marchand-Adam
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France
| | - Iain L Chapple
- the Institute of Clinical Sciences, College of Medical and Dental Sciences, Periodontal Research Group, University of Birmingham and Birmingham Community Health Trust, Edgbaston, Birmingham B5 7EG, United Kingdom
| | - Ralph Kettritz
- the Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), 13125 Berlin, Germany.,the Division of Nephrology and Intensive Care Medicine, Medical Department, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Brice Korkmaz
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université de Tours, 37000 Tours, France,
| |
Collapse
|
21
|
Schulz-Fincke AC, Blaut M, Braune A, Gütschow M. A BODIPY-Tagged Phosphono Peptide as Activity-Based Probe for Human Leukocyte Elastase. ACS Med Chem Lett 2018; 9:345-350. [PMID: 29670698 DOI: 10.1021/acsmedchemlett.7b00533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/04/2018] [Indexed: 02/08/2023] Open
Abstract
Human leukocyte elastase plays a crucial role in a variety of inflammatory disorders and represents an important subject of biomedical studies. The chemotype of peptidic phosphonates was employed for the design of a new activity-based probe for human leukocyte elastase. Its structure combines the phosphonate warhead with an adequate peptide portion and a BODIPY fluorophore with a clickable ethinylphenyl moiety at meso position. The probe 6 was assembled by copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition. It was characterized as an active site-directed elastase inhibitor exhibiting a second-order rate constant of inactivation of 88400 M-1s-1. The suitability of 6 as a fluorescent probe for human leukocyte elastase was demonstrated by in-gel fluorescence analysis. Labeling experiments and inhibition data toward a panel of related proteases underlined the selectivity of the probe for the targeted leukocyte elastase.
Collapse
Affiliation(s)
- Anna-Christina Schulz-Fincke
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
22
|
Popow-Stellmaszyk J, Bajorowicz B, Malankowska A, Wysocka M, Klimczuk T, Zaleska-Medynska A, Lesner A. Design, Synthesis, and Enzymatic Evaluation of Novel ZnO Quantum Dot-Based Assay for Detection of Proteinase 3 Activity. Bioconjug Chem 2018; 29:1576-1583. [DOI: 10.1021/acs.bioconjchem.8b00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | - Tomasz Klimczuk
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk 80-233, Poland
| | | | | |
Collapse
|
23
|
Guarino C, Gruba N, Grzywa R, Dyguda-Kazimierowicz E, Hamon Y, Łȩgowska M, Skoreński M, Dallet-Choisy S, Marchand-Adam S, Kellenberger C, Jenne DE, Sieńczyk M, Lesner A, Gauthier F, Korkmaz B. Exploiting the S4-S5 Specificity of Human Neutrophil Proteinase 3 to Improve the Potency of Peptidyl Di(chlorophenyl)-phosphonate Ester Inhibitors: A Kinetic and Molecular Modeling Analysis. J Med Chem 2018; 61:1858-1870. [PMID: 29442501 DOI: 10.1021/acs.jmedchem.7b01416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neutrophilic serine protease proteinase 3 (PR3) is involved in inflammation and immune response and thus appears as a therapeutic target for a variety of infectious and inflammatory diseases. Here we combined kinetic and molecular docking studies to increase the potency of peptidyl-diphenyl phosphonate PR3 inhibitors. Occupancy of the S1 subsite of PR3 by a nVal residue and of the S4-S5 subsites by a biotinylated Val residue as obtained in biotin-VYDnVP(O-C6H4-4-Cl)2 enhanced the second-order inhibition constant kobs/[I] toward PR3 by more than 10 times ( kobs/[I] = 73000 ± 5000 M-1 s-1) as compared to the best phosphonate PR3 inhibitor previously reported. This inhibitor shows no significant inhibitory activity toward human neutrophil elastase and resists proteolytic degradation in sputa from cystic fibrosis patients. It also inhibits macaque PR3 but not the PR3 from rodents and can thus be used for in vivo assays in a primate model of inflammation.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Natalia Gruba
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Renata Grzywa
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Edyta Dyguda-Kazimierowicz
- Faculty of Chemistry, Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Yveline Hamon
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Monika Łȩgowska
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Marcin Skoreński
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Sandrine Dallet-Choisy
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Sylvain Marchand-Adam
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques , CNRS-Unité Mixte de Recherche (UMR) , 13288 Marseille , France
| | - Dieter E Jenne
- Institute of Lung Biology and Disease, German Center for Lung Research (DZL) , Comprehensive Pneumology Center Munich and Max Planck Institute of Neurobiology , 82152 Planegg-Martinsried , Germany
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Adam Lesner
- Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Francis Gauthier
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| | - Brice Korkmaz
- INSERM UMR1100, "Centre d'Etude des Pathologies Respiratoires" , Université de Tours , 37032 Tours , France
| |
Collapse
|
24
|
Guillon A, Brea D, Morello E, Tang A, Jouan Y, Ramphal R, Korkmaz B, Perez-Cruz M, Trottein F, O'Callaghan RJ, Gosset P, Si-Tahar M. Pseudomonas aeruginosa proteolytically alters the interleukin 22-dependent lung mucosal defense. Virulence 2017; 8:810-820. [PMID: 27792459 PMCID: PMC5626239 DOI: 10.1080/21505594.2016.1253658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022] Open
Abstract
The IL-22 signaling pathway is critical for regulating mucosal defense and limiting bacterial dissemination. IL-22 is unusual among interleukins because it does not directly regulate the function of conventional immune cells, but instead targets cells at outer body barriers, such as respiratory epithelial cells. Consequently, IL-22 signaling participates in the maintenance of the lung mucosal barrier by controlling cell proliferation and tissue repair, and enhancing the production of specific chemokines and anti-microbial peptides. Pseudomonas aeruginosa is a major pathogen of ventilator-associated pneumonia and causes considerable lung tissue damage. A feature underlying the pathogenicity of this bacterium is its capacity to persist and develop in the host, particularly in the clinical context of nosocomial lung infections. We aimed to investigate the ability of P. auruginosa to disrupt immune-epithelial cells cross-talk. We found that P. aeruginosa escapes the host mucosal defenses by degrading IL-22, leading to severe inhibition of IL-22-mediated immune responses. We demonstrated in vitro that, protease IV, a type 2 secretion system-dependent serine protease, is responsible for the degradation of IL-22 by P. aeruginosa. Moreover, the major anti-proteases molecules present in the lungs were unable to inhibit protease IV enzymatic activity. In addition, tracheal aspirates of patients infected by P. aeruginosa contain protease IV activity which further results in IL-22 degradation. This so far undescribed cleavage of IL-22 by a bacterial protease is likely to be an immune-evasion strategy that contributes to P. aeruginosa-triggered respiratory infections.
Collapse
Affiliation(s)
- Antoine Guillon
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Deborah Brea
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Eric Morello
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Aihua Tang
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Youenn Jouan
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Reuben Ramphal
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| | - Brice Korkmaz
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
| | - Magdiel Perez-Cruz
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Francois Trottein
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Richard J. O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Philippe Gosset
- Institut Pasteur de Lille, Center d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Center d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, Tours, France
- Université François Rabelais de Tours, Tours, France
| |
Collapse
|
25
|
Kasperkiewicz P, Altman Y, D'Angelo M, Salvesen GS, Drag M. Toolbox of Fluorescent Probes for Parallel Imaging Reveals Uneven Location of Serine Proteases in Neutrophils. J Am Chem Soc 2017; 139:10115-10125. [PMID: 28672107 DOI: 10.1021/jacs.7b04394] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils, the front line defenders against infection, express four serine proteases (NSPs) that play roles in the control of cell-signaling pathways and defense against pathogens and whose imbalance leads to pathological conditions. Dissecting the roles of individual NSPs in humans is problematic because neutrophils are end-stage cells with a short half-life and minimal ongoing protein synthesis. To gain insight into the regulation of NSP activity we have generated a small-molecule chemical toolbox consisting of activity-based probes with different fluorophore-detecting groups with minimal wavelength overlap and highly selective natural and unnatural amino acid recognition sequences. The key feature of these activity-based probes is the ability to use them for simultaneous observation and detection of all four individual NSPs by fluorescence microscopy, a feature never achieved in previous studies. Using these probes we demonstrate uneven distribution of NSPs in neutrophil azurophil granules, such that they seem to be mutually excluded from each other, suggesting the existence of unknown granule-targeting mechanisms.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.,NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Yoav Altman
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Maximiliano D'Angelo
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Guy S Salvesen
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
26
|
Kuśnierz A, Chmielewska E. Synthesis of fluorescent aminophosphonates by green chemistry procedures. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1308934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Anna Kuśnierz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ewa Chmielewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
27
|
Korkmaz B, Lesner A, Guarino C, Wysocka M, Kellenberger C, Watier H, Specks U, Gauthier F, Jenne DE. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Pharmacol Rev 2017; 68:603-30. [PMID: 27329045 DOI: 10.1124/pr.115.012104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Adam Lesner
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Carla Guarino
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Magdalena Wysocka
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Christine Kellenberger
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Hervé Watier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Ulrich Specks
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Francis Gauthier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Dieter E Jenne
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| |
Collapse
|
28
|
Guarino C, Hamon Y, Croix C, Lamort AS, Dallet-Choisy S, Marchand-Adam S, Lesner A, Baranek T, Viaud-Massuard MC, Lauritzen C, Pedersen J, Heuzé-Vourc'h N, Si-Tahar M, Fıratlı E, Jenne DE, Gauthier F, Horwitz MS, Borregaard N, Korkmaz B. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases. Biochem Pharmacol 2017; 131:52-67. [PMID: 28193451 DOI: 10.1016/j.bcp.2017.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 11/28/2022]
Abstract
Cathepsin C (CatC) is a tetrameric cysteine dipeptidyl aminopeptidase that plays a key role in activation of pro-inflammatory serine protease zymogens by removal of a N-terminal pro-dipeptide sequence. Loss of function mutations in the CatC gene is associated with lack of immune cell serine protease activities and cause Papillon-Lefèvre syndrome (PLS). Also, only very low levels of elastase-like protease zymogens are detected by proteome analysis of neutrophils from PLS patients. Thus, CatC inhibitors represent new alternatives for the treatment of neutrophil protease-driven inflammatory or autoimmune diseases. We aimed to experimentally inactivate and lower neutrophil elastase-like proteases by pharmacological blocking of CatC-dependent maturation in cell-based assays and in vivo. Isolated, immature bone marrow cells from healthy donors pulse-chased in the presence of a new cell permeable cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites. These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases, which opens new perspectives for therapeutic applications in humans.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Yveline Hamon
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), Munich, and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Cécile Croix
- CNRS UMR-7292, "GICC, Innovation Moléculaire et Thérapeutique", Université de Tours, 31 Avenue Monge, Tours, France
| | - Anne-Sophie Lamort
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), Munich, and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Sandrine Dallet-Choisy
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Sylvain Marchand-Adam
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Thomas Baranek
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Marie-Claude Viaud-Massuard
- CNRS UMR-7292, "GICC, Innovation Moléculaire et Thérapeutique", Université de Tours, 31 Avenue Monge, Tours, France
| | | | | | - Nathalie Heuzé-Vourc'h
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | - Erhan Fıratlı
- Department of Periodontology, Faculty of Dentistry, University of Istanbul, Istanbul, Turkey
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), Munich, and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Francis Gauthier
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France
| | | | - Niels Borregaard
- The Granulocyte Research Laboratory, National University Hospital, Rigshospitalet, University of Copenhagen, Denmark
| | - Brice Korkmaz
- INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, Tours, France; Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Qian L, Xuedong Z, Yaping F, Tengyu Y, Songtao W, Yu Y, Jiao C, Ping Z, Yun F. [Analysis of salivary protease spectrum in chronic periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:37-42. [PMID: 28326725 PMCID: PMC7030205 DOI: 10.7518/hxkq.2017.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/10/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This study aimed to investigate the difference in salivary protease expression in patients with chronic periodontitis and normal individuals. METHODS The stimulating saliva in patients with chronic periodontitis and normal individuals were collected. Protein chip technology was adapted to analyze salivary protease spectrum. RESULTS Among the 34 proteases in the chip, disintegrin and metalloproteinase (ADAM)8, matrix metalloproteinase (MMP)-8, MMP-12, neprilysin/CD10, and uridylyl phosphate adenosine/urokinase showed a significantly increased concentration in the saliva of chronic periodontitis patients compared with those in the saliva of normal individuals (P<0.01). By contrast, the concentrations of ADAM9, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)1, ADAMTS13, cathepsin B, E, L, V, X/Z/P, kallikrein 6, 7, 11, 13, MMP-9, proteinase 3, presenilin-1, and proprotein convertase 9 sharply decreased (P<0.05). CONCLUSIONS The results demonstrated that protease spectrum in the saliva of chronic periodontitis patients and normal individuals significantly differed. Analysis of salivary protease spectrum is a potential clinical method to examine, diagnose, and monitor chronic periodontitis.
Collapse
Affiliation(s)
- Li Qian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhou Xuedong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fan Yaping
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Tengyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wu Songtao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Jiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhang Ping
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Yun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
31
|
Affiliation(s)
- Ralph Kettritz
- Experimental and Clinical Research Center; A joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC) and Department of Nephrology and Intensive Care Medicine; Charité University Health Services; Berlin Germany
| |
Collapse
|
32
|
Hamon Y, Legowska M, Hervé V, Dallet-Choisy S, Marchand-Adam S, Vanderlynden L, Demonte M, Williams R, Scott CJ, Si-Tahar M, Heuzé-Vourc'h N, Lalmanach G, Jenne DE, Lesner A, Gauthier F, Korkmaz B. Neutrophilic Cathepsin C Is Maturated by a Multistep Proteolytic Process and Secreted by Activated Cells during Inflammatory Lung Diseases. J Biol Chem 2016; 291:8486-99. [PMID: 26884336 DOI: 10.1074/jbc.m115.707109] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases.
Collapse
Affiliation(s)
- Yveline Hamon
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France, Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Monika Legowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Virginie Hervé
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Sandrine Dallet-Choisy
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Sylvain Marchand-Adam
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Lise Vanderlynden
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Michèle Demonte
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Rich Williams
- Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, United Kingdom, and
| | - Christopher J Scott
- Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, United Kingdom, and
| | - Mustapha Si-Tahar
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Nathalie Heuzé-Vourc'h
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Gilles Lalmanach
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Francis Gauthier
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Brice Korkmaz
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France,
| |
Collapse
|
33
|
Yang TY, Zhou WJ, Du Y, Wu ST, Yuan WW, Yu Y, Su L, Luo Y, Zhang JH, Lu WL, Wang XQ, Chen J, Feng Y, Zhou XD, Zhang P. Role of saliva proteinase 3 in dental caries. Int J Oral Sci 2016; 7:174-8. [PMID: 26756046 PMCID: PMC4582561 DOI: 10.1038/ijos.2015.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Salivary analysis can be used to assess the severity of caries. Of the known salivary proteins, a paucity of information exists concerning the role of proteinase 3 (PR3), a serine protease of the chymotrypsin family, in dental caries. Whole, unstimulated saliva was collected from children with varying degrees of active caries and tested using a Human Protease Array Kit and an enzyme-linked immunosorbent assay. A significantly decreased concentration of salivary PR3 was noted with increasing severity of dental caries (P<0.01); a positive correlation (r=0.87; P<0.01; Pearson's correlation analysis) was also observed between salivary pH and PR3 concentration. In an antibacterial test, a PR3 concentration of 250 ng·mL⁻¹ or higher significantly inhibited Streptococcus mutans UA159 growth after 12 h of incubation (P<0.05). These studies indicate that PR3 is a salivary factor associated with the severity of dental caries, as suggested by the negative relationship between salivary PR3 concentration and the severity of caries as well as the susceptibility of S. mutans to PR3.
Collapse
|
34
|
Jerke U, Hernandez DP, Beaudette P, Korkmaz B, Dittmar G, Kettritz R. Neutrophil serine proteases exert proteolytic activity on endothelial cells. Kidney Int 2015; 88:764-75. [PMID: 26061547 DOI: 10.1038/ki.2015.159] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
Neutrophil serine proteases (NSPs) are released from activated neutrophils during inflammation. Here we studied the transfer of the three major NSPs, namely proteinase 3, human neutrophil elastase, and cathepsin G, from neutrophils to endothelial cells and used an unbiased approach to identify novel endothelial NSP substrates. Enzymatically active NSPs were released from stimulated neutrophils and internalized by endothelial cells in a dose- and time-dependent manner as shown by immunoblotting, flow cytometry, and the Boc-Ala substrate assay. Using terminal-amine isotopic labeling of substrates in endothelial cells, we identified 121 peptides from 82 different proteins consisting of 36 substrates for proteinase 3, 30 for neutrophil elastase, and 28 for cathepsin G, respectively. We characterized the extended cleavage pattern and provide corresponding IceLogos. Gene ontology analysis showed significant cytoskeletal substrate enrichment and confirmed several cytoskeletal protein substrates by immunoblotting. Finally, ANCA-stimulated neutrophils released all three active NSPs into the supernatant. Supernatants increased endothelial albumin flux and disturbed the endothelial cell cytoskeletal architecture. Serine protease inhibition abrogated this effect. Longer exposure to NSPs reduced endothelial cell viability and increased apoptosis. Thus, we identified novel NSP substrates and suggest NSP inhibition as a therapeutic measure to inhibit neutrophil-mediated inflammatory vascular diseases.
Collapse
Affiliation(s)
- Uwe Jerke
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | | - Brice Korkmaz
- INSERM U-1100 Universite Francois Rabelais, Tours, France
| | | | - Ralph Kettritz
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Nephrology and Intensive Care Medicine, Charité Campus Virchow, Berlin, Germany
| |
Collapse
|