1
|
Freeberg MAT, Thatcher TH, Camus SV, Huang L, Atkinson J, Narrow W, Haak J, Dylag AM, Cowart LA, Johnson TS, Sime PJ. Transglutaminase 2 knockout mice are protected from bleomycin-induced lung fibrosis with preserved lung function and reduced metabolic derangements. Physiol Rep 2024; 12:e16012. [PMID: 38959068 PMCID: PMC11189770 DOI: 10.14814/phy2.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 07/05/2024] Open
Abstract
Pulmonary fibrosis is an interstitial scarring disease of the lung characterized by poor prognosis and limited treatment options. Tissue transglutaminase 2 (TG2) is believed to promote lung fibrosis by crosslinking extracellular matrix components and activating latent TGFβ. This study assessed physiologic pulmonary function and metabolic alterations in the mouse bleomycin model with TG2 genetic deletion. TG2-deficient mice demonstrated attenuated the fibrosis and preservation of lung function, with significant reduction in elastance and increases in compliance and inspiratory capacity compared to control mice treated with bleomycin. Bleomycin induced metabolic changes in the mouse lung that were consistent with increased aerobic glycolysis, including increased expression of lactate dehydrogenase A and increased production of lactate, as well as increased glutamine, glutamate, and aspartate. TG2-deficient mice treated with bleomycin exhibited similar metabolic changes but with reduced magnitude. Our results demonstrate that TG2 is required for a typical fibrosis response to injury. In the absence of TG2, the fibrotic response is biochemically similar to wild-type, but lesions are smaller and lung function is preserved. We also show for the first time that profibrotic pathways of tissue stiffening and metabolic reprogramming are interconnected, and that metabolic disruptions in fibrosis go beyond glycolysis.
Collapse
Affiliation(s)
- Margaret A. T. Freeberg
- Division of Pulmonary Disease and Critical Care MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Division of Pulmonary and Critical Care MedicineUniversity of RochesterRochesterNew YorkUSA
| | - Thomas H. Thatcher
- Division of Pulmonary Disease and Critical Care MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Division of Pulmonary and Critical Care MedicineUniversity of RochesterRochesterNew YorkUSA
| | - Sarah V. Camus
- Division of Pulmonary Disease and Critical Care MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Linghong Huang
- UCB Pharma SASloughBerkshireUK
- Present address:
Mestag TherapeuticsCambridgeUK
| | | | - Wade Narrow
- Division of Pulmonary and Critical Care MedicineUniversity of RochesterRochesterNew YorkUSA
- Present address:
Department of SurgeryUniversity of RochesterRochesterNew YorkUSA
| | - Jeannie Haak
- Department of Pediatrics, Division of NeonatologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Andrew M. Dylag
- Department of Pediatrics, Division of NeonatologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Timothy S. Johnson
- UCB Pharma SASloughBerkshireUK
- Present address:
Mestag TherapeuticsCambridgeUK
| | - Patricia J. Sime
- Division of Pulmonary Disease and Critical Care MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Division of Pulmonary and Critical Care MedicineUniversity of RochesterRochesterNew YorkUSA
| |
Collapse
|
2
|
Vitamin D 3 and Salinomycin synergy in MCF-7 cells cause cell death via endoplasmic reticulum stress in monolayer and 3D cell culture. Toxicol Appl Pharmacol 2022; 452:116178. [PMID: 35914560 DOI: 10.1016/j.taap.2022.116178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022]
Abstract
1α, 25, dihydroxyvitamin D3 (1,25D), the active form of vitamin D3, has antitumor properties in several cancer cell lines in vitro. Salinomycin (Sal) has anticancer activity against cancer cell lines. This study aims to examine the cytotoxic and antiproliferative effect of Sal associated with 1,25D on MCF-7 breast carcinoma cell line cultured in monolayer (2D) and three-dimensional models (mammospheres). We also aim to evaluate the molecular mechanism of Sal and 1,25D-mediated effects. We report that Sal and 1,25D act synergistically in MCF-7 mammospheres and monolayer causing G1 cell cycle arrest, reduction of mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) overproduction with a long-lasting cytotoxic response represented by clonogenic and mammosphere assay. We observed the induction of cell death by apoptosis with upregulation in mRNA levels of apoptosis-related genes (CASP7, CASP9, and BBC3). Extensive cytoplasmic vacuolization, a morphological characteristic found in paraptosis, was also seen and could be triggered by endoplasmic reticulum stress (ER) as we found transcriptional upregulation of genes related to ER stress (ATF6, GADD153, GADD45G, EIF2AK3, and HSPA5). Overall, Sal and 1,25D act synergistically, inhibiting cell proliferation by activating simultaneously multiple death pathways and may be a novel and promising luminal A breast cancer therapy strategy.
Collapse
|
3
|
Bell TJ, Nagel DJ, Woeller CF, Kottmann RM. Ogerin mediated inhibition of TGF-β(1) induced myofibroblast differentiation is potentiated by acidic pH. PLoS One 2022; 17:e0271608. [PMID: 35901086 PMCID: PMC9333254 DOI: 10.1371/journal.pone.0271608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/01/2022] [Indexed: 01/28/2023] Open
Abstract
Transforming growth factor beta (TGF-β) induced myofibroblast differentiation is central to the pathological scarring observed in Idiopathic Pulmonary Fibrosis (IPF) and other fibrotic diseases. Our lab has recently identified expression of GPR68 (Ovarian Cancer Gene Receptor 1, OGR1), a pH sensing G-protein coupled receptor, as a negative regulator of TGF-β induced profibrotic effects in primary human lung fibroblasts (PHLFs). We therefore hypothesized that small molecule activators of GPR68 would inhibit myofibroblast differentiation. Ogerin is a positive allosteric modulator (PAM) of GPR68, inducing a leftward shift of the dose response curve to proton induced signaling. Using PHLFs derived from patients with both non-fibrotic and IPF diagnoses, we show that Ogerin inhibits, and partially reverses TGF-β induced myofibroblast differentiation in a dose dependent manner. This occurs at the transcriptional level without inhibition of canonical TGF-β induced SMAD signaling. Ogerin induces PKA dependent CREB phosphorylation, a marker of Gαs pathway activation. The ability of Ogerin to inhibit both basal and TGF-β induced collagen gene transcription, and induction of Gαs signaling is enhanced at an acidic pH (pH 6.8). Similar findings were also found using fibroblasts derived from dermal, intestinal, and orbital tissue. The biological role of GPR68 in different tissues, cell types, and disease states is an evolving and emerging field. This work adds to the understanding of Gαs coupled GPCRs in fibrotic lung disease, the ability to harness the pH sensing properties of GPR68, and conserved mechanisms of fibrosis across different organ systems.
Collapse
Affiliation(s)
- Tyler J. Bell
- Department of Environmental Medicine Toxicology Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - David J. Nagel
- Department of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - R. Mathew Kottmann
- Department of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ding Q, Yue J, Xue LF, Xu YX, Xiao WL. Inhibition of p38 mitogen-activated protein kinases may attenuate scar proliferation after cleft lip surgery in rabbits via Smads signaling pathway. Eur J Med Res 2022; 27:126. [PMID: 35858881 PMCID: PMC9301840 DOI: 10.1186/s40001-022-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background Cleft lip repair surgery always results in visible scarring. It has been proved that scar formation can be reduced by inhibiting the p38 mitogen-activated protein kinases (p38MAPKs) signaling pathway. However, the interaction between p38MAPK and Smads in scar formation is still controversial. Methods This study was designed to investigate whether inhibition of p38MAPK reduces postoperative scar formation of cleft lips on rabbits via the Smads signaling pathway. Scar models in rabbits after cleft lip surgery were created and their fibroblasts were extracted. Then the expression of p38MAPK was disturbed by adenovirus in vitro and Vivo. The scar thickness was measured and scar tissues were excised for Sirius red staining and immunohistochemistry to detect the expression of type I collagen (col I), type III collagen (col III), and α-smooth muscle actin (α-SMA). The underlying mechanisms of p38MAPK knockdown on the extracellular matrix and Smad signaling pathway were invested in vitro using the EdU assay, Western blot, RT PCR, and immunofluorescence. Results p38MAPK knockdown suppresses the expression of p-smad3 and p-smad2 in fibroblasts, modulating the expression of its target genes, such as α-SMA, col I, and col III. When Ad-P38MAPK-1 was injected into lip scar, it reduced the expression of scar-related genes and scar thickness when compared to the negative control groups. Conclusions In rabbits, inhibiting p38MAPK expression prevents scar proliferation through inhibiting the Smad signaling pathway after cleft lip surgery.
Collapse
Affiliation(s)
- Qian Ding
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Jin Yue
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ling-Fa Xue
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yao-Xiang Xu
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Wen-Lin Xiao
- Department of Stomatology, the Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China. .,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
5
|
Gupta V, Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. Thinking inside the box: Current insights into targeting orbital tissue remodeling and inflammation in thyroid eye disease. Surv Ophthalmol 2022; 67:858-874. [PMID: 34487739 PMCID: PMC8891393 DOI: 10.1016/j.survophthal.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Thyroid eye disease (TED) is an autoimmune disorder that manifests in the orbit. In TED, the connective tissue behind the eye becomes inflamed and remodels with increased fat accumulation and/or increased muscle and scar tissue. As orbital tissue expands, patients develop edema, exophthalmos, diplopia, and optic neuropathy. In severe cases vision loss may occur secondary to corneal scarring from exposure or optic nerve compression. Currently there is no cure for TED, and treatments are limited. A major breakthrough in TED therapy occurred with the FDA approval of teprotumumab, a monoclonal insulin-like growth factor 1 receptor (IGF1R) blocking antibody. Yet, teprotumumab therapy has limitations, including cost, infusion method of drug delivery, variable response, and relapse. We describe approaches to target orbital fibroblasts and the complex pathophysiology that underlies tissue remodeling and inflammation driving TED. Further advances in the elucidation of the mechanisms of TED may lead to prophylaxis based upon early biomarkers as well as lead to more convenient, less expensive therapies.
Collapse
Affiliation(s)
- Vardaan Gupta
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Christine L Hammond
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA.
| |
Collapse
|
6
|
Rackow AR, Judge JL, Woeller CF, Sime PJ, Kottmann RM. miR-338-3p blocks TGFβ-induced myofibroblast differentiation through the induction of PTEN. Am J Physiol Lung Cell Mol Physiol 2022; 322:L385-L400. [PMID: 34986654 PMCID: PMC8884407 DOI: 10.1152/ajplung.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease. The pathogenesis of IPF is not completely understood. However, numerous genes are associated with the development and progression of pulmonary fibrosis, indicating there is a significant genetic component to the pathogenesis of IPF. Epigenetic influences on the development of human disease, including pulmonary fibrosis, remain to be fully elucidated. In this paper, we identify miR-338-3p as a microRNA severely downregulated in the lungs of patients with pulmonary fibrosis and in experimental models of pulmonary fibrosis. Treatment of primary human lung fibroblasts with miR-338-3p inhibits myofibroblast differentiation and matrix protein production. Published and proposed targets of miR-338-3p such as TGFβ receptor 1, MEK/ERK 1/2, Cdk4, and Cyclin D are also not responsible for the regulation of pulmonary fibroblast behavior by miR-338-3p. miR-338-3p inhibits myofibroblast differentiation by preventing TGFβ-mediated downregulation of phosphatase and tensin homolog (PTEN), a known antifibrotic mediator.
Collapse
Affiliation(s)
- Ashley R. Rackow
- 1Lung Biology and Disease Program, University of Rochester Medical Center Rochester, Rochester, New York,2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | | | - Collynn F. Woeller
- 2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York,4Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
| | - Patricia J. Sime
- 5Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Robert M. Kottmann
- 1Lung Biology and Disease Program, University of Rochester Medical Center Rochester, Rochester, New York,2Department of Environmental Medicine, University of Rochester Medical Center Rochester, Rochester, New York,6Division of Pulmonary Disease and Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
7
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
8
|
Burkin MA, Galvidis IA. Simultaneous immunodetection of ionophore antibiotics, salinomycin and narasin, in poultry products and milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1550-1558. [PMID: 33861252 DOI: 10.1039/d0ay02309d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rabbit polyclonal antibodies were generated against the ionophore antibiotic salinomycin (SAL) as a determinant of the BSA-SAL conjugate. The homologous ELISA format was found to be preferred for similar recognition of SAL and narasin (NAR) with IC50 values of 0.55 and 0.57 ng mL-1, respectively. Both analytes could be determined in the range of 0.1-2.7 ng mL-1 (IC20-IC80) with a detection limit of 0.03 ng mL-1. To analyze matrices, individual pretreatment of samples was required. For chicken muscles, simple buffer extraction was sufficient to recover 87-110% of ionophores. Extraction with acetonitrile followed by evaporation of the solvent was best for recovering 67-108% SAL and NAR from egg homogenate. A feature of the extraction of ionophores from milk was the elimination of fat-mediated interference by organic solvation. It was found that the absence of Na+ and K+ ions during reconstitution of sample extracts was a key factor contributing to the increase in the average recovery of ionophores from 32% to 93%. Thanks to this special pretreatment and improved recovery, the developed immunoassay method was suitable for the analysis of ionophore antibiotics SAL and NAR in a milk matrix, which has not been previously reported.
Collapse
Affiliation(s)
- Maksim A Burkin
- Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia.
| | - Inna A Galvidis
- Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia.
| |
Collapse
|
9
|
Burke RM, Dirkx RA, Quijada P, Lighthouse JK, Mohan A, O'Brien M, Wojciechowski W, Woeller CF, Phipps RP, Alexis JD, Ashton JM, Small EM. Prevention of Fibrosis and Pathological Cardiac Remodeling by Salinomycin. Circ Res 2021; 128:1663-1678. [PMID: 33825488 DOI: 10.1161/circresaha.120.317791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Ronald A Dirkx
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Pearl Quijada
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Amy Mohan
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Meghann O'Brien
- Genomics Research Center (M.O., W.W., J.M.A.), University of Rochester School of Medicine and Dentistry, NY
| | - Wojciech Wojciechowski
- Genomics Research Center (M.O., W.W., J.M.A.), University of Rochester School of Medicine and Dentistry, NY
| | - Collynn F Woeller
- Environmental Medicine (C.F.W., R.P.P.), University of Rochester School of Medicine and Dentistry, NY.,Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Richard P Phipps
- Environmental Medicine (C.F.W., R.P.P.), University of Rochester School of Medicine and Dentistry, NY.,Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - Jeffrey D Alexis
- Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY
| | - John M Ashton
- Genomics Research Center (M.O., W.W., J.M.A.), University of Rochester School of Medicine and Dentistry, NY
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine (R.M.B., R.A.D., P.Q., J.K.L., A.M., E.M.S.), University of Rochester School of Medicine and Dentistry, NY.,Department of Medicine (C.F.W., R.P.P., J.D.A., E.M.S.), University of Rochester School of Medicine and Dentistry, NY.,Pharmacology and Physiology (E.M.S.), University of Rochester School of Medicine and Dentistry, NY.,Biomedical Engineering, University of Rochester, NY (E.M.S.)
| |
Collapse
|
10
|
Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. MicroRNA-130a Is Elevated in Thyroid Eye Disease and Increases Lipid Accumulation in Fibroblasts Through the Suppression of AMPK. Invest Ophthalmol Vis Sci 2021; 62:29. [PMID: 33507228 PMCID: PMC7846950 DOI: 10.1167/iovs.62.1.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Thyroid eye disease (TED) is a condition that causes the tissue behind the eye to become inflamed and can result in excessive fatty tissue accumulation in the orbit. Two subpopulations of fibroblasts reside in the orbit: those that highly express Thy1 (Thy1+) and those with little or no Thy1 (Thy1–). Thy1– orbital fibroblasts (OFs) are more prone to lipid accumulation than Thy1+ OFs. The purpose of this study was to investigate the mechanisms whereby Thy1– OFs more readily accumulate lipid. Methods We screened Thy1+ and Thy1– OFs for differences in microRNA (miRNA) expression. The effects of increasing miR-130a levels in OFs was investigated by measuring lipid accumulation and visualizing lipid deposits. To determine if adenosine monophosphate-activated protein kinase (AMPK) is important for lipid accumulation, we performed small interfering RNA (siRNA)-mediated knockdown of AMPKβ1. We measured AMPK expression and activity using immunoblotting for AMPK and AMPK target proteins. Results We determined that miR-130a was upregulated in Thy1– OFs and that miR-130a targets two subunits of AMPK. Increasing miR-130a levels enhanced lipid accumulation and reduced expression of AMPKα and AMPKβ in OFs. Depletion of AMPK also increased lipid accumulation. Activation of AMPK using AICAR attenuated lipid accumulation and increased phosphorylation of acetyl-CoA carboxylase (ACC) in OFs. Conclusions These data suggest that when Thy1– OFs accumulate in TED, miR-130a levels increase, leading to a decrease in AMPK activity. Decreased AMPK activity promotes lipid accumulation in TED OFs, leading to excessive fatty tissue accumulation in the orbit.
Collapse
Affiliation(s)
- Christine L Hammond
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
11
|
Heffer AM, Wang V, Libby RT, Feldon SE, Woeller CF, Kuriyan AE. Salinomycin inhibits proliferative vitreoretinopathy formation in a mouse model. PLoS One 2020; 15:e0243626. [PMID: 33347461 PMCID: PMC7751870 DOI: 10.1371/journal.pone.0243626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/24/2020] [Indexed: 01/22/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a progressive disease that develops in a subset of patients who undergo surgery for retinal detachment repair, and results in significant vision loss. PVR is characterized by the migration of retinal pigment epithelial (RPE) cells into the vitreous cavity, where they undergo epithelial-to-mesenchymal transition and form contractile membranes within the vitreous and along the retina, resulting in recurrent retinal detachments. Currently, surgical intervention is the only treatment for PVR and there are no pharmacological agents that effectively inhibit or prevent PVR formation. Here, we show that a single intravitreal injection of the polyether ionophore salinomycin (SNC) effectively inhibits the formation of PVR in a mouse model with no evidence of retinal toxicity. After 4 weeks, fundus photography and optical coherence tomography (OCT) demonstrated development of mean PVR grade of 3.5 (SD: 1.3) in mouse eyes injected with RPE cells/DMSO (vehicle), compared to mean PVR grade of 1.6 (SD: 1.3) in eyes injected with RPE cells/SNC (p = 0.001). Additionally, immunohistochemistry analysis showed RPE cells/SNC treatment reduced both fibrotic (αSMA, FN1, Vim) and inflammatory (GFAP, CD3, CD20) markers compared to control RPE cells/DMSO treatment. Finally, qPCR analysis confirmed that Tgfβ, Tnfα, Mcp1 (inflammatory/cytokine markers), and Fn1, Col1a1 and Acta2 (fibrotic markers) were significantly attenuated in the RPE cells/SNC group compared to RPE/DMSO control. These results suggest that SNC is a potential pharmacologic agent for the prevention of PVR in humans and warrants further investigation.
Collapse
Affiliation(s)
- Alison M. Heffer
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
| | - Victor Wang
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- Retina Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
12
|
Kim HS, Chen J, Wu LP, Wu J, Xiang H, Leong KW, Han J. Prevention of excessive scar formation using nanofibrous meshes made of biodegradable elastomer poly(3-hydroxybutyrate- co-3-hydroxyvalerate). J Tissue Eng 2020; 11:2041731420949332. [PMID: 32922720 PMCID: PMC7448259 DOI: 10.1177/2041731420949332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
To reduce excessive scarring in wound healing, electrospun nanofibrous meshes, composed of haloarchaea-produced biodegradable elastomer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are fabricated for use as a wound dressing. Three PHBV polymers with different 3HV content are used to prepare either solution-cast films or electrospun nanofibrous meshes. As 3HV content increases, the crystallinity decreases and the scaffolds become more elastic. The nanofibrous meshes exhibit greater elasticity and elongation at break than films. When used to culture human dermal fibroblasts in vitro, PHBV meshes give better cell attachment and proliferation, less differentiation to myofibroblasts, and less substrate contraction. In a full-thickness mouse wound model, treatment with films or meshes enables regeneration of pale thin tissues without scabs, dehydration, or tubercular scar formation. The epidermis of wounds treated with meshes develop small invaginations in the dermis within 2 weeks, indicating hair follicle and sweat gland regeneration. Consistent with the in vitro results, meshes reduce myofibroblast differentiation in vivo through downregulation of α-SMA and TGF-β1, and upregulation of TGF-β3. The regenerated wounds treated with meshes are softer and more elastic than those treated with films. These results demonstrate that electrospun nanofibrous PHBV meshes mitigate excessive scar formation by regulating myofibroblast formation, showing their promise for use as wound dressings.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.,Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Ping Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jihua Wu
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Heffer AM, Proaño J, Roztocil E, Phipps RP, Feldon SE, Huxlin KR, Sime PJ, Libby RT, Woeller CF, Kuriyan AE. The polyether ionophore salinomycin targets multiple cellular pathways to block proliferative vitreoretinopathy pathology. PLoS One 2019; 14:e0222596. [PMID: 31527897 PMCID: PMC6748436 DOI: 10.1371/journal.pone.0222596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/02/2019] [Indexed: 11/21/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is characterized by membranes that form in the vitreous cavity and on both surfaces of the retina, which results in the formation of tractional membranes that can cause retinal detachment and intrinsic fibrosis of the retina, leading to retina foreshortening. Currently, there are no pharmacologic therapies that are effective in inhibiting or preventing PVR formation. One of the key aspects of PVR pathogenesis is retinal pigment epithelial (RPE) cell epithelial mesenchymal transition (EMT). Here we show that the polyether ionophore compound salinomycin (SNC) effectively inhibits TGFβ-induced EMT of RPE cells. SNC blocks the activation of TGFβ-induced downstream targets alpha smooth muscle actin (αSMA) and collagen 1 (Col1A1). Additionally, SNC inhibits TGFβ-induced RPE cell migration and contraction. We show that SNC functions to inhibit RPE EMT by targeting both the pTAK1/p38 and Smad2 signaling pathways upon TGFβ stimulation. Additionally, SNC is able to inhibit αSMA and Col1A1 expression in RPE cells that have already undergone TGFβ-induced EMT. Together, these results suggest that SNC could be an effective therapeutic compound in both the prevention and treatment of PVR.
Collapse
Affiliation(s)
- Alison M. Heffer
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- * E-mail: (AH); (AK); (CFW)
| | - Jacob Proaño
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
| | - Richard P. Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Krystel R. Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Patricia J. Sime
- Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- * E-mail: (AH); (AK); (CFW)
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- * E-mail: (AH); (AK); (CFW)
| |
Collapse
|
14
|
Park RH, Pollock SJ, Phipps RP, Langstein HN, Woeller CF. Discovery of Novel Small Molecules that Block Myofibroblast Formation: Implications for Capsular Contracture Treatment. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2430. [PMID: 31942393 PMCID: PMC6908376 DOI: 10.1097/gox.0000000000002430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Capsular contracture is a devastating complication that occurs in patients undergoing implant-based breast reconstruction. Ionizing radiation drives and exacerbates capsular contracture in part by activating cytokines, including transforming growth factor-beta (TGF-β). TGF-β promotes myofibroblast differentiation and proliferation, leading to excessive contractile scar formation. Therefore, targeting the TGF-β pathway may attenuate capsular contracture. METHODS A 20,000 small molecule library was screened for anti-TGF-β activity. Structurally diverse anti-TGF-β agents were identified and then tested on primary human capsular fibroblasts. Fibroblasts were irradiated or not, and then treated with both TGF-β and candidate molecules. Resulting cells were then analyzed for myofibroblast activity using myofibroblast markers including alpha-smooth muscle actin, collagen I, Thy1, and periostin, using Western Blot, quantitative real-time polymerase chain reaction, and immunofluorescence. RESULTS Human capsular fibroblasts treated with TGF-β showed a significant increase in alpha-smooth muscle actin, collagen I, and periostin levels (protein and/or mRNA). Interestingly, fibroblasts treated with latent TGF-β and 10 Gy radiation also showed significantly increased levels of myofibroblast markers. Cells that were treated with the novel small molecules showed a significant reduction in myofibroblast activation, even in the presence of radiation. CONCLUSIONS Several novel small molecules with anti-TGF-β activity can effectively prevent human capsular fibroblast to myofibroblast differentiation in vitro, even in the presence of radiation. These results highlight novel therapeutic options that may be utilized in the future to prevent radiation-induced capsular contracture.
Collapse
Affiliation(s)
- Rachel H. Park
- From the University of Rochester School of Medicine and Dentistry, Rochester, N.Y
| | - Stephen J. Pollock
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, N.Y
| | - Richard P. Phipps
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, N.Y
| | - Howard N. Langstein
- Division of Plastic and Reconstructive Surgery, University of Rochester Medical Center, Rochester, N.Y
| | - Collynn F. Woeller
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, N.Y
| |
Collapse
|
15
|
Tanaka M, Osanai T, Homma Y, Hanada K, Okumura K, Tomita H. IQGAP1 activates PLC-δ1 by direct binding and moving along microtubule with DLC-1 to cell surface. FASEB Bioadv 2019; 1:465-480. [PMID: 32123844 PMCID: PMC6996382 DOI: 10.1096/fba.2019-00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C (PLC)-δ1, activated by p122RhoGTPase-activating protein (GAP)/deleted in liver cancer-1 (p122RhoGAP/DLC-1), contributes to the coronary spastic angina (CSA) pathogenesis. The present study aims to further investigate the p122RhoGAP/DLC-1 protein. We examined molecules assisting this protein and identified a scaffold protein-IQ motif-containing GTPase-activating protein 1 (IQGAP1). IQGAP1-C binds to the steroidogenic acute regulatory-related lipid transfer (START) domain of p122RhoGAP/DLC-1, and PLC-δ1 binds to IQGAP1-N, forming a complex. In fluorescence microscopy, small dots of PLC-δ1 created fine linear arrays like microtubules, and IQGAP1 and p122RhoGAP/DLC-1 were colocated in the cytoplasm with PLC-δ1. Ionomycin induced the raft recruitment of the PLC-δ1, IQGAP1, and p122RhoGAP/DLC-1 complex by translocation to the plasma membrane (PM), indicating the movement of this complex is along microtubules with the motor protein kinesin. Moreover, the IQGAP1 protein was elevated in skin fibroblasts obtained from patients with CSA, and it enhanced the PLC activity and peak intracellular calcium concentration in response to acetylcholine. IQGAP1, a novel stimulating protein, forms a complex with p122RhoGAP/DLC-1 and PLC-δ1 that moves along microtubules and enhances the PLC activity.
Collapse
Affiliation(s)
- Makoto Tanaka
- Department of Stroke and Cerebrovascular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tomohiro Osanai
- Department of Nursing ScienceHirosaki University Graduate School of Health ScienceHirosakiJapan
| | - Yoshimi Homma
- Department of Biomolecular ScienceFukushima Medical University School of MedicineFukushimaJapan
| | - Kenji Hanada
- Department of CardiologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Ken Okumura
- Division of CardiologySaiseikai Kumamoto HospitalKumamotoJapan
| | - Hirofumi Tomita
- Department of Stroke and Cerebrovascular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of CardiologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
16
|
Antoszczak M, Huczyński A. Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem 2019; 176:208-227. [PMID: 31103901 DOI: 10.1016/j.ejmech.2019.05.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
The history of drug development clearly shows the scale of painstaking effort leading to a finished product - a highly biologically active agent that would be at the same time no or little toxic to human organism. Moreover, the aim of modern drug discovery can move from "one-molecule one-target" concept to more promising "one-molecule multiple-targets" one, particularly in the context of effective fight against cancer and other complex diseases. Gratifyingly, natural compounds are excellent source of potential drug leads. One of such promising naturally-occurring drug candidates is a polyether ionophore - salinomycin (SAL). This compound should be identified as multi-target agent for two reasons. Firstly, SAL combines a broad spectrum of bioactivity, including antibacterial, antifungal, antiviral, antiparasitic and anticancer activity, with high selectivity of action, proving its significant therapeutic potential. Secondly, the multimodal mechanism of action of SAL has been shown to be related to its interactions with multiple molecular targets and signalling pathways that are synergistic for achieving a therapeutic anticancer effect. On the other hand, according to the Paul Ehrlich's "magic bullet" concept, invariably inspiring the scientists working on design of novel target-selective molecules, a very interesting direction of research is rational chemical modification of SAL. Importantly, many of SAL derivatives have been found to be more promising as chemotherapeutics than the native structure. This concise review article is focused both on the possible role of SAL and its selected analogues in future antimicrobial and/or cancer therapy, and on the potential use of SAL as a new class of multiple-targeted "magic bullet" because of its multimodal mechanism of action.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland.
| |
Collapse
|
17
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Ye X, Pang Z, Zhu N. Dihydromyricetin attenuates hypertrophic scar formation by targeting activin receptor-like kinase 5. Eur J Pharmacol 2019; 852:58-67. [PMID: 30807748 DOI: 10.1016/j.ejphar.2019.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Hypertrophic scar (HPS) is a manifestation of abnormal tissue repair, representing excessive extracellular matrix production and abnormal function of fibroblasts, for which no satisfactory treatment is available at present. Here we identified a natural product of flavonoid, dihydromyricetin, could effectively attenuate HPS formation. We showed that local intradermal injection of dihydromyricetin (50 μM) reduced the gross scar area, cross-sectional size of the scar and the scar elevation index in a mechanical load-induced mouse model. In addition, dihydromyricetin treatment also markedly decreased collagen density of the scar tissue. Furthermore, both in vitro and in vivo study both demonstrated that dihydromyricetin inhibited the proliferation, activation, contractile and migration abilities of hypertrophic scar-derived fibroblasts (HSFs) but did not affect HSFs apoptosis. Western blot analysis revealed that dihydromyricetin could down-regulate the phosphorylation of Smad2 and Smad3 of TGF-β signaling. Such bioactivity of dihydromyricetin may result from its selective binding to the catalytic region of activin receptor-like kinase 5 (ALK5), as suggested by the molecular docking study and kinase binding assay (12.26 μM). Above all, dihydromyricetin may prove to be a promising agent for the treatment of HPS and other fibroproliferative disorders.
Collapse
Affiliation(s)
- Xiaolu Ye
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhiying Pang
- Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Zhang Y, Wang J, Zhou S, Xie Z, Wang C, Gao Y, Zhou J, Zhang X, Li Q. Flavones hydroxylated at 5, 7, 3' and 4' ameliorate skin fibrosis via inhibiting activin receptor-like kinase 5 kinase activity. Cell Death Dis 2019; 10:124. [PMID: 30741930 PMCID: PMC6370799 DOI: 10.1038/s41419-019-1333-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023]
Abstract
Skin fibrosis is mainly characterized by excessive collagen deposition. Studies have recently identified a number of flavonoids with variable structures that have the potency of inhibiting collagen synthesis and thus attenuating organ fibrosis. In this study, we found that flavones with 5, 7, 3', 4' hydroxy substitution reduced collagen expression most efficiently. Among those flavones, luteolin, quercetin, and myricetin were selected for follow-up. In vivo, the three compounds ameliorated skin fibrosis and reduced collagen deposition. Further analysis showed the compounds had significant inhibition on the proliferation, activation and contractile ability of dermal fibroblasts in vitro and in vivo. More importantly, we revealed that luteolin, quercetin, and myricetin selectively downregulated the phosphorylation of Smad2/3 in TGF-β/Smads signaling via binding to activin receptor-like kinase 5 (ALK5) and impairing its catalytic activity. We also found flavones with 5, 7, 3', 4' hydroxy substitution showed stronger affinity with ALK5 compared with other flavonoids. Herein, we identified at least in part the underlying molecular basis as well as the critical structures that contribute to the antifibrotic bioactivity of flavones, which might benefit drug design and modification.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sizheng Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibo Xie
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuandong Wang
- Stem Cell and Regenerative Medicine Lab Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Zhang
- Stem Cell and Regenerative Medicine Lab Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Lighthouse JK, Burke RM, Velasquez LS, Dirkx RA, Aiezza A, Moravec CS, Alexis JD, Rosenberg A, Small EM. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight 2019; 4:92098. [PMID: 30626739 DOI: 10.1172/jci.insight.92098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Exercise and heart disease both induce cardiac remodeling, but only disease causes fibrosis and compromises heart function. The cardioprotective benefits of exercise have been attributed to changes in cardiomyocyte physiology, but the impact of exercise on cardiac fibroblasts (CFs) is unknown. Here, RNA-sequencing reveals rapid divergence of CF transcriptional programs during exercise and disease. Among the differentially expressed programs, NRF2-dependent antioxidant genes - including metallothioneins (Mt1 and Mt2) - are induced in CFs during exercise and suppressed by TGF-β/p38 signaling in disease. In vivo, mice lacking Mt1/2 exhibit signs of cardiac dysfunction in exercise, including cardiac fibrosis, vascular rarefaction, and functional decline. Mechanistically, exogenous MTs derived from fibroblasts are taken up by cultured cardiomyocytes, reducing oxidative damage-dependent cell death. Importantly, suppression of MT expression is conserved in human heart failure. Taken together, this study defines the acute transcriptional response of CFs to exercise and disease and reveals a cardioprotective mechanism that is lost in disease.
Collapse
Affiliation(s)
- Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ryan M Burke
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Lissette S Velasquez
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ronald A Dirkx
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Alessandro Aiezza
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Alex Rosenberg
- Department of Allergy, Immunology, and Rheumatology Research, and
| | - Eric M Small
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.,Department of Medicine.,Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
21
|
Woeller C, Woodroof A, Cottler P, Pollock S, Haidaris C, Phipps R. In Vitro Characterization of Variable Porosity Wound Dressing With Anti-Scar Properties. EPLASTY 2018; 18:e21. [PMID: 29896321 PMCID: PMC5981800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: New options are needed to improve wound healing while preventing excessive scar formation. Temporary primary dressings are important options in topical wound management that allow the natural healing process. Methods: We evaluated a novel primary dressing consisting of a biosynthetic, variable porosity, matrix-containing gelatin and Aloe Vera extract and a derivative dressing coated with the anti-scarring agent salinomycin for their ability to promote cell growth, reduce myofibroblast formation, and regulate cytokine production. In addition, salinomycin-coated primary dressings were tested for antimicrobial activity. Results: Both primary wound dressings permitted cell growth and attenuated TGFβ-induced scar-forming myofibroblast formation. The primary wound dressings also reduced IL-6 production by 50%, IL-8 by 20%, MCP-1 by 75%, and GRO by 60% in human mesenchymal stem cells treated with TGFβ. Salinomycin coating of the dressing showed antimicrobial activity by preventing Staphylococcus aureus growth. Conclusions: Both primary wound dressings support the growth of human fibroblasts and stem cells, as well as reduce inflammatory cytokine production, demonstrating their potential to serve as temporary wound dressings.
Collapse
Affiliation(s)
- Collynn F. Woeller
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY,Correspondence:
| | | | | | - Stephen J. Pollock
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Constantine G. Haidaris
- dDepartment of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Richard P. Phipps
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY,dDepartment of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
22
|
Woeller C, Woodroof A, Lacy S, Cottler P, Gui J, Piñeros-Fernandez A, Pollock S, Phipps R. Evaluating a Variable Porosity Wound Dressing With Anti-Scar Properties in a Porcine Model of Wound Healing. EPLASTY 2018; 18:e20. [PMID: 29896320 PMCID: PMC5981775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction: New treatments that promote wound healing while preventing scar formation are needed. One option in topical wound healing is the use of temporary dressings that allow the natural healing process with minimal scar formation. Methods: We evaluated the temporary wound dressings PermeaDerm C, and a PermeaDerm C derivative coated with the anti-scarring agent, salinomycin (PermeaDerm D) in a pig model of wound healing to show the efficacy of these wound dressings in vivo. Results: Porcine fibroblasts grow well in the presence of PermeaDerm C or PermeaDerm A, and salinomycin reduces excessive myofibroblast formation in porcine fibroblasts in vitro. In vivo, wounds treated with PermeaDerm C and PermeaDerm A did not show abnormal or unwanted healing patterns up to 8 weeks post-wound formation. Wounds covered with either PermeaDerm C or PermeaDerm A showed a more mature wound-healing phenotype than the control wounds. Conclusions: PermeaDerm C and PermeaDerm A allowed wound healing, revealing the potential of both PermeaDerm C and PermeaDerm A to promote effective healing while preventing excessive scar formation.
Collapse
Affiliation(s)
- Collynn F. Woeller
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY,Correspondence:
| | | | - Shannon H. Lacy
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Jane L. Gui
- cDepartment of Plastic Surgery, University of Virginia, Charlottesville
| | | | - Stephen J. Pollock
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Richard P. Phipps
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY,dDepartment of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
23
|
Woeller CF, Flores E, Pollock SJ, Phipps RP. Editor's Highlight: Thy1 (CD90) Expression is Reduced by the Environmental Chemical Tetrabromobisphenol-A to Promote Adipogenesis Through Induction of microRNA-103. Toxicol Sci 2018; 157:305-319. [PMID: 28329833 DOI: 10.1093/toxsci/kfx046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Environmental chemicals termed "obesogens" disrupt the endocrine system to promote adipogenesis and obesity. Tetrabromobisphenol-A (TBBPA) has been reported to increase adipogenesis; however, the mechanism(s) of action are unclear. Thy1 (CD90) is a glycophosphatidylinositol-anchored membrane protein that serves as a marker for stem cells and also plays an important role in regulating adipogenesis and obesity. We investigated whether or not TBBPA promotes adipogenesis in human and mouse cells by reducing Thy1 levels. We further sought to identify the molecular mechanism(s) whereby TBBPA targets Thy1 expression. Mouse and human cells were exposed to TBBPA, and Thy1 expression was analyzed using flow cytometry, Western blotting, and qPCR. We tested whether microRNAs predicted to target Thy1 (miR-103 and miR-107) were upregulated by TBBPA using quantitative PCR assays. We also determined if Thy1 mRNA was a bona fide miR-103/107 target. Our results show that Thy1 expression was reduced in both human and mouse cells after exposure to TBBPA. Both Thy1 mRNA and protein levels were decreased by low-dose TBBPA exposure. TBBPA reduced Thy1 levels and further increased adipogenesis when an adipogenic medium was used. Mechanistically, we show that miR-103 and miR-107 are induced by TBBPA and that miR-103 targets Thy1 to reduce its expression. Our results reveal for the first time that Thy1 is a target of TBBPA. Furthermore, our data support the concept that Thy1 is a key marker targeted by environmental chemicals that promote adipogenesis and obesity.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - E'Lissa Flores
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Stephen J Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
24
|
Thy1 (CD90) Expression Is Elevated in Radiation-Induced Periprosthetic Capsular Contracture: Implication for Novel Therapeutics. Plast Reconstr Surg 2017; 140:316-326. [PMID: 28746279 DOI: 10.1097/prs.0000000000003542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Capsular contracture is a devastating complication of postmastectomy implant-based breast reconstruction. Unfortunately, capsular contracture rates are drastically increased by targeted radiotherapy, a standard postmastectomy treatment. Thy1 (also called CD90) is important in myofibroblast differentiation and scar tissue formation. However, the impact of radiotherapy on Thy1 expression and the role of Thy1 in capsular contracture are unknown. METHODS The authors analyzed Thy1 expression in primary human capsular tissue and primary fibroblast explants by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemistry. Thy1 was depleted using RNA interference to determine whether Thy1 expression was essential for the myofibroblast phenotype in capsular fibroblasts. Furthermore, human capsular fibroblasts were treated with a new antiscarring compound, salinomycin, to determine whether Thy1 expression and myofibroblast formation were blocked by salinomycin. RESULTS In this article, the authors show that radiation therapy significantly increased Thy1 mRNA and protein expression in periimplant scar tissue. Capsular fibroblasts explanted from scar tissue retained the ability to make the myofibroblast-produced scar-forming components collagen I and α-smooth muscle actin. Depletion of Thy1 decreased the fibrotic morphology of capsular fibroblasts and significantly decreased α-smooth muscle actin and collagen levels. Furthermore, the authors show for the first time that salinomycin decreased Thy1 expression and prevented myofibroblast formation in capsular fibroblasts. CONCLUSIONS These data reveal that ionizing radiation-induced Thy1 overexpression may contribute to increased capsular contracture severity, and fibroblast scar production can be ameliorated through targeting Thy1 expression. Importantly, the authors' new results show promise for the antiscarring ability of salinomycin in radiation-induced capsular contracture. CLINCAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
25
|
Crevelin EJ, Possato B, Lopes JLC, Lopes NP, Crotti AEM. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions. Anal Chem 2017; 89:3929-3936. [DOI: 10.1021/acs.analchem.6b02855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo J. Crevelin
- Departamento
de Física e Química, Faculdade de Ciências Farmacêuticas
de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP, Brazil
- Departamento
de Química, Faculdade de Filosofia, Ciências e Letras
de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Bruna Possato
- Departamento
de Química, Faculdade de Filosofia, Ciências e Letras
de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - João L. C. Lopes
- Departamento
de Física e Química, Faculdade de Ciências Farmacêuticas
de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Norberto P. Lopes
- Departamento
de Física e Química, Faculdade de Ciências Farmacêuticas
de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Antônio E. M. Crotti
- Departamento
de Química, Faculdade de Filosofia, Ciências e Letras
de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Woeller CF, Roztocil E, Hammond CL, Feldon SE, Phipps RP. The Aryl Hydrocarbon Receptor and Its Ligands Inhibit Myofibroblast Formation and Activation: Implications for Thyroid Eye Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3189-3202. [PMID: 27842700 DOI: 10.1016/j.ajpath.2016.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
Abstract
Thyroid eye disease (TED) is a degenerative disease that manifests with detrimental tissue remodeling, myofibroblast accumulation, and scarring in the orbit of affected individuals. Currently, there are no effective therapies for TED that target or prevent the excessive tissue remodeling caused by myofibroblast formation and activation. The canonical cytokine that induces myofibroblast formation is transforming growth factor (TGF)-β. The TGF-β signaling pathway is influenced by aryl hydrocarbon receptor (AHR) signaling pathways. We hypothesized that AHR agonists can prevent myofibroblast formation in fibroblasts from patients with TED, and thus AHR ligands are potential therapeutics for the disease. Orbital fibroblasts explanted from patients with TED were treated with TGF-β to induce myofibroblast formation, contraction, and proliferation. We found that AHR ligands prevent TGF-β-dependent myofibroblast formation, and this ability is dependent on AHR expression. The AHR and AHR ligands block profibrotic Wnt signaling by inhibiting the phosphorylation of GSK3β to prevent myofibroblast formation. These results provide new insight into the molecular pathways underlying orbital scarring in TED. These novel studies highlight the potential of the AHR and AHR ligands as future therapeutic options for eye diseases and possibly also for other scarring conditions.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Christine L Hammond
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Steven E Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York; Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York.
| |
Collapse
|
27
|
Borgström B, Huang X, Chygorin E, Oredsson S, Strand D. Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids. ACS Med Chem Lett 2016; 7:635-40. [PMID: 27326340 DOI: 10.1021/acsmedchemlett.6b00079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/25/2016] [Indexed: 01/16/2023] Open
Abstract
The polyether ionophore salinomycin has recently gained attention due to its exceptional ability to selectively reduce the proportion of cancer stem cells within a number of cancer cell lines. Efficient single step strategies for the preparation of hydroxamic acid hybrids of this compound varying in N- and O-alkylation are presented. The parent hydroxamic acid, salinomycin-NHOH, forms both inclusion complexes and well-defined electroneutral complexes with potassium and sodium cations via 1,3-coordination by the hydroxamic acid moiety to the metal ion. A crystal structure of an cationic sodium complex with a noncoordinating anion corroborates this finding and, moreover, reveals a novel type of hydrogen bond network that stabilizes the head-to-tail conformation that encapsulates the cation analogously to the native structure. The hydroxamic acid derivatives display down to single digit micromolar activity against cancer cells but unlike salinomycin selective reduction of ALDH(+) cells, a phenotype associated with cancer stem cells was not observed. Mechanistic implications are discussed.
Collapse
Affiliation(s)
- Björn Borgström
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Xiaoli Huang
- Department
of Biology, Lund University, 221 00 Lund, Sweden
| | - Eduard Chygorin
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Stina Oredsson
- Department
of Biology, Lund University, 221 00 Lund, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
28
|
Zhang C, Lu Y, Li Q, Mao J, Hou Z, Yu X, Fan S, Li J, Gao T, Yan B, Wang B, Song B, Li L. Salinomycin suppresses TGF-β1-induced epithelial-to-mesenchymal transition in MCF-7 human breast cancer cells. Chem Biol Interact 2016; 248:74-81. [PMID: 26896736 DOI: 10.1016/j.cbi.2016.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/28/2015] [Accepted: 02/07/2016] [Indexed: 12/11/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is the major cause of breast cancer to initiate invasion and metastasis. Salinomycin (Sal) has been found as an effective chemical compound to kill breast cancer stem cells. However, the effect of Sal on invasion and metastasis of breast cancer is unclear. In the present study, we showed that Sal reversed transforming growth factor-β1 (TGF-β1) induced invasion and metastasis accompanied with down-regulation of MMP-2 by experiments on human breast cancer cell line MCF-7. Sal was able to inhibit TGF-β1-induced EMT phenotypic transition and the activation of key signaling molecules involved in Smad (p-Smad2/3,Snail1) and non-Smad (β-catenin, p-p38 MAPK) signals which cooperatively regulate the induction of EMT. Importantly, in a series of breast cancer specimens, we found strong correlation among E-cadherin expression, β-catenin expression, and the lymph node metastatic potential of breast cancer. Our research suggests that Sal is promised to be a chemotherapeutic drug by suppressing the metastasis of breast cancer.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Qing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Jun Mao
- The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, PR China
| | - Zhenhuan Hou
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Xiaotang Yu
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Jiazhi Li
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Tong Gao
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Bing Yan
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Bo Wang
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Bo Song
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian 116044, PR China; The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
29
|
Zhang Y, Shan S, Wang J, Cheng X, Yi B, Zhou J, Li Q. Galangin inhibits hypertrophic scar formation via ALK5/Smad2/3 signaling pathway. Mol Cell Biochem 2016; 413:109-18. [PMID: 26728998 DOI: 10.1007/s11010-015-2644-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022]
Abstract
Hypertrophic scar (HS) is characterized by excessive fibrosis associated with aberrant function of fibroblasts. Currently, no satisfactory drug has been developed to treat the disease. Here we found that a flavonoid natural product, galangin, could significantly attenuate hypertrophic scar formation in a mechanical load-induced mouse model. Both in vivo and in vitro studies demonstrated that galangin remarkably inhibited collagen production, proliferation, and activation of fibroblasts. Besides, galangin suppressed the contractile ability of hypertrophic scar fibroblasts. Further Western blot analysis revealed that galangin dose-dependently down-regulated Smad2 and Smad3 phosphorylation. Such bioactivity of galangin resulted from its selective targeting to the activin receptor-like kinase 5 (ALK5) was demonstrated by ALK5 knockdown and over-expression experiments. Taken together, this compound could simultaneously inhibit both the accumulation of collagen and abnormal activation/proliferation of fibroblasts, which were the two pivotal factors for hypertrophic scar formation, thus suggesting that galangin serves as a potential agent for treatment of HS or other fibroproliferative disorders.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xinyu Cheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yi
- Clinical College of General Hospital of Beijing Military Region, Anhui Medical University, Hefei, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
30
|
Zhang Y, Zhou S, Cheng X, Yi B, Shan S, Wang J, Li Q. Baicalein attenuates hypertrophic scar formation via inhibition of the transforming growth factor‐β/Smad2/3 signalling pathway. Br J Dermatol 2015; 174:120-30. [PMID: 26301336 DOI: 10.1111/bjd.14108] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Y.F. Zhang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University Shanghai 200011 China
| | - S.Z. Zhou
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University Shanghai 200011 China
| | - X.Y. Cheng
- Department of Anesthesiology Renji Hospital; School of Medicine Shanghai Jiao Tong University Shanghai 200011 China
| | - B. Yi
- Clinical College of the General Hospital of Beijing Military Region Anhui Medical University Hefei China
| | - S.Z. Shan
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University Shanghai 200011 China
| | - J. Wang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University Shanghai 200011 China
| | - Q.F. Li
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University Shanghai 200011 China
| |
Collapse
|
31
|
Judge JL, Owens KM, Pollock SJ, Woeller CF, Thatcher TH, Williams JP, Phipps RP, Sime PJ, Kottmann RM. Ionizing radiation induces myofibroblast differentiation via lactate dehydrogenase. Am J Physiol Lung Cell Mol Physiol 2015; 309:L879-87. [PMID: 26254422 DOI: 10.1152/ajplung.00153.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is a common and dose-limiting side-effect of ionizing radiation used to treat cancers of the thoracic region. Few effective therapies are available for this disease. Pulmonary fibrosis is characterized by an accumulation of myofibroblasts and excess deposition of extracellular matrix proteins. Although prior studies have reported that ionizing radiation induces fibroblast to myofibroblast differentiation and collagen production, the mechanism remains unclear. Transforming growth factor-β (TGF-β) is a key profibrotic cytokine that drives myofibroblast differentiation and extracellular matrix production. However, its activation and precise role in radiation-induced fibrosis are poorly understood. Recently, we reported that lactate activates latent TGF-β through a pH-dependent mechanism. Here, we wanted to test the hypothesis that ionizing radiation leads to excessive lactate production via expression of the enzyme lactate dehydrogenase-A (LDHA) to promote myofibroblast differentiation. We found that LDHA expression is increased in human and animal lung tissue exposed to ionizing radiation. We demonstrate that ionizing radiation induces LDHA, lactate production, and extracellular acidification in primary human lung fibroblasts in a dose-dependent manner. We also demonstrate that genetic and pharmacologic inhibition of LDHA protects against radiation-induced myofibroblast differentiation. Furthermore, LDHA inhibition protects from radiation-induced activation of TGF-β. We propose a profibrotic feed forward loop, in which radiation induces LDHA expression and lactate production, which can lead to further activation of TGF-β to drive the fibrotic process. These studies support the concept of LDHA as an important therapeutic target in radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- J L Judge
- Department of Environmental Medicine, University of Rochester, Rochester, New York; Lung Biology and Disease Program, University of Rochester, Rochester, New York
| | - K M Owens
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York; and
| | - S J Pollock
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - C F Woeller
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - T H Thatcher
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York; and Lung Biology and Disease Program, University of Rochester, Rochester, New York
| | - J P Williams
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - R P Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, New York; Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York; and Lung Biology and Disease Program, University of Rochester, Rochester, New York
| | - P J Sime
- Department of Environmental Medicine, University of Rochester, Rochester, New York; Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York; and Lung Biology and Disease Program, University of Rochester, Rochester, New York
| | - R M Kottmann
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York; and Lung Biology and Disease Program, University of Rochester, Rochester, New York
| |
Collapse
|
32
|
Woodroof A, Phipps R, Woeller C, Rodeheaver G, Naughton GK, Piney E, Hickerson W, Branski L, Holmes JH. Evolution of a Biosynthetic Temporary Skin Substitute: A Preliminary Study. EPLASTY 2015; 15:e30. [PMID: 26229573 PMCID: PMC4511025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare PermeaDerm to first temporary biosynthetic skin substitute (Biobrane, cleared by the Food and Drug Administration in 1979). METHODS Different temporary skin substitutes (Biobrane, PermeaDerm, and PermeaDerm derivatives) were tested for physical differences, impact on healing wounds, inflammatory response, and ability to allow adequate growth of dermal fibroblasts and mesenchymal stem cells without accumulation of excessive scar-forming myofibroblasts. Proliferation of fibroblasts and stem cells on various skin substitutes was measured, and myofibroblast marker accumulation was evaluated by the expression of α-smooth muscle actin and fibronectin. Fibroblast migration was measured by tracking viable cells with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] dye. RESULTS In vivo testing shows PermeaDerm works well as a temporary skin substitute, performing better than Biobrane with respect to inflammation and fluid accumulation. Tissue culture techniques revealed that cells on PermeaDerm grow in a more uniform fashion and migrated to a greater extent than cells on Biobrane. Furthermore, cells grown in the presence of PermeaDerm expressed lower levels of the myofibroblast markers α-smooth muscle actin and fibronectin than cells grown on Biobrane. CONCLUSION PermeaDerm with variable porosity possesses all attributes and properties known to be important for a successful temporary skin substitute and enables the clinician to control porosity from essentially zero to what the wound requires. The ability of the clinician to minimize wound desiccation without fluid accumulation is related to the reduction of punctate scarring.
Collapse
Affiliation(s)
| | - Richard Phipps
- bUniversity of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Collynn Woeller
- bUniversity of Rochester School of Medicine and Dentistry, Rochester, NY
| | - George Rodeheaver
- cDepartment of Plastic Surgery at the University of Virginia, Charlottesville, VA
| | - Gail K. Naughton
- dHistogen, Inc, San Diego, Calif; eFirefighters/Regional Burn Center, Memphis, Tenn
| | - Emmett Piney
- dHistogen, Inc, San Diego, Calif; eFirefighters/Regional Burn Center, Memphis, Tenn
| | | | | | | |
Collapse
|