1
|
Weaver SR, Arnold KM, Peralta-Herrera E, Oviedo M, Zars EL, Bradley EW, Westendorf JJ. Postnatal deletion of Phlpp1 in chondrocytes delays post-traumatic osteoarthritis in male mice. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100525. [PMID: 39811690 PMCID: PMC11732534 DOI: 10.1016/j.ocarto.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/24/2024] [Indexed: 01/16/2025] Open
Abstract
Objective Osteoarthritis is a chronic, debilitating disease that causes long-term pain and immobility. Germline deletion of Phlpp1 or administration of small molecules that inhibit Phlpp1 prevents post-traumatic osteoarthritis (PTOA) in mice. However, the chondrocyte-intrinsic role of Phlpp1 in PTOA progression is unknown. The objective of this study was to determine how postnatal, chondrocyte-directed deletion of Phlpp1 affects PTOA progression in the presence or absence of Phlpp inhibitors. Design Phlpp1fl/fl; Agc-CreERT2 and Agc-CreERT2 mice were injected with tamoxifen at 12 weeks of age to generate Phlpp1-CKOAgcERT and control (AgcERT) groups. Male mice underwent surgery to destabilize the medial meniscus (DMM) at 17 weeks of age. A separate cohort of male Phlpp1-CKOAgcERT mice were administered an intra-articular injection of NSC117079, a Phlpp1/2 inhibitor, or saline seven weeks after DMM surgery. Activity and mechanical allodynia were monitored throughout the experiment and cartilage damage was evaluated 12 weeks post-surgery. Results Phlpp1-CKOAgcERT mice had less cartilage damage than AgcERT littermates 12 weeks after DMM surgery but exhibited no differences in activity. Prg4 expression was also higher in articular chondrocytes of Phlpp1-CKOAgcERT mice. Intra-articular administration of NSC117079 to Phlpp1-CKOAgcERT mice improved cartilage structure, subchondral bone sclerosis, and mechanical allodynia at 12 weeks post-DMM. Conclusions Postnatal deletion of Phlpp1 in chondrocytes attenuates DMM-induced cartilage damage and subchondral bone sclerosis but does not prevent pain-related behaviors. Intra-articular injection of Phlpp inhibitors delays mechanical allodynia in Phlpp1-CKOAgcERT mice. These data indicate that Phlpp1 in chondrocytes affects articular cartilage structure after injury, but pain-related behaviors are controlled by Phlpp1 or Phlpp2 in other cell types.
Collapse
Affiliation(s)
| | | | | | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Weaver SR, Peralta-Herrera E, Torres HM, Jessen E, Bradley EW, Westendorf JJ. Phlpp1 alters the murine chondrocyte phospho-proteome during endochondral bone formation. Bone 2024; 189:117265. [PMID: 39349089 PMCID: PMC11549792 DOI: 10.1016/j.bone.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Appendicular skeletal growth and bone mass acquisition are controlled by a variety of growth factors, hormones, and mechanical forces in a dynamic process called endochondral ossification. In long bones, chondrocytes in the growth plate proliferate and undergo hypertrophy to drive bone lengthening and mineralization. Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 and 2 (Phlpp1 and Phlpp2) are serine/threonine protein phosphatases that regulate cell proliferation, survival, and maturation via Akt, PKC, Raf1, S6k, and other intracellular signaling cascades. Germline deletion of Phlpp1 suppresses bone lengthening in growth plate chondrocytes. Here, we demonstrate that Phlpp2 does not regulate endochondral ossification, and we define the molecular differences between Phlpp1 and Phlpp2 in chondrocytes. Phlpp2-/- mice were phenotypically indistinguishable from their wildtype (WT) littermates, with similar bone length, bone mass, and growth plate dynamics. Deletion of Phlpp2 had moderate effects on the chondrocyte transcriptome and proteome compared to WT cells. By contrast, Phlpp1/2-/- (double knockout) mice resembled Phlpp1-/- mice phenotypically and molecularly, as the chondrocyte phospho-proteomes of Phlpp1-/- and Phlpp1/2-/- chondrocytes had similarities and were significantly different from WT and Phlpp2-/- chondrocyte phospho-proteomes. Data integration via multiparametric analysis showed that the transcriptome explained less variation in the data as a result of Phlpp1 or Phlpp2 deletion than proteome or phospho-proteome. Alterations in cell proliferation, collagen fibril organization, and Pdpk1 and Pak1/2 signaling pathways were identified in chondrocytes lacking Phlpp1, while cell cycle processes and Akt1 and Aurka signaling pathways were altered in chondrocytes lacking Phlpp2. These data demonstrate that Phlpp1, and to a lesser extent Phlpp2, regulate multiple and complex signaling cascades across the chondrocyte transcriptome, proteome, and phospho-proteome and that multi-omic data integration can reveal novel putative kinase targets that regulate endochondral ossification.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | | | - Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Erik Jessen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Elizabeth W Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
3
|
Lu PY, Huang M, Shao MH, Hu JX, Ding CY, Feng YJ, Zhang M, Lin HP, Tian HS. Effect and mechanism of recombinant human fibroblast growth factor 18 on osteoporosis in OVX mice. Climacteric 2024; 27:305-313. [PMID: 38275172 DOI: 10.1080/13697137.2024.2302967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect and the mechanism of recombinant human fibroblast growth factor 18 (rhFGF18) on postmenopausal osteoporosis. METHODS The effect of rhFGF18 on the proliferation and apoptosis of osteoblasts and the mechanism underlying such an effect was evaluated using an oxidative stress model of the MC3T3-E1 cell line. Furthermore, ovariectomy was performed on ICR mice to imitate estrogen-deficiency postmenopausal osteoporosis. Bone metabolism and bone morphological parameters in the ovariectomized (OVX) mice were evaluated. RESULTS The results obtained from the cell model showed that FGF18 promoted MC3T3-E1 cell proliferation by activating the extracellular signal-regulated kinase (ERK) and p38 instead of c-Jun N-terminal kinase (JNK). FGF18 also prevented cells from damage inflicted by oxidative stress via inhibition of apoptosis. After FGF18 administration, the expression level of anti-apoptotic protein Bcl-2 in the mice was upregulated, whereas those of the pro-apoptotic proteins Bax and caspase-3 were downregulated. Administering FGF18 also improved bone metabolism and bone morphological parameters in OVX mice. CONCLUSIONS FGF18 could effectively prevent bone loss in OVX mice by enhancing osteoblastogenesis and protecting osteoblasts from oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- P Y Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - M Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
- Department of Pharmacy, Wuzhou GongRen Hospital, Wuzhou, China
| | - M H Shao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - J X Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - C Y Ding
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Y J Feng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - M Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - H P Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - H S Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Arnold KM, Weaver SR, Zars EL, Tschumperlin DJ, Westendorf JJ. Inhibition of Phlpp1 preserves the mechanical integrity of articular cartilage in a murine model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2024; 32:680-689. [PMID: 38432607 PMCID: PMC11127785 DOI: 10.1016/j.joca.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Phlpp1 inhibition is a potential therapeutic strategy for cartilage regeneration and prevention of post-traumatic osteoarthritis (PTOA). To understand how Phlpp1 loss affects cartilage structure, cartilage elastic modulus was measured with atomic force microscopy (AFM) in male and female mice after injury. METHODS Osteoarthritis was induced in male and female Wildtype (WT) and Phlpp1-/- mice by destabilization of the medial meniscus (DMM). At various timepoints post-injury, activity was measured, and knee joints examined with AFM and histology. In another cohort of WT mice, the PHLPP inhibitor NSC117079 was intra-articularly injected 4 weeks after injury. RESULTS Male WT mice showed decreased activity and histological signs of cartilage damage at 12 but not 6-weeks post-DMM. Female mice showed a less severe response to DMM by comparison, with no histological changes seen at any time point. In both sexes the elastic modulus of medial condylar cartilage was decreased in WT mice but not Phlpp1-/- mice after DMM as measured by AFM. By 6-weeks, cartilage modulus had decreased from 2 MPa to 1 MPa in WT mice. Phlpp1-/- mice showed no change in modulus at 6-weeks and only a 25% decrease at 12-weeks. The PHLPP inhibitor NSC117079 protected cartilage structure and prevented signs of OA 6-weeks post-injury. CONCLUSIONS AFM is a sensitive method for detecting early changes in articular cartilage post-injury. Phlpp1 suppression, either through genetic deletion or pharmacological inhibition, protects cartilage degradation in a model of PTOA, validating Phlpp1 as a therapeutic target for PTOA.
Collapse
Affiliation(s)
- Katherine M Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | | | - Elizabeth L Zars
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Wang L, Ma J, Chen C, Lin B, Xie S, Yang W, Qian J, Zhang Y. Isoquercitrin alleviates pirarubicin-induced cardiotoxicity in vivo and in vitro by inhibiting apoptosis through Phlpp1/AKT/Bcl-2 signaling pathway. Front Pharmacol 2024; 15:1315001. [PMID: 38562460 PMCID: PMC10982373 DOI: 10.3389/fphar.2024.1315001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Due to the cardiotoxicity of pirarubicin (THP), it is necessary to investigate new compounds for the treatment of THP-induced cardiotoxicity. Isoquercitrin (IQC) is a natural flavonoid with anti-oxidant and anti-apoptosis properties. Thus, the present study aimed to investigate the influence of IQC on preventing the THP-induced cardiotoxicity in vivo and in vitro. Methods: The optimal concentration and time required for IQC to prevent THP-induced cardiomyocyte damage were determined by an MTT assay. The protective effect was further verified in H9c2 and HCM cells using dichlorodihydrofluorescein diacetate fluorescent probes, MitoTracker Red probe, enzyme-linked immunosorbent assay, JC-1 probe, and real time-quantitative polymerase chain reaction (RT-qPCR). Rats were administered THP to establish cardiotoxicity. An electrocardiogram (ECG) was performed, and cardiac hemodynamics, myocardial enzymes, oxidative stress indicators, and hematoxylin-eosin staining were studied. Voltage-dependent anion channel 1 (VDAC1), adenine nucleotide translocase 1 (ANT1), and cyclophilin D (CYPD) were detected by qRT-PCR, and the Phlpp1/AKT/Bcl-2 axis proteins were detected by western blot, confirming that IQC markedly increased cell viability and superoxide dismutase (SOD) levels, diminished the levels of ROS and MDA, and elevated mitochondrial function and apoptosis in vivo and in vitro. Results: Results showed that IQC reduced THP-induced myocardial histopathological injury, electrocardiogram (ECG) abnormalities, and cardiac dysfunction in vivo. IQC also decreased serum levels of MDA, BNP, CK-MB, c-TnT, and LDH, while increasing levels of SOD and GSH. We also found that IQC significantly reduced VDAC1, ANT1, and CYPD mRNA expression. In addition, IQC controlled apoptosis by modulating Phlpp1/AKT/Bcl-2 signaling pathways. IQC markedly increased H9c2 and HCM cell viability and SOD levels, diminished the levels of ROS and MDA, and elevated mitochondrial function in H9c2 and HCM cells to defend against THP-induced cardiomyocyte apoptosis in vitro. The AKT inhibitor IMQ demonstrated that IQC lacked antioxidant and anti-apoptotic properties. Moreover, our data showed that IQC regulates Phlpp1 expression, thereby influencing the expression levels of p-AKT, cytochrome c, caspase-3, caspase-9, Bcl-2, and Bax. Discussion: In conclusion, our results indicate that IQC protects the changes in mitochondrial membrane permeability in cardiomyocytes by regulating the Phlpp1/AKT/Bcl-2 signaling pathway, inhibits the release of cytc from the mitochondrial inner membrane to the cytoplasm, forms apoptotic bodies, induces cell apoptosis, and reduces THP induced cardiotoxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| | - Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiajia Qian
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| |
Collapse
|
6
|
Zhang C, Gordon MD, Joseph KM, Diaz‐Hernandez ME, Drissi H, Illien‐Jünger S. Differential efficacy of two small molecule PHLPP inhibitors to promote nucleus Pulposus cell health. JOR Spine 2024; 7:e1306. [PMID: 38222816 PMCID: PMC10782076 DOI: 10.1002/jsp2.1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc (IVD) degeneration is associated with chronic back pain. We previously demonstrated that the phosphatase pleckstrin homology domain and leucine-rich repeat protein phosphatase (PHLPP) 1 was positively correlated with IVD degeneration and its deficiency decelerated IVD degeneration in both mouse IVDs and human nucleus pulposus (NP) cells. Small molecule PHLPP inhibitors may offer a translatable method to alleviate IVD degeneration. In this study, we tested the effectiveness of the two PHLPP inhibitors NSC117079 and NSC45586 in promoting a healthy NP phenotype. Methods Tail IVDs of 5-month-old wildtype mice were collected and treated with NSC117079 or NSC45586 under low serum conditions ex vivo. Hematoxylin & eosin staining was performed to examine IVD structure and NP cell morphology. The expression of KRT19 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human NP cells were obtained from patients with IVD degeneration. The gene expression of KRT19, ACAN, SOX9, and MMP13 was analyzed via real time qPCR, and AKT phosphorylation and the protein expression of FOXO1 was analyzed via immunoblot. Results In a mouse IVD organ culture model, NSC45586, but not NSC117079, preserved vacuolated notochordal cell morphology and KRT19 expression while suppressing cell apoptosis, counteracting the degenerative changes induced by serum deprivation, especially in males. Likewise, in degenerated human NP cells, NSC45586 increased cell viability and the expression of KRT19, ACAN, and SOX9 and reducing the expression of MMP13, while NSC117079 treatment only increased KRT19 expression. Mechanistically, NSC45586 treatment increased FOXO1 protein expression in NP cells, and inhibiting FOXO1 offset NSC45586-induced regenerative potential, especially in males. Conclusions Our study indicates that NSC45586 was effective in promoting NP cell health, especially in males, suggesting that PHLPP plays a key role in NP cell homeostasis and that NSC45586 might be a potential drug candidate in treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Madeleine D. Gordon
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta VA Health Care SystemDecaturGeorgiaUSA
| | - Svenja Illien‐Jünger
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Karkache IY, Molstad DHH, Vu E, Jensen ED, Bradley EW. Phlpp1 Expression in Osteoblasts Plays a Modest Role in Bone Homeostasis. JBMR Plus 2023; 7:e10806. [PMID: 38130760 PMCID: PMC10731110 DOI: 10.1002/jbm4.10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 12/23/2023] Open
Abstract
Prior work demonstrated that Phlpp1 deficiency alters limb length and bone mass, but the cell types involved and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within bone-forming osteoblasts, we crossed Phlpp1 floxed mice with mice harboring type 1 collagen (Col1a12.3kb)-Cre. Mineralization of bone marrow stromal cell cultures derived from Phlpp1 cKOCol1a1 was unchanged, but levels of inflammatory genes (eg, Ifng, Il6, Ccl8) and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratios were enhanced by either Phlpp1 ablation or chemical inhibition. Micro-computed tomography of the distal femur and L5 vertebral body of 12-week-old mice revealed no alteration in bone volume per total volume, but compromised femoral bone microarchitecture within Phlpp1 cKOCol1a1 conditional knockout females. Bone histomorphometry of the proximal tibia documented no changes in osteoblast or osteoclast number per bone surface but slight reductions in osteoclast surface per bone surface. Overall, our data show that deletion of Phlpp1 in type 1 collagen-expressing cells does not significantly alter attainment of peak bone mass of either males or females, but may enhance inflammatory gene expression and the ratio of RANKL/OPG. Future studies examining the role of Phlpp1 within models of advanced age, inflammation, or osteocytes, as well as functional redundancy with the related Phlpp2 isoform are warranted. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
- College of Veterinary SciencesUniversity of MinnesotaMinneapolisMNUSA
| | - David HH Molstad
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
| | - Elizabeth Vu
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
| | | | - Elizabeth W Bradley
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
- College of Veterinary SciencesUniversity of MinnesotaMinneapolisMNUSA
- Department of Orthopedic SurgeryStem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
8
|
Wang Q, Zou B, Wei X, Lin H, Pang C, Wang L, Zhong J, Chen H, Gao X, Li M, Ong ACM, Yue Z, Sun L. Identification of renal cyst cells of type I Nephronophthisis by single-nucleus RNA sequencing. Front Cell Dev Biol 2023; 11:1192935. [PMID: 37583898 PMCID: PMC10423821 DOI: 10.3389/fcell.2023.1192935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Nephronophthisis (NPH) is the most common genetic cause of end-stage renal disease (ESRD) in childhood, and NPHP1 is the major pathogenic gene. Cyst formation at the corticomedullary junction is a pathological feature of NPH, but the mechanism underlying cystogenesis is not well understood. The isolation and identification of cystic cell subpopulation could help to identify their origins and provide vital clues to the mechanisms underlying cystogenesis in NPH. Methods: Single-nucleus RNA sequencing (snRNA-seq) was performed to produce an atlas of NPHP1 renal cells. Kidney samples were collected from WT (Nphp1 +/+) mice and NPHP1 (Nphp1 del2-20/del2-20) model mice. Results: A comprehensive atlas of the renal cellular landscape in NPHP1 was generated, consisting of 14 basic renal cell types as well as a subpopulation of DCT cells that was overrepresented in NPHP1 kidneys compared to WT kidneys. GO analysis revealed significant downregulation of genes associated with tubular development and kidney morphogenesis in this subpopulation. Furthermore, the reconstruction of differentiation trajectories of individual cells within this subpopulation confirmed that a specific group of cells in NPHP1 mice become arrested at an early stage of differentiation and proliferate to form cysts. We demonstrate that Niban1 is a specific molecular marker of cystic cells in both mice and human NPHP1. Conclusion: In summary, we report a novel subpopulation of DCT cells, marked by Niban1, that are classified as cystic cells in the NPHP1 mice kidney. These results offer fresh insights into the cellular and molecular basis of cystogenesis in NPH.
Collapse
Affiliation(s)
- Qianying Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baojuan Zou
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrong Lin
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changmiao Pang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinglin Zhong
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Albert C. M. Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Zhihui Yue
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
FGF9 promotes cell proliferation and tumorigenesis in TM3 mouse Leydig progenitor cells. Am J Cancer Res 2022; 12:5613-5630. [PMID: 36628285 PMCID: PMC9827084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor 9 (FGF9) modulates cell proliferation, differentiation and motility for development and tissue repair in normal cells. Growing evidence shows that abnormal activation of FGF9 signaling is associated with tumor malignancy. We have previously reported that FGF9 increases MA-10 mouse Leydig tumor cell proliferation, in vitro, and tumor growth, in vivo. Also, FGF9 promotes the tumor growth and liver metastasis of mouse Lewis lung cancer cells, in vivo. However, the effects of FGF9 in the early stage of tumorigenesis remains elusive. In this study, TM3 mouse Leydig progenitor cells, that are not tumorigenic in immunocompromised mice, were used as a model cell line to investigate the role of FGF9 in tumorigenesis. The results demonstrated that FGF9 significantly induced cell proliferation and activated the MAPK, PI3K and PLCγ signaling pathways in TM3 cells. The percentage of the cell number in G1 phase was reduced and that in S and G2/M phases was increased after FGF9 stimulation in TM3 cells. Cyclin D1, cyclin A1, CDK2, CDK1, and p21 expressions and the phosphorylation level of Rb were all induced in FGF9-treated TM3 cells. In addition, FGF9 increased the expression of FGF receptor 1-4 in TM3 cells, suggesting the positive feedback loop between FGF9 and FGFRs. Furthermore, in the allograft mouse model, FGF9 promoted the tumorigenesis of TM3 cells characterized by higher expression of tumor markers, such as tumor necrosis factor alpha (TNFα) and α-fetoprotein (AFP), in the subcutaneously inoculated TM3 cell tissue. Conclusively, FGF9 induced cell cycle to increase cell proliferation of TM3 cells through FAK, MAPK, PI3K/Akt and PLCγ signaling pathways, in vitro, and promoted the tumorigenesis of TM3 cell allograft tissue, in vivo, which is a potential marker for tumor as well as a target for cancer therapeutic strategies.
Collapse
|
10
|
Zhang C, Joseph KM, Khan NM, Diaz‐Hernandez ME, Drissi H, Illien‐Junger S. PHLPP1 deficiency protects against age-related intervertebral disc degeneration. JOR Spine 2022; 5:e1224. [PMID: 36601379 PMCID: PMC9799085 DOI: 10.1002/jsp2.1224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is strongly associated with low back pain and is highly prevalent in the elderly population. Hallmarks of IVD degeneration include cell loss and extracellular matrix degradation. The PH domain leucine-rich-repeats protein phosphatase (PHLPP1) is highly expressed in diseased cartilaginous tissues where it is linked to extracellular matrix degradation. This study explored the ability of PHLPP1 deficiency to protect against age-related spontaneous IVD degeneration. Methods Lumbar IVDs of global Phlpp1 knockout (KO) and wildtype (WT) mice were collected at 5 months (young) and 20 months (aged). Picrosirius red-alcian blue staining (PR-AB) was performed to examine IVD structure and histological score. The expression of aggrecan, ADAMTS5, KRT19, FOXO1 and FOXO3 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human nucleus pulposus (NP) samples were obtained from patients diagnosed with IVD degeneration. PHLPP1 knockdown in human degenerated NP cells was conducted using small interfering RNA (siRNA) transfection. The expression of PHLPP1 regulated downstream targets was analyzed via immunoblot and real time quantitative PCR. Results Histological analysis showed that Phlpp1 KO decreased the prevalence and severity of age-related IVD degeneration. The deficiency of PHLPP1 promoted the increased expression of NP phenotypic marker KRT19, aggrecan and FOXO1, and decreased levels of ADMATS5 and cell apoptosis in the NP of aged mice. In degenerated human NP cells, PHLPP1 knockdown induced FOXO1 protein levels while FOXO1 inhibition offset the beneficial effects of PHLPP1 knockdown on KRT19 gene and protein expression. Conclusions Our findings indicate that Phlpp1 deficiency protected against NP phenotypic changes, extracellular matrix degradation, and cell apoptosis in the process of IVD degeneration, probably through FOXO1 activation, making PHLPP1 a promising therapeutic target for treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nazir M. Khan
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
11
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
12
|
Taylor EL, Weaver SR, Lorang IM, Arnold KM, Bradley EW, Marron Fernandez de Velasco E, Wickman K, Westendorf JJ. GIRK3 deletion facilitates kappa opioid signaling in chondrocytes, delays vascularization and promotes bone lengthening in mice. Bone 2022; 159:116391. [PMID: 35314385 PMCID: PMC9035100 DOI: 10.1016/j.bone.2022.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Long bones are formed and repaired through the process of endochondral ossification. Activation of G protein-coupled receptor (GPCR) signaling pathways is crucial for skeletal development and long bone growth. G protein-gated inwardly-rectifying K+ (GIRK) channel genes are key functional components and effectors of GPCR signaling pathways in excitable cells of the heart and brain, but their roles in non-excitable cells that directly contribute to endochondral bone formation have not been studied. In this study, we analyzed skeletal phenotypes of Girk2-/-, Girk3-/- and Girk2/3-/- mice. Bones from 12-week-old Girk2-/- mice were normal in length, but femurs and tibiae from Girk3-/- and Girk2/3-/- mice were longer than age-matched controls at 12-weeks-old. Epiphyseal chondrocytes from 5-day-old Girk3-/- mice expressed higher levels of genes involved in collagen chain trimerization and collagen fibril assembly, lower levels of genes encoding VEGF receptors, and produced larger micromasses than wildtype chondrocytes in vitro. Girk3-/- chondrocytes were also more responsive to the kappa opioid receptor (KOR) ligand dynorphin, as evidenced by greater pCREB expression, greater cAMP and GAG production, and upregulation of Col2a1 and Sox9 transcripts. Imaging studies showed that Kdr (Vegfr2) and endomucin expression was dramatically reduced in bones from young Girk3-/- mice, supporting a role for delayed vasculogenesis and extended postnatal endochondral bone growth. Together these data indicate that GIRK3 controls several processes involved in bone lengthening.
Collapse
Affiliation(s)
- Earnest L Taylor
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Cell Biology, University of North Carolina, NC, United States of America
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Ian M Lorang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; University of Washington School of Medicine, Seattle, WA, United States of America
| | - Katherine M Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States of America
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
13
|
Chen H, Cui Y, Zhang D, Xie J, Zhou X. The role of fibroblast growth factor 8 in cartilage development and disease. J Cell Mol Med 2022; 26:990-999. [PMID: 35001536 PMCID: PMC8831980 DOI: 10.1111/jcmm.17174] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 8 (FGF‐8), also known as androgen‐induced growth factor (AIGF), is presumed to be a potent mitogenic cytokine that plays important roles in early embryonic development, brain formation and limb development. In the bone environment, FGF‐8 produced or received by chondrocyte precursor cells binds to fibroblast growth factor receptor (FGFR), causing different levels of activation of downstream signalling pathways, such as phospholipase C gamma (PLCγ)/Ca2+, RAS/mitogen‐activated protein kinase‐extracellular regulated protein kinases (RAS/MAPK‐MEK‐ERK), and Wnt‐β‐catenin‐Axin2 signalling, and ultimately controlling chondrocyte proliferation, differentiation, cell survival and migration. However, the molecular mechanism of FGF‐8 in normal or pathological cartilage remains unclear, and thus, FGF‐8 represents a novel exploratory target for studies of chondrocyte development and cartilage disease progression. In this review, studies assessing the relationship between FGF‐8 and chondrocytes that have been published in the past 5 years are systematically summarized to determine the probable mechanism and physiological effect of FGF‐8 on chondrocytes. Based on the existing research results, a therapeutic regimen targeting FGF‐8 is proposed to explore the possibility of treating chondrocyte‐related diseases.
Collapse
Affiliation(s)
- Haoran Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
PHLPP Signaling in Immune Cells. Curr Top Microbiol Immunol 2022; 436:117-143. [DOI: 10.1007/978-3-031-06566-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
miR-190-5p Alleviates Myocardial Ischemia-Reperfusion Injury by Targeting PHLPP1. DISEASE MARKERS 2021; 2021:8709298. [PMID: 34868398 PMCID: PMC8639278 DOI: 10.1155/2021/8709298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Objective Myocardial ischemia-reperfusion (I/R) injury (MIRI) refers to the more serious myocardial injury after blood flow recovery, which seriously affects the prognosis of patients with ischemic cardiomyopathy. This study explored the new targets for MIRI treatment by investigating the effects of miR-190-5p and its downstream target on the structure and function of myocardial cells. Methods We injected agomir miR-190-5p into the tail vein of rats to increase the expression of miR-190-5p in rat myocardial cells and made an I/R rat model by coronary artery occlusion. We used 2,3,5-triphenyl tetrazolium chloride staining, lactate dehydrogenase (LDH) detection, echocardiography, and hematoxylin-eosin (HE) staining to determine the degree of myocardial injury in I/R rats. In addition, we detected the expression of inflammatory factors and apoptosis-related molecules in rat serum and myocardial tissue to determine the level of inflammation and apoptosis in rat myocardium. Finally, we determined the downstream target of miR-190-5p by Targetscan system and dual luciferase reporter assay. Results The expression of miR-190-5p in an I/R rat myocardium was significantly lower than that in normal rats. After treatment of I/R rats with agomir miR-190-5p, the ischemic area of rat myocardium and the concentration of LDH decreased. The results of echocardiography and HE staining also found that overexpression of miR-190-5p improved the structure and function of rat myocardium. miR-190-5p was also found to improve the viability of H9c2 cells in vitro and reduce the level of apoptosis of H9c2 cells. The results of Targetscan system and dual luciferase reporter assay found that miR-190-5p targeted to inhibit pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1). In addition, inhibition of PHLPP1 was found to improve the viability of H9c2 cells. Conclusion Therefore, miR-190-5p can reduce the inflammation and apoptosis of myocardium by targeting PHLPP1, thereby alleviating MIRI.
Collapse
|
16
|
Lemoine KA, Fassas JM, Ohannesian SH, Purcell NH. On the PHLPPside: Emerging roles of PHLPP phosphatases in the heart. Cell Signal 2021; 86:110097. [PMID: 34320369 PMCID: PMC8403656 DOI: 10.1016/j.cellsig.2021.110097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
PH domain leucine-rich repeat protein phosphatase (PHLPP) is a family of enzymes made up of two isoforms (PHLPP1 and PHLPP2), whose actions modulate intracellular activity via the dephosphorylation of specific serine/threonine (Ser/Thr) residues on proteins such as Akt. Recent data generated in our lab, supported by findings from others, implicates the divergent roles of PHLPP1 and PHLPP2 in maintaining cellular homeostasis since dysregulation of these enzymes has been linked to various pathological states including cardiovascular disease, diabetes, ischemia/reperfusion injury, musculoskeletal disease, and cancer. Therefore, development of therapies to modulate specific isoforms of PHLPP could prove to be therapeutically beneficial in several diseases especially those targeting the cardiovascular system. This review is intended to provide a comprehensive summary of current literature detailing the role of the PHLPP isoforms in the development and progression of heart disease.
Collapse
Affiliation(s)
- Kellie A Lemoine
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Julianna M Fassas
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Shirag H Ohannesian
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Nicole H Purcell
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA; Cardiovascular Molecular Signaling, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| |
Collapse
|
17
|
Karkache IY, Damodaran JR, Molstad DHH, Mansky KC, Bradley EW. Myeloid Lineage Ablation of Phlpp1 Regulates M-CSF Signaling and Tempers Bone Resorption in Female Mice. Int J Mol Sci 2021; 22:9702. [PMID: 34575866 PMCID: PMC8468863 DOI: 10.3390/ijms22189702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Prior work demonstrated that Phlpp1 deficiency alters trabecular bone mass and enhances M-CSF responsiveness, but the cell types and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within myeloid lineage cells, we crossed Phlpp1 floxed mice with mice harboring LysM-Cre. Micro-computed tomography of the distal femur of 12-week-old mice revealed a 30% increase in bone volume per total volume of Phlpp1 female conditional knockouts, but we did not observe significant changes within male Phlpp1 cKOLysM mice. Bone histomorphmetry of the proximal tibia further revealed that Phlpp1 cKOLysM females exhibited elevated osteoclast numbers, but conversely had reduced levels of serum markers of bone resorption as compared to littermate controls. Osteoblast number and serum markers of bone formation were unchanged. In vitro assays confirmed that Phlpp1 ablation enhanced osteoclast number and area, but limited bone resorption. Additionally, reconstitution with exogenous Phlpp1 suppressed osteoclast numbers. Dose response assays demonstrated that Phlpp1-/- cells are more responsive to M-CSF, but reconstitution with Phlpp1 abrogated this effect. Furthermore, small molecule-mediated Phlpp inhibition enhanced osteoclast numbers and size. Enhanced phosphorylation of Phlpp substrates-including Akt, ERK1/2, and PKCζ-accompanied these observations. In contrast, actin cytoskeleton disruption occurred within Phlpp inhibitor treated osteoclasts. Moreover, Phlpp inhibition reduced resorption of cells cultured on bovine bone slices in vitro. Our results demonstrate that Phlpp1 deficiency within myeloid lineage cells enhances bone mass by limiting bone resorption while leaving osteoclast numbers intact; moreover, we show that Phlpp1 represses osteoclastogenesis and controls responses to M-CSF.
Collapse
Affiliation(s)
- Ismael Y. Karkache
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Jeyaram R. Damodaran
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - David H. H. Molstad
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Services, Institute for Virology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Taylor E, Weaver S, Zars E, Turner C, Buhrow S, Reid J, Bradley E, Westendorf J. Chondrocytic and pharmacokinetic properties of Phlpp inhibitors. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100190. [DOI: 10.1016/j.ocarto.2021.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
|
19
|
Amorim ST, Stafuzza NB, Kluska S, Peripolli E, Pereira ASC, Muller da Silveira LF, de Albuquerque LG, Baldi F. Genome-wide interaction study reveals epistatic interactions for beef lipid-related traits in Nellore cattle. Anim Genet 2021; 53:35-48. [PMID: 34407235 DOI: 10.1111/age.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 11/27/2022]
Abstract
Gene-gene interactions cause hidden genetic variation in natural populations and could be responsible for the lack of replication that is typically observed in complex traits studies. This study aimed to identify gene-gene interactions using the empirical Hilbert-Schmidt Independence Criterion method to test for epistasis in beef fatty acid profile traits of Nellore cattle. The dataset contained records from 963 bulls, genotyped using a 777 962k SNP chip. Meat samples of Longissimus muscle, were taken to measure fatty acid composition, which was quantified by gas chromatography. We chose to work with the sums of saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA), omega-3 (OM3), omega-6 (OM6), SFA:PUFA and OM3:OM6 fatty acid ratios. The SNPs in the interactions where P < 10 - 8 were mapped individually and used to search for candidate genes. Totals of 602, 3, 13, 23, 13, 215 and 169 candidate genes for SFAs, MUFAs, PUFAs, OM3s, OM6s and SFA:PUFA and OM3:OM6 ratios were identified respectively. The candidate genes found were associated with cholesterol, lipid regulation, low-density lipoprotein receptors, feed efficiency and inflammatory response. Enrichment analysis revealed 57 significant GO and 18 KEGG terms ( P < 0.05), most of them related to meat quality and complementary terms. Our results showed substantial genetic interactions associated with lipid profile, meat quality, carcass and feed efficiency traits for the first time in Nellore cattle. The knowledge of these SNP-SNP interactions could improve understanding of the genetic and physiological mechanisms that contribute to lipid-related traits and improve human health by the selection of healthier meat products.
Collapse
Affiliation(s)
- S T Amorim
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil
| | - N B Stafuzza
- Instituto de Zootecnia - Centro de Pesquisa em Bovinos de Corte, Rodovia Carlos Tonanni, Km94, Sertãozinho, 14174-000, Brazil
| | - S Kluska
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil
| | - E Peripolli
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil
| | - A S C Pereira
- Faculdade de Zootecnia e Engenharia de Alimentos, Núcleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, CEP 13635-900, Brazil
| | - L F Muller da Silveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Núcleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, CEP 13635-900, Brazil
| | - L G de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil
| | - F Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, CEP 14884-900, Brazil
| |
Collapse
|
20
|
Phlpp1 is induced by estrogen in osteoclasts and its loss in Ctsk-expressing cells does not protect against ovariectomy-induced bone loss. PLoS One 2021; 16:e0251732. [PMID: 34143773 PMCID: PMC8213150 DOI: 10.1371/journal.pone.0251732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Prior studies demonstrated that deletion of the protein phosphatase Phlpp1 in Ctsk-Cre expressing cells enhances bone mass, characterized by diminished osteoclast activity and increased coupling to bone formation. Due to non-specific expression of Ctsk-Cre, the definitive mechanism for this observation was unclear. To further define the role of bone resorbing osteoclasts, we performed ovariectomy (Ovx) and Sham surgeries on Phlpp1 cKOCtsk and WT mice. Micro-CT analyses confirmed enhanced bone mass of Phlpp1 cKOCtsk Sham females. In contrast, Ovx induced bone loss in both groups, with no difference between Phlpp1 cKOCtsk and WT mice. Histomorphometry demonstrated that Ovx mice lacked differences in osteoclasts per bone surface, suggesting that estradiol (E2) is required for Phlpp1 deficiency to have an effect. We performed high throughput unbiased transcriptional profiling of Phlpp1 cKOCtsk osteoclasts and identified 290 differentially expressed genes. By cross-referencing these differentially expressed genes with all estrogen response element (ERE) containing genes, we identified IGFBP4 as potential estrogen-dependent target of Phlpp1. E2 induced PHLPP1 expression, but reduced IGFBP4 levels. Moreover, genetic deletion or chemical inhibition of Phlpp1 was correlated with IGFBP4 levels. We then assessed IGFBP4 expression by osteoclasts in vivo within intact 12-week-old females. Modest IGFBP4 immunohistochemical staining of TRAP+ osteoclasts within WT females was observed. In contrast, TRAP+ bone lining cells within intact Phlpp1 cKOCtsk females robustly expressed IGFBP4, but levels were diminished within TRAP+ bone lining cells following Ovx. These results demonstrate that effects of Phlpp1 conditional deficiency are lost following Ovx, potentially due to estrogen-dependent regulation of IGFBP4.
Collapse
|
21
|
Weaver SR, Taylor EL, Zars EL, Arnold KM, Bradley EW, Westendorf JJ. Pleckstrin homology (PH) domain and Leucine Rich Repeat Phosphatase 1 (Phlpp1) Suppresses Parathyroid Hormone Receptor 1 (Pth1r) Expression and Signaling During Bone Growth. J Bone Miner Res 2021; 36:986-999. [PMID: 33434347 PMCID: PMC8131217 DOI: 10.1002/jbmr.4248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022]
Abstract
Endochondral ossification is tightly controlled by a coordinated network of signaling cascades including parathyroid hormone (PTH). Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 (Phlpp1) affects endochondral ossification by suppressing chondrocyte proliferation in the growth plate, longitudinal bone growth, and bone mineralization. As such, Phlpp1-/- mice have shorter long bones, thicker growth plates, and proportionally larger growth plate proliferative zones. The goal of this study was to determine how Phlpp1 deficiency affects PTH signaling during bone growth. Transcriptomic analysis revealed greater PTH receptor 1 (Pth1r) expression and enrichment of histone 3 lysine 27 acetylation (H3K27ac) at the Pth1r promoter in Phlpp1-deficient chondrocytes. PTH (1-34) enhanced and PTH (7-34) attenuated cell proliferation, cAMP signaling, cAMP response element-binding protein (CREB) phosphorylation, and cell metabolic activity in Phlpp1-inhibited chondrocytes. To understand the role of Pth1r action in the endochondral phenotypes of Phlpp1-deficient mice, Phlpp1-/- mice were injected with Pth1r ligand PTH (7-34) daily for the first 4 weeks of life. PTH (7-34) reversed the abnormal growth plate and long-bone growth phenotypes of Phlpp1-/- mice but did not rescue deficits in bone mineral density or trabecular number. These results show that elevated Pth1r expression and signaling contributes to increased proliferation in Phlpp1-/- chondrocytes and shorter bones in Phlpp1-deficient mice. Our data reveal a novel molecular relationship between Phlpp1 and Pth1r in chondrocytes during growth plate development and longitudinal bone growth. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth W. Bradley
- Department of Orthopedic Surgery and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
23
|
The PHLPP1 N-Terminal Extension Is a Mitotic Cdk1 Substrate and Controls an Interactome Switch. Mol Cell Biol 2021; 41:e0033320. [PMID: 33397691 PMCID: PMC8088274 DOI: 10.1128/mcb.00333-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is a tumor suppressor that directly dephosphorylates a wide array of substrates, most notably the prosurvival kinase Akt. However, little is known about the molecular mechanisms governing PHLPP1 itself. Here, we report that PHLPP1 is dynamically regulated in a cell cycle-dependent manner and deletion of PHLPP1 results in mitotic delays and increased rates of chromosomal segregation errors. We show that PHLPP1 is hyperphosphorylated during mitosis by Cdk1 in a functionally uncharacterized region known as the PHLPP1 N-terminal extension (NTE). A proximity-dependent biotin identification (BioID) interaction screen revealed that during mitosis, PHLPP1 dissociates from plasma membrane scaffolds, such as Scribble, by a mechanism that depends on its NTE and gains proximity to kinetochore and mitotic spindle proteins such as KNL1 and TPX2. Our data are consistent with a model in which phosphorylation of PHLPP1 during mitosis regulates binding to its mitotic partners and allows accurate progression through mitosis. The finding that PHLPP1 binds mitotic proteins in a cell cycle- and phosphorylation-dependent manner may have relevance to its tumor-suppressive function.
Collapse
|
24
|
Lo Dico A, Martelli C, Diceglie C, Ottobrini L. The Multifaceted Role of CMA in Glioma: Enemy or Ally? Int J Mol Sci 2021; 22:2217. [PMID: 33672324 PMCID: PMC7926390 DOI: 10.3390/ijms22042217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a catabolic pathway fundamental for cell homeostasis, by which specific damaged or non-essential proteins are degraded. CMA activity has three main levels of regulation. The first regulatory level is based on the targetability of specific proteins possessing a KFERQ-like domain, which can be recognized by specific chaperones and delivered to the lysosomes. Target protein unfolding and translocation into the lysosomal lumen constitutes the second level of CMA regulation and is based on the modulation of Lamp2A multimerization. Finally, the activity of some accessory proteins represents the third regulatory level of CMA activity. CMA's role in oncology has not been fully clarified covering both pro-survival and pro-death roles in different contexts. Taking all this into account, it is possible to comprehend the actual complexity of both CMA regulation and the cellular consequences of its activity allowing it to be elected as a modulatory and not only catabolic machinery. In this review, the role covered by CMA in oncology is discussed with a focus on its relevance in glioma. Molecular correlates of CMA importance in glioma responsiveness to treatment are described to identify new early efficacy biomarkers and new therapeutic targets to overcome resistance.
Collapse
Affiliation(s)
- Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
| |
Collapse
|
25
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
26
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
27
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
28
|
Zhang C, Smith MP, Zhou GK, Lai A, Hoy RC, Mroz V, Torre OM, Laudier DM, Bradley EW, Westendorf JJ, Iatridis JC, Illien-Jünger S. Phlpp1 is associated with human intervertebral disc degeneration and its deficiency promotes healing after needle puncture injury in mice. Cell Death Dis 2019; 10:754. [PMID: 31582730 PMCID: PMC6776553 DOI: 10.1038/s41419-019-1985-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022]
Abstract
Back pain is a leading cause of global disability and is strongly associated with intervertebral disc (IVD) degeneration (IDD). Hallmarks of IDD include progressive cell loss and matrix degradation. The Akt signaling pathway regulates cellularity and matrix production in IVDs and its inactivation is known to contribute to a catabolic shift and increased cell loss via apoptosis. The PH domain leucine-rich repeat protein phosphatase (Phlpp1) directly regulates Akt signaling and therefore may play a role in regulating IDD, yet this has not been investigated. The aim of this study was to investigate if Phlpp1 has a role in Akt dysregulation during IDD. In human IVDs, Phlpp1 expression was positively correlated with IDD and the apoptosis marker cleaved Caspase-3, suggesting a key role of Phlpp1 in the progression of IDD. In mice, 3 days after IVD needle puncture injury, Phlpp1 knockout (KO) promoted Akt phosphorylation and cell proliferation, with less apoptosis. At 2 and 8 months after injury, Phlpp1 deficiency also had protective effects on IVD cellularity, matrix production, and collagen structure as measured with histological and immunohistochemical analyses. Specifically, Phlpp1-deletion resulted in enhanced nucleus pulposus matrix production and more chondrocytic cells at 2 months, and increased IVD height, nucleus pulposus cellularity, and extracellular matrix deposition 8 months after injury. In conclusion, Phlpp1 has a role in limiting cell survival and matrix degradation in IDD and research targeting its suppression could identify a potential therapeutic target for IDD.
Collapse
Affiliation(s)
- Changli Zhang
- Emory University School of Medicine, Atlanta, GA, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - George K Zhou
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alon Lai
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert C Hoy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Mroz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia M Torre
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | - Svenja Illien-Jünger
- Emory University School of Medicine, Atlanta, GA, USA.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Cohen Katsenelson K, Stender JD, Kawashima AT, Lordén G, Uchiyama S, Nizet V, Glass CK, Newton AC. PHLPP1 counter-regulates STAT1-mediated inflammatory signaling. eLife 2019; 8:e48609. [PMID: 31408005 PMCID: PMC6692130 DOI: 10.7554/elife.48609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation is an essential aspect of innate immunity but also contributes to diverse human diseases. Although much is known about the kinases that control inflammatory signaling, less is known about the opposing phosphatases. Here we report that deletion of the gene encoding PH domain Leucine-rich repeat Protein Phosphatase 1 (PHLPP1) protects mice from lethal lipopolysaccharide (LPS) challenge and live Escherichia coli infection. Investigation of PHLPP1 function in macrophages reveals that it controls the magnitude and duration of inflammatory signaling by dephosphorylating the transcription factor STAT1 on Ser727 to inhibit its activity, reduce its promoter residency, and reduce the expression of target genes involved in innate immunity and cytokine signaling. This previously undescribed function of PHLPP1 depends on a bipartite nuclear localization signal in its unique N-terminal extension. Our data support a model in which nuclear PHLPP1 dephosphorylates STAT1 to control the magnitude and duration of inflammatory signaling in macrophages.
Collapse
Affiliation(s)
| | - Joshua D Stender
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Agnieszka T Kawashima
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
- Department of Pharmacology and Biomedical Sciences Graduate ProgramUniversity of California, San DiegoSan DiegoUnited States
| | - Gema Lordén
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
| | - Satoshi Uchiyama
- Department of PediatricsUniversity of California, San DiegoSan DiegoUnited States
| | - Victor Nizet
- Department of PediatricsUniversity of California, San DiegoSan DiegoUnited States
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Christopher K Glass
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Alexandra C Newton
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
| |
Collapse
|
30
|
Gao X, Sun Y, Li X. Identification of key gene modules and transcription factors for human osteoarthritis by weighted gene co-expression network analysis. Exp Ther Med 2019; 18:2479-2490. [PMID: 31572500 PMCID: PMC6755469 DOI: 10.3892/etm.2019.7848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent causes of joint disease. However, the pathological mechanisms of OA have remained to be completely elucidated, and further investigation into the underlying mechanisms of OA development and the identification of novel therapeutic targets are urgently required. In the present study, the dataset GSE114007 was downloaded from the Gene Expression Omnibus database. Based on weighted gene co-expression network analysis (WGCNA) and the identification of differentially expressed genes (DEGs), the microarray data were further analyzed to identify hub genes, key transcription factors (TFs) and pivotal signaling pathways involved in the pathogenesis of OA. A total of 1,898 genes were identified to be differentially expressed between OA samples and normal samples. Based on WGCNA, the present study identified 5 hub modules closely associated with OA, and the potential key TFs for hub modules were further explored based on CisTargetX. The results demonstrated that B-Cell Lymphoma 6, Myelin Gene Expression Factor 2, Activating Transcription Factor 3, CCAAT Enhancer Binding Protein γ, Nuclear Factor Interleukin-3-Regulated, FOS Like Antigen-2, FOS-Like Antigen-1, Fos Proto-Oncogene, JunD Proto-Oncogene, Transcription Factor CP2 Like 1, RELA proto-oncogene NF-kB subunit, SRY-box transcription factor 3, V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 2, Interferon Regulatory Factor 4 and REL proto-oncogene, NF-kB subunit were the potential key TFs. In addition, osteoclast differentiation, FoxO, MAPK and PI3K/Akt signaling pathways were revealed to be imperative for the pathogenesis of OA, as these 4 pivotal signaling pathways were observed to be tightly linked through 4 key TFs Fos Proto-Oncogene, JUN, JunD Proto-Oncogene and MYC, and 4 DEGs Vascular Endothelial Growth Factor A, Growth Arrest and DNA Damage Inducible α, Growth Arrest and DNA Damage Inducible β and Cyclin D1. The present study identified a set of potential key genes and signaling pathways, and provided an important opportunity to advance the current understanding of OA.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yu Sun
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xu Li
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
31
|
Mattson AM, Begun DL, Molstad DHH, Meyer MA, Oursler MJ, Westendorf JJ, Bradley EW. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J Biol Chem 2019; 294:11772-11784. [PMID: 31189651 DOI: 10.1074/jbc.ra119.007660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.
Collapse
Affiliation(s)
- Anna M Mattson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - David H H Molstad
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Margaret A Meyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901.,Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55901.,Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55901
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901 .,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota 55901
| |
Collapse
|
32
|
Chang MM, Lai MS, Hong SY, Pan BS, Huang H, Yang SH, Wu CC, Sun HS, Chuang JI, Wang CY, Huang BM. FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Cancer Sci 2018; 109:3503-3518. [PMID: 30191630 PMCID: PMC6215879 DOI: 10.1111/cas.13793] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) promotes cancer progression; however, its role in cell proliferation related to tumorigenesis remains elusive. We investigated how FGF9 affected MA‐10 mouse Leydig tumor cell proliferation and found that FGF9 significantly induced cell proliferation by activating ERK1/2 and retinoblastoma (Rb) phosphorylations within 15 minutes. Subsequently, the expressions of E2F1 and the cell cycle regulators: cyclin D1, cyclin E1 and cyclin‐dependent kinase 4 (CDK4) in G1 phase and cyclin A1, CDK2 and CDK1 in S‐G2/M phases were increased at 12 hours after FGF9 treatment; and cyclin B1 in G2/M phases were induced at 24 hours after FGF9 stimulation, whereas the phosphorylations of p53, p21 and p27 were not affected by FGF9. Moreover, FGF9‐induced effects were inhibited by MEK inhibitor PD98059, indicating FGF9 activated the Rb/E2F pathway to accelerate MA‐10 cell proliferation by activating ERK1/2. Immunoprecipitation assay and ChIP‐quantitative PCR results showed that FGF9‐induced Rb phosphorylation led to the dissociation of Rb‐E2F1 complexes and thereby enhanced the transactivations of E2F1 target genes, Cyclin D1, Cyclin E1 and Cyclin A1. Silencing of FGF receptor 2 (FGFR2) using lentiviral shRNA inhibited FGF9‐induced ERK1/2 phosphorylation and cell proliferation, indicating that FGFR2 is the obligate receptor for FGF9 to bind and activate the signaling pathway in MA‐10 cells. Furthermore, in a severe combined immunodeficiency mouse xenograft model, FGF9 significantly promoted MA‐10 tumor growth, a consequence of increased cell proliferation and decreased apoptosis. Conclusively, FGF9 interacts with FGFR2 to activate ERK1/2, Rb/E2F1 and cell cycle pathways to induce MA‐10 cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Shao Lai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siou-Ying Hong
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Hsin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Hsun Yang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Becerra CC, Mattson AM, Molstad DHH, Lorang IM, Westendorf JJ, Bradley EW. DNA methylation and FoxO3a regulate PHLPP1 expression in chondrocytes. J Cell Biochem 2018; 119:7470-7478. [PMID: 29775231 PMCID: PMC6150803 DOI: 10.1002/jcb.27056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
The protein phosphatase Phlpp1 is an essential enzyme for proper chondrocyte function. Altered Phlpp1 levels are associated with cancer and degenerative diseases such as osteoarthritis. While much is known about the post-transcriptional mechanisms controlling Phlpp1 levels, transcriptional regulation of the Phlpp1 gene locus is underexplored. We previously showed that CpG methylation of the PHLPP1 promoter is lower in osteoarthritic cartilage than in normal cartilage, and indirectly correlates with gene expression. Here we further defined the effects of DNA methylation on PHLPP1 promoter activity in chondrocytes. We cloned a 1791 bp fragment of the PHLPP1 promoter (-1589:+202) and found that the first 500 bp were required for maximal promoter activity. General methylation of CpG sites within this fragment significantly blunts transcriptional activity, whereas site-specific methyltransferases HhaI or HpaII decrease transcriptional activation by approximately 50%. We located putative FoxO consensus sites within the PHLPP1 promoter region. Inhibition of DNA methylation by incorporation of 5-azacytidine increases Phlpp1 mRNA levels, but FoxO inhibition abolishes this induction. To determine which FoxO transcription factor mediates Phlpp1 expression, we performed overexpression and siRNA-mediated knock down experiments. Overexpression of FoxO3a, but not FoxO1, increases Phlpp1 levels. Likewise, siRNAs targeting FoxO3a, but not FoxO1, diminished Phlpp1 levels. Last, FoxO inhibition increases glycosaminoglycan staining of cultured chondrocytes and leads to concomitant increases in FGF18 and HAS2 expression. Together, these data demonstrate that CpG methylation and FoxO3a regulate PHLPP1 expression.
Collapse
Affiliation(s)
| | - Anna M. Mattson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Ian M. Lorang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
34
|
Ren YM, Zhao X, Yang T, Duan YH, Sun YB, Zhao WJ, Tian MQ. Exploring the Key Genes and Pathways of Osteoarthritis in Knee Cartilage in a Rat Model Using Gene Expression Profiling. Yonsei Med J 2018; 59:760-768. [PMID: 29978613 PMCID: PMC6037600 DOI: 10.3349/ymj.2018.59.6.760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To compare differentially expressed genes (DEGs) mediating osteoarthritis (OA) in knee cartilage and in normal knee cartilage in a rat model of OA and to identify their impact on molecular pathways associated with OA. MATERIALS AND METHODS A gene expression profile was downloaded from the Gene Expression Omnibus database. Analysis of DEGs was carried out using GEO2R. Enrichment analyses were performed on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway using the Search Tool for the Retrieval of Interacting Genes database (http://www.string-db.org/). Subsequently, the regulatory interaction network of OA-associated genes was visualized using Cytoscape software (version 3.4.0; www.cytoscape.org). RESULTS In the gene expression profile GSE103416, a total of 99 DEGs were identified. Among them, 76 DEGs (76.77%) were overexpressed, and the remaining 23 DEGs (23.23%) were underexpressed. GO and pathway enrichment analyses of target genes were performed. Using gene-gene interaction network analysis, relevant core genes, including MET, UBB, GNAI3, and GNA13, were shown to hold a potential relationship with the development of OA in cartilage. Using quantitative real-time PCR, the Gna13/cGMP-PKG signaling pathway was identified as a potential research target for therapy and for further understanding the development of OA. CONCLUSION The results of the present study provide a comprehensive understanding of the roles of DEGs in knee cartilage in relation to the development of OA.
Collapse
Affiliation(s)
- Yi Ming Ren
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Xin Zhao
- Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Yuan Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Yun Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Wen Jun Zhao
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Meng Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
35
|
Chen P, Yao Z, Deng G, Hou Y, Chen S, Hu Y, Yu B. Differentially Expressed Genes in Osteomyelitis Induced by Staphylococcus aureus Infection. Front Microbiol 2018; 9:1093. [PMID: 29887852 PMCID: PMC5982613 DOI: 10.3389/fmicb.2018.01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Osteomyelitis (OM) is a complicated and serious disease and its underlying molecular signatures of disease initiation and progression remain unclear. Staphylococcus aureus (S. aureus) is the most common causative agent of OM. Previous study of Banchereau et al. has established a link between whole blood transcription profiles and clinical manifestations in patients infected with S. aureus. However, the differentially expressed genes (DEGs) in OM induced by S. aureus infection have not been intensively investigated. In this study, we downloaded the gene expression profile dataset GSE30119 from Gene Expression Omnibus, and performed bioinformatic analysis to identify DEGs in S. aureus infection induced OM from the transcriptional level. The study consisted of 143 whole blood samples, including 44 healthy controls, 42 OM-free, and 57 OM infection patients. A total of 209 S. aureus infection-related genes (SARGs) and 377 OM-related genes (OMRGs) were identified. The SARGs were primarily involved in the immune response by GO functional and pathway enrichment analysis. Several proteins adhere to neutrophil extracellular traps may be critical for the immune response to the process of S. aureus infection. By contrast, the OMRGs differ from the SARGs. The OMRGs were enriched in transmembrane signaling receptor and calcium channel activity, cilium morphogenesis, chromatin silencing, even multicellular organism development. Several key proteins, including PHLPP2 and EGF, were hub nodes in protein–protein interaction network of the OMRGs. In addition, alcoholism, systemic lupus erythematosus and proteoglycans in cancer were the top pathways influenced by the OMRGs associated with OM. Thus, this study has further explored the DEGs and their biological functions associated with S. aureus infection and OM, comparing with the previous study, and may light the further insight into the underlying molecular mechanisms and the potential critical biomarkers in OM development.
Collapse
Affiliation(s)
- Peisheng Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Yao
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ganming Deng
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siwei Chen
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Hwang SM, Feigenson M, Begun DL, Shull LC, Culley KL, Otero M, Goldring MB, Ta LE, Kakar S, Bradley EW, Westendorf JJ. Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis. J Orthop Res 2018; 36:1487-1497. [PMID: 29068480 PMCID: PMC5985222 DOI: 10.1002/jor.23781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/21/2017] [Indexed: 02/04/2023]
Abstract
Phlpp protein phosphatases are abnormally abundant within human osteoarthritic articular chondrocytes and may contribute to the development of osteoarthritis. Mice lacking Phlpp1 were previously shown to be resistant to post-traumatic osteoarthritis. Here a small molecule with therapeutic properties that inhibits Phlpp1 and Phlpp2 was tested for its ability to slow post-traumatic OA in mice and to stimulate anabolic pathways in human articular cartilage from OA joints. PTOA was induced in male C57Bl/6 mice by surgically destabilizing the meniscus. Seven weeks after surgery, mice received a single intra-articular injection of the Phlpp inhibitor NSC117079 or saline. Mechanical allodynia was measured with von Frey assays, mobility was tracked in an open field system, and cartilage damage was assessed histologically. A single intra-articular injection of the Phlpp inhibitor NSC117079 attenuated mechanical allodynia and slowed articular cartilage degradation in joints with a destabilized meniscus. Animals treated with the Phlpp inhibitor 7 weeks after injury maintained normal activity levels, while those in the control group traveled shorter distances and were less active 3 months after the joint injury. NSC117079 also increased production of cartilage extracellular matrix components (glycosaminoglycans and aggrecan) in over 90% of human articular cartilage explants from OA patients and increased phosphorylation of Phlpp1 substrates (AKT2, ERK1/2, and PKC) in human articular chondrocytes. Our results indicate that Phlpp inhibitor NSC117079 is a novel osteoarthritis disease modifying drug candidate that may have palliative affects. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1487-1497, 2018.
Collapse
Affiliation(s)
- Soyun M. Hwang
- Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, 55905 USA
| | - Marina Feigenson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905 USA
| | - Dana L. Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905 USA
| | | | - Kirsty L. Culley
- HSS Research Institute, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mary B. Goldring
- HSS Research Institute, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lauren E. Ta
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905 USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905 USA
| | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905 USA,Co-corresponding authors. ,
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905 USA,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905 USA,Co-corresponding authors. ,
| |
Collapse
|
37
|
Shao L, Wang J, Karatas OF, Feng S, Zhang Y, Creighton CJ, Ittmann M. Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN. Oncotarget 2018; 9:14456-14471. [PMID: 29581856 PMCID: PMC5865682 DOI: 10.18632/oncotarget.24470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/03/2018] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. Correlative studies in human prostate cancers reveal a frequent association of the TMPRSS2/ERG (TE) fusion gene with loss of PTEN and studies in mouse models reveal that ERG expression and PTEN loss synergistically promote prostate cancer progression. To determine the mechanism by which ERG overexpression and PTEN loss leads to transformation, we overexpressed the TE fusion gene and knocked down PTEN in an immortalized but non-transformed prostate epithelial cell line. We show that ERG overexpression in combination with PTEN loss can transform these immortalized but non-tumorigenic cells, while either alteration alone was not sufficient to fully transform these cells. Expression microarray analysis revealed extensive changes in gene expression in cells expressing the TE fusion with loss of PTEN. Among these gene expression changes was increased expression of multiple FGF ligands and receptors. We show that activation of fibroblast growth factor receptor signaling plays a key role in transformation induced by TE fusion gene expression in association with PTEN loss. In addition, in vitro and in silico analysis reveals PTEN loss is associated with widespread increases in FGF ligands and receptors in prostate cancer. Inhibitors of FGF receptor signaling are currently entering the clinic and our results suggests that FGF receptor signaling is a therapeutic target in cancers with TE fusion gene expression and PTEN loss.
Collapse
Affiliation(s)
- Longjiang Shao
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Jianghua Wang
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Omer Faruk Karatas
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Shu Feng
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Yiqun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael Ittmann
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Zhai F, Song N, Ma J, Gong W, Tian H, Li X, Jiang C, Wang H. FGF18 inhibits MC3T3-E1 cell osteogenic differentiation via the ERK signaling pathway. Mol Med Rep 2017; 16:4127-4132. [DOI: 10.3892/mmr.2017.7088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/12/2017] [Indexed: 11/05/2022] Open
|
39
|
PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochem Soc Trans 2017; 44:1675-1682. [PMID: 27913677 DOI: 10.1042/bst20160170] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/30/2023]
Abstract
In the decade since their discovery, the PH domain leucine-rich repeat protein phosphatases (PHLPP) have emerged as critical regulators of cellular homeostasis, and their dysregulation is associated with various pathophysiologies, ranging from cancer to degenerative diseases, such as diabetes and heart disease. The two PHLPP isozymes, PHLPP1 and PHLPP2, were identified in a search for phosphatases that dephosphorylate Akt, and thus suppress growth factor signaling. However, given that there are over 200 000 phosphorylated residues in a single cell, and fewer than 50 Ser/Thr protein phosphatases, it is not surprising that PHLPP has many other cellular functions yet to be discovered, including a recently identified role in regulating the epigenome. Both PHLPP1 and PHLPP2 are commonly deleted in human cancers, supporting a tumor suppressive role. Conversely, the levels of one isozyme, PHLPP1, are elevated in diabetes. Thus, mechanisms to correctly control PHLPP activity in cells are critical for normal cellular homeostasis. This review summarizes the known functions of PHLPP and its role in disease.
Collapse
|
40
|
Wang Y, Yang T, Liu Y, Zhao W, Zhang Z, Lu M, Zhang W. Decrease of miR-195 Promotes Chondrocytes Proliferation and Maintenance of Chondrogenic Phenotype via Targeting FGF-18 Pathway. Int J Mol Sci 2017; 18:ijms18050975. [PMID: 28471382 PMCID: PMC5454888 DOI: 10.3390/ijms18050975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Slow growth and rapid loss of chondrogenic phenotypes are the major problems affecting chronic cartilage lesions. The role of microRNA-195 (miR-195) and its detailed working mechanism in the fore-mentioned process remains unknown. Fibroblastic growth factor 18 (FGF-18) plays a key role in cartilage homeostasis; whether miR-195 could regulate FGF-18 and its downstream signal pathway in chondrocyte proliferation and maintenance of chondrogenic phenotypes still remains unclear. The present research shows elevated miR-195 but depressed FGF-18 expressed in joint fluid specimens of 20 patients with chronic cartilage lesions and in CH1M and CH3M chondrocytes when compared with that in joint fluid specimens without cartilage lesions and in CH1W and CH2W chondrocytes, respectively. The following loss of function test revealed that downregulation of miR-195 by transfection of miR-195 inhibitors promoted chondrocyte proliferation and expression of a type II collagen α I chain (Col2a1)/aggrecan. Through the online informatics analysis we theoretically predicted that miR-195 could bind to a FGF-18 3' untranslated region (3'UTR), also, we verified that a miR-195 could regulate the FGF-18 and its downstream pathway. The constructed dual luciferase assay further confirmed that FGF-18 was a direct target of miR-195. The executed anti-sense experiment displayed that miR-195 could regulate chondrocyte proliferation and Col2a1/aggrecan expression via the FGF-18 pathway. Finally, through an in vivo anterior cruciate ligament transection (ACLT) model, downregulation of miR-195 presented a significantly protective effect on chronic cartilage lesions. Evaluating all of the outcomes of the current research revealed that a decrease of miR-195 protected chronic cartilage lesions by promoting chondrocyte proliferation and maintenance of chondrogenic phenotypes via the targeting of the FGF-18 pathway and that the miR-195/FGF-18 axis could be a potential target in the treatment of cartilage lesions.
Collapse
Affiliation(s)
- Yong Wang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- The 4th Department of Orthopedic Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China.
| | - Tao Yang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yadong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China.
| | - Zhen Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Ming Lu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
41
|
Chapman JR, Katsara O, Ruoff R, Morgenstern D, Nayak S, Basilico C, Ueberheide B, Kolupaeva V. Phosphoproteomics of Fibroblast Growth Factor 1 (FGF1) Signaling in Chondrocytes: Identifying the Signature of Inhibitory Response. Mol Cell Proteomics 2017; 16:1126-1137. [PMID: 28298517 DOI: 10.1074/mcp.m116.064980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/10/2017] [Indexed: 01/03/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is vital for many biological processes, beginning with development. The importance of FGF signaling for skeleton formation was first discovered by the analysis of genetic FGFR mutations which cause several bone morphogenetic disorders, including achondroplasia, the most common form of human dwarfism. The formation of the long bones is mediated through proliferation and differentiation of highly specialized cells - chondrocytes.Chondrocytes respond to FGF with growth inhibition, a unique response which differs from the proliferative response of the majority of cell types; however, its molecular determinants are still unclear. Quantitative phosphoproteomic analysis was utilized to catalogue the proteins whose phosphorylation status is changed upon FGF1 treatment. The generated dataset consists of 756 proteins. We could localize the divergence between proliferative (canonical) and inhibitory (chondrocyte specific) FGF transduction pathways immediately upstream of AKT kinase. Gene Ontology (GO) analysis of the FGF1 regulated peptides revealed that many of the identified phosphorylated proteins are assigned to negative regulation clusters, in accordance with the observed inhibitory growth response. This is the first time a comprehensive subset of proteins involved in FGF inhibitory response is defined. We were able to identify a number of targets and specifically discover glycogen synthase kinase3β (GSK3β) as a novel key mediator of FGF inhibitory response in chondrocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beatrix Ueberheide
- From the ‡Proteomics Laboratory.,¶Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, 550 First Avenue, New York, New York 10016
| | | |
Collapse
|
42
|
Tenconi PE, Giusto NM, Salvador GA, Mateos MV. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response. Int J Biochem Cell Biol 2016; 81:67-75. [DOI: 10.1016/j.biocel.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
|
43
|
Bradley EW, Carpio LR, McGee-Lawrence ME, Becerra CC, Amanatullah DF, Ta LE, Otero M, Goldring MB, Kakar S, Westendorf JJ. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthritis Cartilage 2016; 24:1021-8. [PMID: 26746148 PMCID: PMC4875839 DOI: 10.1016/j.joca.2015.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/23/2015] [Accepted: 12/20/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability. OA is characterized by articular chondrocyte deterioration, subchondral bone changes and debilitating pain. One strategy to promote cartilage regeneration and repair is to accelerate proliferation and matrix production of articular chondrocytes. We previously reported that the protein phosphatase Phlpp1 controls chondrocyte differentiation by regulating the activities of anabolic kinases. Here we examined the role of Phlpp1 in OA progression in a murine model. We also assessed PHLPP1 expression and promoter methylation. DESIGN Knee joints of WT and Phlpp1(-/-) mice were surgically destabilized by transection of the medial meniscal ligament (DMM). Mice were assessed for signs of OA progression via radiographic and histological analyses, and pain assessment for mechanical hypersensitivity using the von Frey assay. Methylation of the PHLPP1 promoter and PHLPP1 expression were evaluated in human articular cartilage and chondrocyte cell lines. RESULTS Following DMM surgeries, Phlpp1 deficient mice showed fewer signs of OA and cartilage degeneration. Mechanical allodynia associated with DMM surgeries was also attenuated in Phlpp1(-/-) mice. PHLPP1 was highly expressed in human articular cartilage from OA patients, but was undetectable in cartilage specimens from femoral neck fractures (FNFxs). Higher PHLPP1 levels correlated with less PHLPP1 promoter CpG methylation in cartilage from OA patients. Blocking cytosine methylation or treatment with inflammatory mediators enhanced PHLPP1 expression in human chondrocyte cell lines. CONCLUSION Phlpp1 deficiency protects against OA progression while CpG demethylation and inflammatory cytokines promote PHLPP1 expression.
Collapse
Affiliation(s)
| | | | - Meghan E. McGee-Lawrence
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905,Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, 30912
| | | | | | - Lauren E. Ta
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Miguel Otero
- Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Mary B. Goldring
- Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
44
|
Mallick SP, Pal K, Rastogi A, Srivastava P. Evaluation of poly(L-lactide) and chitosan composite scaffolds for cartilage tissue regeneration. Des Monomers Polym 2016. [DOI: 10.1080/15685551.2015.1136535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Hartati H, Utsunomiya YT, Sonstegard TS, Garcia JF, Jakaria J, Muladno M. Evidence of Bos javanicus x Bos indicus hybridization and major QTLs for birth weight in Indonesian Peranakan Ongole cattle. BMC Genet 2015; 16:75. [PMID: 26141727 PMCID: PMC4491226 DOI: 10.1186/s12863-015-0229-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background Peranakan Ongole (PO) is a major Indonesian Bos indicus breed that derives from animals imported from India in the late 19th century. Early imports were followed by hybridization with the Bos javanicus subspecies of cattle. Here, we used genomic data to partition the ancestry components of PO cattle and map loci implicated in birth weight. Results We found that B. javanicus contributes about 6-7 % to the average breed composition of PO cattle. Only two nearly fixed B. javanicus haplotypes were identified, suggesting that most of the B. javanicus variants are segregating under drift or by the action of balancing selection. The zebu component of the PO genome was estimated to derive from at least two distinct ancestral pools. Additionally, well-known loci underlying body size in other beef cattle breeds, such as the PLAG1 region on chromosome 14, were found to also affect birth weight in PO cattle. Conclusions This study is the first attempt to characterize PO at the genome level, and contributes evidence of successful, stabilized B. indicus x B. javanicus hybridization. Additionally, previously described loci implicated in body size in worldwide beef cattle breeds also affect birth weight in PO cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0229-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hartati Hartati
- Beef Cattle Research Station, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Jln. Pahlawan no. 2 Grati, Pasuruan, East Java, 16784, Indonesia.
| | - Yuri Tani Utsunomiya
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Tad Stewart Sonstegard
- ARS-USDA - Agricultural Research Service - United States Department of Agriculture, Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA.
| | - José Fernando Garcia
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil. .,Faculdade de Medicina Veterinária de Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil.
| | - Jakaria Jakaria
- Faculty of Animal Science, Bogor Agriculture University, Jln. Agatis kampus IPB Dramaga, Bogor, 16680, Indonesia.
| | - Muladno Muladno
- Faculty of Animal Science, Bogor Agriculture University, Jln. Agatis kampus IPB Dramaga, Bogor, 16680, Indonesia.
| |
Collapse
|