1
|
Bao Y, Xu R, Guo J. The multiple-action allosteric inhibition of TYK2 by deucravacitinib: Insights from computational simulations. Comput Biol Chem 2024; 113:108224. [PMID: 39353258 DOI: 10.1016/j.compbiolchem.2024.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Participating in the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, TYK2 emerges as a promising therapy target in controlling various autoimmune diseases, including psoriasis and multiple sclerosis. Deucravacitinib (DEU) is a novel oral TYK2-specific inhibitor approved in 2022 that is clinically effective in moderate to severe psoriasis trials. Upon the AlphaFold2 predicted TYK2 pseudokinase domain (JH2) and kinase domain (JH1), we explored the details of the underlined allosteric inhibition mechanism on TYK2 JH2-JH1 with the aid of molecular dynamics simulation. Our results suggest that the allosteric inhibition of DEU on TYK2 is accomplished by affecting the JH2-JH1 interface and hampering the state transition and ATP binding in JH1. Particularly, DEU binding stabilized the autoinhibitory interface between JH2 and JH1 while disrupting the formation of the activation interface. As a result, the negative regulation of JH2 on JH1 was greatly enhanced. These findings offer additional details on the pseudokinase-dependent autoinhibition of the JAK kinase domain and provide theoretical support for the JH2-targeted drug discovery in JAK members.
Collapse
Affiliation(s)
- Yiqiong Bao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Ran Xu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China; Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
2
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
3
|
Zhang Y, Liu Z, Hirschi M, Brodsky O, Johnson E, Won SJ, Nagata A, Bezwada D, Petroski MD, Majmudar JD, Niessen S, VanArsdale T, Gilbert AM, Hayward MM, Stewart AE, Nager AR, Melillo B, Cravatt BF. An allosteric cyclin E-CDK2 site mapped by paralog hopping with covalent probes. Nat Chem Biol 2024:10.1038/s41589-024-01738-7. [PMID: 39294320 DOI: 10.1038/s41589-024-01738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
More than half of the ~20,000 protein-encoding human genes have paralogs. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to subsets of paralogous proteins. Here we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs lacking the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we substituted the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-CCNE1-N112C interaction into in vitro NanoBRET (bioluminescence resonance energy transfer) and in cellulo activity-based protein profiling assays capable of identifying compounds that reversibly inhibit both the N112C mutant and wild-type CCNE1:CDK2 (cyclin-dependent kinase 2) complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings, thus, show how electrophile-cysteine interactions mapped by chemical proteomics can extend the understanding of protein ligandability beyond covalent chemistry.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Zhonglin Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marscha Hirschi
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Oleg Brodsky
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Eric Johnson
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Asako Nagata
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Divya Bezwada
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jaimeen D Majmudar
- Discovery Sciences, Pfizer Research and Development, Pfizer, Inc., Cambridge, MA, USA
| | - Sherry Niessen
- Oncology Research and Development, Pfizer, Inc., La Jolla, CA, USA
- Belharra Therapeutics, San Diego, CA, USA
| | - Todd VanArsdale
- Oncology Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Adam M Gilbert
- Discovery Sciences, Pfizer Research and Development, Pfizer, Inc., Groton, CT, USA
| | - Matthew M Hayward
- Discovery Sciences, Pfizer Research and Development, Pfizer, Inc., Groton, CT, USA
- Magnet Biomedicine, Boston, MA, USA
| | - Al E Stewart
- Medicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Andrew R Nager
- Oncology Research and Development, Pfizer, Inc., La Jolla, CA, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
FitzGerald O, Gladman DD, Mease PJ, Ritchlin C, Smolen JS, Gao L, Hu Y, Nowak M, Banerjee S, Catlett I. Phase 2 Trial of Deucravacitinib in Psoriatic Arthritis: Biomarkers Associated With Disease Activity, Pharmacodynamics, and Clinical Responses. Arthritis Rheumatol 2024; 76:1397-1407. [PMID: 38770592 DOI: 10.1002/art.42921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Our objective was to evaluate the association of serum biomarkers with baseline psoriatic arthritis (PsA) disease activity, pharmacodynamic effects of deucravacitinib on biomarker levels, and the relationship between biomarkers and clinical responses to deucravacitinib. METHODS The phase 2 trial (ClinicalTrials.gov identifier: NCT03881059) randomly assigned 203 patients with PsA 1:1:1 to placebo, deucravacitinib at 6 mg once daily (QD), or deucravacitinib at 12 mg QD. Serum biomarkers associated with the interleukin 23 (IL-23) pathway (IL-17A, β-defensin [BD-2], and IL-19), type I interferon pathway, inflammation, and collagen matrix turnover were measured by immunoassay. Clinical responses (≥75% improvement from baseline in the Psoriasis Area and Severity Index [PASI75] and ≥20% improvement from baseline in American College of Rheumatology criteria [ACR20] responses) were measured at week 16. Hematologic variables were also assessed. RESULTS IL-17A, BD-2, and IL-19 had a modest association with PASI scores (r = 0.4, r = 0.56, and r = 0.5, respectively) at baseline. In deucravacitinib groups, IL-17A, BD-2, IL-19, C-X-C motif ligand 9 (CXCL9), CXCL10, C-reactive protein, matrix metalloproteinase 3, and collagen type 4 degradation marker levels were significantly reduced at week 16 versus baseline (P < 0.01); higher levels of IL-23 pathway-associated biomarkers predicted higher PASI75 and ACR20 response rates in deucravacitinib-treated patients. Significantly higher PASI75 response rates were seen in patients with high baseline IL-17A (odds ratio 15.76) and BD-2 levels (odds ratio 15.41) versus low baseline IL-17A and BD-2 levels. Changes in hematologic variables that are characteristic of JAK inhibition were not observed with deucravacitinib. CONCLUSION Deucravacitinib significantly impacted biomarkers associated with Tyk2 signaling pathways of key inflammatory cytokines, including IL-23 and type I interferon, and those related to collagen matrix turnover. These biomarkers may predict treatment responses to deucravacitinib.
Collapse
Affiliation(s)
| | | | | | | | - Josef S Smolen
- Medical University of Vienna and Hietzing Hospital, Vienna, Austria
| | - Lu Gao
- Bristol Myers Squibb, Princeton, New Jersey
| | - Yanhua Hu
- Bristol Myers Squibb, Princeton, New Jersey
| | | | | | | |
Collapse
|
5
|
Lv Y, Mi P, Babon JJ, Fan G, Qi J, Cao L, Lang J, Zhang J, Wang F, Kobe B. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacol Res 2024; 204:107217. [PMID: 38777110 DOI: 10.1016/j.phrs.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Faming Wang
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Dragotto M, D’Onghia M, Trovato E, Tognetti L, Rubegni P, Calabrese L. Therapeutic Potential of Targeting the JAK/STAT Pathway in Psoriasis: Focus on TYK2 Inhibition. J Clin Med 2024; 13:3091. [PMID: 38892802 PMCID: PMC11172692 DOI: 10.3390/jcm13113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis is an inflammatory skin disease with a chronic relapsing course and an often-detrimental impact on patients' quality of life. Thanks to incredible advances in research over the past few decades, the therapeutic armamentarium of psoriasis is now reasonably broad and structured, with several therapeutic agents that have demonstrated successful long-term control of this condition. However, there are still unfulfilled gaps resulting from the inherent limitations of existing therapies, which have paved the way for the identification of new therapeutic strategies or the improvement of existing ones. A great deal of attention has recently been paid to the JAK/STAT pathway, playing a crucial role in chronic inflammatory skin diseases, including psoriasis. Indeed, in a disease with such a complex pathogenesis, the possibility to antagonize multiple molecular pathways via JAK/STAT inhibition offers an undeniable therapeutic advantage. However, data from clinical trials evaluating the use of oral JAK inhibitors in immune-mediated disorders, such as RA, have arisen safety concerns, suggesting a potentially increased risk of class-specific AEs such as infections, venous thromboembolism, and malignancies. New molecules are currently under investigation for the treatment of psoriasis, such as deucravacitinib, an oral selective inhibitor that binds to the regulatory domain of TYK2, brepocitinib (PF-06700841) and PF-06826647 that bind to the active site in the catalytic domain. Due to the selective TYK2 blockade allowing the inhibition of key cytokine-mediated signals, such as those induced by IL-12 and IL-23, anti-TYK2 agents appear to be very promising as the safety profile seems to be superior compared with pan-JAK inhibitors. The aim of our review is to thoroughly explore the rationale behind the usage of JAK inhibitors in PsO, their efficacy and safety profiles, with a special focus on oral TYK2 inhibitors, as well as to provide a forward-looking update on novel therapeutic strategies targeting the TYK2 pathway in psoriasis.
Collapse
Affiliation(s)
- Martina Dragotto
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Martina D’Onghia
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Emanuele Trovato
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Linda Tognetti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
| | - Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy (E.T.); (P.R.)
- Institute of Dermatology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
7
|
Eichinger JM, Shan DM, Greenzaid JD, Anakwenze L, Feldman SR. Clinical pharmacokinetics and pharmacodynamics of oral systemic nonbiologic therapies for psoriasis patients. Expert Opin Drug Metab Toxicol 2024; 20:249-262. [PMID: 38529623 DOI: 10.1080/17425255.2024.2335310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory immune condition. Treatments for psoriasis vary with disease severity, ranging from topicals to systemic biologic agents. The pharmacokinetic (PK) and pharmacodynamic (PD) properties of these therapies establish drug efficacy, toxicity, and optimal dosing to ensure therapeutic drug levels are sustained and adverse effects are minimized. AREAS COVERED A literature search was performed on PubMed, Google Scholar, and Ovid MEDLINE for PK and PD, efficacy, and safety data regarding oral systemic nonbiologic therapies utilized for moderate-to-severe plaque psoriasis. The findings were organized into sections for each drug: oral acitretin, methotrexate, cyclosporine, apremilast, tofacitinib, and deucravacitinib. EXPERT OPINION Some psoriasis patients may not respond to initial therapy. Ongoing research is evaluating genetic polymorphisms that may predict an improved response to specific medications. However, financial and insurance barriers, as well as limited genetic polymorphisms correlated with treatment response, may restrict the implementation of genetic testing necessary to personalize treatments. How well psoriasis patients adhere to treatment may contribute greatly to variation in response. Therapeutic drug monitoring may help patients adhere to treatment, improve clinical response, and sustain disease control.
Collapse
Affiliation(s)
| | - Divya M Shan
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jonathan D Greenzaid
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lisa Anakwenze
- University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven R Feldman
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Dermatology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Zhang Y, Liu Z, Hirschi M, Brodsky O, Johnson E, Won SJ, Nagata A, Petroski MD, Majmudar JD, Niessen S, VanArsdale T, Gilbert AM, Hayward MM, Stewart AE, Nager AR, Melillo B, Cravatt B. Expanding the ligandable proteome by paralog hopping with covalent probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576274. [PMID: 38293178 PMCID: PMC10827202 DOI: 10.1101/2024.01.18.576274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
More than half of the ~20,000 protein-encoding human genes have at least one paralog. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to a subset of paralogous proteins. Here, we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs that lack the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we mutated the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling (ABPP) that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-N112C-CCNE1 interaction into a NanoBRET-ABPP assay capable of identifying compounds that reversibly inhibit both N112C- and WT-CCNE1:CDK2 complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings thus provide a roadmap for leveraging electrophile-cysteine interactions to extend the ligandability of the proteome beyond covalent chemistry.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Zhonglin Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Marsha Hirschi
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Oleg Brodsky
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Eric Johnson
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Asako Nagata
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | | | - Jaimeen D. Majmudar
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Sherry Niessen
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
- Current address: Belharra Therapeutics, 3985 Sorrento Valley Blvd suite c, San Diego, CA 92121
| | - Todd VanArsdale
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Adam M. Gilbert
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Matthew M. Hayward
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Groton, CT 06340, USA
- Current address: Magnet Biomedicine, 321 Harrison Ave., Suite 600, Boston, MA 02118, USA
| | - Al E. Stewart
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Andrew R. Nager
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Benjamin Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| |
Collapse
|
9
|
Du SS, Fang YQ, Zhang W, Rao GW. Targeting TYK2 for Fighting Diseases: Recent Advance of TYK2 Inhibitors. Curr Med Chem 2024; 31:2900-2920. [PMID: 38904160 DOI: 10.2174/0929867330666230324163414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 06/22/2024]
Abstract
TYK2 (tyrosine-protein kinase 2) is a non-receptor protein kinase belonging to the JAK family and is closely associated with various diseases, such as psoriasis, inflammatory bowel disease, systemic lupus erythematosus. TYK2 activates the downstream proteins STAT1-5 by participating in the signal transduction of immune factors such as IL-12, IL-23, and IL-10, resulting in immune expression. The activity of the inhibitor TYK2 can effectively block the transduction of excessive immune signals and treat diseases. TYK2 inhibitors are divided into two types of inhibitors according to the different binding sites. One is a TYK2 inhibitor that binds to JH2 and inhibits its activity through an allosteric mechanism. The representative inhibitor is BMS-986165, developed by Bristol-Myers Squibb. The other class binds to the JH1 adenosine triphosphate (ATP) site and prevents the catalytic activity of the kinase by blocking ATP and downstream phosphorylation. This paper mainly introduces the protein structure, signaling pathway, synthesis, structure-activity relationship and clinical research of TYK2 inhibitors.
Collapse
Affiliation(s)
- Si-Shi Du
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Qing Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
10
|
Jensen LT, Attfield KE, Feldmann M, Fugger L. Allosteric TYK2 inhibition: redefining autoimmune disease therapy beyond JAK1-3 inhibitors. EBioMedicine 2023; 97:104840. [PMID: 37863021 PMCID: PMC10589750 DOI: 10.1016/j.ebiom.2023.104840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
JAK inhibitors impact multiple cytokine pathways simultaneously, enabling high efficacy in treating complex diseases such as cancers and immune-mediated disorders. However, their broad reach also poses safety concerns, which have fuelled a demand for increasingly selective JAK inhibitors. Deucravacitinib, a first-in-class allosteric TYK2 inhibitor, represents a remarkable advancement in the field. Rather than competing at kinase domain catalytic sites as classical JAK1-3 inhibitors, deucravacitinib targets the regulatory pseudokinase domain of TYK2. It strikingly mirrors the functional effect of an evolutionary conserved naturally occurring TYK2 variant, P1104A, known to protect against multiple autoimmune diseases yet provide sufficient TYK2-mediated cytokine signalling required to prevent immune deficiency. The unprecedentedly high functional selectivity and efficacy-safety profile of deucravacitinib, initially demonstrated in psoriasis, combined with genetic support, and promising outcomes in early SLE clinical trials make this inhibitor ripe for exploration in other autoimmune diseases for which better, safe, and efficacious treatments are urgently needed.
Collapse
Affiliation(s)
- Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Kathrine E Attfield
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Feldmann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute for Rheumatology, Botnar Research Institute, University of Oxford, Oxford OX3 7LD, UK
| | - Lars Fugger
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark; Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
11
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
12
|
Wang J, Batista VS, Bunick CG. Triple-action inhibitory mechanism of allosteric TYK2-specific inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561507. [PMID: 37873392 PMCID: PMC10592677 DOI: 10.1101/2023.10.09.561507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Deucravacitinib, 6-(cyclopropanecarbonylamido)-4-[2-methoxy-3-(1-methyl-1,2,4-triazol-3-yl)anilino]-N-(trideuteriomethyl)pyridazine-3-carboxamide, is a highly selective inhibitor of protein tyrosine kinase 2 (TYK2) that targets the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. The structural basis for its selectivity and allosteric inhibition remains poorly understood. Here, we investigate the inhibition mechanism through analysis of available structures relevant to the STAT pathway, including crystal structures of the truncated TYK2 FERM-SH2 domain bound to the IFNα type I receptor (IFNαR1) and the truncated TYK2 JH2-JH1 domain. Our computational analysis provides a mechanistic hypothesis for the relatively rapid interferon-induced gene expression mediated by TYK2 relative to other cytokines. We find that deucravacitinib inhibits TYK2 kinase in three distinct states: the autoinhibited state and two activated states for autophosphorylation and phosphorylation of downstream protein substrates. Its binding to the TYK2 pseudokinase domain in the autoinhibited state restricts the essential dynamics of the TYK2 kinase domain required for kinase activity. Furthermore, it binds competitively with ATP in the pseudokinase domain, and also directly prevents formation of the active state of TYK2 through steric clashes.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Christopher G. Bunick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Dermatology, Yale University, New Haven, CT06520, USA
- Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
13
|
Henry SP, Jorgensen WL. Progress on the Pharmacological Targeting of Janus Pseudokinases. J Med Chem 2023; 66:10959-10990. [PMID: 37578217 DOI: 10.1021/acs.jmedchem.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The Janus kinases (JAKs) are key components of the JAK-STAT signaling pathway and are involved in myriad physiological processes. Though they are the molecular targets of many FDA-approved drugs, these drugs manifest adverse effects due in part to their inhibition of the requisite JAK kinase activity. However, the JAKs uniquely possess an integrated pseudokinase domain (JH2) that regulates the adjacent kinase domain (JH1). The therapeutic targeting of JH2 domains has been less thoroughly explored and may present an avenue to modulate the JAKs without the adverse effects associated with targeting the adjacent JH1 domain. The potential of this strategy was recently demonstrated with the FDA approval of the TYK2 JH2 ligand deucravacitinib for treating plaque psoriasis. In this light, the structure and targetability of the JAK pseudokinases are discussed, in conjunction with the state of development of ligands that bind to these domains.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
14
|
Leit S, Greenwood J, Carriero S, Mondal S, Abel R, Ashwell M, Blanchette H, Boyles NA, Cartwright M, Collis A, Feng S, Ghanakota P, Harriman GC, Hosagrahara V, Kaila N, Kapeller R, Rafi SB, Romero DL, Tarantino PM, Timaniya J, Toms AV, Wester RT, Westlin W, Srivastava B, Miao W, Tummino P, McElwee JJ, Edmondson SD, Masse CE. Discovery of a Potent and Selective Tyrosine Kinase 2 Inhibitor: TAK-279. J Med Chem 2023; 66:10473-10496. [PMID: 37427891 DOI: 10.1021/acs.jmedchem.3c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
TYK2 is a key mediator of IL12, IL23, and type I interferon signaling, and these cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genome-wide association studies and clinical results, TYK2 inhibition through small molecules is an attractive therapeutic strategy to treat these diseases. Herein, we report the discovery of a series of highly selective pseudokinase (Janus homology 2, JH2) domain inhibitors of TYK2 enzymatic activity. A computationally enabled design strategy, including the use of FEP+, was instrumental in identifying a pyrazolo-pyrimidine core. We highlight the utility of computational physics-based predictions used to optimize this series of molecules to identify the development candidate 30, a potent, exquisitely selective cellular TYK2 inhibitor that is currently in Phase 2 clinical trials for the treatment of psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Silvana Leit
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Jeremy Greenwood
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Samantha Carriero
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Sayan Mondal
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Mark Ashwell
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Heather Blanchette
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Nicholas A Boyles
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Mark Cartwright
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Alan Collis
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Shulu Feng
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Phani Ghanakota
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Geraldine C Harriman
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Vinayak Hosagrahara
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Neelu Kaila
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Rosanna Kapeller
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Salma B Rafi
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Donna L Romero
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Paul M Tarantino
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Jignesh Timaniya
- Piramal Pharma Solutions, Plot No. 18, Pharmez, Ahmedabad 382215, Gujarat, India
| | - Angela V Toms
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Ronald T Wester
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - William Westlin
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Bhaskar Srivastava
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Wenyan Miao
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Peter Tummino
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Joshua J McElwee
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Scott D Edmondson
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Craig E Masse
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| |
Collapse
|
15
|
Deng L, Wan L, Liao T, Wang L, Wang J, Wu X, Shi J. Recent progress on tyrosine kinase 2 JH2 inhibitors. Int Immunopharmacol 2023; 121:110434. [PMID: 37315371 DOI: 10.1016/j.intimp.2023.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which can regulate the signaling of multiple pro-inflammatory cytokines, including IL12, IL23 and type I interferon (IFNα/β), and its inhibitors can treat autoimmune diseases caused by the abnormal expression of IL12 and IL23. Interest in TYK2 JH2 inhibitors has increased as a result of safety concerns with JAK inhibitors. This overview introduces TYK2 JH2 inhibitors that are already on the market, including Deucravactinib (BMS-986165), as well as those currently in clinical trials, such as BMS-986202, NDI-034858, and ESK-001.
Collapse
Affiliation(s)
- Lidan Deng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Li Wan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Tingting Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Xiao Z, Yang MG, Liu C, Sherwood T, Gilmore JL, Lin J, Li P, Wu DR, Tokarski J, Li S, Cheng L, Xie C, Fan J, Dierks E, Strnad J, Cvijic ME, Khan J, Ruzanov M, Galella M, Khandelwal P, Dyckman AJ, Mathur A, Lombardo LJ, Macor JE, Carter PH, Aranibar N, Burke JR, Weinstein DS. Structure-activity relationship study of central pyridine-derived TYK2 JH2 inhibitors: Optimization of the PK profile through C4' and C6 variations. Bioorg Med Chem Lett 2023; 91:129373. [PMID: 37315697 DOI: 10.1016/j.bmcl.2023.129373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Efforts directed at improving potency and preparing structurally different TYK2 JH2 inhibitors from the first generation of compounds such as 1a led to the SAR study of new central pyridyl based analogs 2-4. The current SAR study resulted in the identification of 4h as a potent and selective TYK2 JH2 inhibitor with distinct structural differences from 1a. In this manuscript, the in vitro and in vivo profiles of 4h are described. The hWB IC50 of 4h was shown as 41 nM with 94% bioavailability in the mouse PK study.
Collapse
Affiliation(s)
- Zili Xiao
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States.
| | - Michael G Yang
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Chunjian Liu
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Trevor Sherwood
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - John L Gilmore
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - James Lin
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Peng Li
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - John Tokarski
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Sha Li
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Lihong Cheng
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Chunshan Xie
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Jingsong Fan
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Elizabeth Dierks
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Joann Strnad
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Javed Khan
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Max Ruzanov
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Michael Galella
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Purnima Khandelwal
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Alaric J Dyckman
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Louis J Lombardo
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - John E Macor
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Percy H Carter
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Nelly Aranibar
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - James R Burke
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - David S Weinstein
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| |
Collapse
|
17
|
Liu F, Wang B, Liu Y, Shi W, Hu Z, Chang X, Tang X, Zhang Y, Xu H, He Y. Design, synthesis and biological evaluation of novel N-(methyl-d 3) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Bioorg Med Chem Lett 2023; 86:129235. [PMID: 36907336 DOI: 10.1016/j.bmcl.2023.129235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
As a mediator of pro-inflammatory cytokines, TYK2 is an attractive target to treat autoimmunity diseases. Herein, we reported the design, synthesis, and structure-activity relationships (SARs) of N-(methyl-d3) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Among them, compound 24 exhibited acceptable inhibition activity against STAT3 phosphorylation. Furthermore, 24 showed satisfactory selectivities toward other members of JAK family and performed a good stability profile in liver microsomal assay. Pharmacokinetics (PK) study indicated that compound 24 has reasonable PK exposures. In anti-CD40-induced colitis models, compound 24 was orally highly effective with no significant hERG and CYP isozymes inhibition. These results indicated that compound 24 was worthy of further investigation for the development of anti-autoimmunity diseases agents.
Collapse
Affiliation(s)
- Fei Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Bin Wang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yanlong Liu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Wei Shi
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Zhongyuan Hu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xiayun Chang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xujing Tang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Ying Zhang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hongjiang Xu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
18
|
Herrera-deGuise C, Serra-Ruiz X, Lastiri E, Borruel N. JAK inhibitors: A new dawn for oral therapies in inflammatory bowel diseases. Front Med (Lausanne) 2023; 10:1089099. [PMID: 36936239 PMCID: PMC10017532 DOI: 10.3389/fmed.2023.1089099] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition of the gastrointestinal tract that requires chronic treatment and strict surveillance. Development of new monoclonal antibodies targeting one or a few single cytokines, including anti-tumor necrosis factor agents, anti-IL 12/23 inhibitors, and anti-α4β7 integrin inhibitors, have dominated the pharmacological armamentarium in IBD in the last 20 years. Still, many patients experience incomplete or loss of response or develop serious adverse events and drug discontinuation. Janus kinase (JAK) is key to modulating the signal transduction pathway of several proinflammatory cytokines directly involved in gastrointestinal inflammation and, thus, probably IBD pathogenesis. Targeting the JAK-STAT pathway offers excellent potential for the treatment of IBD. The European Medical Agency has approved three JAK inhibitors for treating adults with moderate to severe Ulcerative Colitis when other treatments, including biological agents, have failed or no longer work or if the patient cannot take them. Although there are currently no approved JAK inhibitors for Crohn's disease, upadacitinib and filgotinib have shown increased remission rates in these patients. Other JAK inhibitors, including gut-selective molecules, are currently being studied IBD. This review will discuss the JAK-STAT pathway, its implication in the pathogenesis of IBD, and the most recent evidence from clinical trials regarding the use of JAK inhibitors and their safety in IBD patients.
Collapse
Affiliation(s)
| | | | | | - Natalia Borruel
- Unitat d’Atenció Crohn-Colitis, Digestive System Research Unit, Hospital Universitari Vall d’Hebrón, Barcelona, Spain
| |
Collapse
|
19
|
Rusiñol L, Puig L. Tyk2 Targeting in Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2023; 24:3391. [PMID: 36834806 PMCID: PMC9959504 DOI: 10.3390/ijms24043391] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The Janus kinase (Jak)/signal transducer and activating protein (STAT) pathways mediate the intracellular signaling of cytokines in a wide spectrum of cellular processes. They participate in physiologic and inflammatory cascades and have become a major focus of research, yielding novel therapies for immune-mediated inflammatory diseases (IMID). Genetic linkage has related dysfunction of Tyrosine kinase 2 (Tyk2)-the first member of the Jak family that was described-to protection from psoriasis. Furthermore, Tyk2 dysfunction has been related to IMID prevention, without increasing the risk of serious infections; thus, Tyk2 inhibition has been established as a promising therapeutic target, with multiple Tyk2 inhibitors under development. Most of them are orthosteric inhibitors, impeding adenosine triphosphate (ATP) binding to the JH1 catalytic domain-which is highly conserved across tyrosine kinases-and are not completely selective. Deucravacitinib is an allosteric inhibitor that binds to the pseudokinase JH2 (regulatory) domain of Tyk2; this unique mechanism determines greater selectivity and a reduced risk of adverse events. In September 2022, deucravacitinib became the first Tyk2 inhibitor approved for the treatment of moderate-to-severe psoriasis. A bright future can be expected for Tyk2 inhibitors, with newer drugs and more indications to come.
Collapse
Affiliation(s)
| | - Luis Puig
- Department of Dermatology IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
20
|
Martin G. Novel Therapies in Plaque Psoriasis: A Review of Tyrosine Kinase 2 Inhibitors. Dermatol Ther (Heidelb) 2023; 13:417-435. [PMID: 36592300 PMCID: PMC9884727 DOI: 10.1007/s13555-022-00878-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Plaque psoriasis is a systemic immune-mediated disease driven by interleukin-17 producing cells under the regulation of interleukin-23. Interleukin-23 signaling is mediated by the intracellular kinase tyrosine kinase 2, a Janus kinase family member. Tyrosine kinase 2 is a potential target for oral small-molecule therapies to treat psoriasis and psoriatic arthritis. A number of tyrosine kinase 2 inhibitors are in development or approved for the treatment of psoriasis or psoriatic arthritis. Deucravacitinib, an oral, selective, allosteric tyrosine kinase 2 inhibitor, is approved by the US Food and Drug Administration as a first-in-class treatment for adults with moderate-to-severe plaque psoriasis who are candidates for systemic therapy or phototherapy, and is approved by Pharmaceuticals and Medical Devices Agency (PDMA) in Japan for patients with plaque psoriasis, generalized pustular psoriasis, and erythrodermic psoriasis who have had an inadequate response to conventional therapies. Deucravacitinib selectively binds to the unique tyrosine kinase 2 regulatory pseudokinase domain in an allosteric fashion, preventing a conformational change in the catalytic domain required for ATP substrate binding, thus effectively locking tyrosine kinase 2 in an inactive state. Two other tyrosine kinase 2 inhibitors in later stage clinical development, brepocitinib (PF-06700841) and ropsacitinib (PF-06826647), are orthosteric inhibitors that target the highly conserved catalytic domain. This selective allosteric tyrosine kinase 2 inhibition may explain the improved safety profile of deucravacitinib versus orthosteric Janus kinase and tyrosine kinase 2 inhibitors. Two phase 3 psoriasis trials demonstrated deucravacitinib was efficacious and not associated with safety concerns characteristic of Janus kinase inhibitors, hence the new class designation (TYK2 inhibitor) by health authorities in the USA and Japan. Allosteric tyrosine kinase 2 inhibitors represent a promising new class of molecules for the treatment of psoriasis and psoriatic arthritis, and longer-term trials will establish their place in therapy.
Collapse
Affiliation(s)
- George Martin
- Dr. George Martin Dermatology Associates, 161 Wailea Ike Pl. A-104, Kihei, HI, 96753, USA.
| |
Collapse
|
21
|
Identification of Novel Small Molecule Ligands for JAK2 Pseudokinase Domain. Pharmaceuticals (Basel) 2023; 16:ph16010075. [PMID: 36678572 PMCID: PMC9865020 DOI: 10.3390/ph16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted in identification of 55 binders to the ATP-binding pocket of recombinant JAK2 JH2 V617F protein at a low hit rate of 0.05%, which indicates unique structural characteristics of the JAK2 JH2 ATP-binding pocket. Selected hits and structural analogs were further assessed for binding to JH2 and JH1 (kinase) domains of JAK family members (JAK1-3, TYK2) and for effects on MPN model cell viability. Crystal structures were determined with JAK2 JH2 wild-type and V617F. The JH2-selective binders were identified in diaminotriazole, diaminotriazine, and phenylpyrazolo-pyrimidone chemical entities, but they showed low-affinity, and no inhibition of MPN cells was detected, while compounds binding to both JAK2 JH1 and JH2 domains inhibited MPN cell viability. X-ray crystal structures of protein-ligand complexes indicated generally similar binding modes between the ligands and V617F or wild-type JAK2. Ligands of JAK2 JH2 V617F are applicable as probes in JAK-STAT research, and SAR optimization combined with structural insights may yield higher-affinity inhibitors with biological activity.
Collapse
|
22
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
23
|
Catlett IM, Aras U, Hansen L, Liu Y, Bei D, Girgis IG, Murthy B. First-in-human study of deucravacitinib: A selective, potent, allosteric small-molecule inhibitor of tyrosine kinase 2. Clin Transl Sci 2022; 16:151-164. [PMID: 36325947 PMCID: PMC9841305 DOI: 10.1111/cts.13435] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
This randomized, double-blind, single- and multiple-ascending dose study assessed the pharmacokinetics (PKs), pharmacodynamics, and safety of deucravacitinib (Sotyktu™), a selective and potent small-molecule inhibitor of tyrosine kinase 2, in 100 (75 active, 25 placebo) healthy volunteers (NCT02534636). Deucravacitinib was rapidly absorbed, with a half-life of 8-15 h, and 1.4-1.9-fold accumulation after multiple dosing. Deucravacitinib inhibited interleukin (IL)-12/IL-18-induced interferon (IFN)γ production ex vivo in a dose- and concentration-dependent manner. Following in vivo challenge with IFNα-2a, deucravacitinib demonstrated dose-dependent inhibition of lymphocyte count decreases and expression of 53 IFN-regulated genes. There were no serious adverse events (AEs); the overall frequency of AEs was similar in the deucravacitinib (64%) and placebo (68%) groups. In this first-in-human study, deucravacitinib inhibited IL-12/IL-23 and type I IFN pathways in healthy volunteers, with favorable PK and safety profiles. Deucravacitinib is a promising therapeutic option for immune-mediated diseases, including Crohn's disease, psoriasis, psoriatic arthritis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Urvi Aras
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | - Yali Liu
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Di Bei
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | | |
Collapse
|
24
|
Liu F, Wang B, Liu Y, Shi W, Tang X, Wang X, Hu Z, Zhang Y, Guo Y, Chang X, He X, Xu H, He Y. Novel TYK2 Inhibitors with an N-(Methyl- d 3)pyridazine-3-carboxamide Skeleton for the Treatment of Autoimmune Diseases. ACS Med Chem Lett 2022; 13:1730-1738. [PMID: 36385928 PMCID: PMC9661719 DOI: 10.1021/acsmedchemlett.2c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Tyrosine kinase 2 (TYK2) mediates the interleukin-23 (IL-23), IL-12, and type I interferon (IFN)-driven signal responses that are critical in autoimmune diseases. Here, a series of novel derivatives with an N-(methyl-d 3)pyridazine-3-carboxamide skeleton that bind to the TYK2 pseudokinase domain were designed, synthesized, and evaluated. Among them, compound 30 demonstrated more excellent inhibitory potency against STAT3 phosphorylation than the positive control deucravacitinib. In addition to JAK isoform selectivity, compound 30 exhibited good in vivo and in vitro pharmacokinetic properties. Furthermore, compound 30 was orally highly effective in both IL-23-driven acanthosis and anti-CD40-induced colitis models. Together, these findings support compound 30 as a promising candidate for therapeutic applications in autoimmune diseases.
Collapse
Affiliation(s)
- Fei Liu
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Bin Wang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Yanlong Liu
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Wei Shi
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xujing Tang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xiaojin Wang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Zhongyuan Hu
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Ying Zhang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Yahui Guo
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xiayun Chang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xiangyi He
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Hongjiang Xu
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Ying He
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
25
|
Lé AM, Puig L, Torres T. Deucravacitinib for the Treatment of Psoriatic Disease. Am J Clin Dermatol 2022; 23:813-822. [PMID: 35960487 PMCID: PMC9372960 DOI: 10.1007/s40257-022-00720-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 12/03/2022]
Abstract
Psoriasis is an immune-mediated disease, with the interleukin (IL)-23/IL-17 axis currently considered its main pathogenic pathway. Tyrosine kinase 2 (TYK2) is responsible for mediating immune signalling of IL-12, IL-23 and type I interferons, without interfering with other critical systemic functions as other JAK proteins do. This article aims to review the current knowledge on deucravacitinib, a new oral drug that selectively inhibits TYK2, granting it a low risk of off-target effects. After good efficacy and safety results in a phase II, placebo-controlled trial, two phase III, 52-week trials evaluated deucravacitinib 6 mg against placebo and apremilast—an active comparator. POETYK PSO-1 and PSO-2 involved 1688 patients with moderate-to-severe psoriasis. After 16 weeks, in both studies, over 50% of patients treated with deucravacitinib reached PASI75, which was significantly superior to placebo and apremilast. In POETYK PSO-1, these results improved until week 24 and were maintained through week 52, with over 65% of patients achieving PASI75 at this point. A reduction in signs and symptoms was also reported by patients, with greater impact on itch. Deucravacitinib was well tolerated and safe. There were no reports of serious infections, thromboembolic events, or laboratory abnormalities, which are a concern among other JAK inhibitors. Persistent efficacy and consistent safety profiles were reported for up to 2 years. Despite advances in the treatment of psoriasis, namely among biologic agents, an oral, effective and safe new drug can bring several advantages to prescribers and patients. Further investigation is required to understand where to place deucravacitinib among current psoriasis treatment options.
Collapse
Affiliation(s)
- Ana Maria Lé
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luis Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Tiago Torres
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
26
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
27
|
Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov 2022; 21:899-914. [DOI: 10.1038/s41573-022-00472-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
|
28
|
Zhou Y, Li X, Shen R, Wang X, Zhang F, Liu S, Li D, Liu J, Li P, Yan Y, Dong P, Zhang Z, Wu H, Zhuang L, Chowdhury R, Miller M, Issa M, Mao Y, Chen H, Feng J, Li J, Bai C, He F, Tao W. Novel Small Molecule Tyrosine Kinase 2 Pseudokinase Ligands Block Cytokine-Induced TYK2-Mediated Signaling Pathways. Front Immunol 2022; 13:884399. [PMID: 35693820 PMCID: PMC9186491 DOI: 10.3389/fimmu.2022.884399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
A member of the Janus kinase (JAK) family, Tyrosine Kinase 2 (TYK2), is crucial in mediating various cytokine-signaling pathways such as interleukin-23 (IL23), interleukin-12 (IL12) and type I Interferons (IFN) which contribute to autoimmune disorders (e.g., psoriasis, lupus, and inflammatory bowel disease). Thus, TYK2 represents an attractive target to develop small-molecule therapeutics for the treatment of cytokine-driven inflammatory diseases. Selective inhibition of TYK2 over other JAK isoforms is critical to achieve a favorable therapeutic index in the development of TYK2 inhibitors. However, designing small molecule inhibitors to target the adenosine triphosphate (ATP) binding site of TYK2 kinase has been challenging due to the substantial structural homology of the JAK family catalytic domains. Here, we employed an approach to target the JAK homology 2 (JH2) pseudokinase regulatory domain of the TYK2 protein. We developed a series of small-molecule TYK2 pseudokinase ligands, which suppress the TYK2 catalytic activity through allosteric regulation. The TYK2 pseudokinase-binding small molecules in this study simultaneously achieve high affinity-binding for the TYK2 JH2 domain while also affording significantly reduced affinity for the TYK2 JAK homology 1 (JH1) kinase domain. These TYK2 JH2 selective molecules, although possessing little effect on suppressing the catalytic activity of the isolated TYK2 JH1 catalytic domain in the kinase assays, can still significantly block the TYK2-mediated receptor-stimulated pathways by binding to the TYK2 JH2 domain and allosterically regulating the TYK2 JH1 kinase. These compounds are potent towards human T-cell lines and primary immune cells as well as in human whole-blood specimens. Moreover, TYK2 JH2-binding ligands exhibit remarkable selectivity of TYK2 over JAK isoforms not only biochemically but also in a panel of receptor-stimulated JAK1/JAK2/JAK3-driven cellular functional assays. In addition, the TYK2 JH2-targeting ligands also demonstrate high selectivity in a multi-kinase screening panel. The data in the current study underscores that the TYK2 JH2 pseudokinase is a promising therapeutic target for achieving a high degree of biological selectivity. Meanwhile, targeting the JH2 domain represents an appealing strategy for the development of clinically well-tolerated TYK2 inhibitors that would have superior efficacy and a favorable safety profile compared to the existing Janus kinase inhibitors against autoimmune diseases.
Collapse
Affiliation(s)
- Yu Zhou
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
- *Correspondence: Yu Zhou, ; Xin Li,
| | - Xin Li
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
- *Correspondence: Yu Zhou, ; Xin Li,
| | - Ru Shen
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Xiangzhu Wang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Fan Zhang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Suxing Liu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Di Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Jian Liu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Puhui Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Yinfa Yan
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Ping Dong
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Zhigao Zhang
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Heping Wu
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Linghang Zhuang
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | | | - Matthew Miller
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Mena Issa
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Yuchang Mao
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hongli Chen
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Jun Feng
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Jing Li
- R & D Center, Eternity Bioscience Inc., Cranbury, NJ, United States
| | - Chang Bai
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Feng He
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Weikang Tao
- R & D Center, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| |
Collapse
|
29
|
Sewell GW, Kaser A. Interleukin-23 in the Pathogenesis of Inflammatory Bowel Disease and Implications for Therapeutic Intervention. J Crohns Colitis 2022; 16:ii3-ii19. [PMID: 35553667 PMCID: PMC9097674 DOI: 10.1093/ecco-jcc/jjac034] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interleukin-23 [IL-23] cytokine, derived predominantly from macrophages and dendritic cells in response to microbial stimulation, has emerged as a critical promoter of chronic intestinal inflammation. Genome-wide association studies linking variants in IL23R to disease protection, bolstered by experimental evidence from colitis models, and the successful application of therapies against the IL-12/IL-23 shared p40 subunit in the treatment of inflammatory bowel disease [IBD] all provide compelling evidence of a crucial role for IL-23 in disease pathogenesis. Moreover, targeting the p19 subunit specific for IL-23 has shown considerable promise in recent phase 2 studies in IBD. The relative importance of the diverse immunological pathways downstream of IL-23 in propagating mucosal inflammation in the gut, however, remains contentious. Here we review current understanding of IL-23 biology and explore its pleiotropic effects on T cells, and innate lymphoid, myeloid and intestinal epithelial cells in the context of the pathogenesis of IBD. We furthermore discuss these pathways in the light of recent evidence from clinical trials and indicate emerging targets amenable to therapeutic intervention and translation into clinical practice.
Collapse
Affiliation(s)
- Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK,Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Arthur Kaser
- Corresponding author: Arthur Kaser, Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK. Tel: +44 1223 331130;
| |
Collapse
|
30
|
Qing T, Liu J, Liu F, Mitchell DC, Beresis RT, Gordan JD. Methods to assess small molecule allosteric modulators of the STRAD pseudokinase. Methods Enzymol 2022; 667:427-453. [PMID: 35525550 DOI: 10.1016/bs.mie.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the increased appreciation of the biological relevance of pseudokinase (PSK) allostery, the broadening of small molecule strategies to target PSK function is of particular importance. We and others have pursued the development of small molecule allosteric modulators of the STRAD pseudokinase by targeting its ATP binding pocket. The purpose of this effort is to modulate the function of the LKB1 tumor suppressor kinase, which exists in a trimer with the STRAD PSK and the adaptor protein MO25. Here we provide detailed guidance regarding the different methods we have used for medium throughput screening to identify STRAD ligands and measure their impact on LKB1 kinase activity. Our experience supports preferential use of direct measurements of LKB1 kinase activity, and demonstrates the limitations of indirect assessment methods in the development trans-acting allosteric modulators.
Collapse
Affiliation(s)
- Tingting Qing
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Jin Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Fen Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Dom C Mitchell
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Richard T Beresis
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - John D Gordan
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States.
| |
Collapse
|
31
|
Locke GA, Muckelbauer J, Tokarski JS, Barbieri CM, Belić S, Falk B, Tredup J, Wang YK. Identification and characterization of TYK2 pseudokinase domain stabilizers that allosterically inhibit TYK2 signaling. Methods Enzymol 2022; 667:685-727. [PMID: 35525559 DOI: 10.1016/bs.mie.2022.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinase inhibition continues to be a major focus of pharmaceutical research and discovery due to the central role of these proteins in the regulation of cellular processes. One family of kinases of pharmacological interest, due to its role in activation of immunostimulatory pathways, is the Janus kinase family. Small molecule inhibitors targeting the individual kinase proteins within this family have long been sought-after therapies. High sequence and structural similarity of the family members makes selective inhibitors difficult to identify but critical because of their inter-related multiple cellular regulatory pathways. Herein, we describe the identification of inhibitors of the important Janus kinase, TYK2, a regulator of type I interferon response. In addition, the biochemical and structural confirmation of the direct interaction of these small molecules with the TYK2 pseudokinase domain is described and a potential mechanism of allosteric regulation of TYK2 activity through stabilization of the pseudokinase domain is proposed.
Collapse
Affiliation(s)
- Gregory A Locke
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States.
| | - Jodi Muckelbauer
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - John S Tokarski
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Christopher M Barbieri
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Stefan Belić
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Bradley Falk
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Jeffrey Tredup
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Ying-Kai Wang
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| |
Collapse
|
32
|
Glassman CR, Tsutsumi N, Saxton RA, Lupardus PJ, Jude KM, Garcia KC. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science 2022; 376:163-169. [PMID: 35271300 PMCID: PMC9306331 DOI: 10.1126/science.abn8933] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytokines signal through cell surface receptor dimers to initiate activation of intracellular Janus Kinases (JAKs). We report the 3.6-Å resolution cryo-EM structure of full-length JAK1 complexed with a cytokine receptor intracellular Box1/Box2 domain, captured as an activated homodimer bearing the Val→Phe (VF) mutation prevalent in myeloproliferative neoplasms. The seven domains of JAK1 form an extended structural unit whose dimerization is mediated by close-packed pseudokinase (PK) domains. The oncogenic VF mutation lies within the core of the JAK1 PK dimer interface, enhancing packing complementarity to facilitate ligand-independent activation. The C-terminal tyrosine kinase domains are poised to phosphorylate the receptor STAT-recruiting motifs projecting from the overhanging FERM-SH2 domains. Mapping of constitutively active JAK mutants supports a two-step allosteric activation mechanism and reveals new opportunities for selective therapeutic targeting of oncogenic JAK signaling.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Nielsen OH, Boye TL, Chakravarti D, Gubatan J. Selective tyrosine kinase 2 inhibitors in inflammatory bowel disease. Trends Pharmacol Sci 2022; 43:424-436. [PMID: 35277286 DOI: 10.1016/j.tips.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
Recent significant advances have been made in the treatment of chronic inflammatory diseases with initiation of the era of biologics. However, an unmet medical need still exists for novel targeted therapies. Compared with biologics, Janus kinase inhibitors (JAKis) are a new drug class of orally administered small molecules that have been shown to efficiently modulate complex cytokine-driven inflammation in preclinical models and human studies. Unfortunately, serious adverse effects have been reported with the first introduced pan-JAKi, tofacitinib. Here, we review tyrosine kinase 2 (TYK2) signaling in the pathophysiology of inflammatory bowel disease (IBD), examine mechanisms of action of selective TYK2 inhibitors (TYK2is), and discuss the potential for these inhibitors in efforts to balance benefits and harms.
Collapse
Affiliation(s)
- Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
34
|
Chimalakonda A, Singhal S, Darbenzio R, Dockens R, Marchisin D, Banerjee S, Girgis IG, Throup J, He B, Aras U, Murthy B. Lack of Electrocardiographic Effects of Deucravacitinib in Healthy Subjects. Clin Pharmacol Drug Dev 2022; 11:442-453. [PMID: 35182043 PMCID: PMC9306920 DOI: 10.1002/cpdd.1056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/16/2021] [Indexed: 11/06/2022]
Abstract
Deucravacitinib is a novel, oral, selective inhibitor of the intracellular signaling kinase tyrosine kinase 2. This phase 1, randomized, partially double‐blind, 4‐period crossover study in healthy adults was conducted to determine whether deucravacitinib 12 mg (therapeutic dose) or 36 mg (supratherapeutic dose) had a clinically relevant effect on the corrected QT interval and other electrocardiographic (ECG) parameters. Subjects received 1 of 4 sequences of placebo, deucravacitinib 12 mg, deucravacitinib 36 mg, and moxifloxacin 400 mg (positive control) in a randomized crossover fashion. The placebo‐corrected change from baseline for the QT interval corrected for heart rate using the Fridericia method (QTcF), ECG parameters, and safety measures were evaluated. A clinically meaningful QTcF prolongation of >10 milliseconds was not found for deucravacitinib at tested doses. Assay sensitivity was demonstrated by the observation of known QT effects of moxifloxacin in the study. Deucravacitinib had no clinically relevant effect on other parameters and was generally well tolerated. The majority of adverse events (AEs) were mild, and all AEs resolved by study's end. Three treatment‐related serious AEs of pharyngitis, cellulitis, and lymphadenopathy occurred in 1 subject following administration of deucravacitinib 12 mg, but resolved by end of study. This study demonstrated that a single oral dose of deucravacitinib 12 or 36 mg did not produce a clinically relevant effect on the corrected QT interval or other measured ECG parameters in healthy adults.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Throup
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Bing He
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Urvi Aras
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Bindu Murthy
- Bristol Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
35
|
Gonzalez Lopez de Turiso F, Guckian K. Selective TYK2 inhibitors as potential therapeutic agents: a patent review (2019-2021). Expert Opin Ther Pat 2022; 32:365-379. [PMID: 35001782 DOI: 10.1080/13543776.2022.2026927] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Tyrosine kinase 2 (TYK2) is a member of the JAK family class of kinases that is responsible for mediating the immune response to IL-12, IL-23, and IFNα. The therapeutic value of targeting this pathway in autoimmune diseases is supported by human genetics and multiple companies are developing small molecule inhibitors as potential new treatments. In this article, the more recent literature and business activity of the TYK2 field is summarized. AREAS COVERED This article seeks to give a comprehensive review of the applications related to selective small molecule TYK2 inhibition since the publication of the last manuscript in this journal in 2019. Recent regulatory activity in the JAK family of approved kinase inhibitors, emerging clinical data, and new companies entering the clinic with selective TYK2 inhibitors will also be discussed. EXPERT OPINION Over the past three years there has been an increase in the number of companies and patent applications claiming selective TYK2 inhibitors. Deucravacitinib, an allosteric TYK2 inhibitor discovered by BMS, is the most advanced molecule in clinical development. In 2021, this compound received positive phase 3 data for the treatment of plaque psoriasis and is undergoing additional trials in psoriatic arthritis, lupus, ulcerative colitis, and Crohn's disease. This positive data has spurred a renewed interest in targeting TYK2 with selective inhibitors and several new molecules have entered phase 1 trials this year. The research interest in this area is likely to further increase as additional clinical data with deucravacitinib and other TYK2 inhibitors continue to emerge.
Collapse
Affiliation(s)
| | - Kevin Guckian
- Medicinal Chemistry, Biogen, Inc., Cambridge, MA, USA
| |
Collapse
|
36
|
Danese S, Peyrin-Biroulet L. Selective Tyrosine Kinase 2 Inhibition for Treatment of Inflammatory Bowel Disease: New Hope on the Rise. Inflamm Bowel Dis 2021; 27:2023-2030. [PMID: 34089259 PMCID: PMC8599029 DOI: 10.1093/ibd/izab135] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Conventional systemic and biologic agents are the mainstay of inflammatory bowel disease (IBD) management; however, many of these agents are associated with loss of clinical response, highlighting the need for effective, novel targeted therapies. Janus kinase (JAK) 1-3 and tyrosine kinase 2 (TYK2) mediate signal transduction events downstream of multiple cytokine receptors that regulate targeted gene transcription, including the interleukin-12, interleukin-23, and type I interferon receptors for TYK2. This review summarizes the role of TYK2 signaling in IBD pathogenesis, the differential selectivity of TYK2 inhibitors, and the potential clinical implications of TYK2 inhibition in IBD. A PubMed literature review was conducted to identify studies of JAK1-3 and TYK2 inhibitors in IBD and other immune-mediated inflammatory diseases. Key efficacy and safety information was extracted and summarized. Pan-JAK inhibitors provide inconsistent efficacy in patients with IBD and are associated with toxicities resulting from a lack of selectivity at therapeutic dosages. Selective inhibition of TYK2 signaling via an allosteric mechanism, with an agent that binds to the regulatory (pseudokinase) domain, may reduce potential toxicities typically associated with JAK1-3 inhibitors. Deucravacitinib, a novel, oral, selective TYK2 inhibitor, and brepocitinib and PF-06826647, TYK2 inhibitors that bind to the active site in the catalytic domain, are in development for IBD and other immune-mediated inflammatory diseases. Allosteric TYK2 inhibition is more selective than JAK1-3 inhibition and has the potential to limit toxicities typically associated with JAK1-3 inhibitors. Future studies will be important in establishing the role of selective, allosteric TYK2 inhibition in the management of IBD.
Collapse
Affiliation(s)
- Silvio Danese
- Humanitas University and IBD Center, Istituto Clinico Humanitas, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology, Nancy University Hospital, Lorraine University, Vandœuvre-lès-Nancy, France
| |
Collapse
|
37
|
Ghoreschi K, Augustin M, Baraliakos X, Krönke G, Schneider M, Schreiber S, Schulze-Koops H, Zeißig S, Thaçi D. TYK2‐Inhibition: Potenzial bei der Behandlung chronisch‐entzündlicher Immunerkrankungen. J Dtsch Dermatol Ges 2021; 19:1409-1420. [PMID: 34661350 DOI: 10.1111/ddg.14585_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Kamran Ghoreschi
- Klinik für Dermatologie, Venerologie und Allergologie, Charité- Universitätsmedizin Berlin
| | - Matthias Augustin
- Institut für Versorgungsforschung in der Dermatologie und bei Pflegeberufen, Universitätsklinikum Hamburg
| | | | - Gerhard Krönke
- Medizinische Klinik 3 (Rheumatologie und Immunologie), Universitätsklinikum Erlangen
| | - Matthias Schneider
- Poliklinik und Funktionsbereich für Rheumatologie, Universitätsklinikum Düsseldorf
| | - Stefan Schreiber
- Institut für Klinische Molekularbiologie, Christian-Albrechts-Universität zu Kiel
| | - Hendrik Schulze-Koops
- Fachbereich für Rheumatologie und Klinische Immunologie, Medizinische Klinik und Poliklinik IV, Universität München
| | - Sebastian Zeißig
- Medizinische Klinik und Poliklinik I - Universitätsklinikum Dresden und Center for Regenerative Therapies Dresden (CRTD)
| | - Diamant Thaçi
- Institut für Entzündungsmedizin, Universitätsklinikum Schleswig- Holstein, Campus Lübeck
| |
Collapse
|
38
|
Designing small molecules for therapeutic success: A contemporary perspective. Drug Discov Today 2021; 27:538-546. [PMID: 34601124 DOI: 10.1016/j.drudis.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022]
Abstract
Successful small-molecule drug design requires a molecular target with inherent therapeutic potential and a molecule with the right properties to unlock its potential. Present-day drug design strategies have evolved to leave little room for improvement in drug-like properties. As a result, inadequate safety or efficacy associated with molecular targets now constitutes the primary cause of attrition in preclinical development through Phase II. This finding has led to a deeper focus on target selection. In this current reality, design tactics that enable rapid identification of risk-balanced clinical candidates, translation of clinical experience into meaningful differentiation strategies, and expansion of the druggable proteome represent significant levers by which drug designers can accelerate the discovery of the next generation of medicines.
Collapse
|
39
|
Ghoreschi K, Augustin M, Baraliakos X, Krönke G, Schneider M, Schreiber S, Schulze-Koops H, Zeißig S, Thaçi D. TYK2 inhibition and its potential in the treatment of chronic inflammatory immune diseases. J Dtsch Dermatol Ges 2021; 19:1409-1420. [PMID: 34580985 DOI: 10.1111/ddg.14585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Immune-mediated chronic inflammatory diseases have emerged as a leading cause of morbidity and mortality in Western countries over the last decades. Although multiple putative factors have been suspected to be causally related to the diseases, their overarching etiology remains unknown. This review article summarizes the current state of scientific knowledge and understanding of the role of non-receptor tyrosine kinases, with a special focus on the Janus kinase TYK2 in autoimmune and immune mediated diseases as well as on the clinical properties of its inhibition. A panel of experts in the field discussed the scientific evidence and molecular rationale for TYK2 inhibition and its clinical application. Reviewing this meeting, we aim at providing an integrated overview of the clinical profile of TYK2 inhibition and its potential in targeted pharmacological therapy of chronic autoimmune and immune-mediated diseases, with a special focus on inflammatory diseases of the skin.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg, Hamburg, Germany
| | - Xenofon Baraliakos
- Center for Rheumatology, Katholische Kliniken Rhein-Ruhr, Herne, Germany
| | - Gerhard Krönke
- Clinic for Inner Medicine 3 (Rheumatology and Immunology), University Hospital Erlangen, Erlangen, Germany
| | - Matthias Schneider
- Polyclinic and Functional Area for Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian Albrechts University Kiel, Kiel, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Department of Medicine IV, University of Munich, Munich, Germany
| | - Sebastian Zeißig
- Medical Clinic I - University Hospital Dresden and Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Diamant Thaçi
- Institute for Inflammatory Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
40
|
Wei S, Zhao T, Wang J, Zhai X. Approach in Improving Potency and Selectivity of Kinase Inhibitors: Allosteric Kinase Inhibitors. Mini Rev Med Chem 2021; 21:991-1003. [PMID: 33355051 DOI: 10.2174/1389557521666201222144355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have a distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for the treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structure-activity relationships, ligand-protein interactions, and in vitro and in vivo activity. Additionally, challenges, as well as opportunities, are also presented.
Collapse
Affiliation(s)
- Shangfei Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianming Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
41
|
Hromadová D, Elewaut D, Inman RD, Strobl B, Gracey E. From Science to Success? Targeting Tyrosine Kinase 2 in Spondyloarthritis and Related Chronic Inflammatory Diseases. Front Genet 2021; 12:685280. [PMID: 34290741 PMCID: PMC8287328 DOI: 10.3389/fgene.2021.685280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Spondyloarthritis (SpA) is a family of inflammatory arthritic diseases, which includes the prototypes of psoriatic arthritis and ankylosing spondylitis. SpA is commonly associated with systemic inflammatory diseases, such as psoriasis and inflammatory bowel disease. Immunological studies, murine models and the genetics of SpA all indicate a pathogenic role for the IL-23/IL-17 axis. Therapeutics targeting the IL-23/IL-17 pathway are successful at providing symptomatic relief, but may not provide complete protection against progression of arthritis. Thus there is still tremendous interest in the discovery of novel therapeutic targets for SpA. Tyrosine kinase 2 (TYK2) is a member of the Janus kinases, which mediate intracellular signaling of cytokines via signal transducer and activator of transcription (STAT) activation. TYK2 plays a crucial role in mediating IL-23 receptor signaling and STAT3 activation. A plethora of natural mutations in and around TYK2 have provided a wealth of data to associate this kinase with autoimmune/autoinflammatory diseases in humans. Induced and natural mutations in murine Tyk2 largely support human data; however, key inter-species differences exist, which means extrapolation of data from murine models to humans needs to be done with caution. Despite these reservations, novel selective TYK2 inhibitors are now proving successful in advanced clinical trials of inflammatory diseases. In this review, we will discuss TYK2 from basic biology to therapeutic targeting, with an emphasis on studies in SpA. Seminal studies uncovering the basic science of TYK2 have provided sound foundations for targeting it in SpA and related inflammatory diseases. TYK2 inhibitors may well be the next blockbuster therapeutic for SpA.
Collapse
Affiliation(s)
- Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Robert D. Inman
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
Krueger JG, McInnes IB, Blauvelt A. Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J Am Acad Dermatol 2021; 86:148-157. [PMID: 34224773 DOI: 10.1016/j.jaad.2021.06.869] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023]
Abstract
Plaque psoriasis is a common, chronic, systemic, immune-mediated inflammatory disease. The Janus kinase-signal transducer and activator of transcription pathway plays a major role in intracellular cytokine signaling in inflammatory processes involved in psoriasis. Although Janus kinase (JAK) 1-3 inhibitors have demonstrated efficacy in patients with moderate-to-severe psoriasis, safety concerns persist and no JAK inhibitor has received regulatory approval to treat psoriasis. Thus, an opportunity exists for novel oral therapies that are safe and efficacious in psoriasis. Tyrosine kinase 2 (TYK2) is a member of the JAK family of kinases and regulates signaling and functional responses downstream of the interleukin 12, interleukin 23, and type I interferon receptors. Deucravacitinib, which is an oral, selective inhibitor that binds to the regulatory domain of TYK2, and brepocitinib (PF-06700841) and PF-06826647, which are topical and oral TYK2 inhibitors, respectively, that bind to the active (adenosine triphosphate-binding) site in the catalytic domain, are in development for psoriasis. Selective, allosteric inhibition of TYK2 signaling may reduce the potential for toxicities associated with pan-JAK inhibitors. This article reviews Janus kinase-signal transducer and activator of transcription and TYK2 signaling and the efficacy and safety of JAK inhibitors in psoriasis to date, focusing specifically on TYK2 inhibitors.
Collapse
Affiliation(s)
- James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|
43
|
Chaudhry C, Tebben A, Tokarski JS, Borzilleri R, Pitts WJ, Lippy J, Zhang L. An innovative kinome platform to accelerate small-molecule inhibitor discovery and optimization from hits to leads. Drug Discov Today 2021; 26:1115-1125. [PMID: 33497831 DOI: 10.1016/j.drudis.2021.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/23/2020] [Accepted: 01/18/2021] [Indexed: 01/09/2023]
Abstract
Kinases, accounting for 20% of the human genome, have been the focus of pharmaceutical drug discovery efforts for over three decades. Despite concerns surrounding the tractability of kinases as drug targets, it is evident that kinase drug discovery offers great potential, underscored by the US Food and Drug Administration (FDA) approval of 48 small-molecule kinase inhibitors. Despite these successes, it is challenging to identify novel kinome selective inhibitors with good pharmacokinetic/pharmacodynamic (PK/PD) properties, and resistance to kinase inhibitor treatment frequently arises. A new era of kinase drug discovery predicates the need for diverse and powerful tools to discover the next generation of kinase inhibitors. Here, we outline key tenets of the Bristol Meyers Squibb (BMS) kinase platform, to enable efficient generation of highly optimized kinase inhibitors.
Collapse
Affiliation(s)
- Charu Chaudhry
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA.
| | - Andrew Tebben
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | - John S Tokarski
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | | | - William J Pitts
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, NJ, USA
| | - Jonathan Lippy
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| | - Litao Zhang
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| |
Collapse
|
44
|
Liu C, Lin J, Langevine C, Smith D, Li J, Tokarski JS, Khan J, Ruzanov M, Strnad J, Zupa-Fernandez A, Cheng L, Gillooly KM, Shuster D, Zhang Y, Thankappan A, McIntyre KW, Chaudhry C, Elzinga PA, Chiney M, Chimalakonda A, Lombardo LJ, Macor JE, Carter PH, Burke JR, Weinstein DS. Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. J Med Chem 2020; 64:677-694. [PMID: 33370104 DOI: 10.1021/acs.jmedchem.0c01698] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A search for structurally diversified Tyk2 JH2 ligands from 6 (BMS-986165), a pyridazine carboxamide-derived Tyk2 JH2 ligand as a clinical Tyk2 inhibitor currently in late development for the treatment of psoriasis, began with a survey of six-membered heteroaryl groups in place of the N-methyl triazolyl moiety in 6. The X-ray co-crystal structure of an early lead (12) revealed a potential new binding pocket. Exploration of the new pocket resulted in two frontrunners for a clinical candidate. The potential hydrogen bonding interaction with Thr599 in the pocket was achieved with a tertiary amide moiety, confirmed by the X-ray co-crystal structure of 29. When the diversity search was extended to nicotinamides, a single fluorine atom addition was found to significantly enhance the permeability, which directly led to the discovery of 7 (BMS-986202) as a clinical Tyk2 inhibitor that binds to Tyk2 JH2. The preclinical studies of 7, including efficacy studies in mouse models of IL-23-driven acanthosis, anti-CD40-induced colitis, and spontaneous lupus, will also be presented.
Collapse
Affiliation(s)
- Chunjian Liu
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James Lin
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charles Langevine
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Department of Discovery Synthesis, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Department of Discovery Synthesis, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John S Tokarski
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Javed Khan
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Max Ruzanov
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joann Strnad
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Adriana Zupa-Fernandez
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen M Gillooly
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - David Shuster
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yifan Zhang
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Anil Thankappan
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W McIntyre
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Leads Discovery and Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Paul A Elzinga
- Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Manoj Chiney
- Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Anjaneya Chimalakonda
- Metabolism and Pharmacokinetic Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Louis J Lombardo
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John E Macor
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H Carter
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R Burke
- Immunosciences Discovery Biology, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - David S Weinstein
- Immunosciences Discovery Chemistry, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
45
|
Development of JAK inhibitors for the treatment of immune-mediated diseases: kinase-targeted inhibitors and pseudokinase-targeted inhibitors. Arch Pharm Res 2020; 43:1173-1186. [PMID: 33161563 DOI: 10.1007/s12272-020-01282-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
JAKs are a family of intracellular tyrosine kinases consisting of four members, JAK1, JAK2, JAK3, and TYK2. They are key components of the JAK-STAT pathway that transmit signals of many cytokines involved in the pathogenesis of numerous immune-mediated diseases and have been major molecular targets in developing new drugs for the treatment of such diseases. Some small-molecule inhibitors of JAKs have been approved by the FDA for rheumatoid arthritis, psoriatic arthritis, and inflammatory bowel disease. Now, newer JAK inhibitors with isoform-selectivity among the four different JAKs are being developed, with the aim of improving clinical outcomes compared with earlier developed drugs with pan-JAK inhibition. Most of these selective inhibitors target the kinase domains of JAKs, functioning through the traditional inhibition mode of kinases; but recently those that target their pseudokinase domains, allosterically inhibiting the enzymes, have been under development. In this review, key characteristics, efficacy, and safety of FDA-approved and representative drugs in late stages of development are briefly described in order to provide clinical implications with respect to JAK inhibitor selectivity and future development perspectives. The recent development of pseudokinase-targeted inhibitors of JAKs is also included.
Collapse
|
46
|
Coomans de Brachène A, Castela A, Op de Beeck A, Mirmira RG, Marselli L, Marchetti P, Masse C, Miao W, Leit S, Evans-Molina C, Eizirik DL. Preclinical evaluation of tyrosine kinase 2 inhibitors for human beta-cell protection in type 1 diabetes. Diabetes Obes Metab 2020; 22:1827-1836. [PMID: 32476252 PMCID: PMC8080968 DOI: 10.1111/dom.14104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
AIM Type 1 diabetes (T1D) is a chronic autoimmune disease leading to progressive loss of pancreatic beta cells. Interferon (IFN)-α plays a critical role in the crosstalk between pancreatic beta cells and the immune system in early insulitis. In human beta cells IFNα signals through JAK1 and TYK2, leading to endoplasmic reticulum stress, inflammation and HLA class I overexpression. IFNα, acting synergistically with IL-1β, induces apoptosis. Polymorphisms in TYK2 that decrease its activity are associated with protection against T1D, and we hypothesized that pharmacological inhibitors that specifically target TYK2 could protect human beta cells against the deleterious effects of IFNα. MATERIALS AND METHODS Two TYK2 inhibitors provided by Nimbus Lakshmi were tested in human insulin-producing EndoC-βH1 cells and human islets to evaluate their effect on IFNα signalling, beta-cell function and susceptibility to viral infection using RT-qPCR, western blot, immunofluorescence, ELISA and nuclear dyes. RESULTS The two TYK2 inhibitors tested prevented IFNα-induced human beta-cell gene expression in a dose-dependent manner. They also protected human islets against IFNα + IL-1β-induced apoptosis. Importantly, these inhibitors did not modify beta-cell function or their survival following infection with the potential diabetogenic coxsackieviruses CVB1 and CVB5. CONCLUSIONS The two TYK2 inhibitors tested inhibit the IFNα signalling pathway in human beta cells, decreasing its pro-inflammatory and pro-apoptotic effects without sensitizing the cells to viral infection. The preclinical findings could pave the way for future clinical trials with TYK2 inhibitors for the prevention and treatment of type 1 diabetes.
Collapse
Affiliation(s)
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Craig Masse
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Wenyan Miao
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Silvana Leit
- Nimbus Therapeutics, Cambridge, Massachusetts, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Colomba A, Fitzek M, George R, Weitsman G, Roberts S, Zanetti-Domingues L, Hirsch M, Rolfe DJ, Mehmood S, Madin A, Claus J, Kjaer S, Snijders AP, Ng T, Martin-Fernandez M, Smith DM, Parker PJ. A small molecule inhibitor of HER3: a proof-of-concept study. Biochem J 2020; 477:3329-3347. [PMID: 32815546 PMCID: PMC7489893 DOI: 10.1042/bcj20200496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.
Collapse
Affiliation(s)
- Audrey Colomba
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield, U.K
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Selene Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Laura Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Shahid Mehmood
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Jeroen Claus
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
- CRUK KHP Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| |
Collapse
|
48
|
Abstract
INTRODUCTION Janus kinases inhibitors (JAKi) are new small molecules recently introduced in the armamentarium of treatments for Inflammatory Bowel Disease (IBD). Janus Kinases (JAK) are tyrosine kinases that act by linkage with different intracellular receptors, regulating cytokines gene transcription implicated in the inflammatory burden seen in IBD patients. AREAS COVERED A comprehensive literature search was performed to retrieve studies on JAKi and IBD to discuss the latest developments and how the selectivity of these drugs is changing the natural course of IBD. EXPERT OPINION Available data on efficacy and safety of JAKi in IBD are highly encouraging and because of their selectivity, these drugs might become among the foremost options in the treatment algorithm.
Collapse
Affiliation(s)
- Giulia Roda
- IBD Unit, Humanitas Clinical and Research Center - IRCCS - , Milan, Italy
| | - Arianna Dal Buono
- IBD Unit, Humanitas Clinical and Research Center - IRCCS - , Milan, Italy
| | - Marjorie Argollo
- Gastroenterology, Universidade Federal De São Paulo , São Paulo, Brazil
| | - Silvio Danese
- IBD Unit, Humanitas Clinical and Research Center - IRCCS - , Milan, Italy.,Department of Biomedical Sciences, Humanitas University , Milan, Italy
| |
Collapse
|
49
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|