1
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
2
|
Wang J, Guo Y, He Y, Qin Y, Li X, Yang L, Liu K, Xiao L. Hepatic regulator of G protein signaling 14 ameliorates NAFLD through activating cAMP-AMPK signaling by targeting Giα1/3. Mol Metab 2024; 80:101882. [PMID: 38237897 PMCID: PMC10844864 DOI: 10.1016/j.molmet.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is an emerging public health threat as the most common chronic liver disease worldwide. However, there remains no effective medication to improve NAFLD. G protein-coupled receptors (GPCRs) are the most frequently investigated drug targets family. The Regulator of G protein signaling 14 (RGS14), as an essential negative modulator of GPCR signaling, plays important regulatory roles in liver damage and inflammatory responses. However, the role of RGS14 in NAFLD remains largely unclear. METHODS AND RESULTS In this study, we found that RGS14 was decreased in hepatocytes in NAFLD individuals in a public database. We employed genetic engineering technique to explore the function of RGS14 in NAFLD. We demonstrated that RGS14 overexpression ameliorated lipid accumulation, inflammatory response and liver fibrosis in hepatocytes in vivo and in vitro. Whereas, hepatocyte specific Rgs14-knockout (Rgs14-HKO) exacerbated high fat high cholesterol diet (HFHC) induced NASH. Further molecular experiments demonstrated that RGS14 depended on GDI activity to attenuate HFHC-feeding NASH. More importantly, RGS14 interacted with Guanine nucleotide-binding protein (Gi) alpha 1 and 3 (Giα1/3, gene named GNAI1/3), promoting the generation of cAMP and then activating the subsequent AMPK pathways. GNAI1/3 knockdown abolished the protective role of RGS14, indicating that RGS14 binding to Giα1/3 was required for prevention against hepatic steatosis. CONCLUSIONS RGS14 plays a protective role in the progression of NAFLD. RGS14-Giα1/3 interaction accelerated the production of cAMP and then activated cAMP-AMPK signaling. Targeting RGS14 or modulating the RGS14-Giα1/3 interaction may be a potential strategy for the treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Junyong Wang
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yaping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunduan He
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yifan Qin
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450004, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangdong Liu
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Li Xiao
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450004, China.
| |
Collapse
|
3
|
Samadi M, Hales CA, Lustberg DJ, Farris S, Ross MR, Zhao M, Hepler JR, Harbin NH, Robinson ESJ, Banks PJ, Bashir ZI, Dudek SM. Mechanisms of mGluR-dependent plasticity in hippocampal area CA2. Hippocampus 2023; 33:730-744. [PMID: 36971428 PMCID: PMC10213158 DOI: 10.1002/hipo.23529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Pyramidal cells in hippocampal area CA2 have synaptic properties that are distinct from the other CA subregions. Notably, this includes a lack of typical long-term potentiation of stratum radiatum synapses. CA2 neurons express high levels of several known and potential regulators of metabotropic glutamate receptor (mGluR)-dependent signaling including Striatal-Enriched Tyrosine Phosphatase (STEP) and several Regulator of G-protein Signaling (RGS) proteins, yet the functions of these proteins in regulating mGluR-dependent synaptic plasticity in CA2 are completely unknown. Thus, the aim of this study was to examine mGluR-dependent synaptic depression and to determine whether STEP and the RGS proteins RGS4 and RGS14 are involved. Using whole cell voltage-clamp recordings from mouse pyramidal cells, we found that mGluR agonist-induced long-term depression (mGluR-LTD) is more pronounced in CA2 compared with that observed in CA1. This mGluR-LTD in CA2 was found to be protein synthesis and STEP dependent, suggesting that CA2 mGluR-LTD shares mechanistic processes with those seen in CA1, but in addition, RGS14, but not RGS4, was essential for mGluR-LTD in CA2. In addition, we found that exogenous application of STEP could rescue mGluR-LTD in RGS14 KO slices. Supporting a role for CA2 synaptic plasticity in social cognition, we found that RGS14 KO mice had impaired social recognition memory as assessed in a social discrimination task. These results highlight possible roles for mGluRs, RGS14, and STEP in CA2-dependent behaviors, perhaps by biasing the dominant form of synaptic plasticity away from LTP and toward LTD in CA2.
Collapse
Affiliation(s)
- Mahsa Samadi
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
- Present address:
Faculty Education Office, Faculty of Medicine, Imperial College London, Hammersmith Campus, Wolfson Education CentreLondonUKW12 0NN
| | - Claire A. Hales
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
- Present address:
Department of Psychology, Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia2215, Wesbrook MallVancouverBritish ColumbiaV6T 1Z3Canada
| | - Daniel J. Lustberg
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
- Present address:
Mouse Pharmacology GroupPsychogenics Inc215 College RoadParamusNew Jersey07652USA
| | - Shannon Farris
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
- Present address:
Fralin Biomedical Research Institute at Virginia TechRoanokeVirginia24014USA
| | - Madeleine R. Ross
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
| | - Meilan Zhao
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
| | - John R. Hepler
- Department of Pharmacology and Chemical BiologyEmory University School of Medicine100 Woodruff CircleAtlantaGeorgia30322USA
| | - Nicholas H. Harbin
- Department of Pharmacology and Chemical BiologyEmory University School of Medicine100 Woodruff CircleAtlantaGeorgia30322USA
| | - Emma S. J. Robinson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
| | - Paul J. Banks
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
| | - Zafar I. Bashir
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences BuildingUniversity Walk, University of BristolBristolUKBS8 1TD
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIH)111 T.W. Alexander Drive, Research Triangle ParkDurhamNorth Carolina27709USA
| |
Collapse
|
4
|
Montanez-Miranda C, Bramlett SN, Hepler JR. RGS14 expression in CA2 hippocampus, amygdala, and basal ganglia: Implications for human brain physiology and disease. Hippocampus 2023; 33:166-181. [PMID: 36541898 PMCID: PMC9974931 DOI: 10.1002/hipo.23492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
RGS14 is a multifunctional scaffolding protein that is highly expressed within postsynaptic spines of pyramidal neurons in hippocampal area CA2. Known roles of RGS14 in CA2 include regulating G protein, H-Ras/ERK, and calcium signaling pathways to serve as a natural suppressor of synaptic plasticity and postsynaptic signaling. RGS14 also shows marked postsynaptic expression in major structures of the limbic system and basal ganglia, including the amygdala and both the ventral and dorsal subdivisions of the striatum. In this review, we discuss the signaling functions of RGS14 and its role in postsynaptic strength (long-term potentiation) and spine structural plasticity in CA2 hippocampal neurons, and how RGS14 suppression of plasticity impacts linked behaviors such as spatial learning, object memory, and fear conditioning. We also review RGS14 expression in the limbic system and basal ganglia and speculate on its possible roles in regulating plasticity in these regions, with a focus on behaviors related to emotion and motivation. Finally, we explore the functional implications of RGS14 in various brain circuits and speculate on its possible roles in certain disease states such as hippocampal seizures, addiction, and anxiety disorders.
Collapse
Affiliation(s)
| | | | - John R. Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322-3090
| |
Collapse
|
5
|
Friedman PA, Sneddon WB, Mamonova T, Montanez-Miranda C, Ramineni S, Harbin NH, Squires KE, Gefter JV, Magyar CE, Emlet DR, Hepler JR. RGS14 regulates PTH- and FGF23-sensitive NPT2A-mediated renal phosphate uptake via binding to the NHERF1 scaffolding protein. J Biol Chem 2022; 298:101836. [PMID: 35307350 PMCID: PMC9035407 DOI: 10.1016/j.jbc.2022.101836] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphate homeostasis, mediated by dietary intake, renal absorption, and bone deposition, is incompletely understood because of the uncharacterized roles of numerous implicated protein factors. Here, we identified a novel role for one such element, regulator of G protein signaling 14 (RGS14), suggested by genome-wide association studies to associate with dysregulated Pi levels. We show that human RGS14 possesses a carboxy-terminal PDZ ligand required for sodium phosphate cotransporter 2a (NPT2A) and sodium hydrogen exchanger regulatory factor-1 (NHERF1)-mediated renal Pi transport. In addition, we found using isotope uptake measurements combined with bioluminescence resonance energy transfer assays, siRNA knockdown, pull-down and overlay assays, and molecular modeling that secreted proteins parathyroid hormone (PTH) and fibroblast growth factor 23 inhibited Pi uptake by inducing dissociation of the NPT2A-NHERF1 complex. PTH failed to affect Pi transport in cells expressing RGS14, suggesting that it suppresses hormone-sensitive but not basal Pi uptake. Interestingly, RGS14 did not affect PTH-directed G protein activation or cAMP formation, implying a postreceptor site of action. Further pull-down experiments and direct binding assays indicated that NPT2A and RGS14 bind distinct PDZ domains on NHERF1. We showed that RGS14 expression in human renal proximal tubule epithelial cells blocked the effects of PTH and fibroblast growth factor 23 and stabilized the NPT2A-NHERF1 complex. In contrast, RGS14 genetic variants bearing mutations in the PDZ ligand disrupted RGS14 binding to NHERF1 and subsequent PTH-sensitive Pi transport. In conclusion, these findings identify RGS14 as a novel regulator of hormone-sensitive Pi transport. The results suggest that changes in RGS14 function or abundance may contribute to the hormone resistance and hyperphosphatemia observed in kidney diseases.
Collapse
Affiliation(s)
- Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - W Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carolina Montanez-Miranda
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katherine E Squires
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julia V Gefter
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David R Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Miete C, Solis GP, Koval A, Brückner M, Katanaev VL, Behrens J, Bernkopf DB. Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth. Nat Commun 2022; 13:674. [PMID: 35115535 PMCID: PMC8814139 DOI: 10.1038/s41467-022-28286-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Conductin/axin2 is a scaffold protein negatively regulating the pro-proliferative Wnt/β-catenin signaling pathway. Accumulation of scaffold proteins in condensates frequently increases their activity, but whether condensation contributes to Wnt pathway inhibition by conductin remains unclear. Here, we show that the Gαi2 subunit of trimeric G-proteins induces conductin condensation by targeting a polymerization-inhibiting aggregon in its RGS domain, thereby promoting conductin-mediated β-catenin degradation. Consistently, transient Gαi2 expression inhibited, whereas knockdown activated Wnt signaling via conductin. Colorectal cancers appear to evade Gαi2-induced Wnt pathway suppression by decreased Gαi2 expression and inactivating mutations, associated with shorter patient survival. Notably, the Gαi2-activating drug guanabenz inhibited Wnt signaling via conductin, consequently reducing colorectal cancer growth in vitro and in mouse models. In summary, we demonstrate Wnt pathway inhibition via Gαi2-triggered conductin condensation, suggesting a tumor suppressor function for Gαi2 in colorectal cancer, and pointing to the FDA-approved drug guanabenz for targeted cancer therapy.
Collapse
Affiliation(s)
- Cezanne Miete
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Gonzalo P Solis
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Martina Brückner
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dominic B Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Foster SL, Lustberg DJ, Harbin NH, Bramlett SN, Hepler JR, Weinshenker D. RGS14 modulates locomotor behavior and ERK signaling induced by environmental novelty and cocaine within discrete limbic structures. Psychopharmacology (Berl) 2021; 238:2755-2773. [PMID: 34184126 PMCID: PMC8455459 DOI: 10.1007/s00213-021-05892-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE In rodents, exposure to novel environments or psychostimulants promotes locomotion. Indeed, locomotor reactivity to novelty strongly predicts behavioral responses to psychostimulants in animal models of addiction. RGS14 is a plasticity-restricting protein with unique functional domains that enable it to suppress ERK-dependent signaling as well as regulate G protein activity. Although recent studies show that RGS14 is expressed in multiple limbic regions implicated in psychostimulant- and novelty-induced hyperlocomotion, its function has been examined mostly in the context of hippocampal physiology and memory. OBJECTIVE We investigated whether RGS14 modulates novelty- and cocaine-induced locomotion (NIL and CIL, respectively) and neuronal activity. METHODS We assessed Rgs14 knockout (RGS14 KO) mice and wild-type (WT) littermate controls using NIL and CIL behavioral tests, followed by quantification of c-fos and phosphorylated ERK (pERK) induction in limbic regions that normally express RGS14. RESULTS RGS14 KO mice were less active than WT controls in the NIL test, driven by avoidance of the center of the novel environment. By contrast, RGS14 KO mice demonstrated augmented peripheral locomotion in the CIL test conducted in either a familiar or novel environment. RGS14 KO mice exhibited increased thigmotaxis, as well as greater c-fos and pERK induction in the central amygdala and dorsal hippocampus, when cocaine and novelty were paired. CONCLUSIONS RGS14 KO mice exhibited anti-correlated locomotor responses to novelty and cocaine, but displayed increased thigmotaxis in response to either stimuli which was augmented by their combination. Our findings also suggest RGS14 may reduce neuronal activity in limbic subregions by inhibiting ERK-dependent signaling.
Collapse
Affiliation(s)
- Stephanie L Foster
- , Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Daniel J Lustberg
- , Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Sara N Bramlett
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, USA.
| | - David Weinshenker
- , Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
RGS14 Regulation of Post-Synaptic Signaling and Spine Plasticity in Brain. Int J Mol Sci 2021; 22:ijms22136823. [PMID: 34201943 PMCID: PMC8268017 DOI: 10.3390/ijms22136823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.
Collapse
|
9
|
Squires KE, Gerber KJ, Tillman MC, Lustberg DJ, Montañez-Miranda C, Zhao M, Ramineni S, Scharer CD, Saha RN, Shu FJ, Schroeder JP, Ortlund EA, Weinshenker D, Dudek SM, Hepler JR. Human genetic variants disrupt RGS14 nuclear shuttling and regulation of LTP in hippocampal neurons. J Biol Chem 2021; 296:100024. [PMID: 33410399 PMCID: PMC7949046 DOI: 10.1074/jbc.ra120.016009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome contains vast genetic diversity as naturally occurring coding variants, yet the impact of these variants on protein function and physiology is poorly understood. RGS14 is a multifunctional signaling protein that suppresses synaptic plasticity in dendritic spines of hippocampal neurons. RGS14 also is a nucleocytoplasmic shuttling protein, suggesting that balanced nuclear import/export and dendritic spine localization are essential for RGS14 functions. We identified genetic variants L505R (LR) and R507Q (RQ) located within the nuclear export sequence (NES) of human RGS14. Here we report that RGS14 encoding LR or RQ profoundly impacts protein functions in hippocampal neurons. RGS14 membrane localization is regulated by binding Gαi-GDP, whereas RGS14 nuclear export is regulated by Exportin 1 (XPO1). Remarkably, LR and RQ variants disrupt RGS14 binding to Gαi1-GDP and XPO1, nucleocytoplasmic equilibrium, and capacity to inhibit long-term potentiation (LTP). Variant LR accumulates irreversibly in the nucleus, preventing RGS14 binding to Gαi1, localization to dendritic spines, and inhibitory actions on LTP induction, while variant RQ exhibits a mixed phenotype. When introduced into mice by CRISPR/Cas9, RGS14-LR protein expression was detected predominantly in the nuclei of neurons within hippocampus, central amygdala, piriform cortex, and striatum, brain regions associated with learning and synaptic plasticity. Whereas mice completely lacking RGS14 exhibit enhanced spatial learning, mice carrying variant LR exhibit normal spatial learning, suggesting that RGS14 may have distinct functions in the nucleus independent from those in dendrites and spines. These findings show that naturally occurring genetic variants can profoundly alter normal protein function, impacting physiology in unexpected ways.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Daniel J Lustberg
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | | | - Meilan Zhao
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | | | - Ramendra N Saha
- Department of Molecular & Cell Biology, University of California-Merced, Merced California, USA
| | - Feng-Jue Shu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta Georgia, USA
| | - Serena M Dudek
- National Institute of Environmental Health Sciences, Research Triangle Park, Raleigh North Carolina, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta Georgia, USA.
| |
Collapse
|
10
|
Vural A, Lanier SM. Intersection of two key signal integrators in the cell: activator of G-protein signaling 3 and dishevelled-2. J Cell Sci 2020; 133:jcs247908. [PMID: 32737219 PMCID: PMC7490517 DOI: 10.1242/jcs.247908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, encoded by GPSM1) was discovered as a one of several receptor-independent activators of G-protein signaling, which are postulated to provide a platform for divergence between canonical and noncanonical G-protein signaling pathways. Similarly, Dishevelled (DVL) proteins serve as a point of divergence for β-catenin-dependent and -independent signaling pathways involving the family of Frizzled (FZD) ligands and cell-surface WNT receptors. We recently discovered the apparent regulated localization of dishevelled-2 (DVL2) and AGS3 to distinct cellular puncta, suggesting that the two proteins interact as part of various cell signaling systems. To address this hypothesis, we asked the following questions: (1) do AGS3 signaling pathways influence the activation of β-catenin (CTNNB1)-regulated transcription through the WNT-Frizzled-Dishevelled axis, and (2) is the AGS3 and DVL2 interaction regulated? The interaction of AGS3 and DVL2 was regulated by protein phosphorylation, subcellular distribution, and a cell-surface G-protein-coupled receptor. These data, and the commonality of functional system impacts observed for AGS3 and DVL2, suggest that the AGS3-DVL2 complex presents an unexpected path for functional integration within the cell.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ali Vural
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Stephen M Lanier
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
12
|
Gerber KJ, Squires KE, Hepler JR. 14-3-3γ binds regulator of G protein signaling 14 (RGS14) at distinct sites to inhibit the RGS14:Gα i-AlF 4- signaling complex and RGS14 nuclear localization. J Biol Chem 2018; 293:14616-14631. [PMID: 30093406 DOI: 10.1074/jbc.ra118.002816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/23/2018] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional brain scaffolding protein that integrates G protein and Ras/ERK signaling pathways. It is also a nucleocytoplasmic shuttling protein. RGS14 binds active Gαi/o via its RGS domain, Raf and active H-Ras-GTP via its R1 Ras-binding domain (RBD), and inactive Gαi1/3 via its G protein regulatory (GPR) domain. RGS14 suppresses long-term potentiation (LTP) in the CA2 region of the hippocampus, thereby regulating hippocampally based learning and memory. The 14-3-3 family of proteins is necessary for hippocampal LTP and associative learning and memory. Here, we show direct interaction between RGS14 and 14-3-3γ at two distinct sties, one phosphorylation-independent and the other phosphorylation-dependent at Ser-218 that is markedly potentiated by signaling downstream of active H-Ras. Using bioluminescence resonance energy transfer (BRET), we show that the pSer-218-dependent RGS14/14-3-3γ interaction inhibits active Gαi1-AlF4- binding to the RGS domain of RGS14 but has no effect on active H-Ras and inactive Gαi1-GDP binding to RGS14. By contrast, the phosphorylation-independent binding of 14-3-3 has no effect on RGS14/Gαi interactions but, instead, inhibits (directly or indirectly) RGS14 nuclear import and nucleocytoplasmic shuttling. Together, our findings describe a novel mechanism of negative regulation of RGS14 functions, specifically interactions with active Gαi and nuclear import, while leaving the function of other RGS14 domains intact. Ongoing studies will further elucidate the physiological function of this interaction between RGS14 and 14-3-3γ, providing insight into the functions of both RGS14 and 14-3-3 in their roles in modulating synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Kyle J Gerber
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Katherine E Squires
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John R Hepler
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
13
|
Evans PR, Gerber KJ, Dammer EB, Duong DM, Goswami D, Lustberg DJ, Zou J, Yang JJ, Dudek SM, Griffin PR, Seyfried NT, Hepler JR. Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca 2+/CaM) and CaM Kinase II (CaMKII) Binding Partner. J Proteome Res 2018. [PMID: 29518331 DOI: 10.1021/acs.jproteome.8b00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulator of G Protein Signaling 14 (RGS14) is a complex scaffolding protein that integrates G protein and MAPK signaling pathways. In the adult mouse brain, RGS14 is predominantly expressed in hippocampal CA2 neurons where it naturally inhibits synaptic plasticity and hippocampus-dependent learning and memory. However, the signaling proteins that RGS14 natively engages to regulate plasticity are unknown. Here, we show that RGS14 exists in a high-molecular-weight protein complex in brain. To identify RGS14 neuronal interacting partners, endogenous RGS14 immunoprecipitated from mouse brain was subjected to mass spectrometry and proteomic analysis. We find that RGS14 interacts with key postsynaptic proteins that regulate plasticity. Gene ontology analysis reveals the most enriched RGS14 interactors have functional roles in actin-binding, calmodulin(CaM)-binding, and CaM-dependent protein kinase (CaMK) activity. We validate these findings using biochemical assays that identify interactions with two previously unknown binding partners. We report that RGS14 directly interacts with Ca2+/CaM and is phosphorylated by CaMKII in vitro. Lastly, we detect that RGS14 associates with CaMKII and CaM in hippocampal CA2 neurons. Taken together, these findings demonstrate that RGS14 is a novel CaM effector and CaMKII phosphorylation substrate thereby providing new insight into mechanisms by which RGS14 controls plasticity in CA2 neurons.
Collapse
Affiliation(s)
| | | | | | | | - Devrishi Goswami
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Daniel J Lustberg
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Juan Zou
- Department of Chemistry, Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , Georgia 30303 , United States
| | - Serena M Dudek
- Neurobiology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Patrick R Griffin
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | | | | |
Collapse
|
14
|
Branch MR, Hepler JR. Endogenous RGS14 is a cytoplasmic-nuclear shuttling protein that localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus. PLoS One 2017; 12:e0184497. [PMID: 28934222 PMCID: PMC5608220 DOI: 10.1371/journal.pone.0184497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity important for hippocampal learning and memory. However, to date, little is known about the subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14 ectopically overexpressed in unnatural host cells. Here, we report for the first time a comprehensive assessment of the subcellular distribution and dynamic localization of endogenous RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumination microscopy, we find that endogenous RGS14 localizes to subcellular compartments not previously recognized in studies of recombinant RGS14. RGS14 localization was observed most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes (NPC) on both sides of the nuclear envelope and within intranuclear membrane channels, and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells; however, the protein could be trafficked to the plasma membrane from juxtanuclear membranes in endosomes derived from ER/Golgi, following constitutive activation of endogenous RGS14 G protein binding partners using AlF4¯. Finally, our findings show that endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what has been shown previously for recombinant RGS14. Taken together, the findings highlight possible cellular roles for RGS14 not previously recognized that are distinct from the regulation of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in the nucleus.
Collapse
Affiliation(s)
- Mary Rose Branch
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John R. Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Regulator of G protein signaling 14 (RGS14) is expressed pre- and postsynaptically in neurons of hippocampus, basal ganglia, and amygdala of monkey and human brain. Brain Struct Funct 2017; 223:233-253. [PMID: 28776200 DOI: 10.1007/s00429-017-1487-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional signaling protein primarily expressed in mouse pyramidal neurons of hippocampal area CA2 where it regulates synaptic plasticity important for learning and memory. However, very little is known about RGS14 protein expression in the primate brain. Here, we validate the specificity of a new polyclonal RGS14 antibody that recognizes not only full-length RGS14 protein in primate, but also lower molecular weight forms of RGS14 protein matching previously predicted human splice variants. These putative RGS14 variants along with full-length RGS14 are expressed in the primate striatum. By contrast, only full-length RGS14 is expressed in hippocampus, and shorter variants are completely absent in rodent brain. We report that RGS14 protein immunoreactivity is found both pre- and postsynaptically in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra, and amygdala in adult rhesus monkeys. A similar cellular expression pattern of RGS14 in the monkey striatum and hippocampus was further confirmed in humans. Our electron microscopy data show for the first time that RGS14 immunostaining localizes within nuclei of striatal neurons in monkeys. Taken together, these findings suggest new pre- and postsynaptic regulatory functions of RGS14 and RGS14 variants, specific to the primate brain, and provide evidence for unconventional roles of RGS14 in the nuclei of striatal neurons potentially important for human neurophysiology and disease.
Collapse
|
16
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Druey KM. Emerging Roles of Regulators of G Protein Signaling (RGS) Proteins in the Immune System. Adv Immunol 2017; 136:315-351. [PMID: 28950950 DOI: 10.1016/bs.ai.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States.
| |
Collapse
|
18
|
Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). Biochem Soc Trans 2016; 43:773-86. [PMID: 26517882 DOI: 10.1042/bst20150065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks).
Collapse
|
19
|
Harrison RA, Engen JR. Conformational insight into multi-protein signaling assemblies by hydrogen-deuterium exchange mass spectrometry. Curr Opin Struct Biol 2016; 41:187-193. [PMID: 27552080 DOI: 10.1016/j.sbi.2016.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023]
Abstract
Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) can provide information about proteins that can be challenging to obtain by other means. Structure/function relationships, binding interactions, and the effects of modification have all been measured with HDX MS for a diverse and growing array of signaling proteins and multiprotein signaling complexes. As a result of hardware and software improvements, receptors and complexes involved in cellular signaling-including those associated with membranes-can now be studied. The growing body of HDX MS studies of signaling complexes at membranes is particularly exciting. Recent examples are presented to illustrate what can be learned about signaling proteins with this technique.
Collapse
Affiliation(s)
- Rane A Harrison
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Brown NE, Lambert NA, Hepler JR. RGS14 regulates the lifetime of G α-GTP signaling but does not prolong G βγ signaling following receptor activation in live cells. Pharmacol Res Perspect 2016; 4:e00249. [PMID: 27713821 PMCID: PMC5045935 DOI: 10.1002/prp2.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022] Open
Abstract
RGS14 is a multifunctional scaffolding protein possessing two distinct G protein interaction sites including a regulator of G protein signaling (RGS) domain that acts as a GTPase activating protein (GAP) to deactivate Gαi/o‐GTP proteins, and a G protein regulatory (GPR) motif that binds inactive Gαi1/3‐GDP proteins independent of Gβγ. GPR interactions with Gαi recruit RGS14 to the plasma membrane to interact with Gαi‐linked GPCRs and regulate Gαi signaling. While RGS14 actions on Gα proteins are well characterized, consequent effects on Gβγ signaling remain unknown. Conventional RGS proteins act as dedicated GAPs to deactivate Gα and Gβγ signaling following receptor activation. RGS14 may do the same or, alternatively, may coordinate its actions to deactivate Gα‐GTP with the RGS domain and then capture the same Gα‐GDP via its GPR motif to prevent heterotrimer reassociation and prolong Gβγ signaling. To test this idea, we compared the regulation of G protein activation and deactivation kinetics by a conventional RGS protein, RGS4, and RGS14 in response to GPCR agonist/antagonist treatment utilizing bioluminescence resonance energy transfer (BRET). Co‐expression of either RGS4 or RGS14 inhibited the release of free Gβγ after agonist stimulation and increased the deactivation rate of Gα, consistent with their roles as GTPase activating proteins (GAPs). Overexpression of inactive Gαi1 to recruit RGS14 to the plasma membrane did not alter RGS14′s capacity to act as a GAP for a second Gαo protein. These results demonstrate the role of RGS14 as a dedicated GAP and suggest that the G protein regulatory (GPR) motif functions independently of the RGS domain and is silent in regulating GAP activity in a cellular context.
Collapse
Affiliation(s)
- Nicole E Brown
- Department of Pharmacology Emory University School of Medicine Atlanta Georgia 30322
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology Medical College of Georgia at Augusta University Augusta Georgia 30912
| | - John R Hepler
- Department of Pharmacology Emory University School of Medicine Atlanta Georgia 30322
| |
Collapse
|
21
|
Li H, Li W, Liu F, Wang Z, Li G, Karamanos Y. Detection of Tumor Invasive Biomarker using a Peptamer of Signal Conversion and Signal Amplification. Anal Chem 2016; 88:3662-8. [PMID: 26938572 DOI: 10.1021/acs.analchem.5b04423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspired by the structural and functional features of proteins in cell signaling, a switchable peptide is designed in this work. This switchable peptide is named a "peptamer," and it can react to ligand binding with conformational change and activation/deactivation of catalytic ability. The peptamer is constructed by elaborately integrating several different peptide motifs with targeting and catalytic abilities. Thus, targeted binding of the peptamer to an integrin can be regulated by a synthetic ligand. Moreover, the conformational rearrangement of the peptamer induced by both integrin and the synthetic ligand can resolve in altered affinity of the peptamer for a catalytic cofactor, cupric ion. This leads to greatly contrasted efficiency of catalysis in the presence/absence of integrin. This distinct switching on/off of catalytic activity also enables a bioassay of tissue integrin expression in clinical samples of thyroid carcinoma. Experimental results reveal that the detected integrin level parallels the state of lymph node metastasis. Therefore, this simple peptide model may help to understand the structural reconfiguration of proteins involved in cellular signal transduction, as well as to provide a new means to assess protein activity under pathological conditions such as cancer.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, China
| | - Weiwei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, China
| | - Fengzhen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University , Nanjing 210011, China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University , Nanjing 210011, China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, China.,Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University , Shanghai 200444, China
| | - Yannis Karamanos
- Laboratoire de la Barrière Hémato-encéphalique, Faculté des Sciences, Université d'Artois , rue Souvraz SP18, 62307 CEDEX Lens, France
| |
Collapse
|
22
|
Gerber KJ, Squires KE, Hepler JR. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol Pharmacol 2015; 89:273-86. [PMID: 26655302 DOI: 10.1124/mol.115.102210] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Kyle J Gerber
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - Katherine E Squires
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|