1
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human systemic RNAi defective transmembrane protein 1 (hSIDT1) reveals the conformational flexibility of its lipid binding domain. Life Sci Alliance 2024; 7:e202402624. [PMID: 38925866 PMCID: PMC11208740 DOI: 10.26508/lsa.202402624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In Caenorhabditis elegans, inter-cellular transport of the small non-coding RNA causing systemic RNAi is mediated by the transmembrane protein SID1, encoded by the sid1 gene in the systemic RNAi defective (sid) loci. SID1 shares structural and sequence similarity with cholesterol uptake protein 1 (CHUP1) and is classified as a member of the ChUP family. Although systemic RNAi is not an evolutionarily conserved process, the sid gene products are found across the animal kingdom, suggesting the existence of other novel gene regulatory mechanisms mediated by small non-coding RNAs. Human homologs of sid gene products-hSIDT1 and hSIDT2-mediate contact-dependent lipophilic small non-coding dsRNA transport. Here, we report the structure of recombinant human SIDT1. We find that the extra-cytosolic domain of hSIDT1 adopts a double jelly roll fold, and the transmembrane domain exists as two modules-a flexible lipid binding domain and a rigid transmembrane domain core. Our structural analyses provide insights into the inherent conformational dynamics within the lipid binding domain in ChUP family members.
Collapse
Affiliation(s)
- Vikas Navratna
- https://ror.org/00jmfr291 Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- https://ror.org/00jmfr291 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jaimin K Rana
- https://ror.org/00jmfr291 Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- https://ror.org/00jmfr291 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shyamal Mosalaganti
- https://ror.org/00jmfr291 Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- https://ror.org/00jmfr291 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- https://ror.org/00jmfr291 Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Koo J, Palli SR. Recent advances in understanding of the mechanisms of RNA interference in insects. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38957135 DOI: 10.1111/imb.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
We highlight the recent 5 years of research that contributed to our understanding of the mechanisms of RNA interference (RNAi) in insects. Since its first discovery, RNAi has contributed enormously as a reverse genetic tool for functional genomic studies. RNAi is also being used in therapeutics, as well as agricultural crop and livestock production and protection. Yet, for the wider application of RNAi, improvement of its potency and delivery technologies is needed. A mechanistic understanding of every step of RNAi, from cellular uptake of RNAi trigger molecules to targeted mRNA degradation, is key for developing an efficient strategy to improve RNAi technology. Insects provide an excellent model for studying the mechanism of RNAi due to species-specific variations in RNAi efficiency. This allows us to perform comparative studies in insect species with different RNAi sensitivity. Understanding the mechanisms of RNAi in different insects can lead to the development of better strategies to improve RNAi and its application to manage agriculturally and medically important insects.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Zhang J, Zhan C, Fan J, Wu D, Zhang R, Wu D, Chen X, Lu Y, Li M, Lin M, Gong J, Jiang D. Structural insights into double-stranded RNA recognition and transport by SID-1. Nat Struct Mol Biol 2024; 31:1095-1104. [PMID: 38664565 DOI: 10.1038/s41594-024-01276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/14/2024] [Indexed: 07/20/2024]
Abstract
RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.
Collapse
Affiliation(s)
- Jiangtao Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunhua Zhan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junping Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Dian Wu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruixue Zhang
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy Agricultural Sciences, Beijing, China
| | - Di Wu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyao Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Lin
- Food Laboratory of Zhongyuan, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Wang R, Cong Y, Qian D, Yan C, Gong D. Structural basis for double-stranded RNA recognition by SID1. Nucleic Acids Res 2024; 52:6718-6727. [PMID: 38742627 PMCID: PMC11194109 DOI: 10.1093/nar/gkae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The nucleic acid transport properties of the systemic RNAi-defective (SID) 1 family make them attractive targets for developing RNA-based therapeutics and drugs. However, the molecular basis for double-stranded (ds) RNA recognition by SID1 family remains elusive. Here, we report the cryo-EM structures of Caenorhabditis elegans (c) SID1 alone and in complex with dsRNA, both at a resolution of 2.2 Å. The dimeric cSID1 interacts with two dsRNA molecules simultaneously. The dsRNA is located at the interface between β-strand rich domain (BRD)1 and BRD2 and nearly parallel to the membrane plane. In addition to extensive ionic interactions between basic residues and phosphate backbone, several hydrogen bonds are formed between 2'-hydroxyl group of dsRNA and the contact residues. Additionally, the electrostatic potential surface shows three basic regions are fitted perfectly into three major grooves of dsRNA. These structural characteristics enable cSID1 to bind dsRNA in a sequence-independent manner and to distinguish between DNA and RNA. The cSID1 exhibits no conformational changes upon binding dsRNA, with the exception of a few binding surfaces. Structural mapping of dozens of loss-of-function mutations allows potential interpretation of their diverse functional mechanisms. Our study marks an important step toward mechanistic understanding of the SID1 family-mediated dsRNA uptake.
Collapse
Affiliation(s)
- Runhao Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Ye Cong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China. State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
| | - Dandan Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Chuangye Yan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China. State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
| | - Deshun Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human systemic RNAi defective transmembrane protein 1 (hSIDT1) reveals the conformational flexibility of its lipid binding domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572875. [PMID: 38187772 PMCID: PMC10769365 DOI: 10.1101/2023.12.21.572875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In C. elegans, inter-cellular transport of the small non-coding RNA causing systemic RNA interference (RNAi) is mediated by the transmembrane protein SID1, encoded by the sid1 gene in the systemic RNA interference-defective (sid) loci. SID1 shares structural and sequence similarity with cholesterol uptake protein 1 (CHUP1) and is classified as a member of the cholesterol uptake family (ChUP). Although systemic RNAi is not an evolutionarily conserved process, the sid gene products are found across the animal kingdom, suggesting the existence of other novel gene regulatory mechanisms mediated by small non-coding RNAs. Human homologs of sid gene products - hSIDT1 and hSIDT2 - mediate contact-dependent lipophilic small non-coding dsRNA transport. Here, we report the structure of recombinant human SIDT1. We find that the extra-cytosolic domain (ECD) of hSIDT1 adopts a double jelly roll fold, and the transmembrane domain (TMD) exists as two modules - a flexible lipid binding domain (LBD) and a rigid TMD core. Our structural analyses provide insights into the inherent conformational dynamics within the lipid binding domain in cholesterol uptake (ChUP) family members.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Jaimin K. Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
6
|
Hirano Y, Ohto U, Ichi I, Sato R, Miyake K, Shimizu T. Cryo-EM analysis reveals human SID-1 transmembrane family member 1 dynamics underlying lipid hydrolytic activity. Commun Biol 2024; 7:664. [PMID: 38811802 PMCID: PMC11137008 DOI: 10.1038/s42003-024-06346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Two mammalian homologs of systemic RNA interference defective protein 1 (SID-1) (SIDT1/2) are suggested to function as double-stranded RNA (dsRNA) transporters for extracellular dsRNA uptake or for release of incorporated dsRNA from lysosome to cytoplasm. SIDT1/2 is also suggested to be involved in cholesterol transport and lipid metabolism. Here, we determine the cryo-electron microscopy structures of human SIDT1, homodimer in a side-by-side arrangement, with two distinct conformations, the cholesterol-bound form and the unbound form. Our structures reveal that the membrane-spanning region of SIDT1 harbors conserved histidine and aspartate residues coordinating to putative zinc ion, in a structurally similar manner to alkaline ceramidases or adiponectin receptors that require zinc for ceramidase activity. We identify that SIDT1 has a ceramidase activity that is attenuated by cholesterol binding. Observations from two structures suggest that cholesterol molecules serve as allosteric regulator that binds the transmembrane region of SIDT1 and induces the conformation change and the reorientation of the catalytic residues. This study represents a contribution to the elucidation of the cholesterol-mediated mechanisms of lipid hydrolytic activity and RNA transport in the SID-1 family proteins.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuyo Ichi
- Natural Science Division, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan
- Institute for Human Life Innovation, Faculty of Core Research, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Camara H, Inan MD, Vergani-Junior CA, Pinto S, Knittel TL, Salgueiro WG, Tonon-da-Silva G, Ramirez J, de Moraes D, Braga DL, De-Souza EA, Mori MA. Tissue-specific overexpression of systemic RNA interference components limits lifespan in C. elegans. Gene 2024; 895:148014. [PMID: 37984536 DOI: 10.1016/j.gene.2023.148014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Intertissue RNA transport recently emerged as a novel signaling mechanism. In mammals, mounting evidence suggests that small RNA transfer between cells is widespread and used in various physiological contexts. In the nematode C. elegans, a similar mechanism is conferred by the systemic RNAi pathway. Members of the Systemic RNA Interference Defective (SID) family act at different steps of cellular RNA uptake and export. The limiting step in systemic RNA interference (RNAi) is the import of extracellular RNAs via the conserved double-stranded (dsRNA)-gated dsRNA channel SID-1. To better understand the role of RNAs as intertissue signaling molecules, we modified the function of SID-1 in specific tissues of C. elegans. We observed that sid-1 loss-of-function mutants are as healthy as wild-type worms. Conversely, overexpression of sid-1 in C. elegans intestine, muscle, or neurons rendered worms short-lived. The effects of intestinal sid-1 overexpression were attenuated by silencing the components of systemic RNAi sid-1, sid-2 and sid-5, implicating systemic RNA signaling in the lifespan reduction. Accordingly, tissue-specific overexpression of sid-2 and sid-5 also reduced worm lifespan. Additionally, an RNAi screen for components of several non-coding RNA pathways revealed that silencing the miRNA biogenesis proteins PASH-1 and DCR-1 rendered the lifespan of worms with intestinal sid-1 overexpression similar to controls. Collectively, our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).
Collapse
Affiliation(s)
- Henrique Camara
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Mehmet Dinçer Inan
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos A Vergani-Junior
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Silas Pinto
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Thiago L Knittel
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Willian G Salgueiro
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana Ramirez
- Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Diogo de Moraes
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Deisi L Braga
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil; Program in Molecular Biology and Biotechnology, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil; Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
8
|
Yang T, Xiao H, Chen X, Zheng L, Guo H, Wang J, Jiang X, Zhang CY, Yang F, Ji X. Characterization of N-glycosylation and its functional role in SIDT1-Mediated RNA uptake. J Biol Chem 2024; 300:105654. [PMID: 38237680 PMCID: PMC10850970 DOI: 10.1016/j.jbc.2024.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The mammalian SID-1 transmembrane family members, SIDT1 and SIDT2, are multipass transmembrane proteins that mediate the cellular uptake and intracellular trafficking of nucleic acids, playing important roles in the immune response and tumorigenesis. Previous work has suggested that human SIDT1 and SIDT2 are N-glycosylated, but the precise site-specific N-glycosylation information and its functional contribution remain unclear. In this study, we use high-resolution liquid chromatography tandem mass spectrometry to comprehensively map the N-glycosites and quantify the N-glycosylation profiles of SIDT1 and SIDT2. Further molecular mechanistic probing elucidates the essential role of N-linked glycans in regulating cell surface expression, RNA binding, protein stability, and RNA uptake of SIDT1. Our results provide crucial information about the potential functional impact of N-glycosylation in the regulation of SIDT1-mediated RNA uptake and provide insights into the molecular mechanisms of this promising nucleic acid delivery system with potential implications for therapeutic applications.
Collapse
Affiliation(s)
- Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Haonan Xiao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Le Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohong Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, China.
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, China; Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Zheng L, Yang T, Guo H, Qi C, Lu Y, Xiao H, Gao Y, Liu Y, Yang Y, Zhou M, Nguyen HC, Zhu Y, Sun F, Zhang CY, Ji X. Cryo-EM structures of human SID-1 transmembrane family proteins and implications for their low-pH-dependent RNA transport activity. Cell Res 2024; 34:80-83. [PMID: 37932445 PMCID: PMC10770124 DOI: 10.1038/s41422-023-00893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Affiliation(s)
- Le Zheng
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Tingting Yang
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hangtian Guo
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Chen Qi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Haonan Xiao
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Yue Liu
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yixuan Yang
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Mengru Zhou
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Henry C Nguyen
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chen-Yu Zhang
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiaoyun Ji
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Hernández-Cabanyero C, Sanjuán E, Mercado L, Amaro C. Evidence that fish death after Vibrio vulnificus infection is due to an acute inflammatory response triggered by a toxin of the MARTX family. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109131. [PMID: 37832748 DOI: 10.1016/j.fsi.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
Vibrio vulnificus is an emerging zoonotic pathogen associated with fish farms that is capable of causing a hemorrhagic septicemia known as warm-water vibriosis. According to a recent transcriptomic and functional study, the death of fish due to vibriosis is more related to the inflammatory response of the host than to the tissue lesions caused by the pathogen. In this work, we hypothesize that the RtxA1 toxin (a V. vulnificus toxin of the MARTX (Multifunctional Autoprocessing Repeats in Toxin) family) is the key virulence factor that would directly or indirectly trigger this fatal inflammatory response. Our hypothesis was based on previous studies that showed that rtxA1-deficient mutants maintained their ability to colonize and invade, but were unable to kill fish. To demonstrate this hypothesis, we infected eels (model of fish vibriosis) by immersion with a mutant deficient in RtxA1 production and analyzed their transcriptome in blood, red blood cells and white blood cells during early vibriosis (0, 3 and 12 h post-infection). The transcriptomic results were compared with those obtained in the previous study in which eels were infected with the V. vulnificus parental strain, and were functionally validated. Overall, our results confirm that fish death after V. vulnificus infection is due to an acute, early and atypical inflammatory response triggered by RtxA1 in which red blood cells seem to play a central role. These results could be relevant to other vibriosis as the toxins of this family are widespread in the Vibrio genus.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Eva Sanjuán
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Luis Mercado
- Instituto de Biología. Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carmen Amaro
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain.
| |
Collapse
|
12
|
Song Y, Gu J, You J, Tao Y, Zhang Y, Wang L, Gao J. The functions of SID1 transmembrane family, member 2 (Sidt2). FEBS J 2023; 290:4626-4637. [PMID: 36176242 DOI: 10.1111/febs.16641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
The SID1 transmembrane family, member 2, namely, Sidt2, is a highly glycosylated multichannel lysosomal transmembrane protein, but its specific physiological function remains unknown. Lysosomal membrane proteins are very important for the executive functioning of lysosomes. As an important part of the lysosomal membrane, Sidt2 can maintain the normal morphology of lysosomes and help stabilize them from the acidic pH environment within. As a receptor/transporter, it binds and transports nucleic acids and mediates the uptake and degradation of RNA and DNA by the lysosome. During glucose metabolism, deletion of Sidt2 can cause an increase in fasting blood glucose and the impairment of grape tolerance, which is closely related to the secretion of insulin. During lipid metabolism, the loss of Sidt2 can cause hepatic steatosis and lipid metabolism disorders and can also play a role in signal regulation and transport. Here, we review the function of the lysosomal membrane protein Sidt2, and focus on its role in glucose and lipid metabolism, autophagy and nucleotide (DNA/RNA) transport.
Collapse
Affiliation(s)
- Yingying Song
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Jingya You
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yiyang Tao
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| |
Collapse
|
13
|
A Tale of Two Lobsters—Transcriptomic Analysis Reveals a Potential Gap in the RNA Interference Pathway in the Tropical Rock Lobster Panulirus ornatus. Int J Mol Sci 2022; 23:ijms231911752. [PMID: 36233053 PMCID: PMC9569428 DOI: 10.3390/ijms231911752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) has been widely utilised in many invertebrate models since its discovery, and in a majority of instances presents as a highly efficient and potent gene silencing mechanism. This is emphasized in crustaceans with almost all taxa having the capacity to trigger effective silencing, with a notable exception in the spiny lobsters where repeated attempts at dsRNA induced RNAi have demonstrated extremely ineffective gene knockdown. A comparison of the core RNAi machinery in transcriptomic data from spiny lobsters (Panulirus ornatus) and the closely related slipper lobsters (Thenus australiensis, where silencing is highly effective) revealed that both lobsters possess all proteins involved in the small interfering and microRNA pathways, and that there was little difference at both the sequence and domain architecture level. Comparing the expression of these genes however demonstrated that T. australiensis had significantly higher expression in the transcripts encoding proteins which directly interact with dsRNA when compared to P. ornatus, validated via qPCR. These results suggest that low expression of the core RNAi genes may be hindering the silencing response in P. ornatus, and suggest that it may be critical to enhance the expression of these genes to induce efficient silencing in spiny lobsters.
Collapse
|
14
|
Fu J, Xu S, Lu H, Li F, Li S, Chang L, Heckel DG, Bock R, Zhang J. Resistance to RNA interference by plant-derived double-stranded RNAs but not plant-derived short interfering RNAs in Helicoverpa armigera. PLANT, CELL & ENVIRONMENT 2022; 45:1930-1941. [PMID: 35312082 DOI: 10.1111/pce.14314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plant-mediated RNA interference (RNAi) has emerged as a promising technology for pest control through expression of double-stranded RNAs (dsRNAs) targeted against essential insect genes. However, little is known about the underlying molecular mechanisms and whether long dsRNA or short interfering RNAs (siRNAs) are the effective triggers of the RNAi response. Here we generated transplastomic and nuclear transgenic tobacco plants expressing dsRNA against the Helicoverpa armigera ATPaseH gene. We showed that expression of long dsRNA of HaATPaseH was at least three orders of magnitude higher in transplastomic plants than in transgenic plants. HaATPaseH-derived siRNAs are absent from transplastomic plants, while they are abundant in transgenic plants. Feeding transgenic plants to H. armigera larvae reduced gene expression of HaATPaseH and delayed growth. Surprisingly, no effect of transplastomic plants on insect growth was observed, despite efficient dsRNA expression in plastids. Furthermore, we found that dsRNA ingested by H. armigera feeding on transplastomic plants was rapidly degraded in the intestinal fluid. In contrast, siRNAs are relatively stable in the digestive system. These results suggest that plant-derived siRNAs may be more effective triggers of RNAi in Lepidoptera than dsRNAs, which will aid the optimization of the strategies for plant-mediated RNAi to pest control.
Collapse
Affiliation(s)
- Jinqiu Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shijing Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Huan Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Fanchi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - David G Heckel
- Department of Entomology, Max-Planck-Institut für Chemische Ökologie, Jena, Germany
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Department III, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Semple SL, Au SKW, Jacob RA, Mossman KL, DeWitte-Orr SJ. Discovery and Use of Long dsRNA Mediated RNA Interference to Stimulate Antiviral Protection in Interferon Competent Mammalian Cells. Front Immunol 2022; 13:859749. [PMID: 35603190 PMCID: PMC9120774 DOI: 10.3389/fimmu.2022.859749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
In invertebrate cells, RNA interference (RNAi) acts as a powerful immune defense that stimulates viral gene knockdown thereby preventing infection. With this pathway, virally produced long dsRNA (dsRNA) is cleaved into short interfering RNA (siRNA) by Dicer and loaded into the RNA-induced silencing complex (RISC) which can then destroy/disrupt complementary viral mRNA sequences. Comparatively, in mammalian cells it is believed that the type I interferon (IFN) pathway is the cornerstone of the innate antiviral response. In these cells, dsRNA acts as a potent inducer of the IFN system, which is dependent on dsRNA length, but not sequence, to stimulate an antiviral state. Although the cellular machinery for RNAi is intact and functioning in mammalian cells, its role to trigger an antiviral response using long dsRNA (dsRNAi) remains controversial. Here we show that dsRNAi is not only functional but has a significant antiviral effect in IFN competent mammalian cells. We found that pre-soaking mammalian cells with concentrations of sequence specific dsRNA too low to induce IFN production could significantly inhibit vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP), and the human coronaviruses (CoV) HCoV-229E and SARS-CoV-2 replication. This phenomenon was shown to be dependent on dsRNA length, was comparable in effect to transfected siRNAs, and could knockdown multiple sequences at once. Additionally, knockout cell lines revealed that functional Dicer was required for viral inhibition, revealing that the RNAi pathway was indeed responsible. These results provide the first evidence that soaking with gene-specific long dsRNA can generate viral knockdown in mammalian cells. We believe that this novel discovery provides an explanation as to why the mammalian lineage retained its RNAi machinery and why vertebrate viruses have evolved methods to suppress RNAi. Furthermore, demonstrating RNAi below the threshold of IFN induction has uses as a novel therapeutic platform, both antiviral and gene targeting in nature.
Collapse
Affiliation(s)
- Shawna L. Semple
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Sarah K. W. Au
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Rajesh A. Jacob
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Stephanie J. DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- *Correspondence: Stephanie J. DeWitte-Orr,
| |
Collapse
|
16
|
Hernández-Cabanyero C, Sanjuán E, Reyes-López FE, Vallejos-Vidal E, Tort L, Amaro C. A Transcriptomic Study Reveals That Fish Vibriosis Due to the Zoonotic Pathogen Vibrio vulnificus Is an Acute Inflammatory Disease in Which Erythrocytes May Play an Important Role. Front Microbiol 2022; 13:852677. [PMID: 35432241 PMCID: PMC9011161 DOI: 10.3389/fmicb.2022.852677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio vulnificus is a marine zoonotic pathogen associated with fish farms that is considered a biomarker of climate change. Zoonotic strains trigger a rapid death of their susceptible hosts (fish or humans) by septicemia that has been linked to a cytokine storm in mice. Therefore, we hypothesize that V. vulnificus also causes fish death by triggering a cytokine storm in which red blood cells (RBCs), as nucleated cells in fish, could play an active role. To do it, we used the eel immersion infection model and then analyzed the transcriptome in RBCs, white BCs, and whole blood using an eel-specific microarray platform. Our results demonstrate that V. vulnificus triggers an acute but atypical inflammatory response that occurs in two main phases. The early phase (3 h post-infection [hpi]) is characterized by the upregulation of several genes for proinflammatory cytokines related to the mucosal immune response (il17a/f1 and il20) along with genes for antiviral cytokines (il12β) and antiviral factors (ifna and ifnc). In contrast, the late phase (12 hpi) is based on the upregulation of genes for typical inflammatory cytokines (il1β), endothelial destruction (mmp9 and hyal2), and, interestingly, genes related to an RNA-based immune response (sidt1). Functional assays revealed significant proteolytic and hemolytic activity in serum at 12 hpi that would explain the hemorrhages characteristic of this septicemia in fish. As expected, we found evidence that RBCs are transcriptionally active and contribute to this atypical immune response, especially in the short term. Based on a selected set of marker genes, we propose here an in vivo RT-qPCR assay that allows detection of early sepsis caused by V. vulnificus. Finally, we develop a model of sepsis that could serve as a basis for understanding sepsis caused by V. vulnificus not only in fish but also in humans.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Amaro
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
- *Correspondence: Carmen Amaro,
| |
Collapse
|
17
|
Morell M, Varela N, Castillejo-López C, Coppard C, Luque MJ, Wu YY, Martín-Morales N, Pérez-Cózar F, Gómez-Hernández G, Kumar R, O'Valle F, Alarcón-Riquelme ME, Marañón C. SIDT1 plays a key role in type I IFN responses to nucleic acids in plasmacytoid dendritic cells and mediates the pathogenesis of an imiquimod-induced psoriasis model. EBioMedicine 2022; 76:103808. [PMID: 35065421 PMCID: PMC8784643 DOI: 10.1016/j.ebiom.2021.103808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background Type I IFN (IFN-I) is a family of cytokines involved in the pathogenesis of autoimmune and autoinflammatory diseases such as psoriasis. SIDT1 is an ER-resident protein expressed in the lymphoid lineage, and involved in anti-viral IFN-I responses in vivo, through an unclear mechanism. Herein we have dissected the role of SIDT1 in the natural IFN-producing cells, the plasmacytoid dendritic cells (pDC). Methods The function of SIDT1 in pDC was determined by silencing its expression in human primary pDC and GEN2.2 cell line. SIDT1 role in vivo was assessed using the imiquimod-induced psoriasis model in the SIDT1-deficient mice (sidt1−/−). Findings Silencing of SIDT1 in GEN2.2 led to a blockade of the IFN-I response after stimulation of TLR7 and TLR9, without affecting the pro-inflammatory responses or upregulation of maturation markers. We found that SIDT1 migrates from the ER to the endosomal and lysosomal compartments together with TLR9 after CpG stimulation, participating in the access of the TLR9-CpG complex to lysosome-related vesicles, and therefore mediating the activation of TBK1 and the nuclear migration of IRF7, but not of NF-κB. sidt1−/− mice showed a significant decrease in severity parameters of the imiquimod-induced acute psoriasis-like model, associated with a decrease in the production of IFN-I and IFN-dependent chemokines. Interpretation Our findings indicate that SIDT1 is at the cross-road between the IFN-I and the proinflammatory pathways and constitutes a promising drug target for psoriasis and other diseases mediated by IFN-I responses. Funding This work was supported by the Consejería de Salud y Familias de la Junta de Andalucía (PIER_S1149 and C2_S0050) and Instituto de Salud Carlos III (PI18/00082 and PI21/01151), partly supported by European FEDER funds, and prior funding to MEAR from the Alliance for Lupus Research and the Swedish Research Council.
Collapse
Affiliation(s)
- María Morell
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Nieves Varela
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Casimiro Castillejo-López
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Céline Coppard
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - María José Luque
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Ying-Yu Wu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, University of Granada, Spain; Department of Oral Surgery, School of Dentistry, University of Granada, Spain
| | - Francisco Pérez-Cózar
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Gonzalo Gómez-Hernández
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Ramesh Kumar
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Francisco O'Valle
- Department of Pathology, School of Medicine, University of Granada, Spain; Ibs.GRANADA and IBIMER Institutes, Spain
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Concepción Marañón
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain.
| |
Collapse
|
18
|
Mehlhorn S, Hunnekuhl VS, Geibel S, Nauen R, Bucher G. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: a brief guide. Front Zool 2021; 18:60. [PMID: 34863212 PMCID: PMC8643023 DOI: 10.1186/s12983-021-00444-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) has emerged as a powerful tool for knocking-down gene function in diverse taxa including arthropods for both basic biological research and application in pest control. The conservation of the RNAi mechanism in eukaryotes suggested that it should-in principle-be applicable to most arthropods. However, practical hurdles have been limiting the application in many taxa. For instance, species differ considerably with respect to efficiency of dsRNA uptake from the hemolymph or the gut. Here, we review some of the most frequently encountered technical obstacles when establishing RNAi and suggest a robust procedure for establishing this technique in insect species with special reference to pests. Finally, we present an approach to identify the most effective target genes for the potential control of agricultural and public health pests by RNAi.
Collapse
Affiliation(s)
- Sonja Mehlhorn
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Sven Geibel
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Ralf Nauen
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
19
|
León-Mimila P, Villamil-Ramírez H, Macías-Kauffer LR, Jacobo-Albavera L, López-Contreras BE, Posadas-Sánchez R, Posadas-Romero C, Romero-Hidalgo S, Morán-Ramos S, Domínguez-Pérez M, Olivares-Arevalo M, López-Montoya P, Nieto-Guerra R, Acuña-Alonzo V, Macín-Pérez G, Barquera-Lozano R, Del-Río-Navarro BE, González-González I, Campos-Pérez F, Gómez-Pérez F, Valdés VJ, Sampieri A, Reyes-García JG, Carrasco-Portugal MDC, Flores-Murrieta FJ, Aguilar-Salinas CA, Vargas-Alarcón G, Shih D, Meikle PJ, Calkin AC, Drew BG, Vaca L, Lusis AJ, Huertas-Vazquez A, Villarreal-Molina T, Canizales-Quinteros S. Genome-Wide Association Study Identifies a Functional SIDT2 Variant Associated With HDL-C (High-Density Lipoprotein Cholesterol) Levels and Premature Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2021; 41:2494-2508. [PMID: 34233476 PMCID: PMC8664085 DOI: 10.1161/atvbaha.120.315391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Low HDL-C (high-density lipoprotein cholesterol) is the most frequent dyslipidemia in Mexicans, but few studies have examined the underlying genetic basis. Our purpose was to identify genetic variants associated with HDL-C levels and cardiovascular risk in the Mexican population. Approach and Results A genome-wide association studies for HDL-C levels in 2335 Mexicans, identified four loci associated with genome-wide significance: CETP, ABCA1, LIPC, and SIDT2. The SIDT2 missense Val636Ile variant was associated with HDL-C levels and was replicated in 3 independent cohorts (P=5.9×10−18 in the conjoint analysis). The SIDT2/Val636Ile variant is more frequent in Native American and derived populations than in other ethnic groups. This variant was also associated with increased ApoA1 and glycerophospholipid serum levels, decreased LDL-C (low-density lipoprotein cholesterol) and ApoB levels, and a lower risk of premature CAD. Because SIDT2 was previously identified as a protein involved in sterol transport, we tested whether the SIDT2/Ile636 protein affected this function using an in vitro site-directed mutagenesis approach. The SIDT2/Ile636 protein showed increased uptake of the cholesterol analog dehydroergosterol, suggesting this variant affects function. Finally, liver transcriptome data from humans and the Hybrid Mouse Diversity Panel are consistent with the involvement of SIDT2 in lipid and lipoprotein metabolism. Conclusions This is the first genome-wide association study for HDL-C levels seeking associations with coronary artery disease in the Mexican population. Our findings provide new insight into the genetic architecture of HDL-C and highlight SIDT2 as a new player in cholesterol and lipoprotein metabolism in humans.
Collapse
Affiliation(s)
- Paola León-Mimila
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Luis R Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Dirección de Planeación, Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Estado de México (L.R.M.-K.)
| | - Leonor Jacobo-Albavera
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Blanca E López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | | | - Sofía Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City (S.M.-R.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Marisol Olivares-Arevalo
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Priscilla López-Montoya
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Roberto Nieto-Guerra
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | | | - Gastón Macín-Pérez
- Escuela Nacional de Antropología e Historia, Mexico City (V.A.-A., G.M.-P.)
| | | | | | | | | | - Francisco Gómez-Pérez
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
| | - Victor J Valdés
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Alicia Sampieri
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Juan G Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
| | - Miriam Del C Carrasco-Portugal
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Francisco J Flores-Murrieta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L. Mexico (C.A.A.-S.)
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (G.V.-A.)
| | - Diana Shih
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Peter J Meikle
- Head Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M.)
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Luis Vaca
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Adriana Huertas-Vazquez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | | | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| |
Collapse
|
20
|
Chakraborty K, Anees P, Surana S, Martin S, Aburas J, Moutel S, Perez F, Koushika SP, Kratsios P, Krishnan Y. Tissue-specific targeting of DNA nanodevices in a multicellular living organism. eLife 2021; 10:e67830. [PMID: 34318748 PMCID: PMC8360651 DOI: 10.7554/elife.67830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs, and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell types in vivo. Here, we show that by exploiting either endogenous or synthetic receptor-ligand interactions and leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in Caenorhabditis elegans, with subcellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Palapuravan Anees
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Sunaina Surana
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Simona Martin
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Jihad Aburas
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Sandrine Moutel
- Recombinant Antibody Platform (TAb-IP), Institut Curie, PSL Research University, CNRS UMR144ParisFrance
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Paschalis Kratsios
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Yamuna Krishnan
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| |
Collapse
|
21
|
Bao W, Li A, Zhang Y, Diao P, Zhao Q, Yan T, Zhou Z, Duan H, Li X, Wuriyanghan H. Improvement of host-induced gene silencing efficiency via polycistronic-tRNA-amiR expression for multiple target genes and characterization of RNAi mechanism in Mythimna separata. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1370-1385. [PMID: 33484609 PMCID: PMC8313139 DOI: 10.1111/pbi.13555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 05/09/2023]
Abstract
Host-induced gene silencing (HIGS) emerged as a new strategy for pest control. However, RNAi efficiency is reported to be low in Lepidoptera, which are composed of many important crop pests. To address this, we generated transgenic plants to develop HIGS effects in a maize pest, Mythimna separata (Lepidoptera, Noctuidae), by targeting chitinase encoding genes. More importantly, we developed an artificial microRNA (amiR) based PTA (polycistronic-tRNA-amiR) system for silencing multiple target genes. Compared with hpRNA (hairpin RNA), transgenic expression of a PTA cassette including an amiR for the gut-specific dsRNA nuclease gene MsREase, resulted in improved knockdown efficiency and caused more pronounced developmental abnormalities in recipient insects. When target gene siRNAs were analysed after HIGS and direct dsRNA/siRNA feeding, common features such as sense polarity and siRNA hotspot regions were observed, however, they differed in siRNA transitivity and major 20-24nt siRNA species. Core RNAi genes were identified in M. separata, and biochemical activities of MsAGO2, MsSID1 and MsDcr2 were confirmed by EMSA (electrophoretic mobility shift assay) and dsRNA cleavage assays, respectively. Taken together, we provide compelling evidence for the existence of the RNAi mechanism in M. separata by analysis of both siRNA signatures and RNAi machinery components, and the PTA system could potentially be useful for future RNAi control of lepidopteran pests.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yanan Zhang
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Ting Yan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xugang Li
- Sino‐German Joint Research Center on Agricultural BiologyState Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
22
|
Gao B, Sun Q. Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nat Commun 2021; 12:2689. [PMID: 33976154 PMCID: PMC8113242 DOI: 10.1038/s41467-021-22894-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
A central goal of synthetic biology is to predictably and efficiently reprogram living systems to perform computations and carry out specific biological tasks. Although there have been many advances in the bio-computational design of living systems, these advances have mainly been applied to microorganisms or cell lines; programming animal physiology remains challenging for synthetic biology because of the system complexity. Here, we present a bacteria-animal symbiont system in which engineered bacteria recognize external signals and modulate animal gene expression, twitching phenotype, and fat metabolism through RNA interference toward gfp, sbp-1, and unc-22 gene in C. elegans. By using genetic circuits in bacteria to control these RNA expressions, we are able to program the physiology of the model animal Caenorhabditis elegans with logic gates. We anticipate that engineered bacteria can be used more extensively to program animal physiology for agricultural, therapeutic, and basic science applications.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
23
|
Examining the evidence for extracellular RNA function in mammals. Nat Rev Genet 2021; 22:448-458. [PMID: 33824487 DOI: 10.1038/s41576-021-00346-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
The presence of RNAs in the extracellular milieu has sparked the hypothesis that RNA may play a role in mammalian cell-cell communication. As functional nucleic acids transfer from cell to cell in plants and nematodes, the idea that mammalian cells also transfer functional extracellular RNA (exRNA) is enticing. However, untangling the role of mammalian exRNAs poses considerable experimental challenges. This Review discusses the evidence for and against functional exRNAs in mammals and their proposed roles in health and disease, such as cancer and cardiovascular disease. We conclude with a discussion of the forward-looking prospects for studying the potential of mammalian exRNAs as mediators of cell-cell communication.
Collapse
|
24
|
Sanitt P, Panyim S, Udomkit A. An ATP synthase beta subunit is required for internalization of dsRNA into shrimp cells. FISH & SHELLFISH IMMUNOLOGY 2020; 106:948-958. [PMID: 32920201 DOI: 10.1016/j.fsi.2020.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Extracellular double-stranded RNA (dsRNA) is an important modulator in innate immunity in both vertebrates and invertebrates. In shrimp, extracellular dsRNA can trigger RNAi pathway and serves as antiviral defense mechanism. However, the mechanism of dsRNA internalization into the cells has not yet known in shrimp cells. This study identified candidate cell surface proteins from shrimp hepatopancreatic cells that could interact with dsRNA by a ligand blot assay. Among the candidate proteins, a cell-surface beta subunit of ATP synthase was shown to be capable of internalizing dsRNA into shrimp hepatopancreatic cells that could rapidly occur in just 1 min upon dsRNA challenge. Colocalization between dsRNA and ATP synthase beta subunit implied correlation between dsRNA and ATP synthase beta subunit during dsRNA internalization. Furthermore, dsRNA showed colocalization with Ras-related endocytic proteins, Rab5 and Rab7 indicating that dsRNA was internalized via the receptor-mediated endocytosis. For the above evidences as well as the reduction of dsRNA internalization by angiostatin and antibodies against ATP synthase beta subunit, we propose that dsRNA interacts with ATP synthase via a nucleotide binding site in the beta subunit prior to internalize dsRNA into cells.
Collapse
Affiliation(s)
- Poohrawind Sanitt
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Phayathai, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
25
|
Hase K, Contu VR, Kabuta C, Sakai R, Takahashi M, Kataoka N, Hakuno F, Takahashi SI, Fujiwara Y, Wada K, Kabuta T. Cytosolic domain of SIDT2 carries an arginine-rich motif that binds to RNA/DNA and is important for the direct transport of nucleic acids into lysosomes. Autophagy 2020; 16:1974-1988. [PMID: 31944164 PMCID: PMC7595612 DOI: 10.1080/15548627.2020.1712109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
RNautophagy and DNautophagy (RDA) are unconventional autophagic pathways where nucleic acids are directly transported through the lysosomal membrane, then degraded inside lysosomes. We have previously shown that bitopic protein LAMP2C and putative RNA transporter SIDT2, both lysosomal membrane proteins, mediate the direct transport of nucleic acids into lysosomes and that LAMP2C interacts with the nucleic acids and functions as a receptor during RDA. Because SIDT2-mediated RDA occurs in isolated lysosomes that lack LAMP2C, in this study, we tested the hypothesis that SIDT2 itself could also interact with the nucleic acids. Our results show that SIDT2 directly binds RNA and DNA through an arginine-rich motif (ARM) located within its main cytosolic domain, and disruption of this motif dramatically impairs SIDT2-mediated RNautophagic activity. We also found that SIDT2 interacts with exon 1 of HTT (huntingtin) transcript through the ARM in a CAG-dependent manner. Moreover, overexpression of SIDT2 promoted degradation of HTT mRNA and reduced the levels of polyglutamine-expanded HTT aggregates, hallmarks of Huntington disease. In addition, a comparative analysis of LAMP2C and SIDT2 functions at the cellular level revealed that the two proteins exert a synergistic effect on RNautophagic activity and that the ARMs which mediate the interactions of SIDT2 and LAMP2C with RNA are essential for the synergy. Together, our results point out the importance of nucleic acid-binding capacity of SIDT2 for its function in translocating nucleic acids through the lipid bilayer and suggests a potential application of RNautophagy activation to reduce the expression levels of disease-causing toxic proteins. Abbreviations: ACTB/β-actin: actin beta; ARM: arginine-rich motif; CBB: Coomassie Brilliant Blue; CD: cytosolic domain; COX4I1/COX4: cytochrome c oxidase subunit 4I1; E. coli: Escherichia coli; EGFP: enhanced green fluorescent protein; EtBr: ethidium bromide; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GST: glutathione S-transferase; HRP: horseradish peroxidase; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; HTT: huntingtin; HTTex1: exon 1 of the HTT gene; LAMP2: lysosomal associated membrane protein 2; LMNA: lamin A/C; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate-buffered saline; PEI: polyethyleneimine; polyQ: polyglutamine; qPCR: quantitative PCR; RAB5A: RAB5A, member RAS oncogene family; RDA: RNautophagy and DNautophagy; SCARB2/LIMP2: scavenger receptor class B member 2; SDS: sodium dodecyl sulfate; SID-1: systemic RNA interference deficient-1; SIDT2: SID1 transmembrane family member 2; WT: wild type.
Collapse
Affiliation(s)
- Katsunori Hase
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Viorica Raluca Contu
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Chihana Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryohei Sakai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masayuki Takahashi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Naoyuki Kataoka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yuuki Fujiwara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
26
|
A multi-target dsRNA for simultaneous inhibition of yellow head virus and white spot syndrome virus in shrimp. J Biotechnol 2020; 321:48-56. [PMID: 32615142 DOI: 10.1016/j.jbiotec.2020.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Outbreaks of diseases caused by yellow head virus (YHV) and white spot syndrome virus (WSSV) infection in shrimp have resulted in economic losses worldwide. DsRNA-mediated RNAi has been used to control these viruses, and the best target genes for efficient inhibition of YHV and WSSV are the protease and ribonuleotide reductase small subunit (rr2), respectively. However, one dsRNA can suppress only one virus, and therefore the production of multi-target dsRNA to effectively inhibit both YHV and WSSV is needed. In this study, plasmids pETpro-rr2_one stem and pETpro-rr2_two stems were constructed to produce two different forms of multi-target dsRNA in E. coli, which were designed specifically to both YHV protease and WSSV rr2 genes. The potency of each dsRNA in inhibiting YHV and WSSV and reducing shrimp death were investigated in L. vannamei. Shrimp were injected with the dsRNAs into the hemolymph before challenge with YHV or WSSV. The results showed that both dsRNAs could inhibit the viruses, however the one stem construct was more effective than the two stems construct when shrimp were infected with WSSV. This study establishes a potential strategy for dual inhibition of YHV and WSSV for further application in shrimp aquaculture.
Collapse
|
27
|
Nguyen TA, Bieging-Rolett KT, Putoczki TL, Wicks IP, Attardi LD, Pang KC. SIDT2 RNA Transporter Promotes Lung and Gastrointestinal Tumor Development. iScience 2019; 20:14-24. [PMID: 31546103 PMCID: PMC6817685 DOI: 10.1016/j.isci.2019.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
RNautophagy is a newly described type of selective autophagy whereby cellular RNAs are transported into lysosomes for degradation. This process involves the transmembrane protein SIDT2, which transports double-stranded RNA (dsRNA) across the endolysosomal membrane. We previously demonstrated that SIDT2 is a transcriptional target of p53, but its role in tumorigenesis, if any, is unclear. Unexpectedly, we show here that Sidt2−/− mice with concurrent oncogenic KrasG12D activation develop significantly fewer tumors than littermate controls in a mouse model of lung adenocarcinoma. Consistent with this observation, loss of SIDT2 also leads to enhanced survival and delayed tumor development in an Apcmin/+ mouse model of intestinal cancer. Within the intestine, Apcmin/+;Sidt2−/− mice display accumulation of dsRNA in association with increased phosphorylation of eIF2α and JNK as well as elevated rates of apoptosis. Taken together, our data demonstrate a role for SIDT2, and by extension RNautophagy, in promoting tumor development. Loss of the SIDT2 double-stranded RNA (dsRNA) transporter leads to accumulation of dsRNA in tissues is associated with increased apoptosis reduces tumor burden in mouse models of lung adenocarcinoma and intestinal cancer
Collapse
Affiliation(s)
- Tan A Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kathryn T Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ken C Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
28
|
Nguyen TA, Smith BRC, Elgass KD, Creed SJ, Cheung S, Tate MD, Belz GT, Wicks IP, Masters SL, Pang KC. SIDT1 Localizes to Endolysosomes and Mediates Double-Stranded RNA Transport into the Cytoplasm. THE JOURNAL OF IMMUNOLOGY 2019; 202:3483-3492. [PMID: 31061008 DOI: 10.4049/jimmunol.1801369] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/14/2019] [Indexed: 12/15/2022]
Abstract
dsRNA is a common by-product of viral replication and acts as a potent trigger of antiviral immunity. SIDT1 and SIDT2 are closely related members of the SID-1 transmembrane family. SIDT2 functions as a dsRNA transporter and is required to traffic internalized dsRNA from endocytic compartments into the cytosol for innate immune activation, but the role of SIDT1 in dsRNA transport and in the innate immune response to viral infection is unclear. In this study, we show that Sidt1 expression is upregulated in response to dsRNA and type I IFN exposure and that SIDT1 interacts with SIDT2. Moreover, similar to SIDT2, SIDT1 localizes to the endolysosomal compartment, interacts with the long dsRNA analog poly(I:C), and, when overexpressed, enhances endosomal escape of poly(I:C) in vitro. To elucidate the role of SIDT1 in vivo, we generated SIDT1-deficient mice. Similar to Sidt2-/- mice, SIDT1-deficient mice produced significantly less type I IFN following infection with HSV type 1. In contrast to Sidt2-/- mice, however, SIDT1-deficient animals showed no impairment in survival postinfection with either HSV type 1 or encephalomyocarditis virus. Consistent with this, we observed that, unlike SIDT2, tissue expression of SIDT1 was relatively restricted, suggesting that, whereas SIDT1 can transport extracellular dsRNA into the cytoplasm following endocytosis in vitro, the transport activity of SIDT2 is likely to be functionally dominant in vivo.
Collapse
Affiliation(s)
- Tan A Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Blake R C Smith
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Sarah J Creed
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Shane Cheung
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Michelle D Tate
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Seth L Masters
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ken C Pang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; .,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
29
|
Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J. Host-Induced Gene Silencing: A Powerful Strategy to Control Diseases of Wheat and Barley. Int J Mol Sci 2019; 20:E206. [PMID: 30626050 PMCID: PMC6337638 DOI: 10.3390/ijms20010206] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Wheat and barley are the most highly produced and consumed grains in the world. Various pathogens-viruses, bacteria, fungi, insect pests, and nematode parasites-are major threats to yield and economic losses. Strategies for the management of disease control mainly depend on resistance or tolerance breeding, chemical control, and biological control. The discoveries of RNA silencing mechanisms provide a transgenic approach for disease management. Host-induced gene silencing (HIGS) employing RNA silencing mechanisms and, specifically, silencing the targets of invading pathogens, has been successfully applied in crop disease prevention. Here, we cover recent studies that indicate that HIGS is a valuable tool to protect wheat and barley from diseases in an environmentally friendly way.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Vélez AM, Fishilevich E. The mysteries of insect RNAi: A focus on dsRNA uptake and transport. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 151:25-31. [PMID: 30704709 DOI: 10.1016/j.pestbp.2018.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 05/25/2023]
Abstract
RNA interference (RNAi) is becoming a practical tool to control insect pests. Many mysteries of how double-stranded RNA (dsRNA) is transported into, within, and between cells to generate an efficient RNAi response in insects are still to be unraveled. This review provides an overview of the evidence that supports a key role of endocytosis in the uptake of dsRNA on both cellular and tissue levels. Additionally, other components of cellular membrane transport and their impact on the efficiency of RNAi in insects are explored. It is now evident that the membrane transport and potentially dsRNA release from the endosome may comprise some of the limiting factors in insects that are recalcitrant to dsRNA. This review concludes with the apparent connection between gene products that are necessary for cellular trafficking of dsRNA and highly lethal RNAi targets.
Collapse
Affiliation(s)
- Ana M Vélez
- University of Nebraska-Lincoln, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States.
| | - Elane Fishilevich
- University of Nebraska-Lincoln, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States; Corteva Agriscience™, Agriculture Division of DowDuPont™, 9330 Zionsville Road, Indianapolis, IN 46268, United States.
| |
Collapse
|
31
|
Almeida Garcia R, Lima Pepino Macedo L, Cabral do Nascimento D, Gillet FX, Moreira-Pinto CE, Faheem M, Moreschi Basso AM, Mattar Silva MC, Grossi-de-Sa MF. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis. PLoS One 2017; 12:e0189600. [PMID: 29261729 PMCID: PMC5738047 DOI: 10.1371/journal.pone.0189600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.
Collapse
Affiliation(s)
- Rayssa Almeida Garcia
- Brasilia Federal University (UnB), Brasília - CEP, Brasília, Federal District, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
| | | | | | | | - Clidia Eduarda Moreira-Pinto
- Brasilia Federal University (UnB), Brasília - CEP, Brasília, Federal District, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
| | - Muhammad Faheem
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
| | | | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Federal District, Brazil
- Catholic University of Brasília, CEP, Brasília, Federal District, Brazil
- * E-mail:
| |
Collapse
|
32
|
Abstract
In the nematode Caenorhabditis elegans, RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) spreads systemically to cause gene silencing throughout the organism and its progeny. We confirm that Caenorhabditis nematode SID-1 orthologs have dsRNA transport activity and demonstrate that the SID-1 paralog CHUP-1 does not transport dsRNA. Sequence comparison of these similar proteins, in conjunction with analysis of loss-of-function missense alleles, identifies several conserved 2–7 amino acid microdomains within the extracellular domain (ECD) that are important for dsRNA transport. Among these missense alleles, we identify and characterize a sid-1 allele, qt95, which causes tissue-specific silencing defects most easily explained as a systemic RNAi export defect. However, we conclude from genetic and biochemical analyses that sid-1(qt95) disrupts only import, and speculate that the apparent export defect is caused by the cumulative effect of sequentially impaired dsRNA import steps. Thus, consistent with previous studies, we fail to detect a requirement for sid-1 in dsRNA export, but demonstrate for the first time that SID-1 functions in the intestine to support environmental RNAi (eRNAi).
Collapse
|
33
|
Nguyen TA, Smith BRC, Tate MD, Belz GT, Barrios MH, Elgass KD, Weisman AS, Baker PJ, Preston SP, Whitehead L, Garnham A, Lundie RJ, Smyth GK, Pellegrini M, O'Keeffe M, Wicks IP, Masters SL, Hunter CP, Pang KC. SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity 2017; 47:498-509.e6. [PMID: 28916264 DOI: 10.1016/j.immuni.2017.08.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/26/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
Double-stranded RNA (dsRNA) is a common by-product of viral infections and acts as a potent trigger of antiviral immunity. In the nematode C. elegans, sid-1 encodes a dsRNA transporter that is highly conserved throughout animal evolution, but the physiological role of SID-1 and its orthologs remains unclear. Here, we show that the mammalian SID-1 ortholog, SIDT2, is required to transport internalized extracellular dsRNA from endocytic compartments into the cytoplasm for immune activation. Sidt2-deficient mice exposed to extracellular dsRNA, encephalomyocarditis virus (EMCV), and herpes simplex virus 1 (HSV-1) show impaired production of antiviral cytokines and-in the case of EMCV and HSV-1-reduced survival. Thus, SIDT2 has retained the dsRNA transport activity of its C. elegans ortholog, and this transport is important for antiviral immunity.
Collapse
Affiliation(s)
- Tan A Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Blake R C Smith
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marilou H Barrios
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Alexandra S Weisman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Paul J Baker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Simon P Preston
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rachel J Lundie
- Burnet Institute, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; School of Mathematics & Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Meredith O'Keeffe
- Burnet Institute, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ken C Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Murdoch Childrens Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
34
|
Fontenla S, Rinaldi G, Smircich P, Tort JF. Conservation and diversification of small RNA pathways within flatworms. BMC Evol Biol 2017; 17:215. [PMID: 28893179 PMCID: PMC5594548 DOI: 10.1186/s12862-017-1061-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
Background Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. Results Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. Conclusion These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms. Understanding these phylum-specific innovations and the differences between free living and parasitic species might provide clues to adaptations to parasitism, and would be relevant for gene-silencing technology development for parasitic flatworms that infect hundreds of million people worldwide. Electronic supplementary material The online version of this article (10.1186/s12862-017-1061-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay
| | - Gabriel Rinaldi
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.,Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.
| |
Collapse
|
35
|
Zhang J, Khan SA, Heckel DG, Bock R. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection. Trends Biotechnol 2017; 35:871-882. [PMID: 28822479 DOI: 10.1016/j.tibtech.2017.04.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Plant-mediated RNA interference (RNAi) shows great potential in crop protection. It relies on plants stably expressing double-stranded RNAs (dsRNAs) that target essential genes in pest insects. Practical application of this strategy is challenging because producing sufficient amounts of stable dsRNA in plants has proven to be difficult to achieve with conventional transgenesis. In addition, many insects do not respond to exogenously applied dsRNAs, either degrading them or failing to import them into the cytoplasm. We summarize recent progress in RNAi-mediated insect pest control and discuss factors determining its efficacy. Expressing dsRNA in chloroplasts overcomes many of the difficulties previously encountered. We also highlight remaining challenges and discuss the environmental and biosafety issues involved in the use of this technology in agriculture.
Collapse
Affiliation(s)
- Jiang Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sher Afzal Khan
- Max-Planck-Institut für Chemische Ökologie, Hans-Knöll-Strasse 8, 07745 Jena, Germany; Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - David G Heckel
- Max-Planck-Institut für Chemische Ökologie, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
36
|
Gillet FX, Garcia RA, Macedo LLP, Albuquerque EVS, Silva MCM, Grossi-de-Sa MF. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests. Front Physiol 2017; 8:256. [PMID: 28503153 PMCID: PMC5408074 DOI: 10.3389/fphys.2017.00256] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.
Collapse
Affiliation(s)
| | - Rayssa A Garcia
- Embrapa Genetic Resources and BiotechnologyBrasília, Brazil.,Department of Cellular Biology, Brasilia Federal University (UnB)Brasília, Brazil
| | | | | | | | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and BiotechnologyBrasília, Brazil.,Graduate Program in Genomics and Biotechnology, Catholic University of BrasiliaBrasilia, Brazil
| |
Collapse
|
37
|
Takahashi M, Contu VR, Kabuta C, Hase K, Fujiwara Y, Wada K, Kabuta T. SIDT2 mediates gymnosis, the uptake of naked single-stranded oligonucleotides into living cells. RNA Biol 2017; 14:1534-1543. [PMID: 28277980 PMCID: PMC5785214 DOI: 10.1080/15476286.2017.1302641] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Single-stranded oligonucleotides (ssOligos) are efficiently taken up by living cells without the use of transfection reagents. This phenomenon called ‘gymnosis’ enables the sequence-specific silencing of target genes in various types of cells. Several antisense ssOligos are used for the treatment of human diseases. However, the molecular mechanism underlying the uptake of naked ssOligos into cells remains to be elucidated. Here, we show that systemic RNA interference deficient-1 (SID-1) transmembrane family 2 (SIDT2), a mammalian ortholog of the Caenorhabditis elegans double-stranded RNA channel SID-1, mediates gymnosis. We show that the uptake of naked ssOligos into cells is significantly downregulated by knockdown of SIDT2. Furthermore, knockdown of SIDT2 inhibited the effect of antisense RNA mediated by gymnosis. Overexpression of SIDT2 enhanced the uptake of naked ssOligos into cells, while a single amino acid mutation in SIDT2 abolished this effect. Our findings highlight the mechanism of extra- and intracellular RNA transport and may contribute to the further development of nucleic acid-based therapies.
Collapse
Affiliation(s)
- Masayuki Takahashi
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo , Japan
| | - Viorica Raluca Contu
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo , Japan.,b Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering , University of Yamanashi , Yamanashi , Japan
| | - Chihana Kabuta
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo , Japan
| | - Katsunori Hase
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo , Japan
| | - Yuuki Fujiwara
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo , Japan
| | - Keiji Wada
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo , Japan
| | - Tomohiro Kabuta
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira, Tokyo , Japan
| |
Collapse
|
38
|
Whitten M, Dyson P. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. Bioessays 2017; 39. [DOI: 10.1002/bies.201600247] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miranda Whitten
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| | - Paul Dyson
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| |
Collapse
|
39
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|