1
|
He G, Ni Y, Hua R, Wan H, Tan Y, Chen Q, Xu S, Yang Y, Zhang L, Shu W, Huang KB, Mo Y, Liang H, Chen M. Latexin deficiency limits foam cell formation and ameliorates atherosclerosis by promoting macrophage phenotype differentiation. Cell Death Dis 2024; 15:754. [PMID: 39424784 PMCID: PMC11492231 DOI: 10.1038/s41419-024-07141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Latexin (LXN) is abundant in macrophages and plays critical roles in inflammation. Much is known about macrophages in atherosclerosis, the role of macrophage LXN in atherosclerosis has remained elusive. Here, the expression of LXN in human and mouse atherosclerotic lesions was examined by immunofluorescence and immunohistochemistry. LXN knockout and LXN/ApoE double-knockout mice were generated to evaluate the functions of LXN in atherosclerosis. Bone marrow transplantation (BMT) experimentation was carried out to determine whether macrophage LXN regulates atherosclerosis. We found that LXN is enriched in human and murine atherosclerotic lesions, mainly localized to macrophages. LXN deletion ameliorated atherosclerosis in ApoE-/- mice. BMT demonstrate that deletion of LXN in bone marrow protects ApoE-/- mice against atherosclerosis. Mechanistically, we found that LXN targets and inhibits JAK1 in macrophages. LXN deficiency stimulates the JAK1/STAT3/ABC transporter pathway, thereby enhancing the anti-inflammatory and anti-oxidant phenotype, cholesterol efflux, subsequently minimizing foam cell formation and atherosclerosis. Gene therapy by treatment of atherosclerotic mice with adeno-associated virus harbouring LXN-depleting shRNA attenuated the disease phenotype. In summary, our study provides new clues for the role of LXN in the pathological regulation of atherosclerosis, and determines that LXN is a target for preventing atherosclerosis, which may be a potential new anti-atherosclerosis therapeutic target.
Collapse
Affiliation(s)
- Guozhang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yuanting Ni
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Rong Hua
- Department of Scientific Research, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huaibin Wan
- Heyuan Research Center for Cardiovascular Diseases, Department of Cardiology, the Fifth Affiliated Hospital of Jinan University, Heyuan, Guangdong, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Qiwei Chen
- Department of Scientific Research, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shaohua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Lijun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yi Mo
- Biobank department, The reproductive hospital of Guangxi Zhuang autonomous region, Nanning, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| |
Collapse
|
2
|
Datta C, Das P, Dutta S, Prasad T, Banerjee A, Gehlot S, Ghosal A, Dhabal S, Biswas P, De D, Chaudhuri S, Bhattacharjee A. AMPK activation reduces cancer cell aggressiveness via inhibition of monoamine oxidase A (MAO-A) expression/activity. Life Sci 2024; 352:122857. [PMID: 38914305 DOI: 10.1016/j.lfs.2024.122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
AIM AMPK can be considered as an important target molecule for cancer for its unique ability to directly recognize cellular energy status. The main aim of this study is to explore the role of different AMPK activators in managing cancer cell aggressiveness and to understand the mechanistic details behind the process. MAIN METHODS First, we explored the AMPK expression pattern and its significance in different subtypes of lung cancer by accessing the TCGA data sets for LUNG, LUAD and LUSC patients and then established the correlation between AMPK expression pattern and overall survival of lung cancer patients using Kaplan-Meire plot. We further carried out several cell-based assays by employing different wet lab techniques including RT-PCR, Western Blot, proliferation, migration and invasion assays to fulfil the aim of the study. KEY FINDINGS SIGNIFICANCE: This study identifies the importance of AMPK activators as a repurposing agent for combating lung and colon cancer cell aggressiveness. It also suggests SRT-1720 as a potent repurposing agent for cancer treatment especially in NSCLC patients where a point mutation is present in LKB1.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Subhajit Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Tuhina Prasad
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Abhineet Banerjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sameep Gehlot
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Arpa Ghosal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India.
| |
Collapse
|
3
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Alsabri SG, Guedi GG, Najar M, Merimi M, Lavoie F, Grabs D, Fernandes J, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Epigenetic regulation of 15-lipoxygenase-1 expression in human chondrocytes by promoter methylation. Inflamm Res 2023; 72:2145-2153. [PMID: 37874359 DOI: 10.1007/s00011-023-01805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE AND DESIGN 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.
Collapse
Affiliation(s)
- Sami G Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- LBEES, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Detlev Grabs
- Department of Anatomy, Research Unit in Clinical and Functional Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Julio Fernandes
- Departement of Orthopedic Surgery, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec, H4J 1C5, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec, H4J 1C5, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
5
|
Tissue transglutaminase exacerbates renal fibrosis via alternative activation of monocyte-derived macrophages. Cell Death Dis 2023; 14:136. [PMID: 36864028 PMCID: PMC9981766 DOI: 10.1038/s41419-023-05622-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Macrophages are important components in modulating homeostatic and inflammatory responses and are generally categorized into two broad but distinct subsets: classical activated (M1) and alternatively activated (M2) depending on the microenvironment. Fibrosis is a chronic inflammatory disease exacerbated by M2 macrophages, although the detailed mechanism by which M2 macrophage polarization is regulated remains unclear. These polarization mechanisms have little in common between mice and humans, making it difficult to adapt research results obtained in mice to human diseases. Tissue transglutaminase (TG2) is a known marker common to mouse and human M2 macrophages and is a multifunctional enzyme responsible for crosslinking reactions. Here we sought to identify the role of TG2 in macrophage polarization and fibrosis. In IL-4-treated macrophages derived from mouse bone marrow and human monocyte cells, the expression of TG2 was increased with enhancement of M2 macrophage markers, whereas knockout or inhibitor treatment of TG2 markedly suppressed M2 macrophage polarization. In the renal fibrosis model, accumulation of M2 macrophages in fibrotic kidney was significantly reduced in TG2 knockout or inhibitor-administrated mice, along with the resolution of fibrosis. Bone marrow transplantation using TG2-knockout mice revealed that TG2 is involved in M2 polarization of infiltrating macrophages derived from circulating monocytes and exacerbates renal fibrosis. Furthermore, the suppression of renal fibrosis in TG2-knockout mice was abolished by transplantation of wild-type bone marrow or by renal subcapsular injection of IL4-treated macrophages derived from bone marrow of wild-type, but not TG2 knockout. Transcriptome analysis of downstream targets involved in M2 macrophages polarization revealed that ALOX15 expression was enhanced by TG2 activation and promoted M2 macrophage polarization. Furthermore, the increase in the abundance of ALOX15-expressing macrophages in fibrotic kidney was dramatically suppressed in TG2-knockout mice. These findings demonstrated that TG2 activity exacerbates renal fibrosis by polarization of M2 macrophages from monocytes via ALOX15.
Collapse
|
6
|
Chotimanukul S, Suwimonteerabutr J, Techakumphu M, Swangchan-Uthai T. In Vitro Effects of Short-Term and Long-Term Heat Exposures on the Immune Response and Prostaglandin Biosynthesis in Bovine Endometrial Cells. Animals (Basel) 2022; 12:ani12182359. [PMID: 36139219 PMCID: PMC9495028 DOI: 10.3390/ani12182359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide heat stress (HS) conditions have a negative impact on dairy cow fertility. However, understanding of the effect of heat stress on endometrial functions is still unclear. The present study aimed to investigate the effects of differential heat exposure conditions on the immune response and prostaglandin biosynthesis of bovine endometrium challenged with bacterial lipopolysaccharide (LPS). Cultures of endometrial cells were grown to confluence at 37 °C (control) and 40.4 °C for 24 h after confluence (short-term heat exposure) and 40.4 °C for 8 days from the beginning of the culture (long-term heat exposure), prior to a challenge by 100 ng/mL LPS for 12 h. LPS altered ALOX12, IL8, IL1B, S100A8, PTGES and AKR1B1 expressions, as well as secretory IL8 and PGF2α. Short-term heat exposure decreased S100A8, IL8 and PGF2α compared with the control temperature, while long-term heat exposure decreased S100A8 and PGF2α. In contrast, HSPA5 expression was not altered by heat exposure or LPS. Indeed, the short-term heat treatment was insufficient for accomplishing the responses of the endometrium to LPS treatment for IL8, S100A8 and PTGES expressions when compared with other temperature conditions. Our findings showed that heat exposure could compromise endometrium immune response and prostaglandin biosynthesis in different ways based on elevated temperature duration, which could reduce subsequent fertility.
Collapse
Affiliation(s)
- Sroisuda Chotimanukul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Theerawat Swangchan-Uthai
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-(0)819794552
| |
Collapse
|
7
|
Effects of Levofloxacin, Aztreonam, and Colistin on Enzyme Synthesis by P. aeruginosa Isolated from Cystic Fibrosis Patients. Antibiotics (Basel) 2022; 11:antibiotics11081114. [PMID: 36009983 PMCID: PMC9404814 DOI: 10.3390/antibiotics11081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Cystic fibrosis (CF) is characterized by chronic pulmonary inflammation and persistent bacterial infections. P. aeruginosa is among the main opportunistic pathogens causing infections in CF. P. aeruginosa is able to form a biofilm, decreasing antibiotic permeability. LOX, a lipoxygenase enzyme, is a virulence factor produced by P. aeruginosa and promotes its persistence in lung tissues. The aim of this study is to evaluate if antibiotics currently used for aerosol therapy in CF are able to interfere with the production of lipoxygenase from open isolates of P. Aeruginosa from patients with CF. (2) Methods: Clinical isolates of P. aeruginosa from patients with CF were grown in Luria broth (LB). Minimum inhibitory concentration (MIC) was performed and interpreted for all isolated strains according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. We selected four antibiotics with different mechanisms of action: aztreonam, colistin, amikacin, and levofloxacin. We used human pulmonary epithelial NCI-H929 cells to evaluate LOX activity and its metabolites according to antibiotic action at increasing concentrations. (3) Results: there is a correlation between LOX secretion by clinical isolates of P. aeruginosa and biofilm production. Levofloxacin exhibits highly significant inhibitory activity compared to the control. Amikacin also exhibits significant inhibitory activity against LOX production. Aztreonam and colistin do not show inhibitory activity. These results are also confirmed for LOX metabolites. (4) Conclusions: among the evaluated antibiotics, levofloxacin and amikacin have an activity on LOX secretion.
Collapse
|
8
|
Nkadimeng SM, Steinmann CML, Eloff JN. Anti-Inflammatory Effects of Four Psilocybin-Containing Magic Mushroom Water Extracts in vitro on 15-Lipoxygenase Activity and on Lipopolysaccharide-Induced Cyclooxygenase-2 and Inflammatory Cytokines in Human U937 Macrophage Cells. J Inflamm Res 2021; 14:3729-3738. [PMID: 34385833 PMCID: PMC8352634 DOI: 10.2147/jir.s317182] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose During a pathological inflammation, macrophages are activated to produce accumulation of inflammatory mediators such as induced-cyclooxygenase-2 (COX-2), 15-lipoxygenase (15-LOX) and pro-inflammatory cytokines. Pathological inflammation is a significant problem in many chronic diseases. As a result, more research into natural remedies with anti-inflammatory potential is crucial. Since ancient times, psilocybin-containing mushrooms, also known as magic mushrooms, were used for mind healing and also to advance the quality of life. However, not much is known about their anti-inflammatory potential. This study aimed at investigating the anti-inflammatory effects of four psilocybin-containing mushrooms (Panaeolus cyanescens, Psilocybe natalensis, Psilocybe cubensis and Psilocybe cubensis leucistic A+ strain) from genus Panaeolus and Psilocybe for the first time in vitro on 15-LOX activity and also on lipopolysaccharide (LPS)-induced inflammation in human U937 macrophage cells. Methods Mushrooms were grown and extracted with boiling hot water. Effects of the four water extracts on 15-LOX activity were determined. Confluent human U937 cells were differentiated with phorbol 12-myristate 13-acetate and treated with the hot-water extracts (25 and 50 µg/mL) 2 hours before being stimulated with 1 µg/mL LPS over 24 hours. Quercetin was used as a positive control. Control cells were differentiated but not LPS-induced nor treated. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 concentrations were measured. Levels of COX-2 and mitochondrial activity were also determined. Results The four water extracts had poor 15-LOX inhibition activity with IC50 > 250 µg/mL. Extracts were safe at the concentration studied and inhibited the LPS-induced production of pro-inflammatory mediators, TNF-α and IL-1β significantly and lowered IL-6 and COX-2 concentrations in treated human U937 macrophage cells. Water extracts also increased percentage viability of treated cells and levels of anti-inflammatory IL-10 non-significantly. Conclusion The study suggested that the hot-water extracts of the four psilocybin-containing magic mushrooms have potential anti-inflammatory effects executed by down-regulating pro-inflammatory mediators.
Collapse
Affiliation(s)
- Sanah Malomile Nkadimeng
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, Onderstepoort, Pretoria, Gauteng, 0110, South Africa
| | - Christiaan M L Steinmann
- Physiology Department, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Gauteng, 0208, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, Onderstepoort, Pretoria, Gauteng, 0110, South Africa
| |
Collapse
|
9
|
Ghanim AM, Rezq S, Ibrahim TS, Romero DG, Kothayer H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur J Med Chem 2021; 219:113457. [PMID: 33892270 DOI: 10.1016/j.ejmech.2021.113457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Based on the observed pharmacophoric structural features for the reported dual COX/15-LOX inhibitors and inspired by the abundance of COX/LOX inhibitory activities reported for the 1,2,4-triazine and quinoline scaffolds, we designed and synthesized novel 1,2,4-triazine-quinoline hybrids (8a-n). The synthesized hybrids were evaluated in vitro as dual COXs/15-LOX inhibitors. The new triazine-quinoline hybrids (8a-n) exhibited potent COX-2 inhibitory profiles (IC50 = 0.047-0.32 μM, SI ∼ 20.6-265.9) compared to celecoxib (IC50 = 0.045 μM, SI ∼ 326). Moreover, they revealed potent inhibitory activities against 15-LOX enzyme compared to reference quercetin (IC50 = 1.81-3.60 vs. 3.34 μM). Hybrid 8e was the most potent and selective dual COX-2/15-LOX inhibitor (COX-2 IC50 = 0.047 μM, SI = 265.9, 15-LOX IC50 = 1.81 μM). These hybrids were further challenged by their ability to inhibit NO, ROS, TNF-α, IL-6 inflammatory mediators, and 15-LOX product, 15-HETE, production in LPS-activated RAW 264.7 macrophages cells. Compound 8e was the most potent hybrid in reducing ROS and 15-HETE levels showing IC50 values of 1.02 μM (11-fold more potent than that of celecoxib, IC50 = 11.75 μM) and 0.17 μM (about 43 times more potent than celecoxib, IC50 = 7.46 μM), respectively. Hybrid 8h exhibited an outstanding TNF-α inhibition with IC50 value of 0.40 μM which was about 25 times more potent than that of celecoxib and diclofenac (IC50 = 10.69 and 10.27 μM, respectively). Docking study of the synthesized hybrids into the active sites of COX-2 and 15-LOX enzymes ensures their favored binding affinity. To our knowledge, herein we reported the first 1,2,4-triazine-quinoline hybrids as dual COX/15-LOX inhibitors.
Collapse
Affiliation(s)
- Amany M Ghanim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt; Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tarek S Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Damian G Romero
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Egypt.
| |
Collapse
|
10
|
Madore C, Leyrolle Q, Morel L, Rossitto M, Greenhalgh AD, Delpech JC, Martinat M, Bosch-Bouju C, Bourel J, Rani B, Lacabanne C, Thomazeau A, Hopperton KE, Beccari S, Sere A, Aubert A, De Smedt-Peyrusse V, Lecours C, Bisht K, Fourgeaud L, Gregoire S, Bretillon L, Acar N, Grant NJ, Badaut J, Gressens P, Sierra A, Butovsky O, Tremblay ME, Bazinet RP, Joffre C, Nadjar A, Layé S. Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain. Nat Commun 2020; 11:6133. [PMID: 33257673 PMCID: PMC7704669 DOI: 10.1038/s41467-020-19861-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Omega-3 fatty acids (n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in Humans. However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. Active microglial engulfment of synapses regulates brain development. Impaired synaptic pruning is associated with several neurodevelopmental disorders. Here, we identify a molecular mechanism for detrimental effects of low maternal n-3 PUFA intake on hippocampal development in mice. Our results show that maternal dietary n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the rodent developing hippocampus, partly through the activation of 12/15-lipoxygenase (LOX)/12-HETE signaling, altering neuronal morphology and affecting cognitive performance of the offspring. These findings provide a mechanistic insight into neurodevelopmental defects caused by maternal n-3 PUFAs dietary deficiency.
Collapse
Affiliation(s)
- C Madore
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, USA
| | - Q Leyrolle
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
- NeuroDiderot, Inserm, Université de Paris Diderot, F-75019, Paris, France
| | - L Morel
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - M Rossitto
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A D Greenhalgh
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - J C Delpech
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - M Martinat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - C Bosch-Bouju
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - J Bourel
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - B Rani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - C Lacabanne
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A Thomazeau
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - K E Hopperton
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - S Beccari
- Achucarro Basque Center for Neuroscience, University of the Basque Country and Ikerbasque Foundation, 48940, Leioa, Spain
| | - A Sere
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A Aubert
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - V De Smedt-Peyrusse
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - C Lecours
- Neurosciences Axis, CRCHU de Québec-Université Laval, Québec City, QC, Canada
| | - K Bisht
- Neurosciences Axis, CRCHU de Québec-Université Laval, Québec City, QC, Canada
| | - L Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - S Gregoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - L Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - N Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - N J Grant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - J Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| | - P Gressens
- NeuroDiderot, Inserm, Université de Paris Diderot, F-75019, Paris, France
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - A Sierra
- Achucarro Basque Center for Neuroscience, University of the Basque Country and Ikerbasque Foundation, 48940, Leioa, Spain
| | - O Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M E Tremblay
- Neurosciences Axis, CRCHU de Québec-Université Laval, Québec City, QC, Canada
| | - R P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - C Joffre
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - A Nadjar
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France.
| | - S Layé
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France.
| |
Collapse
|
11
|
Snodgrass RG, Benatzy Y, Schmid T, Namgaladze D, Mainka M, Schebb NH, Lütjohann D, Brüne B. Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death Differ 2020; 28:1301-1316. [PMID: 33177619 PMCID: PMC8027700 DOI: 10.1038/s41418-020-00652-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
12
|
Frank AS, Larripa K, Ryu H, Snodgrass RG, Röblitz S. Bifurcation and sensitivity analysis reveal key drivers of multistability in a model of macrophage polarization. J Theor Biol 2020; 509:110511. [PMID: 33045246 DOI: 10.1016/j.jtbi.2020.110511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In this paper, we present and analyze a mathematical model for polarization of a single macrophage which, despite its simplicity, exhibits complex dynamics in terms of multistability. In particular, we demonstrate that an asymmetry in the regulatory mechanisms and parameter values is important for observing multiple phenotypes. Bifurcation and sensitivity analyses show that external signaling cues are necessary for macrophage commitment and emergence to a phenotype, but that the intrinsic macrophage pathways are equally important. Based on our numerical results, we formulate hypotheses that could be further investigated by laboratory experiments to deepen our understanding of macrophage polarization.
Collapse
Affiliation(s)
- Anna S Frank
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Kamila Larripa
- Department of Mathematics, Humboldt State University, Arcata, CA, USA.
| | - Hwayeon Ryu
- Department of Mathematics and Statistics, Elon University, Elon, NC, USA.
| | - Ryan G Snodgrass
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany.
| | - Susanna Röblitz
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Sharma P, Agnihotri N. Fish oil and corn oil induced differential effect on beiging of visceral and subcutaneous white adipose tissue in high-fat-diet-induced obesity. J Nutr Biochem 2020; 84:108458. [PMID: 32738734 DOI: 10.1016/j.jnutbio.2020.108458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
Obesity is characterised by excessive accumulation of fat in white adipose tissue (WAT) which is compartmentalised into two anatomically and functionally diverse depots - visceral and subcutaneous. Advice to substitute essential polyunsaturated fatty acids (PUFAs) for saturated fatty acids is a cornerstone of various obesity management strategies. Despite an array of reports on the role of essential PUFAs on obesity, there still exists a lacuna on their mode of action in distinct depots i.e. visceral (VWAT) and subcutaneous (SWAT). The present study aimed to evaluate the effect of fish oil and corn oil on VWAT and SWAT in high-fat-diet-induced rodent model of obesity. Fish oil (FO) supplementation positively ameliorated the effects of HFD by regulating the anthropometrical and serum lipid parameters. FO led to an overall reduction in fat mass in both depots while specifically inducing beiging of adipocytes in SWAT as indicated by increased UCP1 and PGC1α. We also observed an upregulation of AMPKα and ACC1/2 phosphorylation on FO supplementation in SWAT suggesting a role of AMPK-PGC1α-UCP1 axis in beiging of adipose tissue. On the other hand, corn oil supplementation did not show any improvements in adipose tissue metabolism in both the depots of adipose tissue. The results were analysed using one-way ANOVA followed by Tukey's test in Graphpad Prism 5.0. Combined together our results suggest that n-3 PUFAs exert their anti-obesity effect by regulating adipokine secretion and inducing beiging of SWAT, hence increasing energy expenditure via thermogenic upregulation.
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Liu XH, Wu XR, Lan N, Zheng XB, Zhou C, Hu T, Chen YF, Cai ZR, Chen ZX, Lan P, Wu XJ. CD73 promotes colitis-associated tumorigenesis in mice. Oncol Lett 2020; 20:1221-1230. [PMID: 32724362 PMCID: PMC7377052 DOI: 10.3892/ol.2020.11670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are at a higher risk of developing colitis-associated colorectal cancer. The aim of the present study was to investigate the role of CD73 in IBD-associated tumorigenesis. A mouse model of colitis-associated tumorigenesis (CAT) induced by azoxymethane and dextran sulfate sodium was successfully constructed. Model mice were injected with CD73 inhibitor or adenosine receptor agonist. Colon length, body weight loss and tumor formation were assessed macroscopically. Inflammatory cytokine measurement and RNA sequencing on colon tissues were performed. Inhibition of CD73 by adenosine 5′-(α,β-methylene) diphosphate (APCP) suppressed the severity of CAT with attenuated weight loss, longer colons, lower tumor number and smaller tumor size compared with the model group. Activation of adenosine receptors using 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-β-D-ribofuranuronamide (NECA) exacerbated CAT. Histological assessment indicated that inhibition of CD73 reduced, while activation of adenosine receptors exacerbated, the histological damage of the colon. Increased expression of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6) in colonic tissue was detected in the NECA group. According to RNA sequencing results, potential oncogenes such as arachidonate 15-lipoxygenase (ALOX15), Bcl-2-like protein 15 (Bcl2l15) and N-acetylaspartate synthetase (Nat8l) were downregulated in the APCP group and upregulated in the NECA group compared with the model group. Therefore, inhibition of CD73 attenuated IBD-associated tumorigenesis, while activation of adenosine receptors exacerbated tumorigenesis in a C57BL/6J mouse model. This effect may be associated with the expression of pro-inflammatory cytokines and the regulation of ALOX15, Bcl2l15 and Nat8l.
Collapse
Affiliation(s)
- Xuan-Hui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong 510655, P.R. China
| | - Nan Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Chi Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Rong Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ze-Xian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China.,Department of Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
15
|
Yang Y, Wang J, Guo S, Pourteymour S, Xu Q, Gong J, Huang Z, Shen Z, Diabakte K, Cao Z, Wu G, Natalia S, Tian Z, Jin H, Tian Y. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS-AMPK-mTORC1-autophagy pathway. Redox Biol 2020; 32:101501. [PMID: 32179242 PMCID: PMC7078437 DOI: 10.1016/j.redox.2020.101501] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that macrophage functional polarization is critically involved in the development of atherosclerosis (AS). Here, we examined the role of 5-aminolaevulinic acid (ALA)-mediated non-lethal sonodynamic therapy (NL-SDT) in macrophage-subset polarization and atherosclerotic lesion stability and explored the potential underlying mechanisms. Using Western diet-fed apolipoprotein E (apoE)−/− and green fluorescent protein (GFP)-positive bone marrow (BM) chimeric mouse models, we demonstrated that NL-SDT promoted phenotypic switching of both BM-derived and resident macrophages from M1 to M2 and significantly inhibited AS progression. Further mechanistic studies indicated that NL-SDT enhanced macrophage differentiation toward the M2 phenotype by activating the reactive oxygen species (ROS)–5′ AMP-activated protein kinase (AMPK)–mammalian target of rapamycin complex 1 (mTORC1)–autophagy signaling pathway in murine BM-derived M1 macrophages (BMDM1s). Moreover, NL-SDT drastically reduced lipid droplets, mainly by promoting apoAI-mediated cholesterol efflux in vitro. Specifically, administration of pharmacological inhibitors to the animal model showed a reciprocal effect on NL-SDT-induced macrophage polarization. These findings indicate that NL-SDT engages a virtuous cycle that enhances M1-to-M2 polarization, cholesterol efflux, and anti-inflammatory reactions in advanced plaque in vivo and in BMDM1s in vitro by activating the ROS–AMPK–mTORC1–autophagy pathway. This discovery might help elucidate the mechanism underlying NL-SDT as a potential treatment to prevent atherothrombotic events. NL-SDT enhances M1-to-M2 shift and significantly inhibits atherosclerosis progression in a mouse model. NL-SDT induces autophagy by activating the AMPK signaling pathway. M2-like macrophages promoted by NL-SDT facilitate cholesterol efflux and attenuate intracellular cholesterol deposition. The ROS–AMPK–mTORC1–autophagy pathway is critical for NL-SDT-mediated effects on M2 macrophage polarization.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Jiayu Wang
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China
| | - Shuyuan Guo
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | | | - Qiulian Xu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Jie Gong
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Zhaoqian Shen
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Kamal Diabakte
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Zhengyu Cao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Guodong Wu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Sukhareva Natalia
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Zhen Tian
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China
| | - Hong Jin
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China; Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China.
| |
Collapse
|
16
|
Snodgrass RG, Brüne B. Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Front Pharmacol 2019; 10:719. [PMID: 31333453 PMCID: PMC6620526 DOI: 10.3389/fphar.2019.00719] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the stereo-specific peroxidation of polyunsaturated fatty acids (PUFAs) to their corresponding hydroperoxy derivatives. Human macrophages express two arachidonic acid (AA) 15-lipoxygenating enzymes classified as ALOX15 and ALOX15B. ALOX15, which was first described in 1975, has been extensively characterized and its biological functions have been investigated in a number of cellular systems and animal models. In macrophages, ALOX15 functions to generate specific phospholipid (PL) oxidation products crucial for orchestrating the nonimmunogenic removal of apoptotic cells (ACs) as well as synthesizing precursor lipids required for production of specialized pro-resolving mediators (SPMs) that facilitate inflammation resolution. The discovery of ALOX15B in 1997 was followed by comprehensive analyses of its structural properties and reaction specificities with PUFA substrates. Although its enzymatic properties are well described, the biological functions of ALOX15B are not fully understood. In contrast to ALOX15 whose expression in human monocyte-derived macrophages is strictly dependent on Th2 cytokines IL-4 and IL-13, ALOX15B is constitutively expressed. This review aims to summarize the current knowledge on the regulation and functions of ALOX15 and ALOX15B in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
17
|
Huang H, Li J, Hu WJ, Chen C, Luo HQ, Tang XD, Zhou KY, Zhong WT, Li XY. The serum level of CC chemokine ligand 18 correlates with the prognosis of non-small cell lung cancer. Int J Biol Markers 2019; 34:156-162. [DOI: 10.1177/1724600819829758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: CC chemokine ligand 18 (CCL18) is a chemotactic cytokine involved in the pathogenesis and progression of various cancers. Our previous research showed that the expression of CCL18 is obviously higher in non-small cell lung cancer (NSCLC) than in the adjacent normal tissues, suggesting its role in NSCLC. Methods: We further examined the serum level of CCL18 in 80 NSCLC patients with enzyme-linked immunosorbent assay and simultaneously analyzed the survival curve of these patients by the Kaplan–Meier method, and then utilized a log-rank test to evaluate the correlation of CCL18 expression with the malignant progression of NSCLC. Results: Our results showed that the median serum concentration of CCL18 was significantly elevated to 436.11 ng/mL in NSCLC patients compared to 41.97 ng/ml in healthy people ( P<0.01), which was also positively related to the expression of lung cancer biomarkers carcinoma–embryonic antigen and cytokeratin fragment antigen 21-1. Moreover, correlation analysis showed that an increased level of serum CCL18 was associated with a worse survival time in NSCLC patients. Conclusion: Our findings suggest that the serum CCL18 level of NSCLC patients was negatively correlated with the prognosis, thus suggesting that CCL18 may serve as a potential circulating biomarker for NSCLC diagnosis.
Collapse
Affiliation(s)
- Hui Huang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Jing Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Wen-jia Hu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Chen Chen
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
| | - Hai-qing Luo
- Center of Oncology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| | - Xu-dong Tang
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, P.R. China
| | - Ke-yuan Zhou
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, P.R. China
| | - Wang-tao Zhong
- Department of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, P.R. China
| | - Xiang-yong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, P.R. China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, P.R. China
| |
Collapse
|
18
|
Declèves AE, Mathew AV, Armando AM, Han X, Dennis EA, Quehenberger O, Sharma K. AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat-induced kidney disease in mice. J Lipid Res 2019; 60:937-952. [PMID: 30862696 PMCID: PMC6495162 DOI: 10.1194/jlr.m088690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) causes renal lipotoxicity that is ameliorated with AMP-activated protein kinase (AMPK) activation. Although bioactive eicosanoids increase with HFD and are essential in regulation of renal disease, their role in the inflammatory response to HFD-induced kidney disease and their modulation by AMPK activation remain unexplored. In a mouse model, we explored the effects of HFD on eicosanoid synthesis and the role of AMPK activation in ameliorating these changes. We used targeted lipidomic profiling with quantitative MS to determine PUFA and eicosanoid content in kidneys, urine, and renal arterial and venous circulation. HFD increased phospholipase expression as well as the total and free pro-inflammatory arachidonic acid (AA) and anti-inflammatory DHA in kidneys. Consistent with the parent PUFA levels, the AA- and DHA-derived lipoxygenase (LOX), cytochrome P450, and nonenzymatic degradation (NE) metabolites increased in kidneys with HFD, while EPA-derived LOX and NE metabolites decreased. Conversely, treatment with 5-aminoimidazole-4-carboxamide-1-β-D-furanosyl 5'-monophosphate (AICAR), an AMPK activator, reduced the free AA and DHA content and the DHA-derived metabolites in kidney. Interestingly, kidney and circulating AA, AA metabolites, EPA-derived LOX, and NE metabolites are increased with HFD; whereas, DHA metabolites are increased in kidney in contrast to their decreased circulating levels with HFD. Together, these changes showcase HFD-induced pro- and anti-inflammatory eicosanoid dysregulation and highlight the role of AMPK in correcting HFD-induced dysregulated eicosanoid pathways.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Institute of Metabolomic Medicine University of California, San Diego, La Jolla, CA; Laboratory of Metabolic and Molecular Biochemistry Faculty of Medicine, Université of Mons, Mons, Belgium.
| | - Anna V Mathew
- Division of Nephrology Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Aaron M Armando
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Xianlin Han
- Barshop Institute of Aging, Department of Medicine University of Texas Health San Antonio, San Antonio, TX
| | - Edward A Dennis
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA; Chemistry and Biochemistry University of California, San Diego, La Jolla, CA
| | - Oswald Quehenberger
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA; Medicine, University of California, San Diego, La Jolla, CA
| | - Kumar Sharma
- Institute of Metabolomic Medicine University of California, San Diego, La Jolla, CA; Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
19
|
Huang Z, Xia L, Zhou X, Wei C, Mo Q. ALOX12 inhibition sensitizes breast cancer to chemotherapy via AMPK activation and inhibition of lipid synthesis. Biochem Biophys Res Commun 2019; 514:24-30. [PMID: 31014671 DOI: 10.1016/j.bbrc.2019.04.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
Abstract
Arachidonate lipoxygenase12 (Alox12) and its metabolites 12S-hydroxyeicosatetraenoic acid (12S-HETE) have been implicated in influencing tumor transformation and progression. In this study, we have systematically evaluated the expression, function and the downstream effectors of Alox12 in breast cancer using loss- and gain-of-function approaches. We demonstrated that both mRNA and protein levels of Alox12 were significantly increased in multiple breast cancer cell lines compared to normal breast cells. The upregulation of Alox12 expression was also observed in breast cancer tissues and their matched normal breast tissues obtained from patients. Functionally, we demonstrated that Alox12 overexpression was sufficient to stimulate growth in normal breast cells but not breast cancer cells. This also protects breast cancer cell from chemotherapy-induced growth arrest and apoptosis. In contrast, Alox12 depletion inhibited breast cancer growth and survival, and significantly enhanced the chemotherapeutic agents' efficacy. Mechanism studies showed that Alox12 depletion activated AMP-activated protein kinase (AMPK), leading to the inhibition of acetyl-CoA carboxylase1 (ACC1) enzyme activity and lipid synthesis. The recuse of the effects of Alox12 depletion using Alox12 metabolites 12S-HETE further confirmed that AMPK and its subsequent inhibition of ACC1 activity and lipid synthesis were the downstream signaling of Alox12 inhibition. Our findings highlighted the important role of Alox12 in breast cancer, particularly in response to chemotherapy. Our work also demonstrate that inhibiting Alox12 is a possible alternative therapeutic strategy to overcome chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Longjie Xia
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Zhou
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Changyuan Wei
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Qinguo Mo
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
20
|
Nadeau G, Ouimet-Grennan E, Aaron M, Drouin S, Bertout L, Shalmiev A, Beaulieu P, St-Onge P, Veilleux LN, Rauch F, Petrykey K, Laverdière C, Sinnett D, Alos N, Krajinovic M. Identification of genetic variants associated with skeletal muscle function deficit in childhood acute lymphoblastic leukemia survivors. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:33-45. [PMID: 31114288 PMCID: PMC6489684 DOI: 10.2147/pgpm.s192924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Background: Although 80% of childhood acute lymphoblastic leukemia (ALL) cases are cured with current treatment protocols, exposure to chemotherapeutics or radiation therapy during a vulnerable period of child development has been associated with a high frequency of late adverse effects (LAE). Previous observations suggest important skeletal muscle size, density and function deficits in ALL survivors. Purpose: Given that only a fraction of all patients will suffer from this particular complication, we investigated whether it could be predicted by genetic markers. Patients and methods: We analysed associations between skeletal muscle force (Fmax) and power (Pmax) and germline genetic variants from 1039 genes derived through whole-exome sequencing. Top-ranking association signals retained after correction for multiple testing were confirmed through genotyping, and further analysed through stratified analyses and multivariate models. Results: Our results show that skeletal muscle function deficit is associated with two common single nucleotide polymorphisms (SNPs) (rs2001616DUOX2, P=0.0002 (Pmax) and rs41270041ADAMTS4, P=0.02 (Fmax)) and two rare ones located in the ALOX15 gene (P=0.001 (Pmax)). These associations were further modulated by sex, body mass index and risk groups, which reflected glucocorticoid dose and radiation therapy (P≤0.02). Conclusion: Occurrence of muscle function deficit in childhood ALL is thus strongly modulated by variations in the DUOX2, ADAMTS4 and ALOX15 genes, which could lead to personalized prevention strategies in childhood ALL survivors.
Collapse
Affiliation(s)
- Geneviève Nadeau
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | | | - Michelle Aaron
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Simon Drouin
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Laurence Bertout
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Albert Shalmiev
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Patrick Beaulieu
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Pascal St-Onge
- Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | | | - Frank Rauch
- Division of paediatrics, Montreal Shriners Hospital for Children, Montreal, QC, Canada
| | - Kateryna Petrykey
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada
| | - Caroline Laverdière
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Hemato-Oncology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Daniel Sinnett
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Hemato-Oncology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Nathalie Alos
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Endocrinology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| | - Maja Krajinovic
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, QC, Canada.,Division of Hemato-Oncology, Sainte-Justine University Hospital Centre, Montreal, QC, Canada
| |
Collapse
|
21
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
22
|
Namgaladze D, Zukunft S, Schnütgen F, Kurrle N, Fleming I, Fuhrmann D, Brüne B. Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase. Front Immunol 2018; 9:2858. [PMID: 30568658 PMCID: PMC6290342 DOI: 10.3389/fimmu.2018.02858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023] Open
Abstract
Macrophages exposed to the Th2 cytokines interleukin (IL) IL-4 and IL-13 exhibit a distinct transcriptional response, commonly referred to as M2 polarization. Recently, IL-4-induced polarization of murine bone marrow-derived macrophages (BMDMs) has been linked to acetyl-CoA levels through the activity of the cytosolic acetyl-CoA-generating enzyme ATP-citrate lyase (ACLY). Here, we studied how ACLY regulated IL-4-stimulated gene expression in human monocyte-derived macrophages (MDMs). Although multiple ACLY inhibitors attenuated IL-4-induced target gene expression, this effect could not be recapitulated by silencing ACLY expression. Furthermore, ACLY inhibition failed to alter cellular acetyl-CoA levels and histone acetylation. We generated ACLY knockout human THP-1 macrophages using CRISPR/Cas9 technology. While these cells exhibited reduced histone acetylation levels, IL-4-induced gene expression remained intact. Strikingly, ACLY inhibitors still suppressed induction of target genes by IL-4 in ACLY knockout cells, suggesting off-target effects of these drugs. Our findings suggest that ACLY may not be the major regulator of nucleocytoplasmic acetyl-CoA and IL-4-induced polarization in human macrophages. Furthermore, caution should be warranted in interpreting the impact of pharmacological inhibition of ACLY on gene expression.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Frankfurt, Germany
| | - Sven Zukunft
- Center for Molecular Medicine, Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Frank Schnütgen
- Department of Medicine 2, LOEWE Center for Cell and Gene Therapy and Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Nina Kurrle
- Department of Medicine 2, LOEWE Center for Cell and Gene Therapy and Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Ingrid Fleming
- Center for Molecular Medicine, Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany
| | - Dominik Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Frankfurt, Germany
| |
Collapse
|
23
|
Kirchner J, Brüne B, Namgaladze D. AICAR inhibits NFκB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages. Sci Rep 2018; 8:7801. [PMID: 29773845 PMCID: PMC5958102 DOI: 10.1038/s41598-018-26102-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/04/2018] [Indexed: 01/24/2023] Open
Abstract
5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) is an established pharmacological activator of AMP-activated protein kinase (AMPK). Both, AICAR and AMPK were reported to attenuate inflammation. However, AICAR is known for many AMPK-independent effects, although the mechanisms remain incompletely understood. Here we report a potent suppression of lipopolysaccharide (LPS)-induced inflammatory gene expression by AICAR in primary human macrophages, which occurred independently of its conversion to AMPK-activating 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate. Although AICAR did not interfere with activation of cytosolic signalling cascades and nuclear translocation of nuclear factor - κB (NFκB) by LPS, it prevented the recruitment of NFκB and RNA polymerase II to target gene promoters. AICAR also inhibited signal transducer and activator of transcription 3 (STAT3)-dependent induction of interleukin (IL) IL-6 and IL-10 targets, while leaving STAT6 and HIF1α-dependent gene expression in IL-4 and dimethyloxalylgylcine-treated macrophages intact. This points to a transcription factor-specific mode of action. Attenuated gene expression correlated with impaired NFκB and STAT3, but not HIF-binding in electrophoretic mobility shift assays in vitro. Conclusively, AICAR interferes with DNA binding of NFκB and STAT3 to modulate inflammatory responses.
Collapse
Affiliation(s)
- Johannes Kirchner
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany.
| |
Collapse
|
24
|
LeBlond ND, Fullerton MD. Methods to Evaluate AMPK Regulation of Macrophage Cholesterol Homeostasis. Methods Mol Biol 2018; 1732:477-493. [PMID: 29480494 DOI: 10.1007/978-1-4939-7598-3_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrophages are a driving force in the development and progression of atherosclerosis, a chronic condition that can lead to cardiovascular disease. In this chapter we describe methods that monitor macrophage cholesterol homeostasis such as cholesterol synthesis, uptake, and efflux, all with the use of AMPK activators and potential genetic models that could help shed light on the role of this metabolic regulator in atherosclerosis and other chronic diseases.
Collapse
Affiliation(s)
- Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Engin A. Fat Cell and Fatty Acid Turnover in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:135-160. [PMID: 28585198 DOI: 10.1007/978-3-319-48382-5_6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. Inhibition of adipose triglyceride lipase leads to an accumulation of triglyceride, whereas inhibition of hormone-sensitive lipase leads to the accumulation of diacylglycerol. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride turnover. Excess triacylglycerols (TAGs), sterols and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets. Following the release of lipid droplets from endoplasmic reticulum, cytoplasmic lipid droplets increase their volume either by local TAG synthesis or by homotypic fusion. The number and the size of lipid droplet distribution is correlated with obesity. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome-dependent caspase-1 activation in hypertrophic adipocytes induces obese adipocyte death by pyroptosis. Actually adipocyte death may be a prerequisite for the transition from hypertrophic to hyperplastic obesity. Major transcriptional factors, CCAAT/enhancer-binding proteins beta and delta, play a central role in the subsequent induction of critical regulators, peroxisome-proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding protein 1, in the transcriptional control of adipogenesis in obesity.Collectively, in this chapter the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of lipid droplet interactions with the other cellular organelles are reviewed. Furthermore, in addition to lipid droplet growth, the functional link between the adipocyte-specific lipid droplet-associated protein and fatty acid turn-over is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
26
|
Abstract
The AMP-activated protein kinase (AMPK) is a central regulator of multiple metabolic pathways and may have therapeutic importance for treating obesity, insulin resistance, type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD). Given the ubiquitous expression of AMPK, it has been a challenge to evaluate which tissue types may be most beneficially poised for mediating the positive metabolic effects of AMPK-centered treatments. In this review we evaluate the metabolic phenotypes of transgenic mouse models in which AMPK expression and function have been manipulated, and the impact this has on controlling lipid metabolism, glucose homeostasis, and inflammation. This information may be useful for guiding the development of AMPK-targeted therapeutics to treat chronic metabolic diseases.
Collapse
Affiliation(s)
- Emily A Day
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Rebecca J Ford
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| |
Collapse
|
27
|
Shiratori H, Feinweber C, Luckhardt S, Linke B, Resch E, Geisslinger G, Weigert A, Parnham MJ. THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol Immunol 2017; 88:58-68. [PMID: 28600970 DOI: 10.1016/j.molimm.2017.05.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/04/2023]
Abstract
Macrophages (Mφ) undergo activation to pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes in response to pathophysiologic stimuli and dysregulation of the M1-M2 balance is often associated with diseases. Therefore, studying mechanisms of macrophage polarization may reveal new drug targets. Human Mφ polarization is generally studied in primary monocyte-derived Mφ (PBMC Mφ) and THP-1-derived Mφ (THP-1 Mφ). We compared the polarization profile of THP-1 Mφ with that of PBMC Mφ to assess the alternative use of THP-1 for polarization studies. Cellular morphology, the expression profiles of 18 genes and 4 cell surface proteins, and phagocytosis capacity for apoptotic cells and S. aureus bioparticles were compared between these Mφ, activated towards M1, M2a, or M2c subsets by stimulation with LPS/IFNγ, IL-4, or IL-10, respectively, for 6h, 24h and 48h. The Mφ types are unique in morphology and basal expression of polarization marker genes, particularly CCL22, in a pre-polarized state, and were differentially sensitive to polarization stimuli. Generally, M1 markers were instantly induced and gradually decreased, while M2 markers were markedly expressed at a later time. Expression profiles of M1 markers were similar between the polarized Mφ types, but M2a cell surface markers demonstrated an IL-4-dependent upregulation only in PBMC Mφ. Polarized THP-1 Mφ but not PBMC Mφ showed distinctive phagocytic capacity for apoptotic cells and bacterial antigens, respectively. In conclusion, our data suggest that THP-1 may be useful for performing studies involving phagocytosis and M1 polarization, rather than M2 polarization.
Collapse
Affiliation(s)
- Hiromi Shiratori
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Carmen Feinweber
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Sonja Luckhardt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Bona Linke
- Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Shintyapina AB, Vavilin VA, Safronova OG, Lyakhovich VV. The gene expression profile of a drug metabolism system and signal transduction pathways in the liver of mice treated with tert-butylhydroquinone or 3-(3'-tert-butyl-4'-hydroxyphenyl)propylthiosulfonate of sodium. PLoS One 2017; 12:e0176939. [PMID: 28467491 PMCID: PMC5415222 DOI: 10.1371/journal.pone.0176939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/19/2017] [Indexed: 11/25/2022] Open
Abstract
Tert-butylhydroquinone (tBHQ) is a highly effective phenolic antioxidant used in edible oils and fats in foods as well as in medicines and cosmetics. TBHQ has been shown to have both chemoprotective and carcinogenic effects. Furthermore, it has potential anti-inflammatory, antiatherogenic, and neuroprotective activities. TBHQ induces phase II detoxification enzymes via the Keap1/Nrf2/ARE mechanism, which contributes to its chemopreventive functions. Nonetheless, there is growing evidence that biological effects of tBHQ may be mediated by Nrf2-independent mechanisms related to various signaling cascades. Here, we studied changes in gene expression of phase I, II, and III drug metabolizing enzymes/transporters as well as protein levels and activities of cytochromes P450 (CYPs) elicited by tBHQ and its structural homolog TS-13 in the mouse liver. Next, we carried out gene expression analysis to identify signal transduction pathways modulated by the antioxidants. Mice received 100 mg/kg tBHQ or TS-13 per day or only vehicle. The liver was collected at 12 hours and after 7 days of the treatment. Protein and total RNA were extracted. Gene expression was analyzed using Mouse Drug Metabolism and Signal Transduction PathwayFinder RT2Profiler™PCR Arrays. A western blot analysis was used to measure protein levels and a fluorometric assay was employed to study activities of CYPs. Genes that were affected more than 1.5-fold by tBHQ or TS-13 treatment compared with vehicle were identified. Analysis of the gene expression data revealed changes in various genes that are important for drug metabolism, cellular defense mechanisms, inflammation, apoptosis, and cell cycle regulation. Novel target genes were identified, including xenobiotic metabolism genes encoding CYPs, phase II/III drug metabolizing enzymes/transporters. For Cyp1a2 and Cyp2b, we observed an increase in protein levels and activities during tBHQ or TS-13 treatment. Changes were found in the gene expression regulated by NFκB, androgen, retinoic acid, PI3K/AKT, Wnt, Hedgehog and other pathways.
Collapse
Affiliation(s)
| | - Valentin A. Vavilin
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Vyacheslav V. Lyakhovich
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
29
|
Bryant AH, Spencer-Harty S, Owens SE, Jones RH, Thornton CA. Interleukin 4 and interleukin 13 downregulate the lipopolysaccharide-mediated inflammatory response by human gestation-associated tissues. Biol Reprod 2017; 96:576-586. [PMID: 28203703 DOI: 10.1095/biolreprod.116.145680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 11/01/2022] Open
Abstract
Inflammation is a key feature of preterm and term labor. Proinflammatory mediators are produced by gestation-associated tissues in response to pathogen-associated molecular patterns and damage-associated molecular patterns. Interleukin (IL)4, IL10, and IL13 are anti-inflammatory cytokines with potential as anti-inflammatory therapies to prevent preterm birth. The objective of this study was to determine if IL4 and IL13 exert anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated production of proinflammatory cytokines produced by human term gestation-associated tissues (placenta, choriodecidua, and amnion). Both IL4 and IL13 reduced LPS-stimulated IL1B and macrophage inflammatory protein1A; this effect diminished with delay to exposure to either cytokine. There was no effect on LPS-stimulated prostaglandin production. Interleukin 4 receptor alpha (IL4RA) was expressed throughout the placenta, choriodecidua, and amnion, and the inhibitory effects of IL4 and IL13 were IL4RA dependent. Combined IL4 and IL13 did not enhance the anti-inflammatory potential of either cytokine; however, a combination of IL4 and IL10 had a greater anti-inflammatory effect than either cytokine alone. These findings demonstrate that human term gestation-associated tissues are responsive to the anti-inflammatory cytokines IL4 and IL13, which could downregulate LPS-induced cytokine production in these tissues. Anti-inflammatory cytokines might offer an adjunct to existing therapeutics to prevent adverse obstetric outcome.
Collapse
Affiliation(s)
- Aled H Bryant
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Samantha Spencer-Harty
- Histopathology Department, Abertawe Bro Morgannwg University Health Board, Swansea, Wales, UK
| | - Siân-Eleri Owens
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Ruth H Jones
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
30
|
Ryu JH, Sung J, Xie C, Shin MK, Kim CW, Kim NG, Choi YJ, Choi BD, Kang SS, Kang D. Aplysia kurodai -derived glycosaminoglycans increase the phagocytic ability of macrophages via the activation of AMP-activated protein kinase and cytoskeletal reorganization in RAW264.7 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
31
|
Namgaladze D, Brüne B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1796-1807. [PMID: 27614008 DOI: 10.1016/j.bbalip.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
Recent research considerably changed our knowledge how cellular metabolism affects the immune system. We appreciate that metabolism not only provides energy to immune cells, but also actively influences diverse immune cell phenotypes. Fatty acid metabolism, particularly mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and adaptive immunity. Catabolism of fatty acids also modulates the progression of disease, such as the development of obesity-driven insulin resistance and type II diabetes. Here, we summarize (i) recent developments in research how FAO modulates inflammatory signatures in macrophages in response to saturated fatty acids, and (ii) the role of FAO in regulating anti-inflammatory macrophage polarization. In addition, we define the contribution of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPARs), in controlling macrophage biology towards fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
32
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|