1
|
Wen S, Huang X, Xiong L, Zeng H, Wu S, An K, Bai J, Zhou Z, Yin T. WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells. Mol Cell Biochem 2024; 479:3341-3354. [PMID: 38341833 DOI: 10.1007/s11010-024-04937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. METHODS The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. RESULTS WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. CONCLUSION Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.
Collapse
Affiliation(s)
- Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Xueqing Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Jing Bai
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Zhipeng Zhou
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Li K, Zhang Q, Liu H, Wang F, Li A, Ding T, Mu Q, Zhao H, Wang P. Arabidopsis NOTCHLESS plays an important role in root and embryo development. PLANT SIGNALING & BEHAVIOR 2023; 18:2245616. [PMID: 37573563 PMCID: PMC10424599 DOI: 10.1080/15592324.2023.2245616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023]
Abstract
Ribosome biogenesis is a fundamental process in eukaryotic cells. NOTCHLESS (NLE) is involved in 60S ribosome biogenesis in yeast, but its role in Arabidopsis (A. thaliana) remains exclusive. Here, we found that Arabidopsis NLE (AtNLE) is highly conservative in phylogeny, which encoding a WD40-repeat protein. AtNLE is expressed in actively dividing tissues. AtNLE-GFP is localized in the nucleus. AtNLE physically interacts with the MIDAS domain of AtMDN1, a protein involved in the biogenesis of the 60S ribosomal subunit in Arabidopsis. The underexpressing mutant nle-2 shows short roots and reduced cell number in the root meristem. In addition, the null mutant nle-1 is embryo lethal, and defective embryos are arrested at the early globular stage. This work suggests that AtNLE interacts with AtMDN1, and AtNLE functions in root and embryo development.
Collapse
Affiliation(s)
- Ke Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Qingtian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Huiping Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Fengxia Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Ao Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Tingting Ding
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Shandong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Hongjun Zhao
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Pengfei Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, PR China
- Shandong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Jinan, China
| |
Collapse
|
3
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
4
|
Lau B, Huang Z, Kellner N, Niu S, Berninghausen O, Beckmann R, Hurt E, Cheng J. Mechanism of 5S RNP recruitment and helicase-surveilled rRNA maturation during pre-60S biogenesis. EMBO Rep 2023; 24:e56910. [PMID: 37129998 PMCID: PMC10328080 DOI: 10.15252/embr.202356910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Ribosome biogenesis proceeds along a multifaceted pathway from the nucleolus to the cytoplasm that is extensively coupled to several quality control mechanisms. However, the mode by which 5S ribosomal RNA is incorporated into the developing pre-60S ribosome, which in humans links ribosome biogenesis to cell proliferation by surveillance by factors such as p53-MDM2, is poorly understood. Here, we report nine nucleolar pre-60S cryo-EM structures from Chaetomium thermophilum, one of which clarifies the mechanism of 5S RNP incorporation into the early pre-60S. Successive assembly states then represent how helicases Dbp10 and Spb4, and the Pumilio domain factor Puf6 act in series to surveil the gradual folding of the nearby 25S rRNA domain IV. Finally, the methyltransferase Spb1 methylates a universally conserved guanine nucleotide in the A-loop of the peptidyl transferase center, thereby licensing further maturation. Our findings provide insight into the hierarchical action of helicases in safeguarding rRNA tertiary structure folding and coupling to surveillance mechanisms that culminate in local RNA modification.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and MetabolismFudan UniversityShanghaiChina
| | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | | | | | - Roland Beckmann
- Gene CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and MetabolismFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Loevenich LP, Tschurtschenthaler M, Rokavec M, Silva MG, Jesinghaus M, Kirchner T, Klauschen F, Saur D, Neumann J, Hermeking H, Jung P. SMAD4 Loss Induces c-MYC-Mediated NLE1 Upregulation to Support Protein Biosynthesis, Colorectal Cancer Growth, and Metastasis. Cancer Res 2022; 82:4604-4623. [PMID: 36219392 PMCID: PMC9755967 DOI: 10.1158/0008-5472.can-22-1247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
Growth and metastasis of colorectal cancer is closely connected to the biosynthetic capacity of tumor cells, and colorectal cancer stem cells that reside at the top of the intratumoral hierarchy are especially dependent on this feature. By performing disease modeling on patient-derived tumor organoids, we found that elevated expression of the ribosome biogenesis factor NLE1 occurs upon SMAD4 loss in TGFβ1-exposed colorectal cancer organoids. TGFβ signaling-mediated downregulation of NLE1 was prevented by ectopic expression of c-MYC, which occupied an E-box-containing region within the NLE1 promoter. Elevated levels of NLE1 were found in colorectal cancer cohorts compared with normal tissues and in colorectal cancer subtypes characterized by Wnt/MYC and intestinal stem cell gene expression. In colorectal cancer cells and organoids, NLE1 was limiting for de novo protein biosynthesis. Upon NLE1 ablation, colorectal cancer cell lines activated p38/MAPK signaling, accumulated p62- and LC3-positive structures indicative of impaired autophagy, and displayed more reactive oxygen species. Phenotypically, knockout of NLE1 inhibit.ed proliferation, migration and invasion, clonogenicity, and anchorage-independent growth. NLE1 loss also increased the fraction of apoptotic tumor cells, and deletion of TP53 further sensitized NLE1-deficient colorectal cancer cells to apoptosis. In an endoscopy-guided orthotopic mouse transplantation model, ablation of NLE1 impaired tumor growth in the colon and reduced primary tumor-derived liver metastasis. In patients with colorectal cancer, NLE1 mRNA levels predicted overall and relapse-free survival. Taken together, these data reveal a critical role of NLE1 in colorectal cancer growth and progression and suggest that NLE1 represents a potential therapeutic target in colorectal cancer patients. SIGNIFICANCE NLE1 limits de novo protein biosynthesis and the tumorigenic potential of advanced colorectal cancer cells, suggesting NLE1 could be targeted to improve the treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Leon P. Loevenich
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Markus Tschurtschenthaler
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matjaz Rokavec
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich.,Experimental and Molecular Pathology, Institute of Pathology, LMU Munich, Germany
| | - Miguel G. Silva
- Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Moritz Jesinghaus
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Pathology, Phillips University Marburg and University Hospital Marburg, Marburg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Frederick Klauschen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Dieter Saur
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jens Neumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich
| | - Heiko Hermeking
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich.,Experimental and Molecular Pathology, Institute of Pathology, LMU Munich, Germany
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, Munich.,Corresponding Author: Peter Jung, DKTK AG Oncogenic Signal Transduction Pathways in Colorectal/Pancreatic Cancer, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, DKTK Partnerstandort München, Thalkirchner Straße 36, Munich D-80337, Germany. Phone: 4989-2180-73702; E-mail:
| |
Collapse
|
6
|
Zhou J, Jiang Z, Lin Y, Li C, Liu J, Tian M, Liu Y, Chen K. The daily caloric restriction and alternate-day fasting ameliorated lipid dysregulation in type 2 diabetic mice by downregulating hepatic pescadillo 1. Eur J Nutr 2022; 61:2775-2797. [PMID: 35290477 DOI: 10.1007/s00394-022-02850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE A possible link between pescadillo 1 (PES1) and lipid metabolism has been reported. However, whether PES1 is involved in the effects of daily caloric restriction (CR) and alternate-day fasting (ADF) interventions on diabetes-related lipid dysregulation is not elucidated. The current study aims are to explore the role of PES1 in effects of CR and ADF on diabetic mice and related mechanism. METHODS Eight-week-old male db/db mice with type 2 diabetes mellitus (T2DM) were randomly divided into untreated T2DM, CR and ADF groups. McArdle hepatocytes were treated with 48 h high glucose (HG), 48 h normal glucose (NG) and 24 h HG plus 24 h NG, respectively. Pes1 siRNA and overexpression plasmid were, respectively, transfected into liver cells, and AAV9-Pes1-shRNA was injected into db/db mice. RESULTS After 12-week interventions, the peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine palmitoyltransferase 1A (CPT1A) levels in livers of T2DM mice were enhanced by CR and ADF interventions with reductions of hepatic and plasma triglycerides. Unexpectedly, hepatic PES1 levels were downregulated by two interventions, consistent with the results of 48 h NG and 24 h HG plus 24 h NG-treated cells. Moreover, CPT1A level was upregulated in Pes1-siRNA-treated cells and AAV9-Pes1-shRNA injected murine livers, in contrast to Pes1 overexpression in cultured cells. Mechanistically, 48 h NG or 24 h HG plus 24 h NG treatment increased PPAR-α binding to Pes1 promoter, suppressing the PES1 expression, thereby lowering the PES1-mediated ubiquitination of CPT1A. CONCLUSION The present study suggests that CR and ADF may improve lipid dysregulation in diabetic mice by downregulating hepatic PES1.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230021, Anhui, China
| | - Yan Lin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chengcheng Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengjun Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yong Liu
- AIER Hefei Eye Hospital Affiliated To Anhui Medical University, Hefei, 230031, Anhui, China.
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Mickolajczyk KJ, Olinares PDB, Chait BT, Liu S, Kapoor TM. The MIDAS domain of AAA mechanoenzyme Mdn1 forms catch bonds with two different substrates. eLife 2022; 11:73534. [PMID: 35147499 PMCID: PMC8837202 DOI: 10.7554/elife.73534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Catch bonds are a form of mechanoregulation wherein protein-ligand interactions are strengthened by the application of dissociative tension. Currently, the best-characterized examples of catch bonds are between single protein-ligand pairs. The essential AAA (ATPase associated with diverse cellular activities) mechanoenzyme Mdn1 drives at least two separate steps in ribosome biogenesis, using its MIDAS domain to extract the ubiquitin-like (UBL) domain-containing proteins Rsa4 and Ytm1 from ribosomal precursors. However, it must subsequently release these assembly factors to reinitiate the enzymatic cycle. The mechanism underlying the switching of the MIDAS-UBL interaction between strongly and weakly bound states is unknown. Here, we use optical tweezers to investigate the force dependence of MIDAS-UBL binding. Parallel experiments with Rsa4 and Ytm1 show that forces up to ~4 pN, matching the magnitude of force produced by AAA proteins similar to Mdn1, enhance the MIDAS domain binding lifetime up to 10-fold, and higher forces accelerate dissociation. Together, our studies indicate that Mdn1's MIDAS domain can form catch bonds with more than one UBL substrate, and provide insights into how mechanoregulation may contribute to the Mdn1 enzymatic cycle during ribosome biogenesis.
Collapse
Affiliation(s)
- Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, United States
| |
Collapse
|
8
|
Dash A, Ghag SB. Genome-wide in silico characterization and stress induced expression analysis of BcL-2 associated athanogene (BAG) family in Musa spp. Sci Rep 2022; 12:625. [PMID: 35022483 PMCID: PMC8755836 DOI: 10.1038/s41598-021-04707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Programmed cell death (PCD) is a genetically controlled process for the selective removal of damaged cells. Though understanding about plant PCD has improved over years, the mechanisms are yet to be fully deciphered. Among the several molecular players of PCD in plants, B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones are evolutionary conserved and regulate cell death, growth and development. In this study, we performed a genome-wide in silico analysis of the MusaBAG gene family in a globally important fruit crop banana. Thirteen MusaBAG genes were identified, out of which MusaBAG1, 7 and 8 genes were found to have multiple copies. MusaBAG genes were distributed on seven out of 11 chromosomes in banana. Except for one paralog of MusaBAG8 all the other 12 proteins have characteristic BAG domain. MusaBAG1, 2 and 4 have an additional ubiquitin-like domain whereas MusaBAG5-8 have a calmodulin binding motif. Most of the MusaBAG proteins were predicted to be localized in the nucleus and mitochondria or chloroplast. The in silico cis-regulatory element analysis suggested regulation associated with photoperiodic control, abiotic and biotic stress. The phylogenetic analysis revealed 2 major clusters. Digital gene expression analysis and quantitative real-time RT-PCR depicted the differential expression pattern of MusaBAG genes under abiotic and biotic stress conditions. Further studies are warranted to uncover the role of each of these proteins in growth, PCD and stress responses so as to explore them as candidate genes for engineering transgenic banana plants with improved agronomic traits.
Collapse
Affiliation(s)
- Ashutosh Dash
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Campus, Kalina, Santacruz (East), Mumbai, 400 098, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Campus, Kalina, Santacruz (East), Mumbai, 400 098, India.
| |
Collapse
|
9
|
Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021; 59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Severe mental illnesses such as schizophrenia and bipolar disorder have complex inheritance patterns, involving both common and rare variants. Whole exome sequencing is a promising approach to find out the rare genetic variants. We had previously reported several rare variants in multiplex families with severe mental illnesses. The current article tries to summarise the biological processes and pattern of expression of genes harbouring the aforementioned variants, linking them to known clinical manifestations through a methodical narrative review. Of the 28 genes considered for this review from 7 families with multiple affected individuals, 6 genes are implicated in various neuropsychiatric manifestations including some variations in the brain morphology assessed by magnetic resonance imaging. Another 15 genes, though associated with neuropsychiatric manifestations, did not have established brain morphological changes whereas the remaining 7 genes did not have any previously recorded neuropsychiatric manifestations at all. Wnt/b-catenin signaling pathway was associated with 6 of these genes and PI3K/AKT, calcium signaling, ERK, RhoA and notch signaling pathways had at least 2 gene associations. We present a comprehensive review of biological and clinical knowledge about the genes previously reported in multiplex families with severe mental illness. A 'disease in dish approach' can be helpful to further explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Salil K Sukumaran
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Debanjan Bhattacharjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Alekhya Vemula
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Reeteka Sud
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Martín-Villanueva S, Gutiérrez G, Kressler D, de la Cruz J. Ubiquitin and Ubiquitin-Like Proteins and Domains in Ribosome Production and Function: Chance or Necessity? Int J Mol Sci 2021; 22:ijms22094359. [PMID: 33921964 PMCID: PMC8122580 DOI: 10.3390/ijms22094359] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Gabriel Gutiérrez
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| |
Collapse
|
11
|
Gallegos KM, Patel JR, Llopis SD, Walker RR, Davidson AM, Zhang W, Zhang K, Tilghman SL. Quantitative Proteomic Profiling Identifies a Potential Novel Chaperone Marker in Resistant Breast Cancer. Front Oncol 2021; 11:540134. [PMID: 33718123 PMCID: PMC7951058 DOI: 10.3389/fonc.2021.540134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Development of aromatase inhibitor resistant breast cancer among postmenopausal women continues to be a major clinical obstacle. Previously, our group demonstrated that as breast cancer cells transition from hormone-dependent to hormone-independent, they are associated with increased growth factor signaling, enhanced cellular motility, and the epithelial to mesenchymal transition (EMT). Given the complexity of cancer stem cells (CSC) and their implications on endocrine resistance and EMT, we sought to understand their contribution towards the development of aromatase inhibitor resistant breast cancer. Cells cultured three dimensionally as mammospheres are enriched for CSCs and more accurately recapitulates tumors in vivo. Therefore, a global proteomic analysis was conducted using letrozole resistant breast cancer cells (LTLT-Ca) mammospheres and compared to their adherent counterparts. Results demonstrated over 1000 proteins with quantitative abundance ratios were identified. Among the quantified proteins, 359 were significantly altered (p < 0.05), where 173 were upregulated and 186 downregulated (p < 0.05, fold change >1.20). Notably, midasin, a chaperone protein required for maturation and nuclear export of the pre-60S ribosome was increased 35-fold. Protein expression analyses confirmed midasin is ubiquitously expressed in normal tissue but is overexpressed in lobular and ductal breast carcinoma tissue as well as ER+ and ER- breast cancer cell lines. Functional enrichment analyses indicated that 19 gene ontology terms and one KEGG pathway were over-represented by the down-regulated proteins and both were associated with protein synthesis. Increased midasin was strongly correlated with decreased relapse free survival in hormone independent breast cancer. For the first time, we characterized the global proteomic signature of CSC-enriched letrozole-resistant cells associated with protein synthesis, which may implicate a role for midasin in endocrine resistance.
Collapse
Affiliation(s)
- Karen M Gallegos
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Jankiben R Patel
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Shawn D Llopis
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Rashidra R Walker
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - A Michael Davidson
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Wensheng Zhang
- Division of Mathematical and Physical Sciences, Department of Computer Science, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, United States
| | - Kun Zhang
- Division of Mathematical and Physical Sciences, Department of Computer Science, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, United States
| | - Syreeta L Tilghman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
12
|
Long-range intramolecular allostery and regulation in the dynein-like AAA protein Mdn1. Proc Natl Acad Sci U S A 2020; 117:18459-18469. [PMID: 32694211 DOI: 10.1073/pnas.2002792117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.
Collapse
|
13
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
14
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
15
|
Li JL, Chen C, Chen W, Zhao LF, Xu XK, Li Y, Yuan HY, Lin JR, Pan JP, Jin BL, Li FC. Integrative genomic analyses identify WDR12 as a novel oncogene involved in glioblastoma. J Cell Physiol 2020; 235:7344-7355. [PMID: 32180229 DOI: 10.1002/jcp.29635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/09/2020] [Indexed: 01/16/2023]
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Due to its invasive nature, it cannot be thoroughly eliminated. WD repeat domain 12 (WDR12) processes the 32S precursor rRNA but cannot affect the synthesis of the 45S/47S primary transcript. In this study, we found that WDR12 is highly expressed in GBM according to the analysis results of mRNA expression by The Cancer Genome Atlas database. The high expression level of WDR12 is dramatically related to shorter overall survival and reduced disease-free survival. Next, we knocked down WDR12 and found that knockdown of WDR12 promoted the apoptosis and inhibited the proliferation by cell biology experiments. Differential expression genes in gene-chip revealed that WDR12 knockdown mainly inhibited cell cycle. Finally, we also found that WDR12 is associated with PLK1 and EZH2 in cell proliferation of GBM. Resumptively, this report showed a possible evidence that WDR12 drove malignant behavior of GBM, whose expression may present a neoteric independent prognostic biomarker in GBM.
Collapse
Affiliation(s)
- Jun-Liang Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Cheng Chen
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ling-Feng Zhao
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin-Ke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hong-Yao Yuan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jin-Rong Lin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jun-Ping Pan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Bi-Lian Jin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fang-Cheng Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
16
|
Waiho K, Fazhan H, Zhang Y, Li S, Zhang Y, Zheng H, Ikhwanuddin M, Ma H. Comparative profiling of ovarian and testicular piRNAs in the mud crab Scylla paramamosain. Genomics 2020; 112:323-331. [DOI: 10.1016/j.ygeno.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
|
17
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
18
|
Prattes M, Lo YH, Bergler H, Stanley RE. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Biomolecules 2019; 9:E715. [PMID: 31703473 PMCID: PMC6920918 DOI: 10.3390/biom9110715] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits the formation of functional ribosomes and results in defects in proliferation and growth. Rix7, Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal of specific assembly factors from pre-60S particles after they have fulfilled their function in the maturation cascade. Recent structural and functional insights have provided the first glimpse into the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven by advanced cryo-EM structures and the use of highly specific AAA inhibitors.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| |
Collapse
|
19
|
Ahmed YL, Thoms M, Mitterer V, Sinning I, Hurt E. Crystal structures of Rea1-MIDAS bound to its ribosome assembly factor ligands resembling integrin-ligand-type complexes. Nat Commun 2019; 10:3050. [PMID: 31296859 PMCID: PMC6624252 DOI: 10.1038/s41467-019-10922-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/10/2019] [Indexed: 01/08/2023] Open
Abstract
The Rea1 AAA+-ATPase dislodges assembly factors from pre-60S ribosomes upon ATP hydrolysis, thereby driving ribosome biogenesis. Here, we present crystal structures of Rea1-MIDAS, the conserved domain at the tip of the flexible Rea1 tail, alone and in complex with its substrate ligands, the UBL domains of Rsa4 or Ytm1. These complexes have structural similarity to integrin α-subunit domains when bound to extracellular matrix ligands, which for integrin biology is a key determinant for force-bearing cell-cell adhesion. However, the presence of additional motifs equips Rea1-MIDAS for its tasks in ribosome maturation. One loop insert cofunctions as an NLS and to activate the mechanochemical Rea1 cycle, whereas an additional β-hairpin provides an anchor to hold the ligand UBL domains in place. Our data show the versatility of the MIDAS fold for mechanical force transmission in processes as varied as integrin-mediated cell adhesion and mechanochemical removal of assembly factors from pre-ribosomes.
Collapse
Affiliation(s)
| | - Matthias Thoms
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany.,Gene Center, University of Munich, D-81377, Munich, Germany
| | - Valentin Mitterer
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center, D-69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Li PC, Li K, Wang J, Zhao CZ, Zhao SZ, Hou L, Xia H, Ma CL, Wang XJ. The AAA-ATPase MIDASIN 1 Functions in Ribosome Biogenesis and Is Essential for Embryo and Root Development. PLANT PHYSIOLOGY 2019; 180:289-304. [PMID: 30755475 PMCID: PMC6501072 DOI: 10.1104/pp.18.01225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/30/2019] [Indexed: 05/04/2023]
Abstract
Ribosome biogenesis is an orchestrated process that relies on many assembly factors. The AAA-ATPase Midasin 1 (Mdn1) functions as a ribosome assembly factor in yeast (Saccharomyces cerevisiae), but the roles of MDN1 in Arabidopsis (Arabidopsis thaliana) are poorly understood. Here, we showed that the Arabidopsis null mutant of MDN1 is embryo-lethal. Using the weak mutant mdn1-1, which maintains viability, we found that MDN1 is critical for the regular pattern of auxin maxima in the globular embryo and functions in root meristem maintenance. By detecting the subcellular distribution of ribosome proteins, we noted that mdn1-1 impairs nuclear export of the pre-60S ribosomal particle. The processing of ribosomal precusor RNAs, including 35S, 27SB, and 20S, is also affected in this mutant. MDN1 physically interacts with PESCADILLO2 (PES2), an essential assembly factor of the 60S ribosome, and the observed mislocalization of PES2 in mdn1-1 further implied that MDN1 plays an indispensable role in 60S ribosome biogenesis. Therefore, the observed hypersensitivity of mdn1-1 to a eukaryotic translation inhibitor and high-sugar conditions might be associated with the defect in ribosome biogenesis. Overall, this work establishes a role of Arabidopsis MDN1 in ribosome biogenesis, which agrees with its roles in embryogenesis and root development.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Ke Li
- College of Life Science, Shandong University, Qingdao 266237, PR China
| | - Juan Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Chuan-Zhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Shu-Zhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Chang-Le Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xing-Jun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| |
Collapse
|
21
|
Hoffmann L, Anders K, Bischof LF, Ye X, Reimann J, Khadouma S, Pham TK, van der Does C, Wright PC, Essen LO, Albers SV. Structure and interactions of the archaeal motility repression module ArnA–ArnB that modulates archaellum gene expression in Sulfolobus acidocaldarius. J Biol Chem 2019; 294:7460-7471. [PMID: 30902813 PMCID: PMC6509490 DOI: 10.1074/jbc.ra119.007709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a β-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction.
Collapse
Affiliation(s)
- Lena Hoffmann
- From the Institute for Biology II, Molecular Biology of Archaea and
| | - Katrin Anders
- the Philipps University, Department of Chemistry, 35032 Marburg, Germany
| | - Lisa F Bischof
- From the Institute for Biology II, Molecular Biology of Archaea and
- the Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Xing Ye
- From the Institute for Biology II, Molecular Biology of Archaea and
| | - Julia Reimann
- From the Institute for Biology II, Molecular Biology of Archaea and
| | - Sunia Khadouma
- From the Institute for Biology II, Molecular Biology of Archaea and
| | - Trong K Pham
- the ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom, and
| | | | - Phillip C Wright
- the Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Lars-Oliver Essen
- the Philipps University, Department of Chemistry, 35032 Marburg, Germany,
- the LOEWE Center for Synthetic Microbiology, 35043 Marburg, Germany
| | | |
Collapse
|
22
|
Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7. Nat Commun 2019; 10:513. [PMID: 30705282 PMCID: PMC6355894 DOI: 10.1038/s41467-019-08373-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023] Open
Abstract
Rix7 is an essential type II AAA-ATPase required for the formation of the large ribosomal subunit. Rix7 has been proposed to utilize the power of ATP hydrolysis to drive the removal of assembly factors from pre-60S particles, but the mechanism of release is unknown. Rix7's mammalian homolog, NVL2 has been linked to cancer and mental illness disorders, highlighting the need to understand the molecular mechanisms of this essential machine. Here we report the cryo-EM reconstruction of the tandem AAA domains of Rix7 which form an asymmetric stacked homohexameric ring. We trapped Rix7 with a polypeptide in the central channel, revealing Rix7's role as a molecular unfoldase. The structure establishes that type II AAA-ATPases lacking the aromatic-hydrophobic motif within the first AAA domain can engage a substrate throughout the entire central channel. The structure also reveals that Rix7 contains unique post-α7 insertions within both AAA domains important for Rix7 function.
Collapse
|
23
|
Wu N, Zhao J, Yuan Y, Lu C, Zhu W, Jiang Q. NOP7 interacts with β-catenin and activates β-catenin/TCF signaling in hepatocellular carcinoma cells. Onco Targets Ther 2018; 11:6369-6376. [PMID: 30319277 PMCID: PMC6171516 DOI: 10.2147/ott.s164601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The hyperactivation of β-catenin signaling is frequently observed in clinical hepatocellular carcinoma (HCC) samples. Further understanding the mechanisms involved in activating β-catenin/TCF signaling would benefit the treatment of HCC. Method and results Here, it was found that NOP7 was a binding partner of β-catenin. NOP7 strengthened the interaction between β-catenin and TCF4, which led to the activation of β-catenin/TCF signaling. The upregulation of NOP7 in HCC promoted the growth (in both liquid culture and soft agar) and migration of HCC cancer cells. Conclusion Taken together, we have demonstrated the oncogenic functions of NOP7 in HCC, suggesting that targeting NOP7 would benefit the treatment of HCC.
Collapse
Affiliation(s)
- Nan Wu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China
| | - Youhua Yuan
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Chuanjia Lu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Wenjing Zhu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China,
| | - Qun Jiang
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China,
| |
Collapse
|
24
|
Yin Y, Zhou L, Zhan R, Zhang Q, Li M. Identification of WDR12 as a novel oncogene involved in hepatocellular carcinoma propagation. Cancer Manag Res 2018; 10:3985-3993. [PMID: 30310320 PMCID: PMC6166768 DOI: 10.2147/cmar.s176268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant cancer worldwide. Importantly, the precise mechanisms causing HCC pathogenicity are still unknown. The identification of potential oncogenes plays significant roles in finding novel therapeutic targets for human HCC. Purpose WDR12 (WD repeat protein 12), a member of WD repeats family, plays crucial roles in the ribosome biogenesis pathway. However, Whether WDR12 contributes to HCC development remains unknown. The objective of this study was to elucidate the role of WDR12 in HCC development. Methods The expression level of WDR12 in HCC tissues and adjacent non-tumor tissues were detected form Gene Expression Omnibus (GEO) database. The expression level of WDR12 in HCC cell lines were examined by RT-PCR and western blot. Kaplan-Meier analysis were used to analyze the effect of WDR12 level on overall and disease-free survival of HCC patients. To examine whether WDR12 supports development of HCC, we inhibited expression of WDR12 by using an shRNA-encoding lentivirus system. Effects of WDR12 knockdown were evaluated on cell-growth, cell-proliferation and cell-migration. The mechanisms involved in HCC cells growth, proliferation and migration were analyzed by western blot assay. Results In silico analysis of HCC data sets showed that elevated expression of WDR12 correlated with high serum AFP level, high vascular invasion, high histologic grade and high TNM stage in HCC patients. Furthermore, up-regulated expression of WDR12 significantly correlated with the short overall survival and recurrence time of HCC patients. The shRNA-mediated knockdown of WDR12 expression resulted in reduced proliferation and migration of HepG2 and Huh-7 cells. Notably, inhibition of WDR12 resulted in decreased phosphorylation of AKT, mTOR and S6K1. Conclusion Our study indicates that WDR12 contributes to HCC propagation, and indicates that suppression of WDR12 may be a potential strategy for human HCC treatment.
Collapse
Affiliation(s)
- Yancun Yin
- Taishan Scholar Immunology Program, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Renhui Zhan
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, Shandong, China,
| | - Qiang Zhang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, Shandong, China,
| | - Minjing Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, Shandong, China,
| |
Collapse
|
25
|
The spatial and developmental expression of mouse Vwa8 (von Willebrand domain-containing protein 8). Gene Expr Patterns 2018; 29:39-46. [PMID: 29660410 DOI: 10.1016/j.gep.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023]
Abstract
The Drosophila gene c12.2 was isolated in a screen examining mRNA binding proteins. Drosophila c12.2 is the mouse Vwa8 homolog. Various genome-wide associated studies have linked human Vwa8 to both neurological and oncological pathologies, which include autism, bipolar disorder, comorbid migraine, and acute myeloid leukemia, however, the function and role of the VWA8 protein remain poorly understood. To further analyze the Vwa8 gene in mouse, gene structure, protein homology modeling, and gene expression patterns were examined throughout mouse development. Our analyses indicate that the mouse Vwa8 gene produces two transcripts; the full-length Vwa8a is highly expressed relative to the truncated Vwa8b transcript across all developmental time points and tissues analyzed. Protein homology modeling indicates that VWA8a belongs to a novel protein superfamily containing both the midasin and cytoplasmic dynein 1 heavy chain 1 proteins. These data establish the development timeline and expression profile for both Vwa8a and Vwa8b, paving the way for future studies to determine the cellular role(s) of this highly conserved protein family.
Collapse
|
26
|
Konikkat S, Biedka S, Woolford JL. The assembly factor Erb1 functions in multiple remodeling events during 60S ribosomal subunit assembly in S. cerevisiae. Nucleic Acids Res 2017; 45:4853-4865. [PMID: 28115637 PMCID: PMC5416829 DOI: 10.1093/nar/gkw1361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
A major gap in our understanding of ribosome assembly is knowing the precise function of each of the ∼200 assembly factors. The steps in subunit assembly in which these factors participate have been examined for the most part by depleting each protein from cells. Depletion of the assembly factor Erb1 prevents stable assembly of seven other interdependent assembly factors with pre-60S subunits, resulting in turnover of early preribosomes, before the ITS1 spacer can be removed from 27SA3 pre-rRNA. To investigate more specific functions of Erb1, we constructed eight internal deletions of 40-60 amino acid residues each, spanning the amino-terminal half of Erb1. The erb1Δ161-200 and erb1Δ201-245 deletion mutations block a later step than depletion of Erb1, namely cleavage of the C2 site that initiates removal of the ITS2 spacer. Two other remodeling events fail to occur in these erb1 mutants: association of twelve different assembly factors with domain V of 25S rRNA, including the neighborhood surrounding the peptidyl transferase center, and stable association of ribosomal proteins with rRNA surrounding the polypeptide exit tunnel. This suggests that successful initiation of construction of these functional centers is a checkpoint for committing to spacer removal.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
The AAA ATPase MDN1 Acts as a SUMO-Targeted Regulator in Mammalian Pre-ribosome Remodeling. Mol Cell 2017; 64:607-615. [PMID: 27814492 DOI: 10.1016/j.molcel.2016.09.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/26/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023]
Abstract
Biogenesis of translation-competent 80S ribosomes is a multi-step process requiring the sequential action of non-ribosomal trans-acting factors. We previously identified the human PELP1-TEX10-WDR18 complex and the associated SUMO isopeptidase SENP3 as regulators of 60S maturation. We provided evidence that deconjugating SUMO from PELP1 by SENP3 is instrumental for proper ribosome biogenesis. Here we show that SUMO conjugation/deconjugation of PELP1 controls its dynamic association with the AAA ATPase MDN1, a key factor of pre-60S remodeling. We demonstrate that modification of PELP1 promotes the recruitment of MDN1 to pre-60S particles, while deSUMOylation is needed to release both MDN1 and PELP1 from pre-ribosomes. Inactivation of SENP3 traps MDN1 at pre-60S particles and prevents critical remodeling events, ultimately generating aberrant pre-60S complexes. We define MDN1 as a SUMO-targeted AAA ATPase, and we propose that a controlled SUMO cycle on PELP1 serves as regulatory point for mammalian 60S maturation through ordered recruitment and release of MDN1.
Collapse
|
28
|
Lo YH, Romes EM, Pillon MC, Sobhany M, Stanley RE. Structural Analysis Reveals Features of Ribosome Assembly Factor Nsa1/WDR74 Important for Localization and Interaction with Rix7/NVL2. Structure 2017; 25:762-772.e4. [PMID: 28416111 DOI: 10.1016/j.str.2017.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023]
Abstract
Ribosome assembly is a complex process that requires hundreds of essential assembly factors, including Rix7 (NVL2 in mammals) and Nsa1 (WDR74 in mammals). Rix7 is a type II double ring, AAA-ATPase, which is closely related to the well-known Cdc48/p97. Previous studies in Saccharomyces cerevisiae suggest that Rix7 mediates the release of Nsa1 from nucleolar pre-60S particles; however, the underlying mechanisms of this release are unknown. Through multiple structural analyses we show that S. cerevisiae Nsa1 is composed of an N-terminal seven-bladed WD40 domain followed by a lysine-rich C terminus that extends away from the WD40 domain and is required for nucleolar localization. Co-immunoprecipitation assays with the mammalian homologs identified a well-conserved interface within WDR74 that is important for its association with NVL2. We further show that WDR74 associates with the D1 AAA domain of NVL2, which represents a novel mode of binding of a substrate with a type II AAA-ATPase.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erin M Romes
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|