1
|
Wang D, Li K. Emerging Roles of TRIM56 in Antiviral Innate Immunity. Viruses 2025; 17:72. [PMID: 39861861 PMCID: PMC11768893 DOI: 10.3390/v17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics.
Collapse
Affiliation(s)
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Zhang Q, Peng L, Yuan Y, Hu Z, Zeng Y, Zeng W, Chen J, Chen W, Liu P. High rates of Treponema pallidum, Neisseria gonorrhoeae, Chlamydia trachomatis, or Trichomonas vaginalis co-infection in people with HIV: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 2025; 44:1-15. [PMID: 39466544 DOI: 10.1007/s10096-024-04966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE People living with HIV (PWH) experience a disproportionate burden of sexually transmitted infections (STIs), leading to more severe health outcomes and increasing the risk of HIV transmission. The presence of untreated STIs can accelerate HIV disease progression, while HIV infection can complicate STI diagnosis and treatment. Despite this interconnectedness, comprehensive data on the global prevalence of specific STIs among PWH remain limited. This systematic review aims to synthesize existing data to provide a more accurate picture of the prevalence of co-infection with Treponema pallidum, Neisseria gonorrhoeae, Chlamydia trachomatis or Trichomonas vaginalis in PWH, while also identifying critical knowledge gaps and informing future research priorities. METHODS We searched databases for eligible studies reporting the prevalence of Treponema pallidum, Neisseria gonorrhoeae, Chlamydia trachomatis, or Trichomonas vaginalis among PWH, published from January 1, 2000, to February 1, 2023. From 22,290 identified articles, 127 independent studies meeting the inclusion criteria were included in this meta-analysis. RESULTS The overall global co-infection prevalence of Treponema pallidum, Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis in PWH, was 4.8% (95%CI: 4.7-5.0%), 0.8% (95%CI: 0.6-0.9%), 2.5% (95%CI: 2.2-2.7%), and 3.0% (95%CI: 2.7-3.3%), respectively. The global prevalence of these four STIs in PWH is high, especially in Africa and Southeast Asia and in MSM and TGW populations. Based on the subgroup analyses, we further found that there was a high prevalence of Treponema pallidum and Chlamydia trachomatis in Southeast Asia and a high infection of Trichomonas vaginalis in the whole of Africa. Treponema pallidum infection was more common in males than females, and Chlamydia trachomatis and Trichomonas vaginalis infections were more common in females than males. Besides, high infection rates of Treponema pallidum, Neisseria gonorrhoeae, and Chlamydia trachomatis were detected in men who have sex with men (MSM) + transgender women (TGW), while high infection rates of Trichomonas vaginalis were found in sex workers and pregnant women. CONCLUSION The study confirmed high prevalence of four sexually transmitted pathogens in PWH, noting regional, gender, and subpopulation-specific differences. It offered insights for targeted interventions and healthcare strategies. The research underscored the necessity for enhanced data collection and expanded screening/treatment for vulnerable populations and regions.
Collapse
Affiliation(s)
- Qinyi Zhang
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Linyuan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Yuan Yuan
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Zongnan Hu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Weijia Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Jiaxin Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Wenxin Chen
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan, 421001, China.
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Shan J, Huang B, Xin Y, Li R, Zhang X, Xu H. The clinical characteristics and SARS-CoV-2 infection in children of acute hepatitis with unknown aetiology: A meta-analysis and systematic review. PLoS One 2024; 19:e0311772. [PMID: 39636900 PMCID: PMC11620374 DOI: 10.1371/journal.pone.0311772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/13/2024] [Indexed: 12/07/2024] Open
Abstract
The World Health Organization has issued a global alert on Acute Severe Hepatitis of Unknown Aetiology (AS-HEP-UA) since 23 April 2022,and there was still uncertainty regarding the association of AS-HEP-UA with SARS-CoV-2 as well as adenovirus. This study aimed to summarize the infection of SARS-CoV-2 and co-infections with adenovirus, as well as clinical features and outcomes in patients with AS-HEP-UA. PubMed, Embase, Web of Science, and the Cochrane Library were searched from 1 October 2021 to 8 December 2022 for studies about patients with AS-HEP-UA. This study was registered in the PROSPERO database (CRD42023385056). We has included 14 eligible articles. The main clinical features of AS-HEP-UA were jaundice (65%) and vomiting (59%), while other clinical features included diarrhea (45%), abdominal pain (37%), and fever (31%), roughly 10% of the children required liver transplantation. The overall positivity rate for SARS-CoV-2 was 21.6% (95% CI: 0.126-0.319), with 25.5% (95% CI: 0.161-0.358) for previous infections. The positivity rate for adenovirus infection was 58.6% (95% CI:0.429-0.736) while co-infection with SARS-CoV-2 was 17.5% (95% CI: 0.049-0.342). Moreover, we found that the positive rate of SARS-CoV-2 for this hepatitis outbreak was correlated with region by subgroup analysis. In conclusion, the positive rate of adenovirus was higher than SARS-CoV-2, and the relationship between AS-Hep-UA and COVID-19 is not significant. However, it cannot be excluded that the COVID-19 epidemic is an indirect causative agent of AS-Hep-UA, which requires a larger cohort of AS-Hep-UA patients to uncover additional findings.
Collapse
Affiliation(s)
- Jiayi Shan
- Department of Pediatrics of Traditional Chinese Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Baoyi Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Xin
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ran Li
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Xu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Liu J, Chen K, Wu W, Pang Z, Zhu D, Yan X, Wang B, Qiu J, Fang Z. GRP78 exerts antiviral function against influenza A virus infection by activating the IFN/JAK-STAT signaling. Virology 2024; 600:110249. [PMID: 39303344 DOI: 10.1016/j.virol.2024.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Influenza is an acute viral respiratory infection that causes mild to severe illness in humans and animals. Current studies show that glucose-regulated protein 78 (GRP78) can exert crucial functions during viral infection; however, the mechanism by which GRP78 regulates influenza A virus (IAV) infection remains unclear. In the present study, we found that IAV infection increased GRP78 expression. Overexpression of GRP78 significantly inhibited IAV replication, as indicated by reduced viral mRNA levels, protein levels, and viral titers. Mechanistically, Type I interferon (IFN) response signaling is upregulated during IAV infection by GRP78. Further study showed that GRP78 interacts with tyrosine kinase 2 (TYK2) and enhances its phosphorylation, thereby activating downstream STAT1/2 and antiviral IFN-stimulated gene (ISG) expression. Collectively, these results demonstrate an important mechanism by which GRP78 exerts in innate antiviral effect in IAV infection. This mechanism could be used as a therapeutic target for anti-influenza treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Kanghong Chen
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Wenjiao Wu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zefen Pang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dandong Zhu
- School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Xiukui Yan
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Bangqi Wang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| | - Jianxiang Qiu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| | - Zhixin Fang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
5
|
Bhamidipati P, Nagaraju GP, Malla R. Immunoglobulin-binding protein and Toll-like receptors in immune landscape of breast cancer. Life Sci 2024; 358:123196. [PMID: 39481836 DOI: 10.1016/j.lfs.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer (BC) is a complex disease exhibiting significant heterogeneity and encompassing various molecular subtypes. Among these, triple-negative breast cancer (TNBC) stands out as one of the most challenging types, characterized by its aggressive nature and poor prognosis. This review embarks on a comprehensive exploration of the immune landscape of BC, with a primary focus on the functional and structural characterization of immunoglobulin-binding protein (BiP) and its pivotal role in regulating the unfolded response (UPR) pathway of proteins. Moreover, we unravel the multifaceted functions of BiP in BC, with a special emphasis on the involvement of cell surface BiP in TNBC metastasis, drug resistance, and its contribution to the formation of the tumor microenvironment (TME). We also provide mechanistic insights into how ER-resident BiP mediates the sensitization of drug-resistant BC to different treatment strategies, thereby offering promising avenues for therapeutic intervention. We also delve into the role of Toll-like receptors (TLRs), shedding light on their diverse expression patterns across BC and their influence on modulating the tumor immune response. Understanding the interplay between BiP, TLRs, and the immune response, especially in TNBC, opens avenues for novel immunotherapies. Future research should focus on developing targeted therapies that activate ER-resident BiP or inhibit cell surface BiP, and modulate TLR signaling. Moreover, exploring BiP as a biomarker for TNBC diagnosis, prognosis, and treatment response will be crucial for personalized medicine.
Collapse
Affiliation(s)
- Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - RamaRao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India.
| |
Collapse
|
6
|
Liu L, Zheng C, Xu Z, Wang Z, Zhong Y, He Z, Zhang W, Zhang Y. Intranasal administration of Clostridium butyricum and its derived extracellular vesicles alleviate LPS-induced acute lung injury. Microbiol Spectr 2024; 12:e0210824. [PMID: 39472001 PMCID: PMC11619349 DOI: 10.1128/spectrum.02108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
Acute lung injury (ALI) is associated with high morbidity and mortality rates. However, its clinical treatment is limited. Currently, the treatment of lung diseases by regulating the lung microbiota has become a research hotspot. In this study, we investigated the protective effects of the intranasal administration of Clostridium butyricum and its derived extracellular vesicles (EVs) against lipopolysaccharide (LPS)-induced ALI. The results demonstrated that compared with the LPS group, the pre-treatment group with C. butyricum and its EVs reduced the expression of pro-inflammatory cytokines and alleviated the symptoms in ALI mice by inhibiting the TLR4/MyD88 signaling pathway. Moreover, C. butyricum and its derived EVs inhibited the expression of apoptosis-related proteins and increased the expression of lung barrier proteins. Additionally, the intervention of C. butyricum changed the composition of the pulmonary microbiota. At the species level, LPS significantly increased the relative abundance of Acinetobacter johnsonii, while C. butyricum reversed this effect. In conclusion, these data demonstrate that intranasal administration of C. butyricum and its EVs can prevent LPS-induced ALI by reducing inflammation, inhibiting apoptosis, and improving lung barrier function. Additionally, C. butyricum regulated the pulmonary microbiota of mice to alleviate LPS-induced ALI.IMPORTANCEThe disorder of pulmonary microbiota plays an important role in the progression of acute lung injury (ALI). However, very few studies have been conducted to treat ALI by modulating pulmonary microbiota. In this study, the diversity and composition of pulmonary microbiota were altered in lipopolysaccharide (LPS)-induced ALI mice, but the ecological balance of the pulmonary microbiota was restored by intranasal administration of Clostridium butyricum. Moreover, the study reported the mechanism of C. butyricum and its derived extracellular vesicles for the treatment of LPS-induced ALI. These results reveal the importance of pulmonary microbiota in ALI disease. It provides a new approach for the treatment of ALI with new-generation probiotics.
Collapse
Affiliation(s)
- Li Liu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Cihua Zheng
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenyang Xu
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhidong He
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanbing Zhang
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Liu BM, Hayes AW. Mechanisms and Assessment of Genotoxicity of Metallic Engineered Nanomaterials in the Human Environment. Biomedicines 2024; 12:2401. [PMID: 39457713 PMCID: PMC11504605 DOI: 10.3390/biomedicines12102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered nanomaterials (ENMs) have a broad array of applications in agriculture, engineering, manufacturing, and medicine. Decades of toxicology research have demonstrated that ENMs can cause genotoxic effects on bacteria, mammalian cells, and animals. Some metallic ENMs (MENMs), e.g., metal or metal oxide nanoparticles TiO2 and CuO, induce genotoxicity via direct DNA damage and/or reactive oxygen species-mediated indirect DNA damage. There are various physical features of MENMs that may play an important role in promoting their genotoxicity, for example, size and chemical composition. For a valid genotoxicity assessment of MENMs, general considerations should be given to various factors, including, but not limited to, NM characterization, sample preparation, dosing selection, NM cellular uptake, and metabolic activation. The recommended in vitro genotoxicity assays of MENMs include hprt gene mutation assay, chromosomal aberration assay, and micronucleus assay. However, there are still knowledge gaps in understanding the mechanisms underlying the genotoxicity of MENMs. There are also a variety of challenges in the utilization and interpretation of the genotoxicity assessment assays of MENMs. In this review article, we provide mechanistic insights into the genotoxicity of MENMs in the human environment. We review advances in applying new endpoints, biomarkers, and methods to the genotoxicity assessments of MENMs. The guidance of the United States, the United Kingdom, and the European Union on the genotoxicity assessments of MENMs is also discussed.
Collapse
Affiliation(s)
- Benjamin M. Liu
- Division of Pathology and Laboratory Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| | - A. Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL 33612, USA
- Institute for Integrated Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Nayak N, Bhanja SK, Chakurkar EB, Sahu AR. Adaptive capability of slow-growing backyard poultry as indicated by physiological and molecular responses in a hot and humid coastal climate. J Therm Biol 2024; 125:103985. [PMID: 39368168 DOI: 10.1016/j.jtherbio.2024.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Assessing the adaptability of slow-growing rural chickens for improving thermotolerance to suit the global climate change is a major research need. This work was aimed to evaluate the adaptability of CARI-Debendra chickens and to identify the polymorphism as well as expression profiling of thermotolerant genes (HSP70 and GRP78) under prevailing temperature-humidity indices and thermal stress in a coastal environment. One hundred sixty straight run chicks were reared at THI≥75 (control) and THI>80 under coastal climate till 12 weeks. Polymorphism of HSP70 and GRP78 candidate genes were explored using restriction enzymes TaqI and HaeIII to identify possible thermotolerance markers. Expression profiling of both the genes in liver, intestine and pectoralis muscle was determined through quantitative real-time PCR. Rectal and body surface temperature recorded in the neck and back showed significant differences (P < 0.01) with higher temperature in THI>80 group. Comparatively lower live weights (P < 0.05) and poor FCR were recorded in THI>80 group. The villi height in all intestinal segments was significantly lower (P < 0.01), but deeper crypt depth was observed in THI>80 than control group. A lowest thymus weight (P < 0.05) was noted with no significant differences in immune response in treatment group. Serum levels of cholesterol, activities of lactate dehydrogenase, creatinine kinase and concentration of potassium, sodium and thyroxine hormone were not different between the 2 groups. The concentration of triiodothyronine and chloride ion was lower in THI>80 group indicating adaptive changes for thermoregulation. HSP70 gene expressions in the three tissues were differentially increased (P < 0.01) by temperature-humidity indices, but the expression of GRP78 was not different between the 2 groups. The results concluded that the environmental factors interact with genetics on adaptability towards thermotolerance in slow-growing chickens.
Collapse
Affiliation(s)
- Nibedita Nayak
- ICAR-Central Coastal Agricultural Research Institute, Goa, India
| | | | | | | |
Collapse
|
9
|
Wisłowska M. Adult-Onset Still's Disease (AOSD)-On the Basis of Own Cases. Biomedicines 2024; 12:2067. [PMID: 39335580 PMCID: PMC11428668 DOI: 10.3390/biomedicines12092067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Adult-onset Still's disease (AOSD) is a rare chronic autoinflammatory condition characterized by a spiking fever, arthritis, a rash, hepatosplenomegaly, lymphadenopathy, leucocytosis, and hyperferritinemia. It is sometimes accompanied by life-threatening complications like macrophage activation syndrome/hemophagocytic lymphohistiocytosis (MAS/HLH). Treatment options for AOSD include glucocorticoids (GCs), immunosuppressive drugs, biological medications, and Janus kinase (JAK) inhibitors. The features that differentiate MAS/HLH from AOSD are: in MAS/HLH, a different type of fever, which is persistent, a sharp decrease in the number of leukocytes and thrombocytes, a further increase in the level of transaminases and ferritin, significant hepatosplenomegaly, lymphadenopathy, symptoms of the central nervous system (CNS), disseminated intravascular coagulation (DIC) and hemophagocytosis in the bone marrow. This study aimed to evaluate the course of AOSD, which results in MAS/HLD. PATIENTS AND METHODS Nine AOSD patients, four of whom developed MAS/HLH, were treated at the Rheumatology Clinic in the Central Clinical Hospital of the Ministry of Interior Affairs from 1 January 2015 to 15 March 2020 and at the Rheumatology Clinic in the National Institute of Geriatric, Rheumatology and Rehabilitation from 1 September 2021 to 1 March 2024. Medical history, clinical data, demographic data, laboratory data, imaging data, Hscore, and treatment data were collected. RESULTS All the patients with MAS and an Hscore above 150 recovered. DISCUSSION MAS/HLH requires rapid diagnosis as well as treatment with methylprednisolone pulses, cyclosporine A, and etoposide. When comparing patients who developed MAS/HLH with those who did not, possible risk factors were identified: the presence of pregnancy (two cases) and an aggressive course of AOSD. The Hscore is a useful tool for identifying patients with MAS/HLH.
Collapse
Affiliation(s)
- Małgorzata Wisłowska
- Rheumatology Clinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 1 Spartanska Street, 02-637 Warsaw, Poland
| |
Collapse
|
10
|
Liu BM, Rakhmanina NY, Yang Z, Bukrinsky MI. Mpox (Monkeypox) Virus and Its Co-Infection with HIV, Sexually Transmitted Infections, or Bacterial Superinfections: Double Whammy or a New Prime Culprit? Viruses 2024; 16:784. [PMID: 38793665 PMCID: PMC11125633 DOI: 10.3390/v16050784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epidemiologic studies have established that mpox (formerly known as monkeypox) outbreaks worldwide in 2022-2023, due to Clade IIb mpox virus (MPXV), disproportionately affected gay, bisexual, and other men who have sex with men. More than 35% and 40% of the mpox cases suffer from co-infection with HIV and sexually transmitted infections (STIs) (e.g., Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum, and herpes simplex virus), respectively. Bacterial superinfection can also occur. Co-infection of MPXV and other infectious agents may enhance disease severity, deteriorate outcomes, elongate the recovery process, and potentially contribute to the morbidity and mortality of the ensuing diseases. However, the interplays between MPXV and HIV, bacteria, other STI pathogens and host cells are poorly studied. There are many open questions regarding the impact of co-infections with HIV, STIs, or bacterial superinfections on the diagnosis and treatment of MPXV infections, including clinical and laboratory-confirmed mpox diagnosis, suboptimal treatment effectiveness, and induction of antiviral drug resistance. In this review article, we will discuss the progress and knowledge gaps in MPXV biology, antiviral therapy, pathogenesis of human MPXV and its co-infection with HIV, STIs, or bacterial superinfections, and the impact of the co-infections on the diagnosis and treatment of mpox disease. This review not only sheds light on the MPXV infection and co-infection of other etiologies but also calls for more research on MPXV life cycles and the molecular mechanisms of pathogenesis of co-infection of MPXV and other infectious agents, as well as research and development of a novel multiplex molecular testing panel for the detection of MPXV and other STI co-infections.
Collapse
Affiliation(s)
- Benjamin M. Liu
- Division of Pathology and Laboratory Medicine, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA;
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA;
- Children’s National Research Institute, Washington, DC 20012, USA
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| | - Natella Y. Rakhmanina
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA;
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
- Division of Infectious Diseases, Children’s National Hospital, Washington, DC 20010, USA
- Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC 20005, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Michael I. Bukrinsky
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA;
- The District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
11
|
Liu Y, Xu XQ, Li WJ, Zhang B, Meng FZ, Wang X, Majid SM, Guo Z, Ho WZ. Cytosolic DNA sensors activation of human astrocytes inhibits herpes simplex virus through IRF1 induction. Front Cell Infect Microbiol 2024; 14:1383811. [PMID: 38808062 PMCID: PMC11130358 DOI: 10.3389/fcimb.2024.1383811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction While astrocytes participate in the CNS innate immunity against herpes simplex virus type 1 (HSV-1) infection, they are the major target for the virus. Therefore, it is of importance to understand the interplay between the astrocyte-mediated immunity and HSV-1 infection. Methods Both primary human astrocytes and the astrocyte line (U373) were used in this study. RT-qPCR and Western blot assay were used to measure IFNs, the antiviral IFN-stimulated genes (ISGs), IFN regulatory factors (IRFs) and HSV-1 DNA. IRF1 knockout or knockdown was performed with CRISPR/Cas9 and siRNA transfection techniques. Results Poly(dA:dT) could inhibit HSV-1 replication and induce IFN-β/IFN-λs production in human astrocytes. Poly(dA:dT) treatment of astrocytes also induced the expression of the antiviral ISGs (Viperin, ISG56 and MxA). Among IRFs members examined, poly(dA:dT) selectively unregulated IRF1 and IRF9, particularly IRF1 in human astrocytes. The inductive effects of poly(dA:dT) on IFNs and ISGs were diminished in the IRF1 knockout cells. In addition, IRF1 knockout attenuated poly(dA:dT)-mediated HSV-1 inhibition in the cells. Conclusion The DNA sensors activation induces astrocyte intracellular innate immunity against HSV-1. Therefore, targeting the DNA sensors has potential for immune activation-based HSV-1 therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xi-Qiu Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei-Jing Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Biao Zhang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Feng-Zhen Meng
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Safah M. Majid
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Zihan Guo
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
12
|
Liu BM, Li NL, Wang R, Li X, Li ZA, Marion TN, Li K. Key roles for phosphorylation and the Coiled-coil domain in TRIM56-mediated positive regulation of TLR3-TRIF-dependent innate immunity. J Biol Chem 2024; 300:107249. [PMID: 38556084 PMCID: PMC11067339 DOI: 10.1016/j.jbc.2024.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
Tripartite-motif protein-56 (TRIM56) positively regulates the induction of type I interferon response via the TLR3 pathway by enhancing IRF3 activation and depends on its C-terminal residues 621-750 for interacting with the adaptor TRIF. However, the precise underlying mechanism and detailed TRIM56 determinants remain unclear. Herein, we show ectopic expression of murine TRIM56 also enhances TLR3-dependent interferon-β promoter activation, suggesting functional conservation. We found that endogenous TRIM56 and TRIF formed a complex early (0.5-2 h) after poly-I:C stimulation and that TRIM56 overexpression also promoted activation of NF-κB by poly-I:C but not that by TNF-α or IL-1β, consistent with a specific effect on TRIF prior to the bifurcation of NF-κB and IRF3. Using transient transfection and Tet-regulated cell lines expressing various TRIM56 mutants, we demonstrated the Coiled-coil domain and a segment spanning residues ∼434-610, but not the B-box or residues 355-433, were required for TRIM56 augmentation of TLR3 signaling. Moreover, alanine substitution at each putative phosphorylation site, Ser471, Ser475, and Ser710, abrogated TRIM56 function. Concordantly, mutants bearing Ser471Ala, Ser475Ala, or Ser710Ala, or lacking the Coiled-coil domain, all lost the capacity to enhance poly-I:C-induced establishment of an antiviral state. Furthermore, the Ser710Ala mutation disrupted the TRIM56-TRIF association. Using phospho-specific antibodies, we detected biphasic phosphorylation of TRIM56 at Ser471 and Ser475 following TLR3 stimulation, with the early phase occurring at ∼0.5 to 1 h, prior to IRF3 phosphorylation. Together, these data reveal novel molecular details critical for the TRIM56 augmentation of TLR3-dependent antiviral response and highlight important roles for TRIM56 scaffolding and phosphorylation.
Collapse
Affiliation(s)
- Benjamin M Liu
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Divisions of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA; Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA; Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA; Children's National Research Institute, Washington, District of Columbia, USA; The District of Columbia Center for AIDS Research, Washington, District of Columbia, USA
| | - Nan L Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruixue Wang
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xiaofan Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Z Alex Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tony N Marion
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
13
|
Su P, Jiang C, Zhang Y. The implication of infection with respiratory syncytial virus in pediatric recurrent wheezing and asthma: knowledge expanded post-COVID-19 era. Eur J Clin Microbiol Infect Dis 2024; 43:403-416. [PMID: 38153660 DOI: 10.1007/s10096-023-04744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection has been identified to serve as the primary cause of acute lower respiratory infectious diseases in children under the age of one and a significant risk factor for the emergence and development of pediatric recurrent wheezing and asthma, though the exact mechanism is still unknown. METHODS AND RESULTS In this study, we discuss the key routes that lead to recurrent wheezing and bronchial asthma following RSV infection. It is interesting to note that following the coronavirus disease 2019 (COVID-19) epidemic, the prevalence of RSV changes significantly. This presents us with a rare opportunity to better understand the associated mechanism for RSV infection, its effects on the respiratory system, and the immunological response to RSV following the COVID-19 epidemic. To better understand the associated mechanisms in the occurrence and progression of pediatric asthma, we thoroughly described how the RSV infection directly destroys the physical barrier of airway epithelial tissue, promotes inflammatory responses, enhances airway hyper-responsiveness, and ultimately causes the airway remodeling. More critically, extensive discussion was also conducted regarding the potential impact of RSV infection on host pulmonary immune response. CONCLUSION In conclusion, this study offers a comprehensive perspective to better understand how the RSV infection interacts in the control of the host's pulmonary immune system, causing recurrent wheezing and the development of asthma, and it sheds fresh light on potential avenues for pharmaceutical therapy in the future.
Collapse
Affiliation(s)
- Peipei Su
- Xi'an Medical University, Xi'an, 710068, Shaanxi, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Congshan Jiang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
14
|
Liu BM, Mulkey SB, Campos JM, DeBiasi RL. Laboratory diagnosis of CNS infections in children due to emerging and re-emerging neurotropic viruses. Pediatr Res 2024; 95:543-550. [PMID: 38042947 DOI: 10.1038/s41390-023-02930-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/05/2023] [Indexed: 12/04/2023]
Abstract
Recent decades have witnessed the emergence and re-emergence of numerous medically important viruses that cause central nervous system (CNS) infections in children, e.g., Zika, West Nile, and enterovirus/parechovirus. Children with immature immune defenses and blood-brain barrier are more vulnerable to viral CNS infections and meningitis than adults. Viral invasion into the CNS causes meningitis, encephalitis, brain imaging abnormalities, and long-term neurodevelopmental sequelae. Rapid and accurate detection of neurotropic viral infections is essential for diagnosing CNS diseases and setting up an appropriate patient management plan. The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis/encephalitis. However, the expansion of test menu has led to new challenges in selecting appropriate tests and making accurate interpretation of test results. There are unmet gaps in development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses. Herein we will discuss the advances and challenges in the laboratory diagnosis of viral CNS infections in children. This review not only sheds light on selection and interpretation of a suitable diagnostic test for emerging/re-emerging neurotropic viruses, but also calls for more research on development and clinical utility study of novel molecular assays. IMPACT: Children with immature immune defenses and blood-brain barrier, especially neonates and infants, are more vulnerable to viral central nervous system infections and meningitis than adults. The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis and encephalitis. There are unmet gaps in the development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses.
Collapse
Affiliation(s)
- Benjamin M Liu
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Children's National Research Institute, Washington, DC, USA.
- The District of Columbia Center for AIDS Research, Washington, DC, USA.
| | - Sarah B Mulkey
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Children's National Research Institute, Washington, DC, USA
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Joseph M Campos
- Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Roberta L DeBiasi
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Children's National Research Institute, Washington, DC, USA.
- Division of Pediatric Infectious Diseases, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
15
|
Han C, Xie Z, Lv Y, Liu D, Chen R. Direct interaction of the molecular chaperone GRP78/BiP with the Newcastle disease virus hemagglutinin-neuraminidase protein plays a vital role in viral attachment to and infection of culture cells. Front Immunol 2023; 14:1259237. [PMID: 37920471 PMCID: PMC10619984 DOI: 10.3389/fimmu.2023.1259237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction Glucose Regulated Proteins/Binding protein (GRP78/Bip), a representative molecular chaperone, effectively influences and actively participates in the replication processes of many viruses. Little is known, however, about the functional involvement of GRP78 in the replication of Newcastle disease virus (NDV) and the underlying mechanisms. Methods The method of this study are to establish protein interactomes between host cell proteins and the NDV Hemagglutinin-neuraminidase (HN) protein, and to systematically investigate the regulatory role of the GRP78-HN protein interaction during the NDV replication cycle. Results Our study revealed that GRP78 is upregulated during NDV infection, and its direct interaction with HN is mediated by the N-terminal 326 amino acid region. Knockdown of GRP78 by small interfering RNAs (siRNAs) significantly suppressed NDV infection and replication. Conversely, overexpression of GRP78 resulted in a significant increase in NDV replication, demonstrating its role as a positive regulator in the NDV replication cycle. We further showed that the direct interaction between GRP78 and HN protein enhanced the attachment of NDV to cells, and masking of GRP78 expressed on the cell surface with specific polyclonal antibodies (pAbs) inhibited NDV attachment and replication. Discussion These findings highlight the essential role of GRP78 in the adsorption stage during the NDV infection cycle, and, importantly, identify the critical domain required for GRP78-HN interaction, providing novel insights into the molecular mechanisms involved in NDV replication and infection.
Collapse
Affiliation(s)
- Chenxin Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ziwei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yadi Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dingxiang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
16
|
Wu Y, Wang S, Zhou Y, Yang Y, Li S, Yin W, Ding Y. Clinical indicators combined with S100A12/TLR2 signaling molecules to establish a new scoring model for coronary artery lesions in Kawasaki disease. PLoS One 2023; 18:e0292653. [PMID: 37824465 PMCID: PMC10569519 DOI: 10.1371/journal.pone.0292653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Coronary artery lesions (CALs) are the most common and serious complication of Kawasaki disease (KD), and the pathogenesis is unknown. Exploring KD-specific biomarkers and related risk factors is significant for clinical diagnosis and treatment. This study aimed to explore the feasibility of combining clinical indicators with S100A12/TLR2-associated signaling molecules for the predictive modeling of CALs in KD. A total of 346 patients (224 males and 122 females) with KD who visited the rheumatology department of Wuhan Children's Hospital between April 2022 and March 2025 were enrolled and divided into two groups according to the presence or absence of CALS (292 patients had CALs and 54 patients did not). Forty-one variables were collected from the two groups, including demographic characteristics, clinical manifestations, and laboratory data. Single nucleated cells from each patient were extracted, and the expression of the S100A12/TLR2 signal transduction-related molecules S100A12, TLR2, MYD88, and NF-κB were detected by real-time fluorescent quantitative polymerase chain reaction. Statistically significant variables were subjected to logistic regression analysis to determine the independent risk factors for KD with CALs, and a new risk score model was established to assess the predictive efficacy based on receiver operating characteristic curves. Sixteen variables significantly differed between the no-CALs and CALs groups: gender, fever duration, white blood cells (WBC), hemoglobin (HGB), Ce reactive protein (CRP), procalcitonin, serum ferritin (SF), erythrocyte sedimentation rate (ESR), fibrinogen (FIB), aspartate aminotransferase-to-alanine aminotransferase ratio (AST/ALT), serum albumin (ALB), sodium (Na), Interleukin (IL-10), tumor necrosis factor (TNF-α), S100 calcium binding protein A12 (S100A12), and Myeloid Differentiation Factor 88 (MYD88) (p < 0.05). After performing a univariate analysis, 12 variables (gender, fever duration, WBC, HGB, CRP, SF, ESR, FIB, AST/ALT, ALB, Na, and S100A12) were included in the multifactorial binary logistic regression, which showed that fever duration ≥ 6.5 days, ESR ≥ 46.5 mm/h, AST/ALT ≤ 1.51, and S100A12 ≥ 10.02 were independent risk factors for KD with CALs and were assigned scores of 3, 2, 1, and 2, respectively, according to the odds ratio (OR). The total score of each patient was counted, and a new prediction model for KD combined with CALs was established, where < 3.5 was considered low risk and ≥ 3.5 was regarded as high risk; the sensitivity, specificity, Jorden index, and area under the curve of this scoring system were 0.667, 0.836, 0.502, and 0.838, respectively. This new scoring model has good efficacy for predicting the occurrence of KD with CALs. The expression of S100A12 was significantly increased in the CALs group and was an independent risk factor for the occurrence of CALs, and has the potential as a biomarker for predicting KD with CALs.
Collapse
Affiliation(s)
- Yali Wu
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shasha Wang
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yang Zhou
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Youjun Yang
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shiyu Li
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Yin
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yan Ding
- Department of Rheumatology and Immunology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
17
|
Zhang J, Zhao Q, Xue Z, Zhang S, Ren Z, Chen S, Zhou A, Chen H, Liu Y. Deoxynivalenol induces endoplasmic reticulum stress-associated apoptosis via the IRE1/JNK/CHOP pathway in porcine alveolar macrophage 3D4/21 cells. Food Chem Toxicol 2023; 180:114033. [PMID: 37739053 DOI: 10.1016/j.fct.2023.114033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
The interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention. Nevertheless, the precise involvement of the unfolded protein response (UPR) signaling in the apoptosis of porcine macrophage cells induced by Deoxynivalenol (DON) remains enigmatic. In this study, we revealed that exposure to 2 μM DON resulted in a substantial decline in cell viability, concomitant with the initiation of cell apoptosis and the halting of the G1 phase cell cycle in the porcine alveolar macrophage line 3D4/21. Transcriptomic analysis of DON-exposed cells showed distinct expression patterns in 3104 genes, with notable upregulation of ER stress-related genes, including IRE1, CHOP, XBP1 and JNK. Our subsequent validation via qPCR and Western blot analyses confirmed the attenuation of GRP78 and BCL-2, coupled with the upregulation of IRE1, CHOP, JNK, p-JNK, and Bax in DON-induced cells, indicating the instigation of ER stress-associated apoptosis by DON. The addition of 5 mM 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, decreased levels of CHOP, IRE1, JNK, p-JNK, and Bax, while increasing levels of GRP78 and Bcl-2, suggesting that 4-PBA alleviated DON-induced ER stress and apoptosis. Overall, our findings provide new insights into DON-induced ER stress via the IRE1/JNK/CHOP pathway, leading to subsequent cellular apoptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Siyi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zeyu Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
18
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
19
|
Wang J, Chen KY, Wang SH, Liu Y, Zhao YQ, Yang L, Yang GH, Wang XJ, Zhu YH, Yin JH, Wang JF. Effects of Spatial Expression of Activating Transcription Factor 4 on the Pathogenicity of Two Phenotypes of Bovine Viral Diarrhea Virus by Regulating the Endoplasmic Reticulum-Mediated Autophagy Process. Microbiol Spectr 2023; 11:e0422522. [PMID: 36939351 PMCID: PMC10101076 DOI: 10.1128/spectrum.04225-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response is a highly conserved stress-defense mechanism and activates the adaptive unfolded protein response (UPR) to mitigate imbalance. The ER stress-activated signaling pathways can also trigger autophagy to facilitate cellular repair. Bovine viral diarrhea virus (BVDV) utilizes the host cellular ER as the primary site of the life cycle. However, the interplay between cellular ER stress and BVDV replication remains unclear. This report reveals that cytopathic (cp) and noncytopathic (ncp) BVDV have distinct strategies to regulate UPR mechanisms and ER stress-mediated autophagy for their own benefit. Immunoblot analysis revealed that cp and ncp BVDV differentially regulated the abundance of ER chaperone GRP78 for viral replication, while the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α)-activating transcription factor 4 (ATF4) pathway of the UPR was switched on at different stages of infection. Pretreatment with ER stress inducer promoted virion replication, but RNA interference (RNAi) knockdown of ATF4 in BVDV-infected cells significantly attenuated BVDV infectivity titers. More importantly, the effector ATF4 activated by cp BVDV infection translocated into the nucleus to mediate autophagy, but ATF4 was retained in the cytoplasm during ncp BVDV infection. In addition, we found that cp BVDV core protein was localized in the ER to induce ER stress-mediated autophagy. Overall, the potential therapeutic target ATF4 may contribute to the global eradication campaign of BVDV. IMPORTANCE The ER-tropic viruses hijack the host cellular ER as the replication platform of the life cycle, which can lead to strong ER stress. The UPR and related transcriptional cascades triggered by ER stress play a crucial role in viral replication and pathogenesis, but little is known about these underlying mechanisms. Here, we report that cytopathic and noncytopathic BVDV use different strategies to reprogram the cellular UPR and ER stress-mediated autophagy for their own advantage. The cytopathic BVDV unconventionally downregulated the expression level of GRP78, creating perfect conditions for self-replication via the UPR, and the noncytopathic BVDV retained ATF4 in the cytoplasm to provide an advantage for its persistent infection. Our findings provide new insights into exploring how BVDV and other ER-tropic viruses reprogram the UPR signaling pathway in the host cells for replication and reveal the attractive host target ATF4 for new antiviral agents.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ke-Yuan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sheng-Hua Wang
- OIE Porcine-Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, Beijing, China
| | - Yi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi-Qing Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guang-Hui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao-Hong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin-hua Yin
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Jiu-Feng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Huang K, Lin Y, Wang K, Shen J, Wei D. ARFIP2 Regulates EMT and Autophagy in Hepatocellular Carcinoma in Part Through the PI3K/Akt Signalling Pathway. J Hepatocell Carcinoma 2022; 9:1323-1339. [PMID: 36573219 PMCID: PMC9789708 DOI: 10.2147/jhc.s392056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose ARFIP2, a canonical BAR domain-containing protein, is closely associated with regulating cargo exit from the Golgi. However, the potential biological functions of ARFIP2 in hepatocellular carcinoma (HCC) have not been well investigated. This study aimed to explore the critical role of ARFIP2 in HCC cells. Methods The expression of proteins related to epithelial to mesenchymal transition (EMT) and cell autophagy in HCC cells and tissues was assayed by quantitative real-time PCR, Western blotting, immunohistochemistry and immunofluorescence staining. The ability of cells to proliferate, migrate and invade was detected by Cell Counting Kit-8, Transwell migration and invasion assays. In addition, the function of ARFIP2 in vivo was assessed using a tumour xenograft model. Results ARFIP2 expression is significantly upregulated in early recurrent and metastatic HCC patients and was positively correlated with a poor prognosis. ARFIP2 overexpression promoted cell proliferation, migration, and invasion by inducing EMT and inhibiting autophagy in vitro. Furthermore, the regulatory effects of ARFIP2 on autophagy and EMT were partially attributed to its regulation of the PI3K/AKT signalling pathway. The in vivo results also showed that ARFIP2 modulates HCC progression. Conclusion Our results substantiate a novel mechanism by which ARFIP2 can regulate the activity/phosphorylation of Akt to promote EMT and inhibit autophagy in part via the PI3K/Akt signalling pathway. The ARFIP2/PI3K/Akt axis may be a potential diagnostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Kaida Huang
- Department of Oncology, Xiamen Haicang Hospital, Xiamen, People’s Republic of China
| | - Yubiao Lin
- Department of Oncology, Xiamen Haicang Hospital, Xiamen, People’s Republic of China
| | - Keyin Wang
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Jianfen Shen
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Dahai Wei
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China,Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China,Institute of Hepatology, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China,Correspondence: Dahai Wei, Institute of Hepatology, Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China, Tel/Fax +86-573-89975669, Email
| |
Collapse
|
21
|
Talaat RM, Elsayed SS, Abdel-Hakem NE, El-Shenawy SZ. Genetic Polymorphism in Toll-Like Receptor 3 and Interferon Regulatory Factor 3 in Hepatitis C Virus-Infected Patients: Correlation with Liver Cirrhosis. Viral Immunol 2022; 35:609-615. [PMID: 36048530 DOI: 10.1089/vim.2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host genetic factors could play a primary role in determining the risk for cirrhosis development in chronic hepatitis C virus (HCV)-infected patients. We designed this work to study the effect of single-nucleotide polymorphism (SNP) in Toll-like receptor 3 (TLR3) and interferon regulatory factor (IRF) on the risk of HCV-related cirrhosis. This study enrolled 139 Egyptian HCV-infected patients. They were divided into patients with cirrhotic (56) and noncirrhotic (83) liver. Genotyping of rs3775291 F459F (+1234C/T) and rs3775290 L412F (+1377C/T) in TLR3 and IRF3 rs2304204 (-925A/G) was performed by restriction fragment length polymorphism-polymerase chain reaction. Although there is no significant difference in genotype and allele distribution of +1377C/T of TLR3 gene between cirrhotic and noncirrhotic subjects, CC (odds ratio [OR] = 1.572, 95% confidence interval [CI]: 0.781-3.164); TT (OR = 1.463, 95% CI: 0.351-6.104) genotypes might be considered as risk factors for liver cirrhosis. On the contrary, the analysis revealed that only one genotype (CC) and one allele (C) were detected in +1234C/T SNP, with the total disappearance of CT/TT genotypes and T allele in all subjects. On the contrary, lower frequency has been found for the AG genotype of the IRF3 (-925A/G) gene in cirrhotic patients compared with noncirrhotic ones, indicating that AG is a protective genotype (OR = 0.509, 95% CI: 0.256-1.012). Our data stressed the association of AG genotype SNP in IRF3 (-925A/G) in protection against the worth outcome of HCV infection.
Collapse
Affiliation(s)
- Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City Egypt
| | - Shimaa S Elsayed
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City Egypt
| | - Nehal E Abdel-Hakem
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City Egypt
| | - Soha Z El-Shenawy
- Hepatology Department, National Liver Institute (NLI), Menoufia University, Shebeen El-Kom, Egypt
| |
Collapse
|
22
|
Srisapoome P, Ju-Ngam T, Wongpanya R. Characterization, Stress Response and Functional Analyses of Giant River Prawn ( Macrobrachium rosenbergii) Glucose-Regulated Protein 78 (Mr-grp78) under Temperature Stress and during Aeromonas hydrophila Infection. Animals (Basel) 2021; 11:ani11103004. [PMID: 34680024 PMCID: PMC8532774 DOI: 10.3390/ani11103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glucose-regulated protein 78 (grp78) is classified as a member of the Hsp70 subfamily. This protein functions as a key factor in signal transduction associated with the unfolded protein response (UPR) in the endoplasmic reticulum (ER) during cellular stress and protects against cell damage caused by toxic chemicals, oxidative stress, Ca2+ depletion, programmed cell death and various infectious conditions. To investigate this crucial mechanism in giant river prawn (Macrobrachium rosenbergii), we analyzed the biological function of prawn grp78 at the molecular level in this study. The regulation of this gene was intensively analyzed under normal bacterial infection and heat/cold-shock inductions. A functional analysis of this gene under heat and infectious stress conditions was performed by gene knockdown. The information obtained in the current study clearly indicates the crucially significant roles of grp78 in the cellular stress responses of the target experimental animal under various stress conditions. Abstract The endoplasmic reticulum (ER) is an organelle important for several functions of cellular physiology. This study identified the giant river prawn’s glucose-regulated protein 78 (Mr-grp78), which is important for ER stress mechanisms. Nucleotide and amino acid analyses of Mr-grp78, as compared with other species, revealed the highest similarity scores with the grp78 genes of crustaceans. An expression analysis by quantitative RT-PCR indicated that Mr-grp78 was expressed in all tissues and presented its highest expression in the ovary (57.64 ± 2.39-fold), followed by the gills (42.25 ± 1.12), hindgut (37.15 ± 2.47), thoracic ganglia (28.55 ± 2.45) and hemocytes (28.45 ± 2.26). Expression analysis of Mr-grp78 mRNA levels under Aeromonas hydrophila induction and heat/cold-shock exposure was conducted in the gills, hepatopancreas and hemocytes. The expression levels of Mr-grp78 in these tissues were highly upregulated 12 h after bacterial infection. In contrast, under heat- and cold-shock conditions, the expression of Mr-grp78 was significantly suppressed in the gills at 24–96 h and in the hepatopancreas at 12 h (p < 0.05). A functional analysis via Mr-grp78 gene knockdown showed that Mr-grp78 transcription in the gills, hepatopancreas and muscle strongly decreased from 6 to 96 h. Furthermore, the silencing of this gene effectively increased the sensitivity of the tested prawns to heat- and pathogenic-bacterium-induced stress. The results of this study clearly demonstrate the significant functional roles of Mr-grp78 in response to both temperature and pathogen treatments.
Collapse
Affiliation(s)
- Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2579-2924
| | - Tanya Ju-Ngam
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
23
|
Abstract
Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role in the folding and quality control of viral proteins, notably viral glycoproteins which play a major role in host cell infection. We will also describe how viruses co-opt ER chaperones at various steps of their infectious cycle but also in order to evade immune responses and avoid apoptosis. Finally, we will discuss the different molecules targeting these chaperones and the perspectives in the development of broad-spectrum antiviral drugs.
Collapse
|
24
|
Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? Int J Mol Sci 2021; 22:992. [PMID: 33498183 PMCID: PMC7863934 DOI: 10.3390/ijms22030992] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The occurrence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVD-19), represents a catastrophic threat to global health. Protruding from the viral surface is a densely glycosylated spike (S) protein, which engages angiotensin-converting enzyme 2 (ACE2) to mediate host cell entry. However, studies have reported viral susceptibility in intra- and extrapulmonary immune and non-immune cells lacking ACE2, suggesting that the S protein may exploit additional receptors for infection. Studies have demonstrated interactions between S protein and innate immune system, including C-lectin type receptors (CLR), toll-like receptors (TLR) and neuropilin-1 (NRP1), and the non-immune receptor glucose regulated protein 78 (GRP78). Recognition of carbohydrate moieties clustered on the surface of the S protein may drive receptor-dependent internalization, accentuate severe immunopathological inflammation, and allow for systemic spread of infection, independent of ACE2. Furthermore, targeting TLRs, CLRs, and other receptors (Ezrin and dipeptidyl peptidase-4) that do not directly engage SARS-CoV-2 S protein, but may contribute to augmented anti-viral immunity and viral clearance, may represent therapeutic targets against COVID-19.
Collapse
|
25
|
Liu BM, Hill HR. Role of Host Immune and Inflammatory Responses in COVID-19 Cases with Underlying Primary Immunodeficiency: A Review. J Interferon Cytokine Res 2020; 40:549-554. [PMID: 33337932 PMCID: PMC7757688 DOI: 10.1089/jir.2020.0210] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has spread rapidly and become a pandemic. Caused by a novel human coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe COVID-19 is characterized by cytokine storm syndromes due to innate immune activation. Primary immunodeficiency (PID) cases represent a special patient population whose impaired immune system might make them susceptible to severe infections, posing a higher risk to COVID-19, but this could also lead to suppressed inflammatory responses and cytokine storm. It remains an open question as to whether the impaired immune system constitutes a predisposing or protective factor for PID patients when facing SARS-CoV-2 infection. After literature review, it was found that, similar to other patient populations with different comorbidities, PID patients may be susceptible to SARS-CoV-2 infection. Their varied immune status, however, may lead to different disease severity and outcomes after SARS-CoV-2 infection. PID patients with deficiency in antiviral innate immune signaling [eg, Toll-like receptor (TLR)3, TLR7, or interferon regulatory factor 7 (IRF7)] or interferon signaling (IFNAR2) may be linked to severe COVID-19. Because of its anti-infection, anti-inflammatory, and immunomodulatory effects, routine intravenous immunoglobulin therapy may provide some protective effects to the PID patients.
Collapse
Affiliation(s)
- Benjamin M. Liu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Harry R. Hill
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Liu B, Totten M, Nematollahi S, Datta K, Memon W, Marimuthu S, Wolf LA, Carroll KC, Zhang SX. Development and Evaluation of a Fully Automated Molecular Assay Targeting the Mitochondrial Small Subunit rRNA Gene for the Detection of Pneumocystis jirovecii in Bronchoalveolar Lavage Fluid Specimens. J Mol Diagn 2020; 22:1482-1493. [PMID: 33069878 DOI: 10.1016/j.jmoldx.2020.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen Pneumocystis jirovecii causes Pneumocystis pneumonia. Although the mitochondrial large subunit rRNA gene (mtLSU) is commonly used as a PCR target, a mitochondrial small subunit rRNA gene (mtSSU)-targeted MultiCode PCR assay was developed on the fully automated ARIES platform for detection of P. jirovecii in bronchoalveolar lavage fluid specimens in 2.5 hours. The assay showed a limit of detection of 800 copies/mL (approximately equal to 22 organisms/mL), with no cross-reactivity with other respiratory pathogens. Compared with the reference Pneumocystis-specific direct fluorescent antibody assay (DFA) and mtLSU-targeted PCR assay, the new assay demonstrated sensitivity of 96.9% (31/32) and specificity of 94.6% (139/147) in detecting P. jirovecii in 180 clinical bronchoalveolar lavage fluid specimens. This assay was concordant with all DFA-positive samples and all but one mtLSU PCR-positive sample, and detected eight positive samples that were negative by DFA and mtLSU PCR. Receiver operating characteristic curve analysis revealed an area under the curve of 0.98 and a threshold cycle (CT) cutoff of 39.1 with sensitivity of 90.9% and specificity of 99.3%. The detection of 39.1 <CT < 40.0 indicates the presence of a low load of the organism and needs further determination of either colonization or probable/possible Pneumocystis pneumonia. Overall, the new assay demonstrates excellent analytical and clinical performance and may be more sensitive than mtLSU PCR target for the detection of P. jirovecii.
Collapse
Affiliation(s)
- Baoming Liu
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marissa Totten
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saman Nematollahi
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kausik Datta
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Warda Memon
- Microbiology Laboratory, Johns Hopkins Hospital, Baltimore, Maryland
| | - Subathra Marimuthu
- Division of Infectious Diseases, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Leslie A Wolf
- Division of Infectious Diseases, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Microbiology Laboratory, Johns Hopkins Hospital, Baltimore, Maryland
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Microbiology Laboratory, Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
27
|
Lu G, Luo H, Zhu X. Targeting the GRP78 Pathway for Cancer Therapy. Front Med (Lausanne) 2020; 7:351. [PMID: 32850882 PMCID: PMC7409388 DOI: 10.3389/fmed.2020.00351] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) plays an important part in maintaining protein stability, regulating protein folding, and inducing apoptosis autophagy, which is considered as a powerful protein. Meanwhile, it also plays a role in ensuring the normal function of organs. In recent years, more and more researches have been carried out on the targeted therapy of GRP78, mainly focusing on its relevant role in tumor and its role as a major modulator and modulator of subordinate pathways. The ability of GRP78 to respond to endoplasmic reticulum stress (ERS) determines whether tumor cells survive and whether the changes in expression level of GRP78 regulated by endoplasmic reticulum (ER) caused by various factors will directly or indirectly affect cell proliferation, apoptosis, and injury, or reduce the body's defense ability, or have protective effects on various organs.
Collapse
Affiliation(s)
- Guanhua Lu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
28
|
LeMessurier KS, Rooney R, Ghoneim HE, Liu B, Li K, Smallwood HS, Samarasinghe AE. Influenza A virus directly modulates mouse eosinophil responses. J Leukoc Biol 2020; 108:151-168. [PMID: 32386457 DOI: 10.1002/jlb.4ma0320-343r] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rαhi CD62Llo ). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8+ T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Robert Rooney
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics & Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Hazem E Ghoneim
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Baoming Liu
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kui Li
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| |
Collapse
|
29
|
|
30
|
Regulation of Molecular Chaperone GRP78 by Hepatitis B Virus: Control of Viral Replication and Cell Survival. Mol Cell Biol 2020; 40:MCB.00475-19. [PMID: 31712392 DOI: 10.1128/mcb.00475-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B (CHB) remains a global health problem, carrying a high risk for progression into cirrhosis and liver failure. Molecular chaperones are involved in diverse pathophysiological processes including viral infection. However, the role of molecular chaperones in hepatitis B virus (HBV) infection and its underlying mechanisms remain unclear. Here, we identified GRP78 as one of the molecular chaperones most strongly induced by HBV in human hepatocytes. Gain- and loss-of-function analyses demonstrated that GRP78 exerted an inhibitory effect on HBV transcription and replication. Further study showed that GRP78 was involved in the activation of AKT/mTOR signaling in hepatocytes, which contributed to GRP78-mediated inhibition of HBV. Of note, HBV-upregulated GRP78 was found to play a crucial role in maintaining the survival of hepatocytes via facilitating a mild endoplasmic reticulum (ER) stress. Together, our findings suggest that HBV may sacrifice part of its replication for establishing a persistent infection through induction of GRP78, a master ER stress regulator. Targeting GRP78 may help develop to design novel therapeutic strategies against chronic HBV infection and the associated hepatocellular carcinoma.
Collapse
|
31
|
Gao P, Chai Y, Song J, Liu T, Chen P, Zhou L, Ge X, Guo X, Han J, Yang H. Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus. PLoS Pathog 2019; 15:e1008169. [PMID: 31738790 PMCID: PMC6932825 DOI: 10.1371/journal.ppat.1008169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/26/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) constitutes a critical component of host innate immunity against microbial infections. In this report, we show that porcine reproductive and respiratory syndrome virus (PRRSV) utilizes the UPR machinery for its own benefit. We provide evidence that the virus targets the UPR central regulator GRP78 for proteasomal degradation via a mechanism that requires viral glycoprotein GP2a, while both IRE1-XBP1s and PERK-eIF2α-ATF4 signaling branches of the UPR are turned on at early stage of infection. The activated effector XBP1s was found to enter the nucleus, but ATF4 was unexpectedly diverted to cytoplasmic viral replication complexes by means of nonstructural proteins nsp2/3 to promote viral RNA synthesis. RNAi knockdown of either ATF4 or XBP1s dramatically attenuated virus titers, while overexpression caused increases. These observations reveal attractive host targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) poses a major threat to the worldwide swine industry, but no effective vaccines or antiviral drugs are available. A better understanding of the pathogen-host interactions that support PRRSV replication is essential for understanding viral pathogenesis and the development of preventive measures. Here we report that PRRSV utilizes unconventional strategies to reprogram the unfolded protein response (UPR) of the host to its own advantage. The virus targets GRP78 for partial degradation to create a favorable environment for UPR induction and hijacks ATF4 into cytoplasmic replication complexes to promote viral RNA synthesis. The data also reveal potential targets (e.g., ATF4 and XBP1s) for antiviral drugs and have implications in vaccine development.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Teng Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Peng Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
- * E-mail:
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, China Agricultural University College of Veterinary Medicine, Beijing, People’s Republic of China
| |
Collapse
|
32
|
Liu B, Forman M, Valsamakis A. Optimization and evaluation of a novel real-time RT-PCR test for detection of parechovirus in cerebrospinal fluid. J Virol Methods 2019; 272:113690. [DOI: 10.1016/j.jviromet.2019.113690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
|
33
|
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Am J Cancer Res 2019; 9:1215-1231. [PMID: 30867826 PMCID: PMC6401500 DOI: 10.7150/thno.32648] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT), the major anti-cancer modality for more than half of cancer patients after diagnosis, has the advantage of local tumor control with relatively less systematic side effects comparing to chemotherapy. However, the efficacy of RT is limited by acquired tumor resistance leading to the risks of relapse and metastasis. To further enhance the efficacy of RT, with the renaissances of targeted immunotherapy (TIT), increasing interests are raised on RT combined with TIT including cancer vaccines, T-cell therapy, and antibody-based immune checkpoint blockers (ICB) such as anti-CTLA-4 and anti-PD1/PD-L1. In achieving a significant synergy between RT and TIT, the dynamics of radiation-induced response in tumor cells and stromal cells, especially the cross-talk between tumor cells and immune cells in the irradiated tumor microenvironment (ITME) as highlighted in recent literature are to be elucidated. The abscopal effect refereeing the RT-induced priming function outside of ITME could be compromised by the immune-suppressive factors such as CD47 and PD-L1 on tumor cells and Treg induced or enhanced in the ITME. Cell surface receptors temporally or permanently induced and bioactive elements released from dead cells could serve antigenic source (radiation-associated antigenic proteins, RAAPs) to the host and have functions in immune regulation on the tumor. This review is attempted to summarize a cluster of factors that are inducible by radiation and targetable by antibodies, or have potential to be immune regulators to synergize tumor control with RT. Further characterization of immune regulators in ITME will deepen our understanding of the interplay among immune regulators in ITME and discover new effective targets for the combined modality with RT and TIT.
Collapse
|
34
|
Chen Y, Huang A, Ao W, Wang Z, Yuan J, Song Q, Wei D, Ye H. Proteomic analysis of serum proteins from HIV/AIDS patients with Talaromyces marneffei infection by TMT labeling-based quantitative proteomics. Clin Proteomics 2018; 15:40. [PMID: 30598657 PMCID: PMC6302400 DOI: 10.1186/s12014-018-9219-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Talaromyces marneffei (TM) is an emerging pathogenic fungus that can cause a fatal systemic mycosis in patients infected with human immunodeficiency virus (HIV). Although global awareness regarding HIV/TM coinfection is increasing little is known about the mechanism that mediates the rapid progression to HIV/AIDS disease in coinfected individuals. The aim of this study was to analyze the serum proteome of HIV/TM coinfected patients and to identify the associated protein biomarkers for TM in patients with HIV/AIDS. METHODS We systematically used multiplexed isobaric tandem mass tag labeling combined with liquid chromatography mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in the serum samples from HIV/TM-coinfected patients. RESULTS Of a total data set that included 1099 identified proteins, approximately 86% of the identified proteins were quantified. Among them, 123 proteins were at least 1.5-fold up-or downregulated in the serum between HIV/TM-coinfected and HIV-mono-infected patients. Furthermore, our results indicate that two selected proteins (IL1RL1 and THBS1) are potential biomarkers for distinguishing HIV/TM-coinfected patients. CONCLUSIONS This is the first report to provide a global proteomic profile of serum samples from HIV/TM-coinfected patients. Our data provide insights into the proteins that are involved as host response factors during infection. These data shed new light on the molecular mechanisms that are dysregulated and contribute to the pathogenesis of HIV/TM coinfection. IL1RL1 and THBS1 are promising diagnostic markers for HIV/TM-coinfected patients although further large-scale studies are needed. Thus, quantitative proteomic analysis revealed molecular differences between the HIV/TM-coinfected and HIV-mono-infected individuals, and might provide fundamental information for further detailed investigations.
Collapse
Affiliation(s)
- Yahong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Aiqiong Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Wen Ao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Zhengwu Wang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Jinjin Yuan
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| | - Qing Song
- Shanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072 People’s Republic of China
| | - Dahai Wei
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- The First Affiliated Hospital of Jiaxing University, 1882 Zhonghuan Road, Jiaxing, 314001 People’s Republic of China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 People’s Republic of China
| | - Hanhui Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
- Fuzhou Infectious Disease Hospital, Fujian Medical University, 312 Xihong Road, Fuzhou, 350025 Fujian Province People’s Republic of China
| |
Collapse
|
35
|
Teng J, Liu M, Su Y, Li K, Sui N, Wang S, Li L, Sun Y, Wang Y. Down-regulation of GRP78 alleviates lipopolysaccharide-induced acute kidney injury. Int Urol Nephrol 2018; 50:2099-2107. [PMID: 29915879 DOI: 10.1007/s11255-018-1911-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
PURPOSE Acute kidney injury (AKI) is accompanied with life-threatening sepsis. It is necessary to develop effective therapy agent or strategy for treating AKI. LPS is a primary pathogenic factor that induces sepsis. Glucose-regulated protein 78 (GRP78) is closely related to cell injuries. The objective of this study was to examine the role of GRP78 in LPS-induced AKI. METHODS Cell counting kit-8 (CCK-8) assay and flow cytometry (FCM) were respectively performed to assess the cell viability and apoptosis. Available commercial kits were used to detect the reactive oxygen species (ROS) contents and the activity of oxidative indicators. The expressions of the relevant factors were determined by real-time PCR (RT-PCR) and Western blot. RESULTS The results showed that the expression of GRP78 was apparently increased by LPS treatment, and that the down-regulation of GRP78 by small RNA interference improved the proliferation ability of renal cells in comparison to LPS group. The LPS-induced immune response and oxidative stress was alleviated by the depletion of GRP78. Moreover, the LPS-induced apoptosis was reduced in the GRP78 group by regulating the expression of mitochondrial apoptosis (Bcl-2, Bax) and endoplasmic reticulum (ER) stress (CHOP, caspase-12)-associated proteins. In addition, the protective role of GRP78 reduction was partly related to the balance of NF-κB/IκB. CONCLUSIONS Down-regulation of GRP78 attenuated LPS-induced AKI through inhibiting immune response/oxidative stress-associated apoptosis.
Collapse
Affiliation(s)
- Jinlong Teng
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Su
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Na Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shibo Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liandi Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunbo Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongbin Wang
- Department of Emergency Medicine, The Affiliated hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
36
|
Differential Regulation of Toll-Like Receptor-Mediated Cytokine Production by Unfolded Protein Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9827312. [PMID: 29849928 PMCID: PMC5941770 DOI: 10.1155/2018/9827312] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of the host immune response is largely mediated by the proinflammatory cytokine production. Physiological and pathological conditions of endoplasmic reticulum (ER) trigger unfolded protein response and contribute to the development or pathology of inflammatory diseases. Under ER stress, unfolded protein response (UPR) signaling pathways participate in upregulating inflammatory cytokine production via NF-kappaB, MAPK, and GSK-3β. Moreover, it has been suggested that ER stress crosstalks with toll-like receptor (TLR) signaling pathway to promote the production of proinflammatory cytokines. In addition, TLR stimulation can lead to UPR activation to promote inflammation. In this review, we will cover how proinflammatory cytokine production by UPR signaling can be induced or amplified in the presence or absence of TLR activation.
Collapse
|
37
|
Arnemo M, Kavaliauskis A, Andresen AMS, Bou M, Berge GM, Ruyter B, Gjøen T. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1065-1080. [PMID: 28280951 DOI: 10.1007/s10695-017-0353-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.
Collapse
Affiliation(s)
- Marianne Arnemo
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | - Arturas Kavaliauskis
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | | | - Marta Bou
- Nofima, P. O. Box 210, 1431, Ås, Norway
| | | | | | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
38
|
Recombinant heat shock protein 78 enhances enterovirus 71 propagation in Vero cells and is induced in SK-N-SH cells during the infection. Arch Virol 2017; 162:1649-1660. [DOI: 10.1007/s00705-017-3287-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/04/2017] [Indexed: 12/23/2022]
|
39
|
Wang L, Mei M, Qin A, Ye J, Qian K, Shao H. Membrane-associated GRP78 helps subgroup J avian leucosis virus enter cells. Vet Res 2016; 47:92. [PMID: 27599847 PMCID: PMC5011807 DOI: 10.1186/s13567-016-0373-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023] Open
Abstract
We previously identified chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus avian leucosis virus subgroup J (ALV-J), using a DF1 cell line expressing the viral envelope (env) protein. To further probe whether other proteins participate in virus infection, we investigated several host proteins from co-immunoprecipitation with the DF1 cell line expressing viral env. Mass spectrometry analysis indicates that the chicken glucose-regulation protein 78 (chGRP78) of the DF1 membrane interacted with the ALV-J env protein. The results revealed that antibodies or siRNA to chGRP78 significantly inhibited ALV-J infection and replication, and over-expression of chGRP78 enabled the entry of ALV-J into non-susceptible cells. Taken together, these results are the first to report that chGRP78 functions to help ALV-J enter cells.
Collapse
Affiliation(s)
- Lin Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Mei Mei
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Key Lab of Zoonosis, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, 225009, China
| |
Collapse
|