1
|
Liu J, Li J, Jin X, Ren J, Li R, Zhang J, Gao Y, Wang X, Wang G. Association between base excess and mortality in critically ill patients with ischemic stroke: a retrospective cohort study. BMC Neurol 2024; 24:351. [PMID: 39294569 PMCID: PMC11409610 DOI: 10.1186/s12883-024-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/15/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Base excess (BE) is associated with mortality from many diseases. However, the relationship between BE and mortality in patients with ischemic stroke remains uncertain. Our aim is to investigate the relationship between BE values upon admission to the ICU and mortality rates in critically ill stroke patients. METHODS The current study enrolled 1,572 patients with ischemic stroke (863 males and 709 females). The associations of BE with intensive care unit (ICU), hospital, 28-day, and 1-year mortalities were assessed using multivariable logistic regression or Cox proportional hazards model. The potential impact of the Sequential Organ Failure Assessment (SOFA) score (< 5 or ≥ 5) on the prognostic value of BE was further evaluated with interaction and subgroup analyses. RESULTS BE values less than - 3 mmol/L, greater than 3 mmol/L, and within - 3 to 3 mmol/L (normal BE) were observed in 316 (20.1%), 175 (11.1%), and 1,081 (68.8%) patients, respectively. The restricted cubic splines analyses revealed that a U-shaped curve between BE and the mortality risk. Multivariable analysis indicated that patients with low BE (<-3 mmol/L) had higher rates of ICU mortality (odds ratio [OR], 1.829; 95% confidence interval [CI], 1.281-2.612; P = 0.001), hospital mortality (OR, 1.484; 95% CI, 1.077-2.045; P = 0.016), 28-day mortality (hazard ratio [HR], 1.522; 95% CI, 1.200-1.929; P = 0.001), and 1-year mortality (HR, 1.399; 95% CI, 1.148-1.705; P = 0.001) than patients with normal BE. Subgroup analyses showed consistent results pertaining to SOFA scores ≥ 5. CONCLUSIONS In critically ill patients with ischemic stroke, an initial BE of <-3 mmol/L at ICU admission may indicate an increased risk of ICU, hospital, 28-day, and 1-year mortalities.
Collapse
Affiliation(s)
- Jueheng Liu
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuting Jin
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiajia Ren
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Zhang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China.
| |
Collapse
|
2
|
Sun Y, Zhang GB, Li S, Liu XY, Chen L, Bao PJ. Identification and analgesic activity study of analgesic protein Ⅶ-2 from Naja naja atra venom. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230099. [PMID: 39280840 PMCID: PMC11398835 DOI: 10.1590/1678-9199-jvatitd-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/04/2024] [Indexed: 09/18/2024] Open
Abstract
Background Acid-sensing ion channel 1a (ASIC1a) plays a critical role in physiological and pathological processes. To further elucidate the biological functions of ASICs and their relationships with disease occurrence and development, it is advantageous to investigate and develop additional regulatory factors for ASICs. Methods In this study, cation exchange chromatography was used to separate seven chromatographic components from Naja naja atra venom. Capillary electrophoresis was employed to detect that Ⅶ peak component containing a main protein Ⅶ-2, which could bind to ASIC1a. The analgesic effects of Ⅶ-2 protein were determined using hot plate methods, and ASIC1a expression in spinal cord tissue from rats with inflammatory pain was detected using western blot. Results The purified Ⅶ-2 protein named Naja naja atra venom-Ⅶ-2 (NNAV-Ⅶ-2) was obtained by Sephadex G-50 gel filtration, which exhibited a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of 6.7 kD. Remarkably, the NNAV-Ⅶ-2 protein demonstrated a significant analgesic effect and downregulated ASIC1a expression in the spinal cord tissue of rats with inflammatory pain. Conclusions The analgesic mechanism of the NNAV-Ⅶ-2 protein may be associated with its binding to ASIC1a, consequently downregulating ASIC1a expression in neural tissues.
Collapse
Affiliation(s)
- Yao Sun
- Department of Pathophysiology, Institute of Snake Venom, Wannan Medical College, Wuhu, China
| | - Gen-Bao Zhang
- Department of Pathophysiology, Institute of Snake Venom, Wannan Medical College, Wuhu, China
| | - Shu Li
- Department of Pathophysiology, Institute of Snake Venom, Wannan Medical College, Wuhu, China
| | - Xiao-Yu Liu
- School of Anesthesiology, Wannan Medical College, Wuhu, China
| | - Lei Chen
- School of Anesthesiology, Wannan Medical College, Wuhu, China
| | - Peng-Ju Bao
- Department of Physiology, Institute of Snake Venom, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Yamada A, Ling J, Yamada AI, Furue H, Gu JG. ASICs mediate fast excitatory synaptic transmission for tactile discrimination. Neuron 2024; 112:1286-1301.e8. [PMID: 38359825 PMCID: PMC11031316 DOI: 10.1016/j.neuron.2024.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Tactile discrimination, the ability to differentiate objects' physical properties such as texture, shape, and edges, is essential for environmental exploration, social interaction, and early childhood development. This ability heavily relies on Merkel cell-neurite complexes (MNCs), the tactile end-organs enriched in the fingertips of humans and the whisker hair follicles of non-primate mammals. Although recent studies have advanced our knowledge on mechanical transduction in MNCs, it remains unknown how tactile signals are encoded at MNCs. Here, using rodent whisker hair follicles, we show that tactile signals are encoded at MNCs as fast excitatory synaptic transmission. This synaptic transmission is mediated by acid-sensing ion channels (ASICs) located on the neurites of MNCs, with protons as the principal transmitters. Pharmacological inhibition or genetic deletion of ASICs diminishes the tactile encoding at MNCs and impairs tactile discrimination in animals. Together, ASICs are required for tactile encoding at MNCs to enable tactile discrimination in mammals.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ayaka I Yamada
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Gründer S, Vanek J, Pissas KP. Acid-sensing ion channels and downstream signalling in cancer cells: is there a mechanistic link? Pflugers Arch 2024; 476:659-672. [PMID: 38175291 PMCID: PMC11006730 DOI: 10.1007/s00424-023-02902-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jakob Vanek
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | |
Collapse
|
5
|
Motawi TK, Sadik NAH, Shaker OG, Ghaleb MMH, Elbaz EM. Expression, Functional Polymorphism, and Diagnostic Values of MIAT rs2331291 and H19 rs217727 Long Non-Coding RNAs in Cerebral Ischemic Stroke Egyptian Patients. Int J Mol Sci 2024; 25:842. [PMID: 38255915 PMCID: PMC10815378 DOI: 10.3390/ijms25020842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral ischemic stroke (CIS) is a severe cerebral vascular event. This research aimed to evaluate the role of single-nucleotide polymorphisms (SNPs) of the lncRNAs MIAT rs2331291 and H19 rs217727 and epigenetic methylation in the expression patterns of serum lncRNA H19 in CIS Egyptian patients. It included 80 CIS cases and 40 healthy subjects. Serum MIAT expression levels decreased, whereas serum H19 expression levels increased among CIS compared to controls. For MIAT rs2331291, there were significant differences in the genotypic and allelic frequencies between the CIS and healthy subjects at p = 0.02 and p = 0.0001, respectively. Our findings illustrated a significantly increased MIAT T/T genotype frequency in hypertensive CIS compared to non-hypertensive CIS at p = 0.004. However, H19 rs217727 gene frequency C/C was not significantly higher in non-hypertensive CIS than in hypertensive CIS. The methylation of the H19 gene promoter was significantly higher in CIS patients compared to healthy subjects. The level of MIAT was positively correlated with serum H19 in CIS. Receiver operating characteristics (ROC) analysis revealed that serum MIAT and H19 have a high diagnostic potential for distinguishing CIS subjects from healthy ones. In conclusion, the MIAT-rs2331291 polymorphism might serve as a novel potential indicator of CIS.
Collapse
Affiliation(s)
- Tarek K. Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | | | - Eman M. Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Xue D, Wei C, Zhou Y, Wang K, Zhou Y, Chen C, Li Y, Sheng L, Lu B, Zhu Z, Cai W, Ning X, Li S, Qi T, Pi J, Lin S, Yan G, Huang Y, Yin W. TRIOL Inhibits Rapid Intracellular Acidification and Cerebral Ischemic Injury: The Role of Glutamate in Neuronal Metabolic Reprogramming. ACS Chem Neurosci 2022; 13:2110-2121. [PMID: 35770894 DOI: 10.1021/acschemneuro.2c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As one of the key injury incidents, tissue acidosis in the brain occurs very quickly within several minutes upon the onset of ischemic stroke. Glutamate, an excitatory amino acid inducing neuronal excitotoxicity, has been reported to trigger the decrease in neuronal intracellular pH (pHi) via modulating proton-related membrane transporters. However, there remains a lack of clarity on the possible role of glutamate in neuronal acidosis via regulating metabolism. Here, we show that 200 μM glutamate treatment quickly promotes glycolysis and inhibits mitochondrial oxidative phosphorylation of primary cultured neurons within 15 min, leading to significant cytosolic lactate accumulation, which contributes to the rapid intracellular acidification and neuronal injury. The reprogramming of neuronal metabolism by glutamate is dependent on adenosine monophosphate-activated protein kinase (AMPK) signaling since the inhibition of AMPK activation by its selective inhibitor compound C significantly reverses these deleterious events in vitro. Moreover, 5α-androst-3β,5α,6β-TRIOL (TRIOL), a neuroprotectant we previously reported, can also remarkably reverse intracellular acidification and alleviate neuronal injury through the inhibition of AMPK signaling. Furthermore, TRIOL remarkably reduced the infarct volume and attenuated neurologic impairment in acute ischemic stroke models of middle cerebral artery occlusion in vivo. In summary, we reveal a novel role of glutamate in rapid intracellular acidification injury resulting from glutamate-induced lactate accumulation through AMPK-mediated neuronal reprogramming. Moreover, inhibition of the quick drop in neuronal pHi by TRIOL significantly reduces the cerebral damages, suggesting that it is a promising drug candidate for ischemic stroke.
Collapse
Affiliation(s)
- DongDong Xue
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - CaiLv Wei
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - YueHan Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kai Wang
- University College London, London WC1E 6BT, U.K
| | - YuWei Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chen Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - LongXiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - BingZheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Cai
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - XinPeng Ning
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - ShengLong Li
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - TianYu Qi
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - JiaKai Pi
- Guangzhou Foreign Language School, Guangzhou 511400, China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou 510663, China
| | - GuangMei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - YiJun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Yin
- Department of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Alasmari F, Sari DB, Alhaddad H, Al-Rejaie SS, Sari Y. Interactive role of acid sensing ion channels and glutamatergic system in opioid dependence. Neurosci Biobehav Rev 2022; 135:104581. [PMID: 35181397 DOI: 10.1016/j.neubiorev.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation in glutamatergic receptors and transporters has been found to mediate drugs of abuse, including morphine. Among glutamate receptors, ionotropic glutamate receptors (iGluRs) are altered with exposure to drugs of abuse. Acid-sensing ion channels (ASICs) are ligand (H+)-gated channels, which are expressed at the excitatory synaptic clefts and play a role in drug dependence. Overexpression of a specific ASIC subtype, ASIC1a, attenuated reinstatement of cocaine. ASICs are revealed to be involved in cocaine and morphine seeking behaviors, and these effects are mediated through modulation of glutamatergic receptors. In this review, we discussed the interactive role of ASICs and glutamate receptors, mainly iGluRs, in opioid dependence. ASICs are also expressed in astrocytes and are suggested to be involved on regulating glutamate uptake. However, little is known about the coupling between ASICs and the astroglial glutamate transporters. In addition, this review discussed the role of nitric oxide in the modulation of ASIC function and potentially opioid dependence. We also discussed the role of ASICs in the modulation of the function of both glutamatergic receptors in post-synaptic neurons and glutamatergic transporters in astrocytes in animals exposed to drugs of abuse.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Deen B Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
8
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
William M, Singh S, Chu XP. Commentary: Large Acid-Evoked Currents, Mediated by ASIC1a, Accompany Differentiation in Human Dopaminergic Neurons. Front Cell Neurosci 2021; 15:789354. [PMID: 34880731 PMCID: PMC8646021 DOI: 10.3389/fncel.2021.789354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Matthew William
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Som Singh
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
10
|
Emerging immune and cell death mechanisms in stroke: Saponins as therapeutic candidates. Brain Behav Immun Health 2021; 9:100152. [PMID: 34589895 PMCID: PMC8474497 DOI: 10.1016/j.bbih.2020.100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The complexity of the ischemic cascade is based on the integrated crosstalk of every cell type in the neurovascular unit. Depending on the features of the ischemic insult, several cell death mechanisms are triggered, such as apoptosis, necroptosis, ferroptosis/oxytosis, ETosis or pyroptosis, leading to reactive astrogliosis. However, emerging evidence demonstrates a dual role for the immune system in stroke pathophysiology, where it exerts both detrimental and also beneficial functions. In this review, we discuss the relevance of several cell death modalities and the dual role of the immune system in stroke pathophysiology. We also provide an overview of some emerging immunomodulatory therapeutic strategies, amongst which saponins, which are promising candidates that exert multiple pharmacological effects. Several cell death mechanisms coexist in stroke pathophysiology. Neurons are more vulnerable to necroptosis than glial cells. Inhibitors of receptor-interacting protein kinases and of ferroptosis induce neuroprotection. Saponins exert modulatory effects on inflammation and neuronal cell death in stroke.
Collapse
|
11
|
Gornati D, Ciccone R, Vinciguerra A, Ippati S, Pannaccione A, Petrozziello T, Pizzi E, Hassan A, Colombo E, Barbini S, Milani M, Caccavone C, Randazzo P, Muzio L, Annunziato L, Menegon A, Secondo A, Mastrangelo E, Pignataro G, Seneci P. Synthesis and Characterization of Novel Mono- and Bis-Guanyl Hydrazones as Potent and Selective ASIC1 Inhibitors Able to Reduce Brain Ischemic Insult. J Med Chem 2021; 64:8333-8353. [PMID: 34097384 DOI: 10.1021/acs.jmedchem.1c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acid-sensitive ion channels (ASICs) are sodium channels partially permeable to Ca2+ ions, listed among putative targets in central nervous system (CNS) diseases in which a pH modification occurs. We targeted novel compounds able to modulate ASIC1 and to reduce the progression of ischemic brain injury. We rationally designed and synthesized several diminazene-inspired diaryl mono- and bis-guanyl hydrazones. A correlation between their predicted docking affinities for the acidic pocket (AcP site) in chicken ASIC1 and their inhibition of homo- and heteromeric hASIC1 channels in HEK-293 cells was found. Their activity on murine ASIC1a currents and their selectivity vs mASIC2a were assessed in engineered CHO-K1 cells, highlighting a limited isoform selectivity. Neuroprotective effects were confirmed in vitro, on primary rat cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation, and in vivo, in ischemic mice. Early lead 3b, showing a good selectivity for hASIC1 in human neurons, was neuroprotective against focal ischemia induced in mice.
Collapse
Affiliation(s)
- Davide Gornati
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Stefania Ippati
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Erika Pizzi
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Amal Hassan
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Eleonora Colombo
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Stefano Barbini
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Mario Milani
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Cecilia Caccavone
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | | | - Luca Muzio
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | | | - Andrea Menegon
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Eloise Mastrangelo
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
12
|
Cheng S, Mao X, Lin X, Wehn A, Hu S, Mamrak U, Khalin I, Wostrack M, Ringel F, Plesnila N, Terpolilli NA. Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1572-1584. [PMID: 33779289 DOI: 10.1089/neu.2020.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.
Collapse
Affiliation(s)
- Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiangjiang Lin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
13
|
Qian X, Zhang Y, Tao J, Niu R, Song S, Wang C, Peng X, Chen F. Acidosis induces synovial fibroblasts to release vascular endothelial growth factor via acid-sensitive ion channel 1a. J Transl Med 2021; 101:280-291. [PMID: 32826932 DOI: 10.1038/s41374-020-0423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
Acid-sensitive ion channel 1a (ASIC1a) is a member of the extracellular H+ activated cation channel family. Studies have shown that tissue acidification contributes to the formation of microvessels in rheumatoid arthritis (RA) synovial tissue, but its underlying mechanisms remain unclear. The purpose of this study was to investigate the role of tissue acidification in microvascular formation of arthritic synovial tissue and the effect of ASIC1a on vascular endothelial growth factor (VEGF) release from arthritic synovial tissue. Our results indicate that ASIC1a expression, VEGF expression, and microvessel density (MVD) are elevated in RA synovial tissue and adjuvant arthritis (AA) rat synovial tissue. When AA rats were treated with ASIC1a-specific blocker psalmotoxin-1 (PcTx-1), the expression of ASIC1a, VEGF expression, and MVD were all reduced. Acidification of RA synovial fibroblasts (RASF) can promote the release of VEGF. PcTx-1 and ASIC1a-short hairpin RNA can inhibit acid-induced release of VEGF. In addition, the ASIC1a overexpression vector can promote acid-induced VEGF release. This indicates that extracellular acidification induces the release of VEGF by RASF via ASIC1a. These findings suggest that blocking ASIC1a mediates the release of VEGF from synoviocytes may provide a potential therapeutic strategy for RA therapy.
Collapse
Affiliation(s)
- Xuewen Qian
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yihao Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Jingjing Tao
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Ruowen Niu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Sujing Song
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Cong Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Xiaoqing Peng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
14
|
Xu Y, Chen F. Factors and Molecular Mechanisms Influencing the Protein Synthesis, Degradation and Membrane Trafficking of ASIC1a. Front Cell Dev Biol 2020; 8:596304. [PMID: 33195276 PMCID: PMC7644914 DOI: 10.3389/fcell.2020.596304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are members of the degenerin/epithelial sodium channel superfamily. They are extracellular pH sensors that are activated by protons. Among all ASICs, ASIC1a is one of the most intensively studied isoforms because of its unique ability to be permeable to Ca2+. In addition, it is considered to contribute to various pathophysiological conditions. As a membrane proton receptor, the number of ASIC1a present on the cell surface determines its physiological and pathological functions, and this number partially depends on protein synthesis, degradation, and membrane trafficking processes. Recently, several studies have shown that various factors affect these processes. Therefore, this review elucidated the major factors and underlying molecular mechanisms affecting ASIC1a protein expression and membrane trafficking.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
15
|
Protein Kinase C Regulates ASIC1a Protein Expression and Channel Function via NF-kB Signaling Pathway. Mol Neurobiol 2020; 57:4754-4766. [PMID: 32783140 DOI: 10.1007/s12035-020-02056-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Tissue acidosis is a common feature in many pathological conditions. Activation of acid-sensing ion channel 1a (ASIC1a) plays a key role in acidosis-mediated neurotoxicity. Protein kinase C (PKC) activity has been proved to be associated with many physiological processes and pathological conditions; however, whether PKC activation regulates ASIC1a protein expression and channel function remains ill defined. In this study, we demonstrated that treatment with phorbol 12-myristate 13-acetate (PMA, a PKC activator) for 6 h significantly increased ASIC1a protein expression and ASIC currents in NS20Y cells, a neuronal cell line, and in primary cultured mouse cortical neurons. In contrast, treatment with Calphostin C (a nonselective PKC inhibitor) for 6 h or longer decreased ASIC1a protein expression and ASIC currents. Similar to Calphostin C, PKC α and βI inhibitor Go6976 exposure also reduced ASIC1a protein expression. The reduction in ASIC1a protein expression by PKC inhibition involves a change in ASIC1a protein degradation, which is mediated by ubiquitin-proteasome system (UPS)-dependent degradation pathway. In addition, we showed that PKC regulation of ASIC1a protein expression involves NF-κB signaling pathway. Consistent with their effects on ASIC1a protein expression and channel function, PKC inhibition protected NS20Y cells against acidosis-induced cytotoxicity, while PKC activation potentiated acidosis-induced cells injury. Together, these results indicate that ASIC1a protein expression and channel function are closely regulated by the activity of protein kinase C and its downstream signaling pathway(s).
Collapse
|
16
|
Liu S, Chen R. [Acid-sensing ion channels differentially affect ictal-like and non-ictal-like epileptic activities of mouse hippocampal pyramidal neurons in acidotic extracellular pH]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:972-980. [PMID: 32895149 DOI: 10.12122/j.issn.1673-4254.2020.07.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of acid-sensing ion channels (ASICs) on electrophysiological epileptic activities of mouse hippocampal pyramidal neurons in the extracellular acidotic condition. METHODS We investigated effects of extracellular acidosis on epileptic activities induced by elevated extracellular K + concentration or the application of an antagonist of GABAA receptors in perfusate of mouse hippocampal slices under field potential recordings. We also tested the effects of extracellular acidosis on neuronal excitability under field potential recording and evaluated the changes in epileptic activities of the neurons in response to pharmacological inhibition of ASICs using a specific inhibitor of ASICs. RESULTS Extracellular acidosis significantly suppressed epileptic activities of the hippocampal neurons by converting ictal-like epileptic activities to non-ictal-like epileptic activities in both high [K +]o and disinhibition models, and also suppressed the intrinsic excitability of the neurons. ASICs inhibitor did not antagonize the inhibitory effect of extracellular acidosis on ictal epileptic activities and intrinsic neuronal excitability, but exacerbated non-ictal epileptic activities of the neurons in extracellular acidotic condition in both high [K+]o and disinhibition models. CONCLUSIONS ASICs can differentially modulate ictal-like and non-ictallike epileptic activities via its direct actions on excitatory neurons.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Mechanical Reperfusion Following Prolonged Global Cerebral Ischemia Attenuates Brain Injury. J Cardiovasc Transl Res 2020; 14:338-347. [PMID: 32681452 PMCID: PMC8043930 DOI: 10.1007/s12265-020-10058-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 11/21/2022]
Abstract
Previous experiments demonstrated improved outcome following prolonged cerebral ischemia given controlled brain reperfusion using extracorporeal circulation. The current study further investigates this. Young adult pigs were exposed to 30 min of global normothermic cerebral ischemia, achieved through intrathoracic clamping of cerebral arteries, followed by 20 min of isolated mechanical brain reperfusion. Leukocyte-filtered blood was delivered by a roller-pump at fixed pressure and flow. One experimental group additionally had a custom-made buffer solution delivered at 1:8 ratio with the blood. Hemodynamics including intracranial pressure were monitored. Blood gases were from peripheral arteries and the sagittal sinus, and intraparenchymal brain microdialysis was performed. The brains were examined by a neuropathologist. The group with the added buffer showed lower intracranial pressure as well as decreased intraparenchymal glycerol and less signs of excitotoxicity and ischemia, although histology revealed similar degrees of injury. A customized mechanical reperfusion improves multiple parameters after prolonged normothermic global cerebral ischemia. The current study investigates if it possible to improve neurological outcomes following prolonged global brain ischemia. The results indicate that a customized mechanical reperfusion protocol can attenuate neurological injury. ![]()
Collapse
|
18
|
Sakuta H, Lin CH, Hiyama TY, Matsuda T, Yamaguchi K, Shigenobu S, Kobayashi K, Noda M. SLC9A4 in the organum vasculosum of the lamina terminalis is a [Na+] sensor for the control of water intake. Pflugers Arch 2020; 472:609-624. [DOI: 10.1007/s00424-020-02389-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
|
19
|
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:90. [PMID: 32390802 PMCID: PMC7194075 DOI: 10.3389/fncel.2020.00090] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is a phenomenon that describes the toxic actions of excitatory neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the loss of neuronal function and cell death. In this process, the shift between normal physiological function and excitotoxicity is largely controlled by astrocytes since they can control the levels of glutamate on the synaptic cleft. This control is achieved through glutamate clearance from the synaptic cleft and its underlying recycling through the glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors (NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage, and oxidative stress. Regardless, it is known that the excessive activation of NMDAR results in the sustained influx of calcium into neurons and leads to several deleterious consequences, including mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, impairment of calcium buffering, the release of pro-apoptotic factors, among others, that inevitably contribute to neuronal loss. A large body of evidence implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and epilepsy. In this review article, we explore different causes and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated excitotoxicity and its downstream effects on several neurodegenerative disorders, and identify possible strategies to study new aspects of these diseases that may lead to the discovery of new therapeutic approaches. With the understanding that excitotoxicity is a common denominator in neurodegenerative diseases and other disorders, a new perspective on therapy can be considered, where the targets are not specific symptoms, but the underlying cellular phenomena of the disease.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Joana I. Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K. Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P. Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sandra H. Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul 2020; 13:881-890. [PMID: 32289721 DOI: 10.1016/j.brs.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intracellular acidosis in the ischemic penumbra can contribute to further cell death, effectively enlarging the infarct core. Restoring the acid-base balance may enhance tissue survivability after cerebral ischemia. OBJECTIVE This study investigated whether translocating protons out of penumbral neurons could mitigate tissue acidification and induce neuroprotection in a rodent model of acute cerebral ischemia. METHODS We modulated the penumbral neurons via a light-driven pump to translocate protons out (i.e., archaerhodopsin/ArchT group) or into (i.e., channelrhodopsin-2/ChR2 group) neurons after focal cerebral ischemia in rats. Intracellular pH values were imaged via neutral red (NR) fluorescence and cerebral blood flow (CBF) was monitored through laser speckle contrast imaging (LSCI). Global CBF responses to electrical stimulation of the hindlimbs were obtained 24 h and 48 h after ischemia to assess neurological function. Behavioral and histological outcomes were evaluated 48 h after ischemia. A control group without gene modification was included. RESULTS The reduction of relative pH (RpH), the amplitude of negative peak of hypoemic response (RNP) and the hemispheric lateralization index (LI) in ArchT group were significantly less than those of the ChR2 or control group. Moreover, RpH was strongly correlated with RNP (r = 0.60) and LI (r24h = 0.80, r48h = 0.59). In addition, behavioral and histological results supported a neuroprotective effect of countering neuronal acidosis in penumbra through optogenetic stimulation. CONCLUSION(S) These results indicate that countering intracellular acidosis by optogenetically translocating protons out of penumbral neurons during the acute ischemic stage could induce protection after ischemic brain injury.
Collapse
|
21
|
Zhang RJ, Yin YF, Xie XJ, Gu HF. Acid-sensing ion channels: Linking extracellular acidification with atherosclerosis. Clin Chim Acta 2019; 502:183-190. [PMID: 31901478 DOI: 10.1016/j.cca.2019.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 01/02/2023]
Abstract
Extracellular acidification in atherosclerosis-prone regions of arterial walls is considered pro-atherosclerotic by exerting detrimental effect on macrophages, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Acid-sensing ion channels (ASICs), a family of extracellular H+ (proton)-gated cation channels, are present extensively in the nervous system and other tissues, implying physiologic as well as pathophysiologic importance. Aberrant activation of ASICs is thought to be associated in EC dysfunction, macrophage phenotypic switch, and VSMC migration and proliferation. Although in vitro evidence acknowledges the contribution of ASIC activation in atherosclerosis, no direct evidence confirms their pro-atherosclerotic roles in vivo. In this review, the effect of extracellular acidity on three major contributors, ECs, macrophages, and VSMCs, is discussed focusing on the potential roles of ASICs in atherosclerotic development and underlying pathology. A more comprehensive understanding of ASICs in these processes may provide promising new therapeutic targets for treatment and prevention of atherosclerotic diseases.
Collapse
Affiliation(s)
- Rong-Jie Zhang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, People's Republic of China
| | - Yu-Fang Yin
- Department of Neuroscience and Pharmacology, School of Medicine, Southern Illinois University Springfield, Illinois, United States
| | - Xue-Jiao Xie
- Department of Zhongjing' Theory, College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, People's Republic of China.
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, People's Republic of China.
| |
Collapse
|
22
|
Zhou R, Leng T, Yang T, Chen F, Hu W, Xiong ZG. β-Estradiol Protects Against Acidosis-Mediated and Ischemic Neuronal Injury by Promoting ASIC1a (Acid-Sensing Ion Channel 1a) Protein Degradation. Stroke 2019; 50:2902-2911. [PMID: 31412757 PMCID: PMC6756944 DOI: 10.1161/strokeaha.119.025940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023]
Abstract
Background and Purpose- Sex differences in the incidence and outcome of stroke have been well documented. The severity of stroke in women is, in general, significantly lower than that in men, which is mediated, at least in part, by the protective effects of β-estradiol. However, the detailed mechanisms underlying the neuroprotection by β-estradiol are still elusive. Recent studies have demonstrated that activation of ASIC1a (acid-sensing ion channel 1a) by tissue acidosis, a common feature of brain ischemia, plays an important role in ischemic brain injury. In the present study, we assessed the effects of β-estradiol on acidosis-mediated and ischemic neuronal injury both in vitro and in vivo and explored the involvement of ASIC1a and underlying mechanism. Methods- Cultured neurons and NS20Y cells were subjected to acidosis-mediated injury in vitro. Cell viability and cytotoxicity were measured by methylthiazolyldiphenyl-tetrazolium bromide and lactate dehydrogenase assays, respectively. Transient (60 minutes) focal ischemia in mice was induced by suture occlusion of the middle cerebral artery in vivo. ASIC currents were recorded using whole-cell patch-clamp technique while intracellular Ca2+ concentration was measured with fluorescence imaging using Fura-2. ASIC1a expression was detected by Western blotting and quantitative real-time polymerase chain reaction. Results- Treatment of neuronal cells with β-estradiol decreased acidosis-induced cytotoxicity. ASIC currents and acid-induced elevation of intracellular Ca2+ were all attenuated by β-estradiol treatment. In addition, we showed that β-estradiol treatment reduced ASIC1a protein expression, which was mediated by increased protein degradation, and that estrogen receptor α was involved. Finally, we showed that the level of ASIC1a protein expression in brain tissues and the degree of neuroprotection by ASIC1a blockade were lower in female mice, which could be attenuated by ovariectomy. Conclusions- β-estradiol can protect neurons against acidosis-mediated neurotoxicity and ischemic brain injury by suppressing ASIC1a protein expression and channel function. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Renpeng Zhou
- From the Department of Pharmacology, the Second Hospital of Anhui Medical University, China (R.Z., W.H.)
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Tiandong Leng
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Tao Yang
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Feihu Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, China (F.C.)
| | - Wei Hu
- From the Department of Pharmacology, the Second Hospital of Anhui Medical University, China (R.Z., W.H.)
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| |
Collapse
|
23
|
Rauf A, Imran M, Abu-Izneid T, Iahtisham-Ul-Haq, Patel S, Pan X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA. Proanthocyanidins: A comprehensive review. Biomed Pharmacother 2019; 116:108999. [PMID: 31146109 DOI: 10.1016/j.biopha.2019.108999] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins are condensed tannins with various pharmacological properties. These phytochemicals are considered as 'offense and defense molecules because of their human health benefits. The validation of their diverse health aspects, namely, antioxidant, anticancer, antidiabetic, neuroprotective, and antimicrobial has earned them repute in thermochemistry. Proanthocyanidins are oligo- or polymers of monomeric flavan-3-ols produced as an end product of flavonoid biosynthetic pathway. Agricultural wastes and food processing wastes contain immense amount of proanthocyanidins, exploitation of which can be a sustainable source of dietary supplements and functional ingredients. The current review article discusses recent developments in the health promoting properties of proanthocyanidins and the associated hurdles.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan
| | - Muhammad Imran
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain Campus, UAE
| | - Iahtisham-Ul-Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA
| | - Xiandao Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Saima Naz
- Department of Biotechnology, Woman University Mardan, Mardan, KPK, Pakistan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research, 4485-655, Vila do Conde, Portugal
| | - Farhan Saeed
- Department of Food Science, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
24
|
Song N, Lu Z, Zhang J, Shi Y, Ning Y, Chen J, Jin S, Shen B, Fang Y, Zou J, Teng J, Chu XP, Shen L, Ding X. Acid-sensing ion channel 1a is involved in ischaemia/reperfusion induced kidney injury by increasing renal epithelia cell apoptosis. J Cell Mol Med 2019; 23:3429-3440. [PMID: 30793492 PMCID: PMC6484315 DOI: 10.1111/jcmm.14238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Acidic microenvironment is commonly observed in ischaemic tissue. In the kidney, extracellular pH dropped from 7.4 to 6.5 within 10 minutes initiation of ischaemia. Acid‐sensing ion channels (ASICs) can be activated by pH drops from 7.4 to 7.0 or lower and permeates to Ca2+entrance. Thus, activation of ASIC1a can mediate the intracellular Ca2+ accumulation and play crucial roles in apoptosis of cells. However, the role of ASICs in renal ischaemic injury is unclear. The aim of the present study was to test the hypothesis that ischaemia increases renal epithelia cell apoptosis through ASIC1a‐mediated calcium entry. The results show that ASIC1a distributed in the proximal tubule with higher level in the renal tubule ischaemic injury both in vivo and in vitro. In vivo, Injection of ASIC1a inhibitor PcTx‐1 previous to ischaemia/reperfusion (I/R) operation attenuated renal ischaemic injury. In vitro, HK‐2 cells were pre‐treated with PcTx‐1 before hypoxia, the intracellular concentration of Ca2+, mitochondrial transmembrane potential (∆ψm) and apoptosis was measured. Blocking ASIC1a attenuated I/R induced Ca2+ overflow, loss of ∆ψm and apoptosis in HK‐2 cells. The results revealed that ASIC1a localized in the proximal tubular and contributed to I/R induced kidney injury. Consequently, targeting the ASIC1a may prove to be a novel strategy for AKI patients.
Collapse
Affiliation(s)
- Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Zhihui Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri -Kansas City, Missouri
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
25
|
Hong A, Aguilar MI, Del Borgo MP, Sobey CG, Broughton BRS, Forsythe JS. Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. J Mater Chem B 2019. [DOI: 10.1039/c9tb00257j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischaemic stroke remains one of the leading causes of death and disability worldwide, without any long-term effective treatments targeted at regeneration. This has led to developments of novel, biomaterial-based strategies using self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Andrew Hong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group
- Department of Physiology
- Anatomy and Microbiology
- La Trobe University
- Bundoora
| | - Brad R. S. Broughton
- Cardiovascular & Pulmonary Pharmacology Group
- Biomedicine Discovery Institute and Department of Pharmacology
- Monash University
- Clayton
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
26
|
Patel S, Sangeeta S. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:91-100. [PMID: 30411285 DOI: 10.1007/s11356-018-3642-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The need to maximize agricultural productivity has made pesticides an indispensable part of current times. Farmers are unaware of the lurking consequences of the pesticide exposure, which endanger their health. It also puts the unsuspecting consumers in peril. The pesticides (from organophosphates, organochlorine, and carbamate class) disrupt the immune and hormonal signaling, causing recurrent inflammation, which leads to a wide array pathologies, including teratogenicity. Numerous farmers have fallen victim to neural disorders-driven suicides and lungs, prostate/breast cancer-caused untimely deaths. Green revolution which significantly escalated agricultural productivity is backfiring now. It is high time that environmental and agricultural authorities act to restrain the excessive usage of the detrimental chemicals and educate farmers regarding the crisis. This review discusses the biological mechanisms of pesticide-driven pathogenesis (such as the activation or inhibition of caspase, serine protease, acetylcholinesterase) and presents the pesticide-exposure-caused health deterioration in USA, India, and Africa. This holistic and critical review should be an eye-opener for general public, and a guide for researchers.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.
| | - Sushree Sangeeta
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
27
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
28
|
Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother 2018; 105:526-532. [PMID: 29885636 PMCID: PMC7172164 DOI: 10.1016/j.biopha.2018.05.148] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA,Corresponding author.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran,Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23, Uppsala, Sweden,Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH, Stockholm, Sweden
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
29
|
Zhou RP, Leng TD, Yang T, Chen FH, Xiong ZG. Acute Ethanol Exposure Promotes Autophagy-Lysosome Pathway-Dependent ASIC1a Protein Degradation and Protects Against Acidosis-Induced Neurotoxicity. Mol Neurobiol 2018; 56:3326-3340. [PMID: 30120732 DOI: 10.1007/s12035-018-1289-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Tissue acidosis is a common feature of brain ischemia which causes neuronal injury. Activation of acid-sensing ion channel 1a (ASIC1a) plays an important role in acidosis-mediated neurotoxicity. Acute ethanol administration has been shown to provide neuroprotective effects during ischemic stroke, but the precise mechanisms have yet to be determined. In this study, we investigated the effect of ethanol on the activity/expression of ASIC1a channels and acidosis-induced neurotoxicity. We showed that acute treatment of neuronal cells with ethanol for more than 3 h could reduce ASIC1a protein expression, ASIC currents, and acid-induced [Ca2+]i elevation. We further demonstrated that ethanol-induced reduction of ASIC1a expression is mediated by autophagy-lysosome pathway (ALP)-dependent protein degradation. Finally, we showed that ethanol protected neuronal cells against acidosis-induced cytotoxicity, which effect was mimicked by autophagy activator rapamycin and abolished by autophagy inhibitor CQ. Together, these results indicate that moderate acute ethanol exposure can promote autophagy-lysosome pathway-dependent ASIC1a protein degradation and protect against acidosis-induced neurotoxicity.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Tian-Dong Leng
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Tao Yang
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Zhi-Gang Xiong
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA.
| |
Collapse
|
30
|
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Denmark Hill, London, SE5 9PJ, UK
| | - Eric B Gonzales
- TCU and UNTHSC School of Medicine (applicant for LCME accreditation), Department of Medical Education, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, BSB-14, Richardson, TX, 75080, USA.
| |
Collapse
|
31
|
Tai SH, Lee WT, Lee AC, Lin YW, Hung HY, Huang SY, Wu TS, Lee EJ. Therapeutic window for YC‑1 following glutamate‑induced neuronal damage and transient focal cerebral ischemia. Mol Med Rep 2018; 17:6490-6496. [PMID: 29512783 PMCID: PMC5928635 DOI: 10.3892/mmr.2018.8660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/24/2017] [Indexed: 01/19/2023] Open
Abstract
3-(5′-Hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), has been demonstrated to inhibit platelet aggregation, vascular contraction and hypoxia-inducible factor 1 activity in vitro and in vivo. The present study investigated the neuroprotective efficacy of YC-1 in cultured neurons exposed to glutamate-induced excitotoxicity and in an animal model of stroke. In a cortical neuronal culture model, YC-1 demonstrated neurotoxicity at a concentration >100 µM, and YC-1 (10–30 µM) achieved potent cytoprotection against glutamate-induced neuronal damage. Additionally, YC-1 (30 µM) effectively attenuated the increase in intracellular Ca2+ levels. Delayed treatment of YC-1 (30 µM) also protected against glutamate-induced neuronal damage and cell swelling in cultured neurons, though only at 4 h post-treatment. In addition, immediate treatment of YC-1 (30 µM) following the exposure of cortical neurons to glutamate (300 µM) produced a marked reduction in intracellular pH. Delayed treatment of YC-1 (25 mg/kg) protected against ischemic brain damage in vivo, though only when administered at 3 h post-insult. Thus, YC-1 exhibited neuroprotection against glutamate-induced neuronal damage and in mice subjected to transient focal cerebral ischemia. This neuroprotection may be mediated via its ability to limit the glutamate-induced excitotoxicity. However, the neuroprotective therapeutic window of YC-1 is only at 3 h in vivo and 4 h in vitro, which may, at least in part, be attributed to its ability to reduce the intracellular pH in the early phase of ischemic stroke. Although YC-1 provided the potential for clinical therapy, the treatment time point must be carefully evaluated following ischemia.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Wei-Ting Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Ai-Chiang Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| | - Tian-Shung Wu
- Institute of Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan 70428, Taiwan, R.O.C
| |
Collapse
|
32
|
Patel S, Suleria HA. Ethnic and paleolithic diet: Where do they stand in inflammation alleviation? A discussion. JOURNAL OF ETHNIC FOODS 2017; 4:236-241. [DOI: 10.1016/j.jef.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Luo P, Liu D, Guo L. Protecting Oligodendrocytes by Targeting Non-Glutamate Receptors as a New Therapeutic Strategy for Ischemic Stroke. Pharmacology 2017. [PMID: 28637049 DOI: 10.1159/000477939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ischemic stroke has many devastating effects within the brain. At the cellular level, excitotoxicity has been a popular pharmacological target for therapeutics. To date, many clinical trials have been performed with drugs that target excitatory neurotransmitter receptors, such as NMDA receptor agonists. The results, however, have been lackluster. Most efforts to understand the impacts of excitotoxicity on the brain have focused primarily on neurons, and to a lesser degree, on gliocytes as cellular targets. Recent evidence suggests that oligodendrocytes (OLGs), the myelin-forming cells in the central nervous system, are damaged by ischemia in a manner completely different from that in neurons. Whereas ischemia primarily damages neurons through overactivation of ionotropic glutamate receptors, the ischemia damage in OLGs occurs through overactivation of H+-gated transient receptor potential channels. Given the differential mechanisms of ischemic injury between neurons and OLGs, strategies to target non-glutamate receptors to prevent OLG damage/demyelination deserve greater attention in drug development. Such strategies, combined with neuroprotective measures, could provide an excellent therapeutic avenue for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
34
|
Patel S. Inflammasomes, the cardinal pathology mediators are activated by pathogens, allergens and mutagens: A critical review with focus on NLRP3. Biomed Pharmacother 2017; 92:819-825. [PMID: 28599247 DOI: 10.1016/j.biopha.2017.05.126] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/14/2017] [Accepted: 05/28/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammation is a pivotal defense system of body. Unfortunately, when homeostasis falters, the same inflammatory mechanism acts as a double-edged sword, and turns offensive, paving the path for a broad array of pathologies. A multi-protein complex termed as inflammasome perceives the PAMPs (pathogen associated molecular patterns) and DAMPs (danger associated molecular patterns), executing immune responses. This activation predominantly encompasses the elaboration of effector cytokines IL-1β, IL-18, and the cysteine proteases (caspase 1 and 11). Extensive study on an inflammasome NLRP3 has revealed its role in the onset and progression of pathogenic, metabolic, autoimmune, neural, and geriatric diseases. In this regard, this inflammasome's immune activation mechanisms and inhibition strategies have been discussed. Through this rigorous literature analysis, the superficial diversity between pathogens/allergens and mutagens, and NLRP3 activity towards them has been emphasized. Though there is a scope for inhibition of aberrant inflammasomes, including that of NLRP3, given their complexity and unpredictability, prevention of their activation by lifestyle correction has been suggested.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr., 92182 San Diego, CA USA.
| |
Collapse
|
35
|
Patel S. Stressor-driven extracellular acidosis as tumor inducer via aberrant enzyme activation: A review on the mechanisms and possible prophylaxis. Gene 2017; 626:209-214. [PMID: 28546124 DOI: 10.1016/j.gene.2017.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/09/2017] [Accepted: 05/21/2017] [Indexed: 02/08/2023]
Abstract
When the extracellular pH of human body vacillates in either direction, tissue homeostasis is compromised. Fluctuations in acidity have been linked to a wide variety of pathological conditions, including bone loss, cancer, allergies, and auto-immune diseases. Stress conditions affect oxygen tension, and the resultant hypoxia modulates the expression and/or activity of membrane-tethered transporters/pumps, transcription factors, enzymes and intercellular junctions. These modifications provoke erratic gene expression, aberrant tissue remodeling and oncogenesis. While the physiological optimization of pH in tissues is practically challenging, it is at least theoretically achievable and can be considered as a possible therapy to resolve a broad array of diseases.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 92182 San Diego, CA, USA; Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr San Diego, CA 92182, USA..
| |
Collapse
|
36
|
Yuan LP, Bo Y, Qin Z, Ran H, Li W, Li YF, Ming G. Expression of Acid-Sensing Ion Channels in Renal Tubular Epithelial Cells and Their Role in Patients with Henoch-Schönlein Purpura Nephritis. Med Sci Monit 2017; 23:1916-1922. [PMID: 28428534 PMCID: PMC5408900 DOI: 10.12659/msm.904132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. However, the role of ASICs in kidney diseases remains uncertain. This study investigated ASICs expression in kidney tissues and their role in the development of Henoch-Schönlein purpura nephritis (HSPN). Material/Methods The expression of ASIC subunits was examined by immunochemical techniques in the kidney tissue from HSPN patients. Acid-induced ASICs expression in cultured renal tubular epithelial cells was determined by quantitative RT-PCR analysis. The expression of K7 and K18 protein in renal tubular epithelial cells was used to evaluate acid-induced cell injury. In addition, we observed the effect of blocking ASICs on acid-induced cell injury to assess the role of ASICs in renal tubular epithelial cell injury. Results The results showed that ASIC1, ASIC2, and ASIC3 proteins were obviously expressed in renal tubular cells from HSPN patients. ASIC1 expression and 24-h urine protein level were higher in the pathological grade ISKD III group than in the ISKD II group. ASIC1, ASIC2, and ASIC3 mRNA, and K7 and K18 protein expression in cultured renal tubular epithelial cells were increased when exposed to pH 6.5. K7 and K18 protein expression was closely related to ASIC1 expression, and ASICs blockers reduced K7 and K18 protein expression in tubular epithelial cells. Conclusions These findings suggest ASICs are most highly expressed in renal tubular cells of HSPN patients, which is closely related to renal tubular injury. ASICs might be involved in the development of HSPN.
Collapse
Affiliation(s)
- Li-Ping Yuan
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yan Bo
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, China (mainland)
| | - Zhang Qin
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Hua Ran
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Wang Li
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yu-Fei Li
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Gui Ming
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
37
|
ASIC1a mediates the drug resistance of human hepatocellular carcinoma via the Ca 2+/PI3-kinase/AKT signaling pathway. J Transl Med 2017; 97:53-69. [PMID: 27918554 PMCID: PMC5220138 DOI: 10.1038/labinvest.2016.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is the main treatment method of patients with advanced liver cancer. However, drug resistance is a serious problem in the treatment of hepatocellular carcinoma (HCC). Acid sensing ion channel 1a (ASIC1a) is a H+-gated cation channel; it mediates tumor cell migration and invasion, which suggests that it is involved in the development of malignant tumors. Therefore, we studied the relationship between ASIC1a and drug resistance in human hepatocellular carcinoma. In our study, we found that ASIC1a is highly expressed in human HCC tissue, and that its levels were significantly increased in resistant HCC cells Bel7402/FU and HepG2/ADM. Inhibiting the activity of ASIC1a enhances the chemosensitivity of Bel7402/FU and HepG2/ADM cells. The overexpression of ASIC1a contributed to drug resistance in Bel7402 and HepG2 cells, whereas knockdown of ASIC1a overcame drug resistance in Bel7402/FU and HepG2/ADM cells. We further demonstrated that ASIC1a mediated calcium influx, which resulted in the activation of PI3K/AKT signaling and increased drug resistance. These data suggest that ASIC1a/Ca2+/PI3K/AKT signaling represents a novel pathway that regulates drug resistance, thus offering a potential target for chemotherapy of HCC.
Collapse
|