1
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Mutchler SM, Whelan SCM, Marciszyn A, Chen J, Kleyman TR, Shi S. Role of paraoxonase 3 in regulating ENaC-mediated Na + transport in the distal nephron. J Physiol 2024; 602:737-757. [PMID: 38345534 PMCID: PMC10940207 DOI: 10.1113/jp285034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Paraoxonase 3 (PON3) is expressed in the aldosterone-sensitive distal nephron, where filtered Na+ is reabsorbed mainly via the epithelial Na+ channel (ENaC) and Na+ -coupled co-transporters. We previously showed that PON3 negatively regulates ENaC through a chaperone mechanism. The present study aimed to determine the physiological role of PON3 in renal Na+ and K+ homeostasis. Pon3 knockout (KO) mice had higher amiloride-induced natriuresis and lower plasma [K+ ] at baseline. Single channel recordings in split-open tubules showed that the number of active channels per patch was significantly higher in KO mice, resulting in a higher channel activity in the absence of PON3. Although whole kidney abundance of ENaC subunits was not altered in Pon3 KOs, ENaC gamma subunit was more apically distributed within the connecting tubules and cortical collecting ducts of Pon3 KO kidneys. Additionally, small interfering RNA-mediated knockdown of PON3 in cultured mouse cortical collecting duct cells led to an increased surface abundance of ENaC gamma subunit. As a result of lower plasma [K+ ], sodium chloride co-transporter phosphorylation was enhanced in the KO kidneys, a phenotype that was corrected by a high K+ diet. Finally, PON3 expression was upregulated in mouse kidneys under dietary K+ restriction, potentially providing a mechanism to dampen ENaC activity and associated K+ secretion. Taken together, our results show that PON3 has a role in renal Na+ and K+ homeostasis through regulating ENaC functional expression in the distal nephron. KEY POINTS: Paraoxonase 3 (PON3) is expressed in the distal nephron of mouse kidneys and functions as a molecular chaperone to reduce epithelial Na+ channel (ENaC) expression and activity in heterologous expression systems. We examined the physiological role of PON3 in renal Na+ and K+ handling using a Pon3 knockout (KO) mouse model. At baseline, Pon3 KO mice had lower blood [K+ ], more functional ENaC in connecting tubules/cortical collecting ducts, higher amiloride-induced natriuresis, and enhanced sodium chloride co-transporter (NCC) phosphorylation. Upon challenge with a high K+ diet, Pon3 KO mice had normalized blood [K+ ] and -NCC phosphorylation but lower circulating aldosterone levels compared to their littermate controls. Kidney PON3 abundance was altered in mice under dietary K+ loading or K+ restriction, providing a potential mechanism for regulating ENaC functional expression and renal Na+ and K+ homeostasis in the distal nephron.
Collapse
Affiliation(s)
| | | | - Allison Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Zhang L, Wang X, Chen J, Sheng S, Kleyman TR. Extracellular intersubunit interactions modulate epithelial Na + channel gating. J Biol Chem 2023; 299:102914. [PMID: 36649907 PMCID: PMC9975279 DOI: 10.1016/j.jbc.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues. Specifically, crosslinking E499C in the β-subunit palm domain and N510C in the α-subunit palm domain activated ENaC, whereas crosslinking βE499C with αQ441C in the α-subunit thumb domain inhibited ENaC. We determined that bridging βE499C to αN510C or αQ441C altered the Na+ self-inhibition response via distinct mechanisms. Similar to bridging βE499C and αQ441C, we found that crosslinking palm domain αE557C with thumb domain γQ398C strongly inhibited ENaC activity. In conclusion, we propose that certain residues at specific subunit interfaces form microswitches that convey a conformational wave during ENaC gating and its regulation.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Kaulich E, Grundy LJ, Schafer WR, Walker DS. The diverse functions of the DEG/ENaC family: linking genetic and physiological insights. J Physiol 2022; 601:1521-1542. [PMID: 36314992 PMCID: PMC10148893 DOI: 10.1113/jp283335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The DEG/ENaC family of ion channels was defined based on the sequence similarity between degenerins (DEG) from the nematode Caenorhabditis elegans and subunits of the mammalian epithelial sodium channel (ENaC), and also includes a diverse array of non-voltage-gated cation channels from across animal phyla, including the mammalian acid-sensing ion channels (ASICs) and Drosophila pickpockets. ENaCs and ASICs have wide ranging medical importance; for example, ENaCs play an important role in respiratory and renal function, and ASICs in ischaemia and inflammatory pain, as well as being implicated in memory and learning. Electrophysiological approaches, both in vitro and in vivo, have played an essential role in establishing the physiological properties of this diverse family, identifying an array of modulators and implicating them in an extensive range of cellular functions, including mechanosensation, acid sensation and synaptic modulation. Likewise, genetic studies in both invertebrates and vertebrates have played an important role in linking our understanding of channel properties to function at the cellular and whole animal/behavioural level. Drawing together genetic and physiological evidence is essential to furthering our understanding of the precise cellular roles of DEG/ENaC channels, with the diversity among family members allowing comparative physiological studies to dissect the molecular basis of these diverse functions.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
5
|
Cancel LM, Silas D, Bikson M, Tarbell JM. Direct current stimulation modulates gene expression in isolated astrocytes with implications for glia-mediated plasticity. Sci Rep 2022; 12:17964. [PMID: 36289296 PMCID: PMC9606293 DOI: 10.1038/s41598-022-22394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
While the applications of transcranial direct current stimulation (tDCS) across brain disease and cognition are diverse, they rely on changes in brain function outlasting stimulation. The cellular mechanisms of DCS leading to brain plasticity have been studied, but the role of astrocytes remains unaddressed. We previously predicted that during tDCS current is concentrated across the blood brain-barrier. This will amplify exposure of endothelial cells (ECs) that form blood vessels and of astrocytes that wrap around them. The objective of this study was to investigate the effect of tDCS on the gene expression by astrocytes or ECs. DCS (0.1 or 1 mA, 10 min) was applied to monolayers of mouse brain ECs or human astrocytes. Gene expression of a set of neuroactive genes were measured using RT-qPCR. Expression was assessed immediately or 1 h after DCS. Because we previously showed that DCS can produce electroosmotic flow and fluid shear stress known to influence EC and astrocyte function, we compared three interventions: pressure-driven flow across the monolayer alone, pressure-driven flow plus DCS, and DCS alone with flow blocked. We show that DCS can directly modulate gene expression in astrocytes (notably FOS and BDNF), independent of but synergistic with pressure-driven flow gene expression. In ECs, pressure-driven flow activates genes expression with no evidence of further contribution from DCS. In ECs, DCS alone produced mixed effects including an upregulation of FGF9 and downregulation of NTF3. We propose a new adjunct mechanism for tDCS based on glial meditated plasticity.
Collapse
Affiliation(s)
- Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA
| | - Dharia Silas
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
6
|
Caprini D, Schwartz S, Lanza E, Milanetti E, Lucente V, Ferrarese G, Chiodo L, Nicoletti M, Folli V. A Shearless Microfluidic Device Detects a Role in Mechanosensitivity for AWC ON Neuron in Caenorhabditis elegans. Adv Biol (Weinh) 2021; 5:e2100927. [PMID: 34423577 DOI: 10.1002/adbi.202100927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
AWC olfactory neurons are fundamental for chemotaxis toward volatile attractants in Caenorhabditis elegans. Here, it is shown that AWCON responds not only to chemicals but also to mechanical stimuli caused by fluid flow changes in a microfluidic device. The dynamics of calcium events are correlated with the stimulus amplitude. It is further shown that the mechanosensitivity of AWCON neurons has an intrinsic nature rather than a synaptic origin, and the calcium transient response is mediated by TAX-4 cGMP-gated cation channel, suggesting the involvement of one or more "odorant" receptors in AWCON mechano-transduction. In many cases, the responses show plateau properties resembling bistable calcium dynamics where neurons can switch from one stable state to the other. To investigate the unprecedentedly observed mechanosensitivity of AWCON neurons, a novel microfluidic device is designed to minimize the fluid shear flow in the arena hosting the nematodes. Animals in this device show reduced neuronal activation of AWCON neurons. The results observed indicate that the tangential component of the mechanical stress is the main contributor to the mechanosensitivity of AWCON . Furthermore, the microfluidic platform, integrating shearless perfusion and calcium imaging, provides a novel and more controlled solution for in vivo analysis both in micro-organisms and cultured cells.
Collapse
Affiliation(s)
- Davide Caprini
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Silvia Schwartz
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Enrico Lanza
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| | - Edoardo Milanetti
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Valeria Lucente
- CREST OPTICS S.p.A., Via di Torre Rossa 66, Rome, 00165, Italy
| | - Giuseppe Ferrarese
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Martina Nicoletti
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy.,Department of Engineering, Campus Bio-Medico University, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Viola Folli
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome, 00161, Italy
| |
Collapse
|
7
|
Abstract
Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.
Collapse
|
8
|
Jin P, Jan LY, Jan YN. Mechanosensitive Ion Channels: Structural Features Relevant to Mechanotransduction Mechanisms. Annu Rev Neurosci 2020; 43:207-229. [PMID: 32084327 DOI: 10.1146/annurev-neuro-070918-050509] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of mechanosensitive ion channels underlies a variety of fundamental physiological processes that require sensation of mechanical force. Different mechanosensitive channels adapt distinctive structures and mechanotransduction mechanisms to fit their biological roles. How mechanosensitive channels work, especially in animals, has been extensively studied in the past decade. Here we review key findings in the functional and structural characterizations of these channels and highlight the structural features relevant to the mechanotransduction mechanism of each specific channel.
Collapse
Affiliation(s)
- Peng Jin
- Department of Physiology, University of California, San Francisco, California 94158, USA;
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| |
Collapse
|
9
|
Lipodisqs for eukaryote lipidomics with retention of viability: Sensitivity and resistance to Leucobacter infection linked to C.elegans cuticle composition. Chem Phys Lipids 2019; 222:51-58. [DOI: 10.1016/j.chemphyslip.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/18/2022]
|
10
|
Cancel LM, Arias K, Bikson M, Tarbell JM. Direct current stimulation of endothelial monolayers induces a transient and reversible increase in transport due to the electroosmotic effect. Sci Rep 2018; 8:9265. [PMID: 29915178 PMCID: PMC6006334 DOI: 10.1038/s41598-018-27524-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
We investigated the effects of direct current stimulation (DCS) on fluid and solute transport across endothelial cell (EC) monolayers in vitro. Our motivation was transcranial direct current stimulation (tDCS) that has been investigated for treatment of neuropsychiatric disorders, to enhance neurorehabilitation, and to change cognition in healthy subjects. The mechanisms underlying this diversity of applications remain under investigation. To address the possible role of blood-brain barrier (BBB) changes during tDCS, we applied direct current to cultured EC monolayers in a specially designed chamber that generated spatially uniform direct current. DCS induced fluid and solute movement across EC layers that persisted only for the duration of the stimulation suggesting an electroosmosis mechanism. The direction of induced transport reversed with DCS polarity - a hallmark of the electroosmotic effect. The magnitude of DCS-induced flow was linearly correlated to the magnitude of the applied current. A mathematical model based on a two-pore description of the endothelial transport barrier and a Helmholtz model of the electrical double layer describes the experimental data accurately and predicts enhanced significance of this mechanism in less permeable monolayers. This study demonstrates that DCS transiently alters the transport function of the BBB suggesting a new adjunct mechanism of tDCS.
Collapse
Affiliation(s)
- Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - Katherin Arias
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, USA.
| |
Collapse
|
11
|
Shi S, Mutchler SM, Blobner BM, Kashlan OB, Kleyman TR. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel's response to shear stress. J Biol Chem 2018; 293:10757-10766. [PMID: 29743244 DOI: 10.1074/jbc.ra118.002499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/08/2018] [Indexed: 12/20/2022] Open
Abstract
The Caenorhabditis elegans MEC-4/MEC-10 channel mediates the worm's response to gentle body touch and is activated by laminar shear stress (LSS) when expressed in Xenopus oocytes. Substitutions at multiple sites within the second transmembrane domain (TM2) of MEC-4 or MEC-10 abolish the gentle touch response in worms, but the roles of these residues in mechanosensing are unclear. The present study therefore examined the role of specific MEC-4 and MEC-10 TM2 residues in the channel's response to LSS. We found that introducing mutations within the TM2 of MEC-4 or MEC-10 not only altered channel activity, but also affected the channel's response to LSS. This response was enhanced by Cys substitutions at selected MEC-4 sites (Phe715, Gly716, Gln718, and Leu719) between the degenerin and the putative amiloride-binding sites in this subunit. In contrast, the LSS response was largely blunted in MEC-10 variants bearing single Cys substitutions in the regions preceding and following the amiloride-binding site (Gly677-Leu681), as well as with four MEC-10 touch-deficient mutations that introduced charged residues into the TM2 domain. An enhanced response to LSS was observed with a MEC-10 mutation in the putative selectivity filter. Overall, MEC-4 or MEC-10 mutants that altered the channel's LSS response are primarily clustered between the degenerin site and the selectivity filter, a region that probably forms the narrowest portion of the channel pore. Our results suggest that pore-lining residues of MEC-4 and MEC-10 have important yet different roles in tuning the channel's response to mechanical forces.
Collapse
Affiliation(s)
- Shujie Shi
- From the Renal-Electrolyte Division, Department of Medicine
| | - Stephanie M Mutchler
- From the Renal-Electrolyte Division, Department of Medicine.,Department of Pharmacology and Chemical Biology, and
| | | | - Ossama B Kashlan
- From the Renal-Electrolyte Division, Department of Medicine.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thomas R Kleyman
- From the Renal-Electrolyte Division, Department of Medicine, .,Department of Pharmacology and Chemical Biology, and.,Department of Cell Biology
| |
Collapse
|
12
|
Shi S, Carattino MD. Expression and Analysis of Flow-regulated Ion Channels in Xenopus Oocytes. Bio Protoc 2017; 7:e2224. [PMID: 28670605 DOI: 10.21769/bioprotoc.2224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Mechanically-gated ion channels play key roles in mechanotransduction, a process that translates physical forces into biological signals. Epithelial and endothelial cells are exposed to laminar shear stress (LSS), a tangential force exerted by flowing fluids against the wall of vessels and epithelia. The protocol outlined herein has been used to examine the response of ion channels expressed in Xenopus oocytes to LSS (Hoger et al., 2002; Carattino et al., 2004; Shi et al., 2006). The Xenopus oocyte is a reliable system that allows for the expression and chemical modification of ion channels and regulatory proteins (George et al., 1989; Palmer et al., 1990; Sheng et al., 2001; Carattino et al., 2003). Therefore, this technique is suitable for studying the molecular mechanisms that allow flow-activated channels to respond to LSS.
Collapse
Affiliation(s)
- Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|