1
|
Contaldo U, Savant-Aira D, Vergnes A, Becam J, Biaso F, Ilbert M, Aussel L, Ezraty B, Lojou E, Mazurenko I. Methionine-rich domains emerge as facilitators of copper recruitment in detoxification systems. Proc Natl Acad Sci U S A 2024; 121:e2402862121. [PMID: 39378088 PMCID: PMC11494321 DOI: 10.1073/pnas.2402862121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The Escherichia coli multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various E. coli CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.
Collapse
Affiliation(s)
- Umberto Contaldo
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Dylan Savant-Aira
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Alexandra Vergnes
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Jérôme Becam
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Frédéric Biaso
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Marianne Ilbert
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Laurent Aussel
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Benjamin Ezraty
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Elisabeth Lojou
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Ievgen Mazurenko
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| |
Collapse
|
2
|
Lindemeier D, Graubner W, Mehner-Breitfeld D, Malešević M, Brüser T. Positive charges promote the recognition of proteins by the chaperone SlyD from Escherichia coli. PLoS One 2024; 19:e0305823. [PMID: 38917203 PMCID: PMC11198818 DOI: 10.1371/journal.pone.0305823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
SlyD is a widely-occurring prokaryotic FKBP-family prolyl isomerase with an additional chaperone domain. Often, such as in Escherichia coli, a third domain is found at its C-terminus that binds nickel and provides it for nickel-enzyme biogenesis. SlyD has been found to bind signal peptides of proteins that are translocated by the Tat pathway, a system for the transport of folded proteins across membranes. Using peptide arrays to analyze these signal peptide interactions, we found that SlyD interacted only with positively charged peptides, with a preference for arginines over lysines, and large hydrophobic residues enhanced binding. Especially a twin-arginine motif was recognized, a pair of highly conserved arginines adjacent to a stretch of hydrophobic residues. Using isothermal titration calorimetry (ITC) with purified SlyD and a signal peptide-containing model Tat substrate, we could show that the wild type twin-arginine signal peptide was bound with higher affinity than an RR>KK mutated variant, confirming that positive charges are recognized by SlyD, with a preference of arginines over lysines. The specific role of negative charges of the chaperone domain surface and of hydrophobic residues in the chaperone active site was further analyzed by ITC of mutated SlyD variants. Our data show that the supposed key hydrophobic residues of the active site are indeed crucial for binding, and that binding is influenced by negative charges on the chaperone domain. Recognition of positive charges is likely achieved by a large negatively charged surface region of the chaperone domain, which is highly conserved although individual positions are variable.
Collapse
Affiliation(s)
- Daniel Lindemeier
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| | - Wenke Graubner
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| | | | - Miroslav Malešević
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
3
|
Deblais L, Drozd M, Kumar A, Antwi J, Fuchs J, Khupse R, Helmy YA, Rajashekara G. Identification of novel small molecule inhibitors of twin arginine translocation (Tat) pathway and their effect on the control of Campylobacter jejuni in chickens. Front Microbiol 2024; 15:1342573. [PMID: 38694802 PMCID: PMC11061419 DOI: 10.3389/fmicb.2024.1342573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/08/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Control of Campylobacter from farm to fork is challenging due to the frequent emergence of antimicrobial-resistant isolates. Furthermore, poultry production systems are known reservoirs of Campylobacter. The twin-arginine translocation (Tat) pathway is a crucial bacterial secretion system that allows Campylobacter to colonize the host intestinal tract by using formate as the main source of energy. However, Tat pathway is also a major contributing factor for resistance to copper sulfate (CuSO4). Methods Since mammals and chickens do not have proteins or receptors that are homologous to bacterial Tat proteins, identification of small molecule (SM) inhibitors targeting the Tat system would allow the development of safe and effective control methods to mitigate Campylobacter in infected or colonized hosts in both pre-harvest and post-harvest. In this study, we screened 11 commercial libraries (n = 50,917 SM) for increased susceptibility to CuSO4 (1 mM) in C. jejuni 81-176, a human isolate which is widely studied. Results Furthermore, we evaluated 177 SM hits (2.5 μg/mL and above) that increased the susceptibility to CuSO4 for the inhibition of formate dehydrogenase (Fdh) activity, a Tat-dependent substrate. Eight Tat-dependent inhibitors (T1-T8) were selected for further studies. These selected eight Tat inhibitors cleared all tested Campylobacter strains (n = 12) at >10 ng/mL in the presence of 0.5 mM CuSO4in vitro. These selected SMs were non-toxic to colon epithelial (Caco-2) cells when treated with 50 μg/mL for 24 h and completely cleared intracellular C. jejuni cells when treated with 0.63 μg/mL of SM for 24 h in the presence of 0.5 mM of CuSO4. Furthermore, 3 and 5-week-old chicks treated with SM candidates for 5 days had significantly decreased cecal colonization (up to 1.2 log; p < 0.01) with minimal disruption of microbiota. In silico analyses predicted that T7 has better drug-like properties than T2 inhibitor and might target a key amino acid residue (glutamine 165), which is located in the hydrophobic core of TatC protein. Discussion Thus, we have identified novel SM inhibitors of the Tat pathway, which represent a potential strategy to control C. jejuni spread on farms.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| | - Mary Drozd
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Anand Kumar
- Los Alamos National Laboratory, Bioscience Division, Group B-10: Biosecurity and Public Health, Los Alamos, NM, United States
| | - Janet Antwi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - James Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, OH, United States
| | - Yosra A. Helmy
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| |
Collapse
|
4
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
7
|
Metabolic Sensing of Extracytoplasmic Copper Availability via Translational Control by a Nascent Exported Protein. mBio 2023; 14:e0304022. [PMID: 36598193 PMCID: PMC9973294 DOI: 10.1128/mbio.03040-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolic sensing is a crucial prerequisite for cells to adjust their physiology to rapidly changing environments. In bacteria, the response to intra- and extracellular ligands is primarily controlled by transcriptional regulators, which activate or repress gene expression to ensure metabolic acclimation. Translational control, such as ribosomal stalling, can also contribute to cellular acclimation and has been shown to mediate responses to changing intracellular molecules. In the current study, we demonstrate that the cotranslational export of the Rhodobacter capsulatus protein CutF regulates the translation of the downstream cutO-encoded multicopper oxidase CutO in response to extracellular copper (Cu). Our data show that CutF, acting as a Cu sensor, is cotranslationally exported by the signal recognition particle pathway. The binding of Cu to the periplasmically exposed Cu-binding motif of CutF delays its cotranslational export via its C-terminal ribosome stalling-like motif. This allows for the unfolding of an mRNA stem-loop sequence that shields the ribosome-binding site of cutO, which favors its subsequent translation. Bioinformatic analyses reveal that CutF-like proteins are widely distributed in bacteria and are often located upstream of genes involved in transition metal homeostasis. Our overall findings illustrate a highly conserved control mechanism using the cotranslational export of a protein acting as a sensor to integrate the changing availability of extracellular nutrients into metabolic acclimation. IMPORTANCE Metabolite sensing is a fundamental biological process, and the perception of dynamic changes in the extracellular environment is of paramount importance for the survival of organisms. Bacteria usually adjust their metabolisms to changing environments via transcriptional regulation. Here, using Rhodobacter capsulatus, we describe an alternative translational mechanism that controls the bacterial response to the presence of copper, a toxic micronutrient. This mechanism involves a cotranslationally secreted protein that, in the presence of copper, undergoes a process resembling ribosomal stalling. This allows for the unfolding of a downstream mRNA stem-loop and enables the translation of the adjacent Cu-detoxifying multicopper oxidase. Bioinformatic analyses reveal that such proteins are widespread, suggesting that metabolic sensing using ribosome-arrested nascent secreted proteins acting as sensors may be a common strategy for the integration of environmental signals into metabolic adaptations.
Collapse
|
8
|
Raya D, Shreya A, Kumar A, Giri SK, Salem DR, Gnimpieba EZ, Gadhamshetty V, Dhiman SS. Molecular regulation of conditioning film formation and quorum quenching in sulfate reducing bacteria. Front Microbiol 2022; 13:1008536. [PMID: 36386676 PMCID: PMC9659907 DOI: 10.3389/fmicb.2022.1008536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 09/19/2023] Open
Abstract
Sensing surface topography, an upsurge of signaling biomolecules, and upholding cellular homeostasis are the rate-limiting spatio-temporal events in microbial attachment and biofilm formation. Initially, a set of highly specialized proteins, viz. conditioning protein, directs the irreversible attachment of the microbes. Later signaling molecules, viz. autoinducer, take over the cellular communication phenomenon, resulting in a mature microbial biofilm. The mandatory release of conditioning proteins and autoinducers corroborated the existence of two independent mechanisms operating sequentially for biofilm development. However, both these mechanisms are significantly affected by the availability of the cofactor, e.g., Copper (Cu). Generally, the Cu concentration beyond threshold levels is detrimental to the anaerobes except for a few species of sulfate-reducing bacteria (SRB). Remarkably SRB has developed intricate ways to resist and thrive in the presence of Cu by activating numerous genes responsible for modifying the presence of more toxic Cu(I) to Cu(II) within the periplasm, followed by their export through the outer membrane. Therefore, the determinants of Cu toxicity, sequestration, and transportation are reconnoitered for their contribution towards microbial adaptations and biofilm formation. The mechanistic details revealing Cu as a quorum quencher (QQ) are provided in addition to the three pathways involved in the dissolution of cellular communications. This review articulates the Machine Learning based data curing and data processing for designing novel anti-biofilm peptides and for an in-depth understanding of QQ mechanisms. A pioneering data set has been mined and presented on the functional properties of the QQ homolog in Oleidesulfovibrio alaskensis G20 and residues regulating the multicopper oxidase properties in SRB.
Collapse
Affiliation(s)
- Dheeraj Raya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Aritree Shreya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Himachal Pradesh, India
| | - David R. Salem
- Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Etienne Z. Gnimpieba
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Saurabh Sudha Dhiman
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Sciences, South Dakota Mines, Rapid City, SD, United States
| |
Collapse
|
9
|
Lee J, Dalton RA, Dennison C. Copper delivery to an endospore coat protein of Bacillus subtilis. Front Cell Dev Biol 2022; 10:916114. [PMID: 36133923 PMCID: PMC9484137 DOI: 10.3389/fcell.2022.916114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
A family of cytosolic copper (Cu) storage proteins (the Csps) bind large quantities of Cu(I) via their Cys-lined four-helix bundles, and the majority are cytosolic (Csp3s). The presence of Csp3s in many bacteria appears inconsistent with the current dogma that bacteria, unlike eukaryotes, have evolved not to maintain intracellular pools of Cu due to its potential toxicity. Sporulation in Bacillus subtilis has been used to investigate if a Csp3 binds Cu(I) in the cytosol for a target enzyme. The activity of the Cu-requiring endospore multi-Cu oxidase BsCotA (a laccase) increases under Cu-replete conditions in wild type B. subtilis. In the strain lacking BsCsp3 lower BsCotA activity is observed and is unaffected by Cu levels. BsCsp3 loaded with Cu(I) readily activates apo-BsCotA in vitro. Experiments with a high affinity Cu(I) chelator demonstrate that Cu(I) transfer from Cu(I)-BsCsp3 must occur via an associative mechanism. BsCsp3 and BsCotA are both upregulated during late sporulation. We hypothesise that BsCsp3 acquires cuprous ions in the cytosol of B. subtilis for BsCotA.
Collapse
|
10
|
Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. J Biol Inorg Chem 2022; 27:509-528. [PMID: 35802193 PMCID: PMC9470648 DOI: 10.1007/s00775-022-01947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Abstract Copper is essential in cells as a cofactor for key redox enzymes. Bacteria have acquired molecular components that sense, uptake, distribute, and expel copper ensuring that cuproenzymes are metallated and steady-state metal levels are maintained. Toward preventing deleterious reactions, proteins bind copper ions with high affinities and transfer the metal via ligand exchange, warranting that copper ions are always complexed. Consequently, the directional copper distribution within cell compartments and across cell membranes requires specific dynamic interactions and metal exchange between cognate holo-apo protein partners. These metal exchange reactions are determined by thermodynamic and kinetics parameters and influenced by mass action. Then, copper distribution can be conceptualized as a molecular system of singular interacting elements that maintain a physiological copper homeostasis. This review focuses on the impact of copper high-affinity binding and exchange reactions on the homeostatic mechanisms, the conceptual models to describe the cell as a homeostatic system, the various molecule functions that contribute to copper homeostasis, and the alternative system architectures responsible for copper homeostasis in model bacteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.,Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.
| |
Collapse
|
11
|
Roulling F, Godin A, Feller G. Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance. Biochimie 2022; 194:118-126. [PMID: 34982982 DOI: 10.1016/j.biochi.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Cuproxidases form a subgroup of the blue multicopper oxidase family. They display disordered methionine-rich loops, not observable in most available crystal structures, which have been suggested to bind toxic Cu(I) ions before oxidation into less harmful Cu(II) by the core enzyme. We found that the location of the Met-rich regions is highly variable in bacterial cuproxidases, but always inserted in solvent exposed surface loops, at close proximity of the conserved T1 copper binding site. We took advantage of the large differences in loop length between cold-adapted, mesophilic and thermophilic oxidase homologs to unravel the function of the methionine-rich regions involved in copper detoxification. Using a newly developed anaerobic assay for cuprous ions, it is shown that the number of Cu(I) bound is nearly proportional to the loop lengths in these cuproxidases and to the number of potential Cu(I) ligands in these loops. In order to substantiate this relation, the longest loop in the cold-adapted oxidase was deleted, lowering bound extra Cu(I) from 9 in the wild-type enzyme to 2-3 Cu(I) in deletion mutants. These results demonstrate that methionine-rich loops behave as molecular octopus scavenging toxic cuprous ions in the periplasm and that these regions are essential components of bacterial copper resistance.
Collapse
Affiliation(s)
- Frédéric Roulling
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Amandine Godin
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium.
| |
Collapse
|
12
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
13
|
Öztürk Y, Blaby-Haas CE, Daum N, Andrei A, Rauch J, Daldal F, Koch HG. Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Front Microbiol 2021; 12:720644. [PMID: 34566924 PMCID: PMC8456105 DOI: 10.3389/fmicb.2021.720644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb 3-type cytochrome oxidase (cbb 3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb 3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.
Collapse
Affiliation(s)
- Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Crysten E. Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Decembrino D, Girhard M, Urlacher VB. Use of Copper as a Trigger for the in Vivo Activity of E. coli Laccase CueO: A Simple Tool for Biosynthetic Purposes. Chembiochem 2021; 22:1470-1479. [PMID: 33332702 PMCID: PMC8248233 DOI: 10.1002/cbic.202000775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Laccases are multi-copper oxidases that catalyze the oxidation of various electron-rich substrates with concomitant reduction of molecular oxygen to water. The multi-copper oxidase/laccase CueO of Escherichia coli is responsible for the oxidation of Cu+ to the less harmful Cu2+ in the periplasm. CueO has a relatively broad substrate spectrum as laccase, and its activity is enhanced by copper excess. The aim of this study was to trigger CueO activity in vivo for the use in biocatalysis. The addition of 5 mM CuSO4 was proven effective in triggering CueO activity at need with minor toxic effects on E. coli cells. Cu-treated E. coli cells were able to convert several phenolic compounds to the corresponding dimers. Finally, the endogenous CueO activity was applied to a four-step cascade, in which coniferyl alcohol was converted to the valuable plant lignan (-)-matairesinol.
Collapse
Affiliation(s)
- Davide Decembrino
- Institute of BiochemistryHeinrich-Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Marco Girhard
- Institute of BiochemistryHeinrich-Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Vlada B. Urlacher
- Institute of BiochemistryHeinrich-Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
15
|
M Brauer A, R Rogers A, R Ellermeier J. Twin-arginine translocation (Tat) mutants in Salmonella enterica serovar Typhimurium have increased susceptibility to cell wall targeting antibiotics. FEMS MICROBES 2021; 2:xtab004. [PMID: 34250488 PMCID: PMC8262268 DOI: 10.1093/femsmc/xtab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/15/2022] Open
Abstract
The twin-arginine translocation (Tat) system is a protein secretion system that is conserved in bacteria, archaea and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. There are 30 experimentally verified Tat substrates in Salmonella, including hydrogenase subunits, enzymes required for anaerobic respiration and enzymes involved in peptidoglycan remodeling during cell division. Multiple studies have demonstrated the susceptibility of tat mutants to antimicrobial compounds such as SDS and bile; however, in this work, we use growth curves and viable plate counts to demonstrate that cell wall targeting antibiotics (penicillins, carbapenems, cephalosporins and fosfomycin) have increased killing against a Δtat strain. Further, we demonstrate that this increased killing is primarily due to defects in translocation of critical Tat substrates: MepK, AmiA, AmiC and SufI. Finally, we show that a ΔhyaAB ΔhybABC ΔhydBC strain has an altered ΔΨ that impacts proper secretion of critical Tat substrates in aerobic growth conditions.
Collapse
Affiliation(s)
- Adrienne M Brauer
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Alexandra R Rogers
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| | - Jeremy R Ellermeier
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
16
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
17
|
Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol 2020; 114:377-390. [DOI: 10.1111/mmi.14522] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Andrea Giachino
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| | - Kevin J. Waldron
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
18
|
Higgins S, Gualdi S, Pinto-Carbó M, Eberl L. Copper resistance genes of Burkholderia cenocepacia H111 identified by transposon sequencing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:241-249. [PMID: 32090500 DOI: 10.1111/1758-2229.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Copper is an essential element but in excess is highly toxic and therefore cytoplasmic levels must be tightly controlled. Member of the genus Burkholderia are highly resistant to various heavy metals and are often isolated from acidic soils where copper bioavailability is high. In this study, we employed transposon sequencing (Tn-Seq) to identify copper resistance genes in Burkholderia cenocepacia H111. We identified a copper efflux system that shares similarities with the plasmid-based copper detoxification systems found in Escherichia coli and Pseudomonas syringae. We also found that several of the identified resistance determinants are involved in maintaining the integrity of the cell envelope, suggesting that proteins located in the outer membrane and periplasmic space are particularly sensitive to copper stress. Given that several of the resistance genes are required for the repair and turnover of misfolded proteins, we suggest that copper toxicity is caused by protein damage rather than by oxidative stress.
Collapse
Affiliation(s)
- Steven Higgins
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Stefano Gualdi
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Marta Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Lee J, Dennison C. Cytosolic Copper Binding by a Bacterial Storage Protein and Interplay with Copper Efflux. Int J Mol Sci 2019; 20:ijms20174144. [PMID: 31450649 PMCID: PMC6747150 DOI: 10.3390/ijms20174144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli has a well-characterized copper (Cu) transporting ATPase (CopA) that removes this potentially toxic metal ion from the cytosol. Growth of the strain lacking CopA (ΔcopA) is inhibited above 0.5 mM Cu, whilst a similar effect does not occur in wild type (WT) E. coli until over 2.5 mM Cu. Limited expression of CopA can restore growth to WT levels in ΔcopAE. coli in the presence of Cu. To study the influence of a bacterial cytosolic Cu storage protein (Csp3) on how E. coli handles Cu, the protein from Bacillus subtilis (BsCsp3) has been overexpressed in the WT and ΔcopA strains. BsCsp3 can protect both strains from Cu toxicity, promoting growth at up to ~1.5 and ~3.5 mM Cu, respectively. Higher levels of Csp3 expression are needed to provide resistance to Cu toxicity in ΔcopAE. coli. At 1.5 mM Cu, BsCsp3 purified from ΔcopAE. coli binds up to approximately four equivalents of Cu(I) per monomer. A similar number of Cu(I) equivalents can be bound by BsCsp3 purified from WT E. coli also grown at 1.5 mM Cu, a concentration that does not cause toxicity in this strain. Much lower amounts of BsCsp3 are produced in WT E. coli grown in the presence of 3.4 mM Cu, but the protein still counteracts toxicity and is almost half loaded with Cu(I). Csp3s can protect E. coli from Cu toxicity by sequestering cuprous ions in the cytosol. This appears to include an ability to acquire and withhold Cu(I) from the main efflux system in a heterologous host.
Collapse
Affiliation(s)
- Jaeick Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
20
|
Abstract
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.
Collapse
Affiliation(s)
- Kelly M. Frain
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen (UMCG), Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
21
|
Abstract
The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.
Collapse
Affiliation(s)
- Kelly M Frain
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| |
Collapse
|
22
|
Stewart LJ, Thaqi D, Kobe B, McEwan AG, Waldron KJ, Djoko KY. Handling of nutrient copper in the bacterial envelope. Metallomics 2019; 11:50-63. [DOI: 10.1039/c8mt00218e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insertion of copper into bacterial cuproenzymesin vivodoes not always require a copper-binding metallochaperone – why?
Collapse
Affiliation(s)
- Louisa J. Stewart
- Institute for Cell and Molecular Biosciences
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Denis Thaqi
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
- Institute for Molecular Bioscience
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
| | - Kevin J. Waldron
- Institute for Cell and Molecular Biosciences
- Newcastle University
- Newcastle upon Tyne
- UK
| | | |
Collapse
|
23
|
Abstract
The inner membrane of Gram-negative bacteria is a ~6 nm thick phospholipid bilayer. It forms a semi-permeable barrier between the cytoplasm and periplasm allowing only regulated export and import of ions, sugar polymers, DNA and proteins. Inner membrane proteins, embedded via hydrophobic transmembrane α-helices, play an essential role in this regulated trafficking: they mediate insertion into the membrane (insertases) or complete crossing of the membrane (translocases) or both. The Gram-negative inner membrane is equipped with a variety of different insertases and translocases. Many of them are specialized, taking care of the export of only a few protein substrates, while others have more general roles. Here, we focus on the three general export/insertion pathways, the secretory (Sec) pathway, YidC and the twin-arginine translocation (TAT) pathway, focusing closely on the Escherichia coli (E. coli) paradigm. We only briefly mention dedicated export pathways found in different Gram-negative bacteria. The Sec system deals with the majority of exported proteins and functions both as a translocase for secretory proteins and an insertase for membrane proteins. The insertase YidC assists the Sec system or operates independently on membrane protein clients. Sec and YidC, in common with most export pathways, require their protein clients to be in soluble non-folded states to fit through the translocation channels and grooves. The TAT pathway is an exception, as it translocates folded proteins, some loaded with prosthetic groups.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dries Smets
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
24
|
|
25
|
Hou B, Heidrich ES, Mehner-Breitfeld D, Brüser T. The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane of Escherichia coli upon protein substrate binding. J Biol Chem 2018. [PMID: 29535185 DOI: 10.1074/jbc.ra118.002205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) system that comprises the TatA, TatB, and TatC components transports folded proteins across energized membranes of prokaryotes and plant plastids. It is not known, however, how the transport of this protein cargo is achieved. Favored models suggest that the TatA component supports transport by weakening the membrane upon full translocon assembly. Using Escherichia coli as a model organism, we now demonstrate in vivo that the N terminus of TatA can indeed destabilize the membrane, resulting in a lowered membrane energization in growing cells. We found that in full-length TatA, this effect is counterbalanced by its amphipathic helix. Consistent with these observations, the TatA N terminus induced proton leakage in vitro, indicating membrane destabilization. Fluorescence quenching data revealed that substrate binding causes the TatA hinge region and the N-terminal part of the TatA amphipathic helix to move toward the membrane surface. In the presence of TatBC, substrate binding also reduced the exposure of a specific region in the amphipathic helix, indicating a participation of TatBC. Of note, the substrate-induced reorientation of the TatA amphipathic helix correlated with detectable membrane weakening. We therefore propose a two-state model in which membrane-destabilizing effects of the short TatA membrane anchor are compensated by the membrane-immersed N-terminal part of the amphipathic helix in a resting state. We conclude that substrate binding to TatABC complexes switches the position of the amphipathic helix, which locally weakens the membrane on demand to allow substrate translocation across the membrane.
Collapse
Affiliation(s)
- Bo Hou
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Eyleen S Heidrich
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Denise Mehner-Breitfeld
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
26
|
Wojnowska M, Gault J, Yong SC, Robinson CV, Berks BC. Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry 2018; 57:1663-1671. [PMID: 29460615 PMCID: PMC5852461 DOI: 10.1021/acs.biochem.8b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.
Collapse
Affiliation(s)
- Marta Wojnowska
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Shee Chien Yong
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Ben C Berks
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| |
Collapse
|
27
|
Abstract
Copper is essential for most organisms as a cofactor for key enzymes involved in fundamental processes such as respiration and photosynthesis. However, copper also has toxic effects in cells, which is why eukaryotes and prokaryotes have evolved mechanisms for safe copper handling. A new family of bacterial proteins uses a Cys-rich four-helix bundle to safely store large quantities of Cu(I). The work leading to the discovery of these proteins, their properties and physiological functions, and how their presence potentially impacts the current views of bacterial copper handling and use are discussed in this review.
Collapse
Affiliation(s)
- Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Sholto David
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jaeick Lee
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
28
|
Bütof L, Wiesemann N, Herzberg M, Altzschner M, Holleitner A, Reith F, Nies DH. Synergistic gold–copper detoxification at the core of gold biomineralisation inCupriavidus metallidurans. Metallomics 2018; 10:278-286. [DOI: 10.1039/c7mt00312a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cupriavidus metalliduransescapes synergistic Cu/Au toxicity by re-oxidation of Au(i) back to Au(iii) using the periplasmic oxidase CopA.
Collapse
Affiliation(s)
- L. Bütof
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - N. Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Altzschner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - A. Holleitner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - F. Reith
- The University of Adelaide
- School of Biological Sciences
- Adelaide
- Australia
| | - D. H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| |
Collapse
|
29
|
Mancini S, Kumar R, Mishra V, Solioz M. Desulfovibrio DA2_CueO is a novel multicopper oxidase with cuprous, ferrous and phenol oxidase activity. Microbiology (Reading) 2017; 163:1229-1236. [DOI: 10.1099/mic.0.000509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Stefano Mancini
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Ranjeet Kumar
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Veena Mishra
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Marc Solioz
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
30
|
Dalecki AG, Crawford CL, Wolschendorf F. Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications. Adv Microb Physiol 2017; 70:193-260. [PMID: 28528648 DOI: 10.1016/bs.ampbs.2017.01.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper.
Collapse
Affiliation(s)
- Alex G Dalecki
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
31
|
Jones AS, Austerberry JI, Dajani R, Warwicker J, Curtis R, Derrick JP, Robinson C. Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3116-3124. [PMID: 27619192 DOI: 10.1016/j.bbamcr.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/29/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022]
Abstract
The Tat system transports folded proteins across the bacterial plasma membrane, and in Escherichia coli preferentially transports correctly-folded proteins. Little is known of the mechanism by which Tat proofreads a substrate's conformational state, and in this study we have addressed this question using a heterologous single-chain variable fragment (scFv) with a defined structure. We introduced mutations to surface residues while leaving the folded structure intact, and also tested the importance of conformational flexibility. We show that while the scFv is stably folded and active in the reduced form, formation of the 2 intra-domain disulphide bonds enhances Tat-dependent export 10-fold, indicating Tat senses the conformational flexibility and preferentially exports the more rigid structure. We further show that a 26-residue unstructured tail at the C-terminus blocks export, suggesting that even this short sequence can be sensed by the proofreading system. In contrast, the Tat system can tolerate significant changes in charge or hydrophobicity on the scFv surface; substitution of uncharged residues by up to 3 Lys-Glu pairs has little effect, as has the introduction of up to 5 Lys or Glu residues in a confined domain, or the introduction of a patch of 4 to 6 Leu residues in a hydrophilic region. We propose that the proofreading system has evolved to sense conformational flexibility and detect even very transiently-exposed internal regions, or the presence of unfolded peptide sections. In contrast, it tolerates major changes in surface charge or hydrophobicity.
Collapse
Affiliation(s)
- Alexander S Jones
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - James I Austerberry
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rana Dajani
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jim Warwicker
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jeremy P Derrick
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|