1
|
Cheok YY, Tan GMY, Chan YT, Abdullah S, Looi CY, Wong WF. Podoplanin and its multifaceted roles in mammalian developmental program. Cells Dev 2024; 180:203943. [PMID: 39111713 DOI: 10.1016/j.cdev.2024.203943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/01/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Podoplanin is a vital molecule which plays an integral part in the regulation of development, immunity, and cancer. Expression of Podoplanin is detected at different early developmental stages of mammalian embryo, and it functions to modulate morphogenesis of various organ systems. In experimental animal models of different genetic backgrounds, absence of Podoplanin results in either embryonic lethality or immediate death upon birth, suggesting the importance of the gene in early developmental processes. This review discusses the gene and protein structure of Podoplanin; and elucidates various functions of Podoplanin in different systems, including central nervous system as well as respiratory, lymphatic, and cardiovascular systems.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Banovac I, Prkačin MV, Kirchbaum I, Trnski-Levak S, Bobić-Rasonja M, Sedmak G, Petanjek Z, Jovanov-Milosevic N. Morphological and Molecular Characteristics of Perineuronal Nets in the Human Prefrontal Cortex-A Possible Link to Microcircuitry Specialization. Mol Neurobiol 2024:10.1007/s12035-024-04306-1. [PMID: 38958887 DOI: 10.1007/s12035-024-04306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Perineuronal nets (PNNs) are a type of extracellular matrix (ECM) that play a significant role in synaptic activity and plasticity of interneurons in health and disease. We researched PNNs' regional and laminar representation and molecular composition using immunohistochemistry and transcriptome analysis of Brodmann areas (BA) 9, 14r, and 24 in 25 human postmortem brains aged 13-82 years. The numbers of VCAN- and NCAN-expressing PNNs, relative to the total number of neurons, were highest in cortical layers I and VI while WFA-binding (WFA+) PNNs were most abundant in layers III-V. The ECM glycosylation pattern was the most pronounced regional difference, shown by a significantly lower proportion of WFA+ PNNs in BA24 (3.27 ± 0.69%) compared to BA9 (6.32 ± 1.73%; P = 0.0449) and BA14 (5.64 ± 0.71%; P = 0.0278). The transcriptome of late developmental and mature stages revealed a relatively stable expression of PNN-related transcripts (log2-transformed expression values: 6.5-8.5 for VCAN and 8.0-9.5 for NCAN). Finally, we propose a classification of PNNs that envelop GABAergic neurons in the human cortex. The significant differences in PNNs' morphology, distribution, and molecular composition strongly suggest an involvement of PNNs in specifying distinct microcircuits in particular cortical regions and layers.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Ivona Kirchbaum
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Sara Trnski-Levak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia
| | - Goran Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia.
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Nurminen R, Afyounian E, Paunu N, Katainen R, Isomäki M, Nurminen A, Scaravilli M, Tolppanen J, Fey V, Kivinen A, Helén P, Välimäki N, Kesseli J, Aaltonen LA, Haapasalo H, Nykter M, Rautajoki KJ. Previously reported CCDC26 risk variant and novel germline variants in GALNT13, AR, and MYO10 associated with familial glioma in Finland. Sci Rep 2024; 14:11562. [PMID: 38773237 PMCID: PMC11109329 DOI: 10.1038/s41598-024-62296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.
Collapse
Affiliation(s)
- Riikka Nurminen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niina Paunu
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Riku Katainen
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Isomäki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anssi Nurminen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Mauro Scaravilli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Jenni Tolppanen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Vidal Fey
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anni Kivinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Pauli Helén
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories ltd., Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland.
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
4
|
Yaghoobi A, Seyedmirzaei H, Ala M. Genome- and Exome-Wide Association Studies Revealed Candidate Genes Associated with DaTscan Imaging Features. PARKINSON'S DISEASE 2023; 2023:2893662. [PMID: 37664790 PMCID: PMC10468272 DOI: 10.1155/2023/2893662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/02/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Introduction Despite remarkable progress in identifying Parkinson's disease (PD) genetic risk loci, the genetic basis of PD remains largely unknown. With the help of the endophenotype approach and using data from dopamine transporter single-photon emission computerized tomography (DaTscan), we identified potentially involved genes in PD. Method We conducted an imaging genetic study by performing exome-wide association study (EWAS) and genome-wide association study (GWAS) on the specific binding ratio (SBR) of six DaTscan anatomical areas between 489 and 559 subjects of Parkinson's progression markers initiative (PPMI) cohort and 83,623 and 36,845 single-nucleotide polymorphisms (SNPs)/insertion-deletion mutations (INDELs). We also investigated the association of cerebrospinal fluid (CSF) protein concentration of our significant genes with PD progression using PPMI CSF proteome data. Results Among 83,623 SNPs/INDELs in EWAS, one SNP (rs201465075) on 1 q32.1 locus was significantly (P value = 4.03 × 10-7) associated with left caudate DaTscan SBR, and 33 SNPs were suggestive. Among 36,845 SNPs in GWAS, one SNP (rs12450112) on 17 p.12 locus was significantly (P value = 1.34 × 10-6) associated with right anterior putamen DaTscan SBR, and 39 SNPs were suggestive among which 8 SNPs were intergenic. We found that rs201465075 and rs12450112 are most likely related to IGFN1 and MAP2K4 genes. The protein level of MAP2K4 in the CSF was significantly associated with PD progression in the PPMI cohort; however, proteomic data were not available for the IGFN1 gene. Conclusion We have shown that particular variants of IGFN1 and MAP2K4 genes may be associated with PD. Since DaTscan imaging could be positive in other Parkinsonian syndromes, caution should be taken when interpreting our results. Future experimental studies are also needed to verify these findings.
Collapse
Affiliation(s)
- Arash Yaghoobi
- Institute for Research in Fundamental Sciences (IPM), School of Biological Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moein Ala
- Experimental Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 2023; 13:154. [PMID: 37156804 PMCID: PMC10167254 DOI: 10.1038/s41398-023-02446-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Glycosylation, the addition of glycans or carbohydrates to proteins, lipids, or other glycans, is a complex post-translational modification that plays a crucial role in cellular function. It is estimated that at least half of all mammalian proteins undergo glycosylation, underscoring its importance in the functioning of cells. This is reflected in the fact that a significant portion of the human genome, around 2%, is devoted to encoding enzymes involved in glycosylation. Changes in glycosylation have been linked to various neurological disorders, including Alzheimer's disease, Parkinson's disease, autism spectrum disorder, and schizophrenia. Despite its widespread occurrence, the role of glycosylation in the central nervous system remains largely unknown, particularly with regard to its impact on behavioral abnormalities in brain diseases. This review focuses on examining the role of three types of glycosylation: N-glycosylation, O-glycosylation, and O-GlcNAcylation, in the manifestation of behavioral and neurological symptoms in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Prajitha Pradeep
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyeyeon Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
6
|
Townsend J, Braz CU, Taylor T, Khatib H. Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac029. [PMID: 36727109 PMCID: PMC9885981 DOI: 10.1093/eep/dvac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Environmental effects on gene expression and offspring development can be mediated by epigenetic modifications. It is well established that maternal diet influences DNA methylation patterns and phenotypes in the offspring; however, the epigenetic effects of paternal diet on developing offspring warrants further investigation. Here, we examined how a prepubertal methionine-enriched paternal diet affected sperm DNA methylation and its subsequent effects on embryo gene expression. Three treatment and three control rams were bred to seven ewes, and blastocysts were flushed for RNA extraction. Semen was collected from all rams and submitted for reduced representation bisulfite sequencing analysis. In total, 166 differentially methylated cytosines were identified in the sperm from treatment versus control rams. Nine genes were found to be differentially expressed in embryos produced from treatment versus control rams, and seven differentially methylated cytosines in the sperm were found to be highly correlated with gene expression in the embryos. Our results demonstrate that sperm methylation differences induced by diet may influence fetal programming.
Collapse
Affiliation(s)
- Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Camila U Braz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| |
Collapse
|
7
|
Chen CY, Seward CH, Song Y, Inamdar M, Leddy AM, Zhang H, Yoo J, Kao WC, Pawlowski H, Stubbs LJ. Galnt17 loss-of-function leads to developmental delay and abnormal coordination, activity, and social interactions with cerebellar vermis pathology. Dev Biol 2022; 490:155-171. [PMID: 36002036 PMCID: PMC10671221 DOI: 10.1016/j.ydbio.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
GALNT17 encodes a N-acetylgalactosaminyltransferase (GalNAc-T) protein specifically involved in mucin-type O-linked glycosylation of target proteins, a process important for cell adhesion, cell signaling, neurotransmitter activity, neurite outgrowth, and neurite sensing. GALNT17, also known as WBSCR17, is located at the edge of the Williams-Beuren Syndrome (WBS) critical region and adjacent to the AUTS2 locus, genomic regions associated with neurodevelopmental phenotypes that are thought to be co-regulated. Although previous data have implicated Galnt17 in neurodevelopment, the in vivo functions of this gene have not been investigated. In this study, we have analyzed behavioral, brain pathology, and molecular phenotypes exhibited by Galnt17 knockout (Galnt17-/-) mice. We show that Galnt17-/- mutants exhibit developmental neuropathology within the cerebellar vermis, along with abnormal activity, coordination, and social interaction deficits. Transcriptomic and protein analysis revealed reductions in both mucin type O-glycosylation and heparan sulfate synthesis in the developing mutant cerebellum along with disruption of pathways central to neuron differentiation, axon pathfinding, and synaptic signaling, consistent with the mutant neuropathology. These brain and behavioral phenotypes and molecular data confirm a specific role for Galnt17 in brain development and suggest new clues to factors that could contribute to phenotypes in certain WBS and AUTS2 syndrome patients.
Collapse
Affiliation(s)
- Chih-Ying Chen
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Christopher H Seward
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yunshu Song
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Manasi Inamdar
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Analise M Leddy
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jennifer Yoo
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Wei-Chun Kao
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Hanna Pawlowski
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Lisa J Stubbs
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
8
|
Itoh K, Nishihara S. Mucin-Type O-Glycosylation in the Drosophila Nervous System. Front Neuroanat 2021; 15:767126. [PMID: 34733141 PMCID: PMC8558370 DOI: 10.3389/fnana.2021.767126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mucin-type O-glycosylation, a predominant type of O-glycosylation, is an evolutionarily conserved posttranslational modification in animals. Mucin-type O-glycans are often found on mucins in the mucous membranes of the digestive tract. These glycan structures are also expressed in other cell types, such as blood cells and nephrocytes, and have crucial physiological functions. Altered expression of mucin-type O-glycans is known to be associated with several human disorders, including Tn syndrome and cancer; however, the physiological roles of mucin-type O-glycans in the mammalian brain remains largely unknown. The functions of mucin-type O-glycans have been studied in the fruit fly, Drosophila melanogaster. The basic structures of mucin-type O-glycans, including Tn antigen (GalNAcα1-Ser/Thr) and T antigen (Galβ1–3GalNAcα1-Ser/Thr), as well as the glycosyltransferases that synthesize them, are conserved between Drosophila and mammals. These mucin-type O-glycans are expressed in the Drosophila nervous system, including the central nervous system (CNS) and neuromuscular junctions (NMJs). In primary cultured neurons of Drosophila, mucin-type O-glycans show a characteristic localization pattern in axons. Phenotypic analyses using mutants of glycosyltransferase genes have revealed that mucin-type O-glycans are required for CNS development, NMJ morphogenesis, and synaptic functions of NMJs in Drosophila. In this review, we describe the roles of mucin-type O-glycans in the Drosophila nervous system. These findings will provide insight into the functions of mucin-type O-glycans in the mammalian brain.
Collapse
Affiliation(s)
- Kazuyoshi Itoh
- Glycan & Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Japan
| | - Shoko Nishihara
- Glycan & Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Japan.,Department of Biosciences, Graduate School of Science and Engineering, Soka University, Hachioji, Japan
| |
Collapse
|
9
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Liu F, Cui Y, Yang F, Xu Z, Da LT, Zhang Y. Inhibition of polypeptide N-acetyl-α-galactosaminyltransferases is an underlying mechanism of dietary polyphenols preventing colorectal tumorigenesis. Bioorg Med Chem 2019; 27:3372-3382. [PMID: 31227364 DOI: 10.1016/j.bmc.2019.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Ellagitannin-derived ellagic acid (EA) and colonic metabolite urolithins are functional dietary ingredients for cancer prevention, but the underlying mechanism need elucidation. Mucin-type O-glycosylation, initiated by polypeptide N-acetyl-α-galactosaminyltransferases (ppGalNAc-Ts), fine-tunes multiple biological processes and is closely associated with cancer progression. Herein, we aim to explore how specific tannin-based polyphenols affect tumor behavior of colorectal cancer cells (CRC) by modulating O-glycosylation. Utilizing HPLC-based enzyme assay, we find urolithin D (UroD), EA and gallic acid (GA) potently inhibit ppGalNAc-Ts. In particular, UroD inhibits ppGalNAc-T2 through a peptide/protein-competitive manner with nanomolar affinity. Computational simulations combined with site-directed mutagenesis further support the inhibitors' mode of action. Moreover, lectin analysis and metabolic labelling reveal that UroD can reduce cell O-glycans but not N-glycans. Transwell experiments prove that UroD inhibits migration and invasion of CRC cells. Our work proves that specific tannin-based polyphenols can potently inhibit ppGalNAc-Ts activity to reduce cell O-glycosylation and lead to lowering the migration and invasion of CRC cells, suggesting that disturbance of mucin-type O-glycosylation is an important mechanism for the function of dietary polyphenols.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
11
|
Shan A, Lu J, Xu Z, Li X, Xu Y, Li W, Liu F, Yang F, Sato T, Narimatsu H, Zhang Y. Polypeptide N-acetylgalactosaminyltransferase 18 non-catalytically regulates the ER homeostasis and O-glycosylation. Biochim Biophys Acta Gen Subj 2019; 1863:870-882. [PMID: 30797803 DOI: 10.1016/j.bbagen.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 01/03/2023]
Abstract
Mucin-type O-glycosylation plays important roles in various biological processes. It is initiated by a family of 20 conserved UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). Unlike most ppGalNAc-Ts localized to the Golgi apparatus, ppGalNAc-T18 is predominantly distributed on the endoplasmic reticulum (ER) and exhibits no ppGalNAc-T catalytic activity in vitro. Herein, we found that ppGalNAc-T18 silencing in cells decreased O-glycosylation levels and activated ER stress leading to apoptosis. After treatment with chemical chaperone 4-phenylbutyric acid (PBA) or forced expression of ppGalNAc-T18 in the ppGalNAc-T18 knockdown cell, these defects could be significantly alleviated, suggesting that ppGalNAc-T18 is important for ER homeostasis and protein O-glycosylation. Furthermore, we found that ppGalNAc-T18 exerts its functions in O-glycosylation and ER stress via a non-catalytic mechanism. These results reveal a novel molecular role of ppGalNAc-Ts that the ER-localized ppGalNAc-T18 could regulate the O-glycosylation and ER homeostasis in a non-catalytic manner.
Collapse
Affiliation(s)
- Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xing Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yingjiao Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China.
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China.
| |
Collapse
|
12
|
Compound heterozygous variants in MOGS inducing congenital disorders of glycosylation (CDG) IIb. J Hum Genet 2018; 64:265-268. [PMID: 30587846 DOI: 10.1038/s10038-018-0552-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/13/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
This study is to present two Chinese siblings who were diagnosed with congenital disorders of glycosylation (CDG) IIb because of mannosyl-oligosaccharide glucosidase (MOGS) deficiency. The siblings visited our hospital due to "pulmonary infection". Facial dysmorphism including long eyelashes, blepharophimosis, depressed nasal bridge, and high palate was noted. Head MRI of the elder sister showed increased signals on T1W1, bilateral frontal gyrus stenosis, and thin corpus callosum. Both cases presented progressive hepatomegaly and elevated hepatic enzymes. Low immunoglobulin was discovered in the siblings. Compound heterozygous variants of NM_006302:c.1239_1267dup,p.Asp414Leufs*17, c.544 G > A,p.Gly182Arg, and c.1698C > A,p.Asp566Glu in MOGS were identified. Structural modeling demonstrated that the mutations were pathogenic to MOGS. Our study enriched the genetic and phenotypic spectrum of MOGS-CDG, and for children with facial dysmorphism, postnatal dyspnea, seizures, motor developmental delay, hypotonia, and immunological or gastrointestinal dysfunction, this disease should be highly suspected.
Collapse
|
13
|
Yan X, Lu J, Zou X, Zhang S, Cui Y, Zhou L, Liu F, Shan A, Lu J, Zheng M, Feng B, Zhang Y. The polypeptide N-acetylgalactosaminyltransferase 4 exhibits stage-dependent expression in colorectal cancer and affects tumorigenesis, invasion and differentiation. FEBS J 2018; 285:3041-3055. [PMID: 29931806 DOI: 10.1111/febs.14593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/20/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
The aberrant expression of mucin-type O-glycosylation plays important roles in cancer malignancy. The polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) are a family of conserved enzymes that initiate the mucin-type O-glycosylation in cells. In human, consistent up- or down-regulation of ppGalNAc-Ts expression during cancer development has been frequently reported. Here, we provide evidence that ppGalNAc-T4 shows a stage-dependent expression at the different stages of colorectal cancer (CRC) in the 62 pair-matched tumor/normal tissues. In detail, ppGalNAc-T4 expression is significantly induced at stage I and II but not at stage III and IV. Overexpression of ppGalNAc-T4 in CRC cells enhances colony formation and sphere formation suggesting an important role of ppGalNAc-T4 in tumorigenesis. Conversely, knockdown of ppGalNAc-T4 in CRC cells increases the cell migration and invasion, and leads to an epithelial-mesenchymal transition-like transition. Further analysis suggests that loss of ppGalNAc-T4 contributes to the dedifferentiation of CRC and high expression of ppGalNAc-T4 correlates to a good prognosis of patients. Taken together, our results not only demonstrate a stage-dependent expression of ppGalNAc-T4 in CRC progression, but also suggest that such stage-dependent expression may contribute to the tumorigenesis at the early stage and promote cell migration and invasion at the advanced stage.
Collapse
Affiliation(s)
- Xialin Yan
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Sen Zhang
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Leqi Zhou
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jiaoyang Lu
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Minghua Zheng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Bo Feng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| |
Collapse
|
14
|
Verma I, Seshagiri PB. Directed differentiation of mouse P19 embryonal carcinoma cells to neural cells in a serum- and retinoic acid-free culture medium. In Vitro Cell Dev Biol Anim 2018; 54:567-579. [PMID: 30030768 DOI: 10.1007/s11626-018-0275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
P19 embryonal carcinoma cells (EC-cells) provide a simple and robust culture system for studying neural development. Most protocols developed so far for directing neural differentiation of P19 cells depend on the use of culture medium supplemented with retinoic acid (RA) and serum, which has an undefined composition. Hence, such protocols are not suitable for many molecular studies. In this study, we achieved neural differentiation of P19 cells in a serum- and RA-free culture medium by employing the knockout serum replacement (KSR) supplement. In the KSR-containing medium, P19 cells underwent predominant differentiation into neural lineage and by day 12 of culture, neural cells were present in 100% of P19-derived embryoid bodies (EBs). This was consistently accompanied by the increased expression of various neural lineage-associated markers during the course of differentiation. P19-derived neural cells comprised of NES+ neural progenitors (~ 46%), TUBB3+ immature neurons (~ 6%), MAP2+ mature neurons (~ 2%), and GFAP+ astrocytes (~ 50%). A heterogeneous neuronal population consisting of glutamatergic, GABAergic, serotonergic, and dopaminergic neurons was generated. Taken together, our study shows that the KSR medium is suitable for the differentiation of P19 cells to neural lineage without requiring additional (serum and RA) supplements. This stem cell differentiation system could be utilized for gaining mechanistic insights into neural differentiation and for identifying potential neuroactive compounds.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India.
| |
Collapse
|
15
|
Kinoshita T, Itoh K, Nishihara S. Functions of Mucin-Type O-Glycans in the Nervous System. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1816.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takaaki Kinoshita
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Kazuyoshi Itoh
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University
| |
Collapse
|
16
|
Liu F, Xu K, Xu Z, de Las Rivas M, Wang C, Li X, Lu J, Zhou Y, Delso I, Merino P, Hurtado-Guerrero R, Zhang Y, Wu F. The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein. J Biol Chem 2017; 292:21304-21319. [PMID: 29061849 PMCID: PMC5766936 DOI: 10.1074/jbc.m117.814202] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
Mucin-type O-glycosylation is the most abundant type of O-glycosylation. It is initiated by the members of the polypeptide N-acetyl-α-galactosaminyltransferase (ppGalNAc-T) family and closely associated with both physiological and pathological conditions, such as coronary artery disease or Alzheimer's disease. The lack of direct and selective inhibitors of ppGalNAc-Ts has largely impeded research progress in understanding the molecular events in mucin-type O-glycosylation. Here, we report that a small molecule, the plant flavonoid luteolin, selectively inhibits ppGalNAc-Ts in vitro and in cells. We found that luteolin inhibits ppGalNAc-T2 in a peptide/protein-competitive manner but not promiscuously (e.g. via aggregation-based activity). X-ray structural analysis revealed that luteolin binds to the PXP motif-binding site found in most protein substrates, which was further validated by comparing the interactions of luteolin with wild-type enzyme and with mutants using 1H NMR-based binding experiments. Functional studies disclosed that luteolin at least partially reduced production of β-amyloid protein by selectively inhibiting the activity of ppGalNAc-T isoforms. In conclusion, our study provides key structural and functional details on luteolin inhibiting ppGalNAc-T activity, opening up the way for further optimization of more potent and specific ppGalNAc-T inhibitors. Moreover, our findings may inform future investigations into site-specific O-GalNAc glycosylation and into the molecular mechanism of luteolin-mediated ppGalNAc-T inhibition.
Collapse
Affiliation(s)
- Feng Liu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Xu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- the Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhijue Xu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Matilde de Las Rivas
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Congrong Wang
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- the School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Xing Li
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jishun Lu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yueyang Zhou
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ignacio Delso
- the Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, E-50009 Zaragoza, Aragón, Spain
| | - Pedro Merino
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Ramon Hurtado-Guerrero
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain,
- the Fundación ARAID, 50018 Zaragoza, Spain, and
| | - Yan Zhang
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China,
| | - Fang Wu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China,
| |
Collapse
|
17
|
Xu Z, Li X, Zhou S, Xie W, Wang J, Cheng L, Wang S, Guo S, Xu Z, Cao X, Zhang M, Yu B, Narimatsu H, Tao SC, Zhang Y. Systematic identification of the protein substrates of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T1/T2/T3 using a human proteome microarray. Proteomics 2017; 17. [PMID: 28394504 DOI: 10.1002/pmic.201600485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
O-GalNAc glycosylation is the initial step of the mucin-type O-glycosylation. In humans, it is catalyzed by a family of 20 homologous UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). So far, there is very limited information on their protein substrate specificities. In this study, we developed an on-chip ppGalNAc-Ts assay that could rapidly and systematically identify the protein substrates of each ppGalNAc-T. In detail, we utilized a human proteome microarray as the protein substrates and UDP-GalNAz as the nucleotide sugar donor for click chemistry detection. From a total of 16 368 human proteins, we identified 570 potential substrates of ppGalNAc-T1, T2, and T3. Among them, 128 substrates were overlapped, while the rest were isoform specific. Further cluster analysis of these substrates showed that the substrates of ppGalNAc-T1 had a closer phylogenetic relationship with that of ppGalNAc-T3 compared with ppGalNAc-T2, which was consistent with the topology of the phylogenetic tree of these ppGalNAc-Ts. Taken together, our microarray-based enzymatic assay comprehensively reveals the substrate profile of the ppGalNAc-T1, T2, and T3, which not only provides a plausible explanation for their partial functional redundancy as reported, but clearly implies some specialized roles of each enzyme in different biological processes.
Collapse
Affiliation(s)
- Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xing Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shumin Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenxian Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Li Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sheng Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shujuan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhaowei Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin Cao
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Menghui Zhang
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Biao Yu
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- SCSB (China) - AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- SCSB (China) - AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
18
|
Zhang S, Lu J, Xu Z, Zou X, Sun X, Xu Y, Shan A, Lu J, Yan X, Cui Y, Yan W, Du Y, Gu J, Zheng M, Feng B, Zhang Y. Differential expression of ST6GAL1 in the tumor progression of colorectal cancer. Biochem Biophys Res Commun 2017; 486:1090-1096. [PMID: 28377225 DOI: 10.1016/j.bbrc.2017.03.167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Elevated expression of β-galactoside α2,6-sialyltranferase 1 (ST6GAL1) has been observed in colorectal cancer (CRC) and demonstrated to be important for its tumorigenesis. Here, we found that ST6GAL1 expression was significantly higher in non-metastatic tumors (stage I and II) than that in metastatic tumors (stage III and IV) using 62 pair-matched tumor/normal tissues. To elucidate the molecular mechanisms of how ST6GAL1 affected the CRC progression, we performed a global identification of the substrates of ST6GAL1 in the colon adenocarcinoma cell line SW480. A total of 318 membrane proteins were identified differentially affected by ST6GAL1 overexpression using metabolic labeling and proteomic analysis. Subsequent bioinformatic analysis revealed a list of potential substrates that might mediate the different functions of ST6GAL1 in CRC including cell movement, cell death and survival. Taken together, these results indicate a dynamic change in the expression of ST6GAL1 during the CRC progression and provide a list of sialylated proteins potentially relevant to the different functions of ST6GAL1 in CRC.
Collapse
Affiliation(s)
- Sen Zhang
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai 981-8558, Miyagi, Japan
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xia Zou
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China; Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xue Sun
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjiao Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiaoyang Lu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Xialin Yan
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuguo Du
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai 981-8558, Miyagi, Japan; Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Minhua Zheng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Bo Feng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China.
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
19
|
Festari MF, Trajtenberg F, Berois N, Pantano S, Revoredo L, Kong Y, Solari-Saquieres P, Narimatsu Y, Freire T, Bay S, Robello C, Bénard J, Gerken TA, Clausen H, Osinaga E. Revisiting the human polypeptide GalNAc-T1 and T13 paralogs. Glycobiology 2017; 27:140-153. [PMID: 27913570 PMCID: PMC5224595 DOI: 10.1093/glycob/cww111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
Polypeptide GalNAc-transferases (GalNAc-Ts) constitute a family of 20 human glycosyltransferases (comprising 9 subfamilies), which initiate mucin-type O-glycosylation. The O-glycoproteome is thought to be differentially regulated via the different substrate specificities and expression patterns of each GalNAc-T isoforms. Here, we present a comprehensive in vitro analysis of the peptide substrate specificity of GalNAc-T13, showing that it essentially overlaps with the ubiquitous expressed GalNAc-T1 isoform found in the same subfamily as T13. We have also identified and partially characterized nine splice variants of GalNAc-T13, which add further complexity to the GalNAc-T family. Two variants with changes in their lectin domains were characterized by in vitro glycosylation assays, and one (Δ39Ex9) was inactive while the second one (Ex10b) had essentially unaltered activity. We used reverse transcription-polymerase chain reaction analysis of human neuroblastoma cell lines, normal brain and a small panel of neuroblastoma tumors to demonstrate that several splice variants (Ex10b, ΔEx9, ΔEx2-7 and ΔEx6/8-39bpEx9) were highly expressed in tumor cell lines compared with normal brain, although the functional implications remain to be unveiled. In summary, the GalNAc-T13 isoform is predicted to function similarly to GalNAc-T1 against peptide substrates in vivo, in contrast to a prior report, but is unique by being selectively expressed in the brain.
Collapse
Affiliation(s)
- María Florencia Festari
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| | | | - Nora Berois
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
| | - Sergio Pantano
- Grupo de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
| | - Leslie Revoredo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yun Kong
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Patricia Solari-Saquieres
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
| | - Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine and Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Teresa Freire
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| | - Sylvie Bay
- Unité de Chimie de Biomoleculares, CNRS UMR 3523 Institut Pasteur, Paris, France
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| | - Jean Bénard
- CNRS UMR 8126, Université Paris-Sud 11, and Département de Biologie et Pathologie Médicales Institut Gustave Roussy, Villejuif Cedex, France
| | - Thomas A Gerken
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Departments of Pediatrics and Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Henrik Clausen
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eduardo Osinaga
- Laboratory of Tumor Immunology and Glycobiology, Institut Pasteur de Montevideo, Mataojo 2020 (C.P. 11400), Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125 (C.P. 11800), Montevideo, Uruguay
| |
Collapse
|
20
|
Wang Y, Zhu J, Zhang L. Discovery of Cell-Permeable O-GlcNAc Transferase Inhibitors via Tethering in Situ Click Chemistry. J Med Chem 2016; 60:263-272. [DOI: 10.1021/acs.jmedchem.6b01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yue Wang
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingjing Zhu
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Lianwen Zhang
- College
of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and
Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|