1
|
Guo J, Lei L, Yang H, Zhou B, Fan D, Wu B, Wang G, Yu L, Zhang C, Zhang W, Han Q, Zhang XY, Zhao J. Effects of nasal allergens and environmental particulate matter on brainstem metabolites and the consequence of brain-spleen axis in allergic rhinitis. ENVIRONMENT INTERNATIONAL 2024; 190:108890. [PMID: 39033732 DOI: 10.1016/j.envint.2024.108890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The growing consensus links exposure to fine particulate matter (PM2.5) with an increased risk of respiratory diseases. However, little is known about the additional effects of particulate matter on brainstem function in allergic rhinitis (AR). Furthermore, it is unknown to what extent the PM2.5-induced effects in the brainstem affect the inflammatory response in AR. This study aimed to determine the effects, mechanisms and consequences of brainstem neural activity altered by allergenic stimulation and PM2.5 exposure. METHODS Using an AR model of ovalbumin (OVA) elicitation and whole-body PM2.5 exposure, the metabolic profile of the brainstem post-allergen stimulation was characterized through in vivo proton magnetic resonance imaging (1H-MRS). Then, the transient receptor potential vanilloid-1 (TRPV1) neuronal expression and sensitivity in the trigeminal nerve in AR were investigated. The link between TRPV1 expression and brainstem differential metabolites was also determined. Finally, we evaluated the mediating effects of brainstem metabolites and the consequences in the brain-spleen axis in the inflammatory response of AR. RESULTS Exposure to allergens and PM2.5 led to changes in the metabolic profiles of the brainstem, particularly affecting levels of glutamine (Gln) and glutamate (Glu). This exposure also increased the expression and sensitivity of TRPV1+ neurons in the trigeminal nerve, with the levels of TRPV1 expression closely linked to the brainstem metabolism of Glu and Gln. Moreover, allergens increased the activity of p38, while PM2.5 led to the phosphorylation of p38 and ERK, resulting in the upregulation of TRPV1 expression. The brainstem metabolites Glu and Gln were found to partially mediate the impact of TRPV1 on AR inflammation, which was supported by the presence of pro-inflammatory changes in the brain-spleen axis. CONCLUSION Brainstem metabolites are altered under allergen stimulation and additional PM2.5 exposure in AR via sensitization of the trigeminal nerve, which exacerbates the inflammatory response via the brain-splenic axis.
Collapse
Affiliation(s)
- JianShu Guo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China; The Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Haibo Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - DongXia Fan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Biao Wu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Wang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lu Yu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - ChiHang Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Wenqing Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - QingJian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; College of Health Science and Technology & Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - JinZhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Cowley JM, Deering-Rice CE, Lamb JG, Romero EG, Almestica-Roberts M, Serna SN, Sun L, Kelly KE, Whitaker RT, Cheminant J, Venosa A, Reilly CA. Pro-Inflammatory Effects of Inhaled Great Salt Lake Dust Particles. RESEARCH SQUARE 2024:rs.3.rs-4650606. [PMID: 39108472 PMCID: PMC11302694 DOI: 10.21203/rs.3.rs-4650606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Climatological shifts and human activities have decimated lakes worldwide. Water in the Great Salt Lake, Utah, USA is at near record lows which has increased risks for exposure to windblown dust from dried lakebed sediments. Formal studies evaluating the health effects of inhaled Great Salt Lake dust (GSLD) have not been performed despite the belief that the dust is harmful. The objectives of this study were to illustrate windblown dust events, assess the impact of inhaled dust on the lungs, and to identify mechanisms that could contribute to the effects of GSLD in the lungs. Results An animation, hourly particle and meteorological data, and images illustrate the impact of dust events on the Salt Lake Valley/Wasatch front airshed. Great Salt Lake sediment and PM2.5 contained metals, lipopolysaccharides, natural and anthropogenic chemicals, and bacteria. Inhalation and oropharyngeal delivery of PM2.5 triggered neutrophilia and the expression of mRNA for Il6, Cxcl1, Cxcl2, and Muc5ac in mouse lungs, was more potent than coal fly ash (CFA) PM2.5, and more cytotoxic to human airway epithelial cells (HBEC3-KT) in vitro. Induction of IL6 and IL8 was replicated in vitro using HBEC3-KT and THP-1 cells. For HBEC3-KT cells, IL6 induction was variably attenuated by EGTA/ruthenium red, the TLR4 inhibitor TAK-242, and deferoxamine, while IL8 was attenuated by EGTA/ruthenium red. Inhibition of mRNA induction by EGTA/ruthenium red suggested roles for transition metals, calcium, and calcium channels as mediators of the responses. Like CFA, GSLD and a similar dust from the Salton Sea in California, activated human TRPA1, M8, and V1. However, only inhibition of TRPV1, TRPV3, and a combination of both channels impacted cytokine mRNA induction in HBEC3-KT cells. Responses of THP1 cells were partially mediated by TLR4 as opposed to TRP channels and mice expressing a "humanized" form of TRPV1 exhibited greater neutrophilia when exposed to GSLD via inhalation. Conclusions This study suggests that windblown dust from Great Salt Lake and similar lake sediments could pose a risk to humans via mechanisms including the activation of TRPV1/V3, TLR4, and possibly oxidative stress.
Collapse
|
3
|
Almestica-Roberts M, Nguyen ND, Sun L, Serna SN, Rapp E, Burrell-Gerbers KL, Memon TA, Stone BL, Nkoy FL, Lamb JG, Deering-Rice CE, Rower JE, Reilly CA. The Cytochrome P450 2C8*3 Variant (rs11572080) Is Associated with Improved Asthma Symptom Control in Children and Altered Lipid Mediator Production and Inflammatory Response in Human Bronchial Epithelial Cells. Drug Metab Dispos 2024; 52:836-846. [PMID: 38772712 PMCID: PMC11257687 DOI: 10.1124/dmd.124.001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
This study investigated an association between the cytochrome P450 (CYP) 2C8*3 polymorphism with asthma symptom control in children and changes in lipid metabolism and pro-inflammatory signaling by human bronchial epithelial cells (HBECs) treated with cigarette smoke condensate (CSC). CYP genes are inherently variable in sequence, and while such variations are known to produce clinically relevant effects on drug pharmacokinetics and pharmacodynamics, the effects on endogenous substrate metabolism and associated physiologic processes are less understood. In this study, CYP2C8*3 was associated with improved asthma symptom control among children: Mean asthma control scores were 3.68 (n = 207) for patients with one or more copies of the CYP2C8*3 allele versus 4.42 (n = 965) for CYP2C8*1/*1 (P = 0.0133). In vitro, CYP2C8*3 was associated with an increase in montelukast 36-hydroxylation and a decrease in linoleic acid metabolism despite lower mRNA and protein expression. Additionally, CYP2C8*3 was associated with reduced mRNA expression of interleukin-6 (IL-6) and C-X-C motif chemokine ligand 8 (CXCL-8) by HBECs in response to CSC, which was replicated using the soluble epoxide hydrolase inhibitor, 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid. Interestingly, 9(10)- and 12(13)- dihydroxyoctadecenoic acid, the hydrolyzed metabolites of 9(10)- and 12(13)- epoxyoctadecenoic acid, increased the expression of IL-6 and CXCL-8 mRNA by HBECs. This study reveals previously undocumented effects of the CYP2C8*3 variant on the response of HBECs to exogenous stimuli. SIGNIFICANCE STATEMENT: These findings suggest a role for CYP2C8 in regulating the epoxyoctadecenoic acid:dihydroxyoctadecenoic acid ratio leading to a change in cellular inflammatory responses elicited by environmental stimuli that exacerbate asthma.
Collapse
Affiliation(s)
- Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Nam D Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Samantha N Serna
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Katherine L Burrell-Gerbers
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Tosifa A Memon
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Bryan L Stone
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Flory L Nkoy
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - John G Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Joseph E Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology (M.A.-R., N.D.N., L.S., S.N.S., E.R., K.L.B.-G., T.A.M., J.G.L., C.E.D.-R., J.E.R., C.A.R.) and Department of Pediatrics, School of Medicine (B.L.S., F.L.N.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
4
|
Bagley DC, Russell T, Ortiz-Zapater E, Stinson S, Fox K, Redd PF, Joseph M, Deering-Rice C, Reilly C, Parsons M, Brightling C, Rosenblatt J. Bronchoconstriction damages airway epithelia by crowding-induced excess cell extrusion. Science 2024; 384:66-73. [PMID: 38574138 DOI: 10.1126/science.adk2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
Affiliation(s)
- Dustin C Bagley
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Tobias Russell
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Sally Stinson
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | | | - Polly F Redd
- University of Utah, Salt Lake City, UT 84112, USA
| | - Merry Joseph
- University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | - Maddy Parsons
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
5
|
Robinson A, Huff RD, Ryu MH, Carlsten C. Variants in transient receptor potential channels and toll-like receptors modify airway responses to allergen and air pollution: a randomized controlled response human exposure study. Respir Res 2023; 24:218. [PMID: 37679687 PMCID: PMC10485933 DOI: 10.1186/s12931-023-02518-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Environmental co-exposure to allergen and traffic-related air pollution is common globally and contributes to the exacerbation of respiratory diseases. Individual responses to environmental insults remain variable due to gene-environment interactions. OBJECTIVE This study examined whether single nucleotide polymorphisms (SNPs) in lung cell surface receptor genes modifies lung function change and immune cell recruitment in allergen-sensitized individuals exposed to diesel exhaust (DE) and allergen. METHODS In this randomized, double-blinded, four-arm, crossover study, 13 allergen-sensitized participants underwent allergen inhalation challenge following a 2-hour exposure to DE, particle-depleted diesel exhaust (PDDE) or filtered air (FA). Lung function tests and bronchoscopic sample collection were performed up to 48 h after exposures. Transient receptor potential channel (TRPA1 and TRPV1) and toll-like receptor (TLR2 and TLR4) risk alleles were used to construct an unweighted genetic risk score (GRS). Exposure-by-GRS interactions were tested using mixed-effects models. RESULTS In participants with high GRS, allergen exposure was associated with an increase in airway hyperresponsiveness (AHR) when co-exposed to PDDE (p = 0.03) but not FA or DE. FA and PDDE also were associated with a relative increase in macrophages and decrease in lymphocytes in bronchoalveolar lavage. CONCLUSIONS TRPs and TLRs variants are associated with increased AHR and altered immune cellularity in allergen-exposed individuals. This effect is blunted by DE exposure, suggesting greater influence of unmeasured gene variants as primary meditators of a particulate-rich co-exposure. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov on December 20, 2013 (NCT02017431).
Collapse
Affiliation(s)
- Andrew Robinson
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Ryan D Huff
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Bagley DC, Russell T, Ortiz-Zapater E, Fox K, Redd PF, Joseph M, Rice CD, Reilly CA, Parsons M, Rosenblatt J. Bronchoconstriction damages airway epithelia by excess crowding-induced extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551943. [PMID: 37577550 PMCID: PMC10418241 DOI: 10.1101/2023.08.04.551943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic symptom is mechanical bronchoconstriction. We previously discovered a conserved process that drives homeostatic epithelial cell death in response to mechanical cell crowding called cell extrusion(1, 2). Here, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion. While relaxing airways with the rescue treatment albuterol did not impact these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these symptoms. Our findings propose a new etiology for asthma, dependent on the mechanical crowding of a bronchoconstrictive attack. Our studies suggest that blocking epithelial extrusion, instead of ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
|
7
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
8
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
9
|
Rapp E, Lu Z, Sun L, Serna SN, Almestica-Roberts M, Burrell KL, Nguyen ND, Deering-Rice CE, Reilly CA. Mechanisms and Consequences of Variable TRPA1 Expression by Airway Epithelial Cells: Effects of TRPV1 Genotype and Environmental Agonists on Cellular Responses to Pollutants in Vitro and Asthma. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27009. [PMID: 36847817 PMCID: PMC9969990 DOI: 10.1289/ehp11076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Transient receptor potential ankyrin-1 [transient receptor potential cation channel subfamily A member 1 (TRPA1)] and vanilloid-1 [transient receptor potential cation channel subfamily V member 1 (TRPV1)] detect inhaled irritants, including air pollutants and have roles in the development and exacerbation of asthma. OBJECTIVES This study tested the hypothesis that increased expression of TRPA1, stemming from expression of the loss-of-function TRPV1 (I585V; rs8065080) polymorphic variant by airway epithelial cells may explain prior observations of worse asthma symptom control among children with the TRPV1 I585I/V genotype, by virtue of sensitizing epithelial cells to particulate materials and other TRPA1 agonists. METHODS TRP agonists, antagonists, small interfering RNA (siRNA), a nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway inhibitor, and kinase activators and inhibitors were used to modulate TRPA1 and TRPV1 expression and function. Treatment of genotyped airway epithelial cells with particulate materials and analysis of asthma control data were used to assess consequences of TRPV1 genotype and variable TRPA1 expression on cellular responses in vitro and asthma symptom control among children as a function of voluntarily reported tobacco smoke exposure. RESULTS A relationship between higher TRPA1 expression and function and lower TRPV1 expression and function was revealed. Findings of this study pointed to a mechanism whereby NF-κB promoted TRPA1 expression, whereas NF-κB-regulated nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 2 (NLRP2) limited expression. Roles for protein kinase C and p38 mitogen activated protein kinase were also demonstrated. Finally, the TRPV1 I585I/V genotype was associated with increased TRPA1 expression by primary airway epithelial cells and amplified responses to selected air pollution particles in vitro. However, the TRPV1 I585I/V genotype was not associated with worse asthma symptom control among children exposed to tobacco smoke, whereas other TRPA1 and TRPV1 variants were. DISCUSSION This study provides insights on how airway epithelial cells regulate TRPA1 expression, how TRPV1 genetics can affect TRPA1 expression, and that TRPA1 and TRPV1 polymorphisms differentially affect asthma symptom control. https://doi.org/10.1289/EHP11076.
Collapse
Affiliation(s)
- Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Zhenyu Lu
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Samantha N. Serna
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Katherine L. Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Nam D. Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Sun L, Zhang J, Niu C, Deering-Rice CE, Hughen RW, Lamb JG, Rose K, Chase KM, Almestica-Roberts M, Walter M, Schmidt EW, Light AR, Olivera BM, Reilly CA. CYP1B1-derived epoxides modulate the TRPA1 channel in chronic pain. Acta Pharm Sin B 2023; 13:68-81. [PMID: 36815047 PMCID: PMC9939319 DOI: 10.1016/j.apsb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katherine Rose
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M. Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Markel Walter
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA,Corresponding author. Tel.: +1 8015815236.
| |
Collapse
|
11
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Li S, Xiao L, Sun Y, Hu S, Hu D. A TRPV1 common missense variant affected the prognosis of ischemic cardiomyopathy. Medicine (Baltimore) 2022; 101:e29892. [PMID: 35905222 PMCID: PMC9333512 DOI: 10.1097/md.0000000000029892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The purpose was to identify the Transient receptor potential (TRP) superfamily gene variants associate with the prognosis of ischemic cardiomyopathy (ICM). A whole-exome sequencing study involving 252 ICM and 252 healthy controls participants enrolled from March 2003 to November 2017. Optimal sequence kernel association test and Cox regression dominant was conducted to identify the cause genes of TRP with ICM and association of common SNPs with prognosis of ICM. Rs224534 was verified in the replication population. Besides, the expression of TRPV1 was detectable in human failed heart ventricular tissues. The TRPs was not associated with the risk of ICM (P > .05). Rs224534 was significantly associated with the prognosis of ICM (Hazard ratio, 2.27, 95%CI: 1.31-3.94; P = 3.7 × 10-3), in the replication cohort, (hazard ratio 1.47, 95%CI: 1.04-2.07; P = 2.9 × 10-2), and in combined cohort hazard ratio 1.62 (95%CI: 1.21-2.18; P = 1.1 × 10-3). The common SNP of TRPV1 (rs224534) is associated with the prognosis of ICM, and homozygote rs224534-AA showed an unfavorable prognosis of ICM in the dominant model tested. Genotyping the variant may benefit to further progress judgment of ICM.
Collapse
Affiliation(s)
- Shiyang Li
- Division of Cardiology, Panzhihua Central Hospital, Panzhihua, China
- *Correspondence: Panzhihua Central Hospital, 34# Yi kang Ave., Panzhihua 617000, China (e-mail: )
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Senlin Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| |
Collapse
|
13
|
Yoon M, Ryu MH, Huff RD, Belvisi MG, Smith J, Carlsten C. Effect of traffic-related air pollution on cough in adults with polymorphisms in several cough-related genes. Respir Res 2022; 23:113. [PMID: 35509099 PMCID: PMC9066887 DOI: 10.1186/s12931-022-02031-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
With prevalent global air pollution, individuals with certain genetic predispositions and sensitivities are at of higher risk of developing respiratory symptoms including chronic cough. Studies to date have relied on patient-filled questionnaires in epidemiological studies to evaluate the gene-by-environment interactions. In a controlled human exposure study, we evaluated whether genetic risk score (GRS) based on cough-related single-nucleotide polymorphisms (SNPs) are associated with a cough count over 24 h post-exposure to diesel exhaust (DE), a model for traffic-related air pollution. DE is a mixture of several known air pollutants including PM2.5, CO, NO, NO2, and volatile organic compounds. Under closely observed circumstances, we determined that GRS constructed from 7 SNPs related to TRPA1, TRPV1, and NK-2R were correlated with cough count. Selection of channels were based on prior knowledge that SNPs in these channels lead to acute airway inflammation as a result of their increased sensitivity to particulate matter. We performed a linear regression analysis and found a significant, positive correlation between GRS and cough count following DE exposure (p = 0.002, R2 = 0.61) and filtered air (FA) exposure (p = 0.028, R2 = 0.37). Although that correlation was stronger for DE than for FA, we found no significant exposure-by-GRS interaction. In summary, cough-relevant GRS was associated with a higher 24 h cough count in a controlled setting, suggesting that individuals with a high GRS may be more susceptible to developing cough regardless of their exposure. The trend towards this susceptibility being more prominent in the context of traffic-related air pollution remains to be confirmed. Trial registration: ClinicalTrial.gov NCT02236039; NCT0223603. Registered on August 11, 2014, https://clinicaltrials.gov/ct2/show/NCT02236039.
Collapse
Affiliation(s)
- Michael Yoon
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Ryan D Huff
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Maria G Belvisi
- Research and Early Development, Respiratory Pharmacology Group, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jaclyn Smith
- Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, 16 Manchester Academic Health Sciences Centre, and Manchester University NHS Foundation 17 Trust, Manchester, UK
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, BC, Canada. .,The Lung Center, Vancouver General Hospital-Gordon and Leslie Diamond Health Care Centre, 2775 Laurel St. 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
14
|
Treat A, Henri V, Liu J, Shen J, Gil-Silva M, Morales A, Rade A, Tidgewell KJ, Kolber B, Shen Y. Novel TRPV1 Modulators with Reduced Pungency Induce Analgesic Effects in Mice. ACS OMEGA 2022; 7:2929-2946. [PMID: 35097287 PMCID: PMC8793056 DOI: 10.1021/acsomega.1c05727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Capsaicin, the compound in hot chili peppers responsible for their pungency and an agonist of the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), has long been known to promote the desensitization of nociceptors at high concentrations. This has led to the utilization and implementation of topical capsaicin cream as an analgesic to treat acute and chronic pain. Critically, the application of capsaicin cream is limited due to capsaicin's high pungency, which is experienced prior to analgesia. To combat this issue, novel capsaicin analogues were developed to provide analgesia with reduced pungency. Analogues reported in this paper add to and show some differences from previous structure-activity relationship (SAR) studies of capsaicin-like molecules against TRPV1, including the necessity of phenol in the aromatic "A-region", the secondary amide in the "B-region", and modifications in the hydrophobic "C-region". This provided a new framework for de novo small-molecule design using capsaicin as the starting point. In this study, we describe the synthesis of capsaicin analogues, their in vitro activity in Ca2+ assays, and initial in vivo pungency and feasibility studies of capsaicin analogues YB-11 and YB-16 as analgesics. Our results demonstrate that male and female mice treated with YB capsaicin analogues showed diminished pain-associated behavior in the spontaneous formalin assay as well as reduced thermal sensitivity in the hotplate assay.
Collapse
Affiliation(s)
- Anny Treat
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Vianie Henri
- Department
of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Junke Liu
- Young
BioPharma, LLC, 110 Canal
Street, 4th Floor, Lowell, Massachusetts 01852, United States
| | - Joyce Shen
- Young
BioPharma, LLC, 110 Canal
Street, 4th Floor, Lowell, Massachusetts 01852, United States
| | - Mauricio Gil-Silva
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Alejandro Morales
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Avaneesh Rade
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Kevin Joseph Tidgewell
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes
Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Benedict Kolber
- Department
of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Young Shen
- Young
BioPharma, LLC, 110 Canal
Street, 4th Floor, Lowell, Massachusetts 01852, United States
| |
Collapse
|
15
|
Liviero F, Campisi M, Mason P, Pavanello S. Transient Receptor Potential Vanilloid Subtype 1: Potential Role in Infection, Susceptibility, Symptoms and Treatment of COVID-19. Front Med (Lausanne) 2021; 8:753819. [PMID: 34805220 PMCID: PMC8599155 DOI: 10.3389/fmed.2021.753819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The battle against the new coronavirus that continues to kill millions of people will be still long. Novel strategies are demanded to control infection, mitigate symptoms and treatment of COVID-19. This is even more imperative given the long sequels that the disease has on the health of the infected. The discovery that S protein includes two ankyrin binding motifs (S-ARBMs) and that the transient receptor potential vanilloid subtype 1 (TRPV-1) cation channels contain these ankyrin repeat domains (TRPs-ARDs) suggest that TRPV-1, the most studied member of the TRPV channel family, can play a role in binding SARS-CoV-2. This hypothesis is strengthened by studies showing that other respiratory viruses bind the TRPV-1 on sensory nerves and epithelial cells in the airways. Furthermore, the pathophysiology in COVID-19 patients is similar to the effects generated by TRPV-1 stimulation. Lastly, treatment with agonists that down-regulate or inactivate TRPV-1 can have a beneficial action on impaired lung functions and clearance of infection. In this review, we explore the role of the TRPV-1 channel in the infection, susceptibility, pathogenesis, and treatment of COVID-19, with the aim of looking at novel strategies to control infection and mitigate symptoms, and trying to translate this knowledge into new preventive and therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padua, Padova, Italy
| |
Collapse
|
16
|
The effects of genotype on inflammatory response in hippocampal progenitor cells: A computational approach. Brain Behav Immun Health 2021; 15:100286. [PMID: 34345870 PMCID: PMC8261829 DOI: 10.1016/j.bbih.2021.100286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cell culture models are valuable tools to study biological mechanisms underlying health and disease in a controlled environment. Although their genotype influences their phenotype, subtle genetic variations in cell lines are rarely characterised and taken into account for in vitro studies. To investigate how the genetic makeup of a cell line might affect the cellular response to inflammation, we characterised the single nucleotide variants (SNPs) relevant to inflammation-related genes in an established hippocampal progenitor cell line (HPC0A07/03C) that is frequently used as an in vitro model for hippocampal neurogenesis (HN). SNPs were identified using a genotyping array, and genes associated with chronic inflammatory and neuroinflammatory response gene ontology terms were retrieved using the AmiGO application. SNPs associated with these genes were then extracted from the genotyping dataset, for which a literature search was conducted, yielding relevant research articles for a total of 17 SNPs. Of these variants, 10 were found to potentially affect hippocampal neurogenesis whereby a majority (n=7) is likely to reduce neurogenesis under inflammatory conditions. Taken together, the existing literature seems to suggest that all stages of hippocampal neurogenesis could be negatively affected due to the genetic makeup in HPC0A07/03C cells under inflammation. Additional experiments will be needed to validate these specific findings in a laboratory setting. However, this computational approach already confirms that in vitro studies in general should control for cell lines subtle genetic variations which could mask or exacerbate findings.
Collapse
|
17
|
Thermosensory Transient Receptor Potential Ion Channels and Asthma. Biomedicines 2021; 9:biomedicines9070816. [PMID: 34356881 PMCID: PMC8301310 DOI: 10.3390/biomedicines9070816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a widespread chronic disease of the bronchopulmonary system with a heterogeneous course due to the complex etiopathogenesis. Natural-climatic and anthropogenic factors play an important role in the development and progression of this pathology. The reception of physical and chemical environmental stimuli and the regulation of body temperature are mediated by thermosensory channels, members of a subfamily of transient receptor potential (TRP) ion channels. It has been found that genes encoding vanilloid, ankyrin, and melastatin TRP channels are involved in the development of some asthma phenotypes and in the formation of exacerbations of this pathology. The review summarizes modern views on the role of high and low temperatures in airway inflammation in asthma. The participation of thermosensory TRP channels (vanilloid, ankyrin, and melastatin TRP channels) in the reaction to high and low temperatures and air humidity as well as in the formation of bronchial hyperreactivity and respiratory symptoms accompanying asthma is described. The genetic aspects of the functioning of thermosensory TRP channels are discussed. It is shown that new methods of treatment of asthma exacerbations caused by the influence of temperature and humidity should be based on the regulation of channel activity.
Collapse
|
18
|
Dumitrache MD, Jieanu AS, Scheau C, Badarau IA, Popescu GDA, Caruntu A, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. Comparative effects of capsaicin in chronic obstructive pulmonary disease and asthma (Review). Exp Ther Med 2021; 22:917. [PMID: 34306191 PMCID: PMC8280727 DOI: 10.3892/etm.2021.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are chronic respiratory diseases with high prevalence and mortality that significantly alter the quality of life in affected patients. While the cellular and molecular mechanisms engaged in the development and evolution of these two conditions are different, COPD and asthma share a wide array of symptoms and clinical signs that may impede differential diagnosis. However, the distinct signaling pathways regulating cough and airway hyperresponsiveness employ the interaction of different cells, molecules, and receptors. Transient receptor potential cation channel subfamily V member 1 (TRPV1) plays a major role in cough and airway inflammation. Consequently, its agonist, capsaicin, is of substantial interest in exploring the cellular effects and regulatory pathways that mediate these respiratory conditions. Increasingly more studies emphasize the use of capsaicin for the inhalation cough challenge, yet the involvement of TRPV1 in cough, bronchoconstriction, and the initiation of inflammation has not been entirely revealed. This review outlines a comparative perspective on the effects of capsaicin and its receptor in the pathophysiology of COPD and asthma, underlying the complex entanglement of molecular signals that bridge the alteration of cellular function with the multitude of clinical effects.
Collapse
Affiliation(s)
- Mihai-Daniel Dumitrache
- Department of Pneumology IV, 'Marius Nasta' Institute of Pneumophtysiology, 050159 Bucharest, Romania
| | - Ana Stefania Jieanu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Internal Medicine and Gastroenterology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Prof. N.C. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
19
|
Memon TA, Nguyen ND, Burrell KL, Scott AF, Almestica-Roberts M, Rapp E, Deering-Rice CE, Reilly CA. Wood Smoke Particles Stimulate MUC5AC Overproduction by Human Bronchial Epithelial Cells Through TRPA1 and EGFR Signaling. Toxicol Sci 2021; 174:278-290. [PMID: 31944254 DOI: 10.1093/toxsci/kfaa006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mucus hypersecretion is a pathological feature of acute inflammatory and chronic obstructive pulmonary diseases. Exposure to air pollutants can be a cause of pathological mucus overproduction, but mechanisms by which different forms of air pollutants elicit this response are not fully understood. In this study, particulate matter (PM) generated from burning pine wood and other types of biomass was used to determine mechanisms by which these forms of PM stimulate mucin gene expression and secretion by primary human bronchial epithelial cells (HBECs). Biomass PM < 2.5 μm generated from pine wood and several other fuels stimulated the expression and secretion of the gel-forming glycoprotein MUC5AC by HBECs. Muc5ac gene induction was also observed in mouse airways following subacute oropharyngeal delivery of pine wood smoke PM. In HBECs, MUC5AC was also induced by the transient receptor potential ankyrin-1 (TRPA1) agonists' coniferaldehyde, a component of pine smoke PM, and allyl isothiocyanate, and was attenuated by a TRPA1 antagonist. Additionally, inhibition of epidermal growth factor receptor (EGFR/ErbB1) and the EGFR signaling partners p38 MAPK and GSK3β also prevented MUC5AC overexpression. Collectively, our results suggest that activation of TRPA1 and EGFR, paired with alterations to p38 MAPK and GSK3β activity, plays a major role in MUC5AC overproduction by bronchial epithelial cells exposed to biomass smoke PM. These results reveal specific processes for how biomass smoke PM may impact the human respiratory system and highlight potential avenues for therapeutic manipulation of lung diseases that are affected by air pollutants.
Collapse
Affiliation(s)
- Tosifa A Memon
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Nam D Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Katherine L Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Abigail F Scott
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
21
|
Milici A, Talavera K. TRP Channels as Cellular Targets of Particulate Matter. Int J Mol Sci 2021; 22:2783. [PMID: 33803491 PMCID: PMC7967245 DOI: 10.3390/ijms22052783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Particulate matter (PM) is constituted by particles with sizes in the nanometer to micrometer scales. PM can be generated from natural sources such as sandstorms and wildfires, and from human activities, including combustion of fuels, manufacturing and construction or specially engineered for applications in biotechnology, food industry, cosmetics, electronics, etc. Due to their small size PM can penetrate biological tissues, interact with cellular components and induce noxious effects such as disruptions of the cytoskeleton and membranes and the generation of reactive oxygen species. Here, we provide an overview on the actions of PM on transient receptor potential (TRP) proteins, a superfamily of cation-permeable channels with crucial roles in cell signaling. Their expression in epithelial cells and sensory innervation and their high sensitivity to chemical, thermal and mechanical stimuli makes TRP channels prime targets in the major entry routes of noxious PM, which may result in respiratory, metabolic and cardiovascular disorders. On the other hand, the interactions between TRP channel and engineered nanoparticles may be used for targeted drug delivery. We emphasize in that much further research is required to fully characterize the mechanisms underlying PM-TRP channel interactions and their relevance for PM toxicology and biomedical applications.
Collapse
Affiliation(s)
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium;
| |
Collapse
|
22
|
Kringel D, Malkusch S, Kalso E, Lötsch J. Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain. Int J Mol Sci 2021; 22:ijms22020878. [PMID: 33467215 PMCID: PMC7830224 DOI: 10.3390/ijms22020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient's pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all "pain genes" would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called "pain genes" derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029 HUS Helsinki, Finland;
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-4589; Fax: +49-69-6301-4354
| |
Collapse
|
23
|
Faris P, Ferulli F, Vismara M, Tanzi M, Negri S, Rumolo A, Lefkimmiatis K, Maestri M, Shekha M, Pedrazzoli P, Guidetti GF, Montagna D, Moccia F. Hydrogen Sulfide-Evoked Intracellular Ca 2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12113338. [PMID: 33187307 PMCID: PMC7696676 DOI: 10.3390/cancers12113338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the most common type of gastrointestinal cancer and the third most predominant cancer in the world. CRC is potentially curable with surgical resection of the primary tumor. The clinical problem of colorectal cancer, however, is the spread and outgrowth of metastases, which are difficult to eradicate and lead to a patient’s death. The failure of conventional treatment to significantly improved outcomes in mCRC has prompted the search for alternative molecular targets with the goal of ameliorating the prognosis of these patients. The present investigation revealed that exogenous delivery of hydrogen sulfide (H2S) suppresses proliferation in metastatic colorectal cancer cells by inducing an increase in intracellular Ca2+ concentration. H2S was effective on metastatic, but not normal, cells. Therefore, we propose that exogenous administration of H2S to patients affected by metastatic colorectal carcinoma could represent a promising therapeutic alternative. Abstract Exogenous administration of hydrogen sulfide (H2S) is emerging as an alternative anticancer treatment. H2S-releasing compounds have been shown to exert a strong anticancer effect by suppressing proliferation and/or inducing apoptosis in several cancer cell types, including colorectal carcinoma (CRC). The mechanism whereby exogenous H2S affects CRC cell proliferation is yet to be clearly elucidated, but it could involve an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we sought to assess for the first time whether (and how) sodium hydrosulfide (NaHS), one of the most widely employed H2S donors, induced intracellular Ca2+ signals in primary cultures of human metastatic CRC (mCRC) cells. We provided the evidence that NaHS induced extracellular Ca2+ entry in mCRC cells by activating the Ca2+-permeable channel Transient Receptor Potential Vanilloid 1 (TRPV1) followed by the Na+-dependent recruitment of the reverse-mode of the Na+/Ca2+ (NCX) exchanger. In agreement with these observations, TRPV1 protein was expressed and capsaicin, a selective TRPV1 agonist, induced Ca2+ influx by engaging both TRPV1 and NCX in mCRC cells. Finally, NaHS reduced mCRC cell proliferation, but did not promote apoptosis or aberrant mitochondrial depolarization. These data support the notion that exogenous administration of H2S may prevent mCRC cell proliferation through an increase in [Ca2+]i, which is triggered by TRPV1.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Department of Biology, Cihan University-Erbil, 44001 Erbil, Iraq
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Mauro Vismara
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
| | - Agnese Rumolo
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Kostantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35131 Padua, Italy
| | - Marcello Maestri
- Medical Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mudhir Shekha
- Faculty of Science, Department of Medical Analysis, Tishk International University-Erbil, 44001 Erbil, Iraq;
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianni Francesco Guidetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
- Diagnostic and Pediatric, Department of Sciences Clinic-Surgical, University of Pavia, 27100 Pavia, Italy
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| |
Collapse
|
24
|
Nguyen ND, Memon TA, Burrell KL, Almestica-Roberts M, Rapp E, Sun L, Scott AF, Rower JE, Deering-Rice CE, Reilly CA. Transient Receptor Potential Ankyrin-1 and Vanilloid-3 Differentially Regulate Endoplasmic Reticulum Stress and Cytotoxicity in Human Lung Epithelial Cells After Pneumotoxic Wood Smoke Particle Exposure. Mol Pharmacol 2020; 98:586-597. [PMID: 32938721 DOI: 10.1124/molpharm.120.000047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
This study investigated the roles of transient receptor potential (TRP) ankyrin-1 (TRPA1) and TRP vanilloid-3 (TRPV3) in regulating endoplasmic reticulum stress (ERS) and cytotoxicity in human bronchial epithelial cells (HBECs) treated with pneumotoxic wood smoke particulate matter (WSPM) and chemical agonists of each channel. Functions of TRPA1 and TRPV3 in pulmonary epithelial cells remain largely undefined. This study shows that TRPA1 activity localizes to the plasma membrane and endoplasmic reticulum (ER) of cells, whereas TRPV3 resides primarily in the ER. Additionally, treatment of cells using moderately cytotoxic concentrations of pine WSPM, carvacrol, and other TRPA1 agonists caused ERS as a function of both TRPA1 and TRPV3 activities. Specifically, ERS and cytotoxicity were attenuated by TRPA1 inhibition, whereas inhibiting TRPV3 exacerbated ERS and cytotoxicity. Interestingly, after treatment with pine WSPM, TRPA1 transcription was suppressed, whereas TRPV3 was increased. TRPV3 overexpression in HBECs conferred resistance to ERS and an attenuation of ERS-associated cell cycle arrest caused by WSPM and multiple prototypical ERS-inducing agents. Alternatively, short hairpin RNA-mediated knockdown of TRPV3, like the TRPV3 antagonist, exacerbated ERS. This study reveals previously undocumented roles for TRPA1 in promoting pathologic ERS and cytotoxicity elicited by pneumotoxic WSPM and TRPA1 agonists, and a unique role for TRPV3 in fettering pathologic facets of the integrated ERS response. SIGNIFICANCE STATEMENT: These findings provide new insights into how wood smoke particulate matter and other transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-3 (TRPV3) agonists can affect human bronchial epithelial cells and highlight novel physiological and pathophysiological roles for TRPA1 and TRPV3 in these cells.
Collapse
Affiliation(s)
- Nam D Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Tosifa A Memon
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Katherine L Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Abigail F Scott
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Joseph E Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Standardized Extract of Atractylodis Rhizoma Alba and Fructus Schisandrae Ameliorates Coughing and Increases Expectoration of Phlegm. Molecules 2020; 25:molecules25133064. [PMID: 32635583 PMCID: PMC7411911 DOI: 10.3390/molecules25133064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023] Open
Abstract
Cough and phlegm frequently occur in respiratory diseases like upper respiratory tract infections, acute bronchitis, and chronic obstructive pulmonary diseases. To relieve these symptoms and diseases, various ingredients are being used despite the debates on their clinical efficacy. We aimed to investigate the effects of the extract CKD-497, composed of Atractylodis Rhizoma Alba and Fructus Schisandrae, in relieving cough and facilitating expectoration of phlegm. CKD-497 was found to inhibit inflammatory mediators such as interleukin-8 (IL-8) and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-treated mouse macrophages and transient receptor potential cation channel 1 (TRPV-1)-overexpressed human bronchial epithelial cells stimulated by capsaicin. CKD-497 decreased the viscosity of the mucin solution. During in vivo experiments, CKD-497 reduced coughing numbers and increased expectoration of phlegm via mucociliary clearance enhancement. Collectively, these data suggest that CKD-497 possesses potential for cough and phlegm expectoration treatment.
Collapse
|
26
|
TRPA1 gene variants hurting our feelings. Pflugers Arch 2020; 472:953-960. [PMID: 32444956 DOI: 10.1007/s00424-020-02397-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
TRPA1 is a Ca2+-permeable, non-selective cation channel that is activated by thermal and mechanical stimuli, an amazing variety of potentially noxious chemicals, and by endogenous molecules that signal tissue injury. The expression of this channel in nociceptive neurons and epithelial cells puts it at the first line of defense and makes it a key determinant of adaptive protective behaviors. For the same reasons, TRPA1 is implicated in a wide variety of disease conditions, such as acute, neuropathic, and inflammatory pains, and is postulated to be a target for therapeutic interventions against acquired diseases featuring aberrant sensory functions. The human TRPA1 gene can bare mutations that have been associated with painful conditions, such as the N855S that relates to the rare familial episodic pain syndrome, or others that have been linked to altered chemosensation in humans. Here, we review the current knowledge on this field, re-evaluating some available functional data, and pointing out the aspects that in our opinion require attention in future research. We make emphasis in that, although the availability of the human TRPA1 structure provides a unique opportunity for further developments, far more classical functional studies using electrophysiology and analysis of channel gating are also required to understand the structure-function relationship of this intriguing channel.
Collapse
|
27
|
Elias-Kirma S, Artzy-Schnirman A, Das P, Heller-Algazi M, Korin N, Sznitman J. In situ-Like Aerosol Inhalation Exposure for Cytotoxicity Assessment Using Airway-on-Chips Platforms. Front Bioeng Biotechnol 2020; 8:91. [PMID: 32154228 PMCID: PMC7044134 DOI: 10.3389/fbioe.2020.00091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/31/2020] [Indexed: 12/02/2022] Open
Abstract
Lung exposure to inhaled particulate matter (PM) is known to injure the airway epithelium via inflammation, a phenomenon linked to increased levels of global morbidity and mortality. To evaluate physiological outcomes following PM exposure and concurrently circumvent the use of animal experiments, in vitro approaches have typically relied on traditional assays with plates or well inserts. Yet, these manifest drawbacks including the inability to capture physiological inhalation conditions and aerosol deposition characteristics relative to in vivo human conditions. Here, we present a novel airway-on-chip exposure platform that emulates the epithelium of human bronchial airways with critical cellular barrier functions at an air-liquid interface (ALI). As a proof-of-concept for in vitro lung cytotoxicity testing, we recapitulate a well-characterized cell apoptosis pathway, induced through exposure to 2 μm airborne particles coated with αVR1 antibody that leads to significant loss in cell viability across the recapitulated airway epithelium. Notably, our in vitro inhalation assays enable simultaneous aerosol exposure across multiple airway chips integrated within a larger bronchial airway tree model, under physiological respiratory airflow conditions. Our findings underscore in situ-like aerosol deposition outcomes where patterns depend on respiratory flows across the airway tree geometry and gravitational orientation, as corroborated by concurrent numerical simulations. Our airway-on-chips not only highlight the prospect of realistic in vitro exposure assays in recapitulating characteristic local in vivo deposition outcomes, such platforms open opportunities toward advanced in vitro exposure assays for preclinical cytotoxicity and drug screening applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Josué Sznitman
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Multiple single nucleotide polymorphisms of the transient receptor potential vanilloid 1 (TRPV1) genes associate with cough sensitivity to capsaicin in healthy subjects. Pulm Pharmacol Ther 2020; 61:101889. [PMID: 31935455 DOI: 10.1016/j.pupt.2020.101889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cough is a common symptom in several respiratory diseases and may occur in healthy subjects as a defense mechanism against noxious inhalants. Cough response is mediated by transient receptor potential vanilloid-1 (TRPV1) expressed by C-fibers in the airways. Capsaicin (CPS) activates TRPV1 and is regularly used as a tool to study cough response. Although single nucleotide polymorphisms (SNPs) of TRPV1 are implicated in CPS binding, their role in cough response is not fully elucidated. AIMS In this study we investigated the relationship between capsaicin cough challenge sensitivity and multiple TRPV1 polymorphisms. METHODS The dose-response of cough induced by CPS inhalation was determined in 20 unselected healthy volunteers and the concentration of CPS causing two coughs (C2) was calculated. The SNPs I585V(rs8065080), T505A(rs17633288), T469I(rs224534), I315 M(rs222747), P91S(rs222749), and K2N(rs9894618) were characterized in blood DNA from each subject. The association between combinations of TRPV1 SNPs and CPS sensitivity of each subject was assessed by linear regression. RESULTS All subjects were wild type for T505A and K2N, while they exhibited two to six SNPs with high capsaicin responsiveness. The major contribution to CPS sensitivity in vivo (C2) was due to four combined SNPs: 315 M, 585I, 469I and 91S (p = 0.015). We found, however, that the presence of a minimum of two polymorphisms, such as 91S combined with 315 M (p = 0.032) or 91S with 585I (p = 0.025), was sufficient to detect an effect on C2. CONCLUSION Capsaicin cough challenge sensitivity in healthy subjects is dependent on multiple TRPV1 polymorphisms.
Collapse
|
29
|
Deering-Rice CE, Memon T, Lu Z, Romero EG, Cox J, Taylor-Clark T, Veranth JM, Reilly CA. Differential Activation of TRPA1 by Diesel Exhaust Particles: Relationships between Chemical Composition, Potency, and Lung Toxicity. Chem Res Toxicol 2019; 32:1040-1050. [PMID: 30945539 PMCID: PMC6959364 DOI: 10.1021/acs.chemrestox.8b00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Diesel
exhaust particulate (DEP) causes pulmonary irritation and
inflammation, which can exacerbate asthma and other diseases. These
effects may arise from the activation of transient receptor potential
ankyrin-1 (TRPA1). This study shows that a representative DEP can
activate TRPA1-expressing pulmonary C-fibers in the mouse lung. Furthermore,
DEP collected from idling vehicles at an emissions inspection station,
the tailpipe of an on-road “black smoker” diesel truck,
waste DEP from a diesel exhaust filter regeneration machine, and NIST
SRM 2975 can activate human TRPA1 in lung epithelial cells to elicit
different biological responses. The potency of the DEP, particle extracts,
and selected chemical components was compared in TRPA1 over-expressing
HEK-293 and human lung cells using calcium flux and other toxicologically
relevant end-point assays. Emission station DEP was the most potent
and filter DEP the least. Potency was related to the percentage of
ethanol extractable TRPA1 agonists and was equivalent when equal amounts
of extract mass was used for treatment. The DEP samples were further
compared using scanning electron microscopy, energy-dispersive X-ray
spectroscopy, gas chromatography–mass spectrometry, and principal
component analysis as well as targeted analysis of known TRPA1 agonists.
Activation of TRPA1 was attributable to both particle-associated electrophiles
and non-electrophilic agonists, which affected the induction of interleukin-8
mRNA via TRPA1 in A549 and IMR-90 lung cells as well as TRPA1-mediated
mucin gene induction in human lung cells and mucous cell metaplasia
in mice. This work illustrates that not all DEP samples are equivalent,
and studies aimed at assessing mechanisms of DEP toxicity should account
for multiple variables, including the expression of receptor targets
such as TRPA1 and particle chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States
| | | | | |
Collapse
|
30
|
Deering-Rice CE, Nguyen N, Lu Z, Cox JE, Shapiro D, Romero EG, Mitchell VK, Burrell KL, Veranth JM, Reilly CA. Activation of TRPV3 by Wood Smoke Particles and Roles in Pneumotoxicity. Chem Res Toxicol 2018; 31:291-301. [PMID: 29658714 PMCID: PMC6342208 DOI: 10.1021/acs.chemrestox.7b00336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Wood/biomass
smoke particulate materials (WBSPM) are pneumotoxic,
but the mechanisms by which these materials affect lung cells are
not fully understood. We previously identified transient receptor
potential (TRP) ankyrin-1 as a sensor for electrophiles in WBSPM and
hypothesized that other TRP channels expressed by lung cells might
also be activated by WBSPM, contributing to pneumotoxicity.
Screening TRP channel activation by WBSPM using calcium flux assays
revealed TRPV3 activation by materials obtained from burning multiple
types of wood under fixed conditions. TRPV3 activation by WBSPM was
dependent on the chemical composition, and the pattern of activation
and chemical components of PM agonists was different from that of
TRPA1. Chemical analysis of particle constituents by gas chromatography–mass
spectrometry and principal component analysis indicated enrichment
of cresol, ethylphenol, and xylenol analogues, plus several
other chemicals among the most potent samples. 2,3-, 2,4-, 2,5-, 2,6-,
3,4-, and 3,5-xylenol, 2-, 3-, and 4-ethylphenol, 2-methoxy-4-methylphenol,
and 5,8-dihydronaphthol were TRPV3 agonists exhibiting preferential
activation versus TRPA1, M8, V1, and V4. The concentration of 2,3-
and 3,4-xylenol in the most potent samples of pine and mesquite smoke
PM (<3 μm) was 0.1–0.3% by weight, while that of 5,8-dihydronaphthol
was 0.03%. TRPV3 was expressed by several human lung epithelial cell
lines, and both pine PM and pure chemical TRPV3 agonists found in
WBSPM were more toxic to TRPV3-over-expressing cells via TRPV3 activation.
Finally, mice treated sub-acutely with pine particles exhibited an
increase in sensitivity to inhaled methacholine involving TRPV3. In
summary, TRPV3 is activated by specific chemicals in WBSPM, potentially
contributing to the pneumotoxic properties of certain WBSPM.
Collapse
Affiliation(s)
- Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - Nam Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - Zhenyu Lu
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - James E Cox
- Department of Biochemistry, Emma Eccles Jones Medical Research Building , University of Utah , Room A306, 15 North Medical Drive East , Salt Lake City , Utah 84112 , United States
| | - Darien Shapiro
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - Erin G Romero
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - Virginia K Mitchell
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - Katherine L Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - John M Veranth
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology , University of Utah , 30 South 2000 East, Room 201 Skaggs Hall , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
31
|
Schwenk M. Chemical warfare agents. Classes and targets. Toxicol Lett 2017; 293:253-263. [PMID: 29197625 DOI: 10.1016/j.toxlet.2017.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action.
Collapse
Affiliation(s)
- Michael Schwenk
- Formerly: Medical School Hannover. Present address: In den Kreuzäckern 16/1, 72072 Tübingen, Germany.
| |
Collapse
|
32
|
Lamb JG, Romero EG, Lu Z, Marcus SK, Peterson HC, Veranth JM, Deering-Rice CE, Reilly CA. Activation of Human Transient Receptor Potential Melastatin-8 (TRPM8) by Calcium-Rich Particulate Materials and Effects on Human Lung Cells. Mol Pharmacol 2017; 92:653-664. [PMID: 29038158 DOI: 10.1124/mol.117.109959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
To better understand how adverse health effects are caused by exposure to particulate materials, and to develop preventative measures, it is important to identify the properties of particles and molecular targets that link exposure with specific biologic outcomes. Coal fly ash (CFA) is a by-product of coal combustion that can affect human health. We report that human transient receptor potential melastatin-8 (TRPM8) and an N-terminally truncated TRPM8 variant (TRPM8-Δ801) are activated by CFA and calcium-rich nanoparticles and/or soluble salts within CFA. TRPM8 activation by CFA was potentiated by cold temperature involving the phosphatidylinositol 4,5-bisphosphate binding residue (L1008), but was independent of the icilin and menthol binding site residue Y745 and, essentially, the N-terminal amino acids 1-800. CFA, calcium nanoparticles, and calcium salts also activated transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential ankyrin-1 (TRPA1), but not TRPV4. CFA treatment induced CXCL1 and interleukin-8 mRNA in BEAS-2B and primary human bronchial epithelial cells through activation of both TRPM8 and TRPV1. However, neither mouse nor rat TRPM8 was activated by these materials, and Trpm8 knockout had no effect on cytokine induction in the lungs of CFA-instilled mice. Amino acids S921 and S927 in mouse Trpm8 were identified as important for the lack of response to CFA. These results imply that TRPM8, in conjunction with TRPV1 and TRPA1, might sense selected forms of inhaled particulate materials in human airways, shaping cellular responses to these materials, and improving our understanding of how and why certain particulate materials elicit different responses in biologic systems, affecting human health.
Collapse
Affiliation(s)
- John G Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Erin G Romero
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Zhenyu Lu
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Seychelle K Marcus
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Hannah C Peterson
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - John M Veranth
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
33
|
Hou X, Li H, Zhang C, Wang J, Li X, Li X. Overexpression of Fibulin-5 attenuates burn-induced inflammation via TRPV1/CGRP pathway. Exp Cell Res 2017; 357:320-327. [DOI: 10.1016/j.yexcr.2017.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
|