1
|
Xu M, Chen ZY, Li Y, Li Y, Guo G, Dai RZ, Ni N, Tao J, Wang HY, Chen QL, Wang H, Zhou H, Yang YN, Chen S, Chen L. Rab2A-mediated Golgi-lipid droplet interactions support very-low-density lipoprotein secretion in hepatocytes. EMBO J 2024; 43:6383-6409. [PMID: 39496977 DOI: 10.1038/s44318-024-00288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Lipid droplets (LDs) serve as crucial hubs for lipid trafficking and metabolic regulation through their numerous interactions with various organelles. While the interplay between LDs and the Golgi apparatus has been recognized, their roles and underlying mechanisms remain poorly understood. Here, we reveal the role of Ras-related protein Rab-2A (Rab2A) in mediating LD-Golgi interactions, thereby contributing to very-low-density lipoprotein (VLDL) lipidation and secretion in hepatocytes. Mechanistically, our findings identify a selective interaction between Golgi-localized Rab2A and 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) protein residing on LDs. This complex facilitates dynamic organelle communication between the Golgi apparatus and LDs, thus contributing to lipid transfer from LDs to the Golgi apparatus for VLDL2 lipidation and secretion. Attenuation of Rab2A activity via AMP-activated protein kinase (AMPK) suppresses the Rab2A-HSD17B13 complex formation, impairing LD-Golgi interactions and subsequent VLDL secretion. Furthermore, genetic inhibition of Rab2A and HSD17B13 in the liver reduces the serum triglyceride and cholesterol levels. Collectively, this study provides a new perspective on the interactions between the Golgi apparatus and LDs.
Collapse
Affiliation(s)
- Min Xu
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Zi-Yue Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Yang Li
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China
| | - Yue Li
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Ge Guo
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Rong-Zheng Dai
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Na Ni
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Jing Tao
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Qiao-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Hong Zhou
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China.
| | - Yi-Ning Yang
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China.
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 830000, Urumqi, China.
- Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, 830000, Urumqi, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China.
| | - Liang Chen
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230001, Hefei, China.
| |
Collapse
|
2
|
Dai W, Zhang H, Lund H, Zhang Z, Castleberry M, Rodriguez M, Kuriakose G, Gupta S, Lewandowska M, Powers HR, Valmiki S, Zhu J, Shapiro AD, Hussain MM, López JA, Sorci-Thomas MG, Silverstein RL, Ginsberg HN, Sahoo D, Tabas I, Zheng Z. Intracellular tPA-PAI-1 interaction determines VLDL assembly in hepatocytes. Science 2023; 381:eadh5207. [PMID: 37651538 PMCID: PMC10697821 DOI: 10.1126/science.adh5207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Hayley Lund
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | - Maya Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sweta Gupta
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | | | - Hayley R. Powers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Swati Valmiki
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amy D. Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | - M. Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - José A. López
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mary G. Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Lee HC, Akhmedov A, Chen CH. Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights. Front Cardiovasc Med 2022; 9:993633. [PMID: 36267630 PMCID: PMC9577298 DOI: 10.3389/fcvm.2022.993633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Very-low-density lipoprotein (VLDL) is the only lipoprotein containing apolipoprotein B that is secreted from the liver, where VLDL is assembled from apolipoproteins, cholesterol, and triglycerides. The primary function of VLDL is to transport cholesterol and other lipids to organs and cells for utilization. Apart from its role in normal biologic processes, VLDL is also known to contribute to the development of atherosclerotic cardiovascular disease. Large VLDL particles, which are subclassified according to their size by nuclear magnetic resonance spectrometry, are significantly correlated not only with atherosclerosis, but also with insulin resistance and diabetes incidence. VLDL can also be subclassified according to surface electrical charge by using anion-exchange chromatography. The most electronegative VLDL subclass is highly cytotoxic to endothelial cells and may contribute to coronary heart disease. In addition, electronegative VLDL contributes to the development of atrial remodeling, especially in patients with metabolic syndrome, which is an established risk factor for atrial fibrillation. In this review, we focus on the VLDL subclasses that are associated with apolipoprotein alterations and are involved in cardiometabolic disease. The postprandial enhancement of VLDL’s pathogenicity is a critical medical issue, especially in patients with metabolic syndrome. Therefore, the significance of the postprandial modification of VLDL’s chemical and functional properties is extensively discussed.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan,Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, United States,*Correspondence: Chu-Huang Chen,
| |
Collapse
|
4
|
Kelly AC, J Rosario F, Chan J, Cox LA, Powell TL, Jansson T. Transcriptomic responses are sex-dependent in the skeletal muscle and liver in offspring of obese mice. Am J Physiol Endocrinol Metab 2022; 323:E336-E353. [PMID: 35858246 PMCID: PMC9529275 DOI: 10.1152/ajpendo.00263.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Infants born to obese mothers are more likely to develop metabolic disease, including glucose intolerance and hepatic steatosis, in adult life. We examined the effects of maternal obesity on the transcriptome of skeletal muscle and liver tissues of the near-term fetus and 3-mo-old offspring in mice born to dams fed a high-fat and -sugar diet. Previously, we have shown that male, but not female, offspring develop glucose intolerance, insulin resistance, and liver steatosis at 3 mo old. Female C57BL6/J mice were fed normal chow or an obesogenic high-calorie diet before mating and throughout pregnancy. RNAseq was performed on the liver and gastrocnemius muscle following collection from fetuses on embryonic day 18.5 (E18.5) as well as from 3-mo-old offspring from obese dams and control dams. Significant genes were generated for each sex, queried for enrichment, and modeled to canonical pathways. RNAseq was corroborated by protein quantification in offspring. The transcriptomic response to maternal obesity in the liver was more marked in males than females. However, in both male and female offspring of obese dams, we found significant enrichment for fatty acid metabolism, mitochondrial transport, and oxidative stress in the liver transcriptomes as well as decreased protein concentrations of electron transport chain members. In skeletal muscle, pathway analysis of gene expression revealed sexual dimorphic patterns, including metabolic processes of fatty acids and glucose, as well as PPAR, AMPK, and PI3K-Akt signaling pathways. Transcriptomic responses to maternal obesity in skeletal muscle were more marked in female offspring than males. Female offspring had greater expression of genes associated with glucose uptake, and protein abundance reflected greater activation of mTOR signaling. Skeletal muscle and livers in mice born to obese dams had sexually dimorphic transcriptomic responses that changed from the fetus to the adult offspring. These data provide insights into mechanisms underpinning metabolic programming in maternal obesity.NEW & NOTEWORTHY Transcriptomic data support that fetuses of obese mothers modulate metabolism in both muscle and liver. These changes were strikingly sexually dimorphic in agreement with published findings that male offspring of obese dams exhibit pronounced metabolic disease earlier. In both males and females, the transcriptomic responses in the fetus were different than those at 3 mo, implicating adaptive mechanisms throughout adulthood.
Collapse
Affiliation(s)
- Amy C Kelly
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fredrick J Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeannie Chan
- Section of Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Laura A Cox
- Section of Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
5
|
Pan X, Hussain MM. Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV. Hepatology 2022; 76:78-93. [PMID: 34626126 PMCID: PMC8993942 DOI: 10.1002/hep.32196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High plasma lipid/lipoprotein levels are risk factors for various metabolic diseases. We previously showed that circadian rhythms regulate plasma lipids and deregulation of these rhythms causes hyperlipidemia and atherosclerosis in mice. Here, we show that global and liver-specific brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1)-deficient mice maintained on a chow or Western diet developed hyperlipidemia, denoted by the presence of higher amounts of triglyceride-rich and apolipoprotein AIV (ApoAIV)-rich larger chylomicron and VLDL due to overproduction. APPROACH AND RESULTS Bmal1 deficiency decreased small heterodimer partner (Shp) and increased microsomal triglyceride transfer protein (MTP), a key protein that facilitates primordial lipoprotein assembly and secretion. Moreover, we show that Bmal1 regulates cAMP-responsive element-binding protein H (Crebh) to modulate ApoAIV expression and the assembly of larger lipoproteins. This is supported by the observation that Crebh-deficient and ApoAIV-deficient mice, along with Bmal1-deficient mice with knockdown of Crebh, had smaller lipoproteins. Further, overexpression of Bmal1 in Crebh-deficient mice had no effect on ApoAIV expression and lipoprotein size. CONCLUSIONS These studies indicate that regulation of ApoAIV and assembly of larger lipoproteins by Bmal1 requires Crebh. Mechanistic studies showed that Bmal1 regulates Crebh expression by two mechanisms. First, Bmal1 interacts with the Crebh promoter to control circadian regulation. Second, Bmal1 increases Rev-erbα expression, and nuclear receptor subfamily 1 group D member 1 (Nr1D1, Rev-erbα) interacts with the Crebh promoter to repress expression. In short, Bmal1 modulates both the synthesis of primordial lipoproteins and their subsequent expansion into larger lipoproteins by regulating two different proteins, MTP and ApoAIV, through two different transcription factors, Shp and Crebh. It is likely that disruptions in circadian mechanisms contribute to hyperlipidemia and that avoiding disruptions in circadian rhythms may limit/prevent hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, USA
| |
Collapse
|
6
|
Zhai R, Feng L, Zhang Y, Liu W, Li S, Hu Z. Combined Transcriptomic and Lipidomic Analysis Reveals Dysregulated Genes Expression and Lipid Metabolism Profiles in the Early Stage of Fatty Liver Disease in Rats. Front Nutr 2021; 8:733197. [PMID: 34604283 PMCID: PMC8484319 DOI: 10.3389/fnut.2021.733197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Non-alcoholic fatty liver disease develops from simple steatosis to non-alcoholic steatohepatitis (NASH), which then potentially develops into liver cirrhosis. It is a serious threat to human health. Therefore, investigating the formation and development mechanism of non-alcoholic fatty liver disease (NAFLD) is of great significance. Herein, an early model of NAFLD was successfully established by feeding rats with a high-fat and choline-deficient diet. Liver tissue samples were obtained from rats in the fatty liver model group (NAFL) and normal diet control group (CON). Afterward, transcriptome and lipidomic analysis was performed. Transcriptome results revealed that 178 differentially expressed genes were detected in NAFL and CON groups. Out of which, 105 genes were up-regulated, 73 genes were downregulated, and 8 pathways were significantly enriched. A total of 982 metabolites were detected in lipidomic analysis. Out of which 474 metabolites were significantly different, 273 were up-regulated, 201 were downregulated, and 7 pathways were significantly enriched. Based on the joint analysis, 3 common enrichment pathways were found, including cholesterol metabolism and fat digestion and absorption metabolic pathways. Overall, in the early stage of NAFLD, a small number of genetic changes caused a strong response to lipid components. The strongest reflection was glycerides and glycerophospholipids. A significant increase in fatty acid uptake accompanied by cholesterol metabolism is the most prominent metabolic feature of the liver in the early stage of NAFLD. In the early stage of fatty liver, the liver had shown the characteristics of NASH.
Collapse
Affiliation(s)
- Ruina Zhai
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Lei Feng
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yu Zhang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Wei Liu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Krumm CS, Xu X, Bare CJ, Holman CD, Kersten S, Dow LE, Lee AH, Cohen DE. Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice. J Biol Chem 2021; 297:100815. [PMID: 34023388 PMCID: PMC8246594 DOI: 10.1016/j.jbc.2021.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH encoded by Creb3l3) is a transcription factor that regulates the expression of genes that control lipid and glucose metabolism as well as inflammation. CREBH is upregulated in the liver under conditions of overnutrition, and mice globally lacking the gene (CREBH-/-) are highly susceptible to diet-induced obesity, insulin resistance, and hepatic steatosis. The net protective effects of CREBH have been attributed in large part to the activities of fibroblast growth factor (Fgf)-21 (Fgf21), a target gene that promotes weight loss, improves glucose homeostasis, and reduces hepatic lipid accumulation. To explore the possibility that activation of the CREBH-Fgf21 axis could ameliorate established effects of high-fat feeding, we generated an inducible transgenic hepatocyte-specific CREBH overexpression mouse model (Tg-rtTA). Acute overexpression of CREBH in livers of Tg-rtTA mice effectively reversed diet-induced obesity, insulin resistance, and hepatic steatosis. These changes were associated with increased activities of thermogenic brown and beige adipose tissues in Tg-rtTA mice, leading to reductions in fat mass, along with enhanced insulin sensitivity and glucose tolerance. Genetically silencing Fgf21 in Tg-rtTA mice abrogated the CREBH-mediated reductions in body weight loss, but only partially reversed the observed improvements in glucose metabolism. These findings reveal that the protective effects of CREBH activation may be leveraged to mitigate diet-induced obesity and associated metabolic abnormalities in both Fgf21-dependent and Fgf21-independent pathways.
Collapse
Affiliation(s)
- Christopher S Krumm
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xu Xu
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Curtis J Bare
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Corey D Holman
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lukas E Dow
- Division of Hematology & Medical Oncology, Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Ann-Hwee Lee
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
8
|
Cui A, Ding D, Li Y. Regulation of Hepatic Metabolism and Cell Growth by the ATF/CREB Family of Transcription Factors. Diabetes 2021; 70:653-664. [PMID: 33608424 PMCID: PMC7897342 DOI: 10.2337/dbi20-0006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The liver is a major metabolic organ that regulates the whole-body metabolic homeostasis and controls hepatocyte proliferation and growth. The ATF/CREB family of transcription factors integrates nutritional and growth signals to the regulation of metabolism and cell growth in the liver, and deregulated ATF/CREB family signaling is implicated in the progression of type 2 diabetes, nonalcoholic fatty liver disease, and cancer. This article focuses on the roles of the ATF/CREB family in the regulation of glucose and lipid metabolism and cell growth and its importance in liver physiology. We also highlight how the disrupted ATF/CREB network contributes to human diseases and discuss the perspectives of therapeutically targeting ATF/CREB members in the clinic.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
10
|
Ye J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J Biol Chem 2020; 295:10271-10280. [PMID: 32487748 DOI: 10.1074/jbc.rev120.012669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Transmembrane proteins are membrane-anchored proteins whose topologies are important for their functions. These properties enable regulation of certain transmembrane proteins by regulated intramembrane proteolysis (RIP) and regulated alternative translocation (RAT). RIP enables a protein fragment of a transmembrane precursor to function at a new location, and RAT leads to an inverted topology of a transmembrane protein by altering the direction of its translocation across membranes during translation. RIP mediated by site-1 protease (S1P) and site-2 protease (S2P) is involved in proteolytic activation of membrane-bound transcription factors. In resting cells, these transcription factors remain in the endoplasmic reticulum (ER) as inactive transmembrane precursors. Upon stimulation by signals within the ER, they are translocated from the ER to the Golgi. There, they are cleaved first by S1P and then by S2P, liberating their N-terminal domains from membranes and enabling them to activate genes in the nucleus. This signaling pathway regulates lipid metabolism, unfolded protein responses, secretion of extracellular matrix proteins, and cell proliferation. Remarkably, ceramide-induced RIP of cAMP response element-binding protein 3-like 1 (CREB3L1) also involves RAT. In resting cells, RIP of CREB3L1 is blocked by transmembrane 4 L6 family member 20 (TM4SF20). Ceramide inverts the orientation of newly synthesized TM4SF20 in membranes through RAT, converting TM4SF20 from an inhibitor to an activator of RIP of CREB3L1. Here, I review recent insights into RIP of membrane-bound transcription factors, focusing on CREB3L1 activation through both RIP and RAT, and discuss current open questions about these two signaling pathways.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta 2020; 503:128-135. [PMID: 31981585 DOI: 10.1016/j.cca.2020.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Dyslipidemia, characterized by increased plasma levels of low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglyceride (TG), and reduced plasma levels of high-density lipoprotein cholesterol (HDL-C), is confirmed as a hallmark of obesity and cardiovascular diseases (CVD), posing serious risks to the future health of humans. Thus, it is important to understand the molecular metabolism of dyslipidemia, which could help reduce the morbidity and mortality of obesity and CVD. Currently, several exchangeable apolipoproteins, such as apolipoprotein A1 (ApoA1), apolipoprotein A5 (ApoA5), apolipoprotein E (ApoE), and apolipoprotein C3 (ApoC3), have been verified to exert vital effects on modulating lipid metabolism and homeostasis both in plasma and in cells, which consequently affect dyslipidemia. In the present review, we summarize the findings of the effect of exchangeable apolipoproteins on affecting lipid metabolism in adipocytes and hepatocytes. Furthermore, we also provide new insights into the mechanisms by which the exchangeable apolipoproteins influence the pathogenesis of dyslipidemia and its related cardio-metabolic disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Sæle Ø, Rød KEL, Quinlivan VH, Li S, Farber SA. A novel system to quantify intestinal lipid digestion and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:948-957. [PMID: 29778665 PMCID: PMC6054555 DOI: 10.1016/j.bbalip.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
The zebrafish larva is a powerful tool for the study of dietary triglyceride (TG) digestion and how fatty acids (FA) derived from dietary lipids are absorbed, metabolized and distributed to the body. While fluorescent FA analogues have enabled visualization of FA metabolism, methods for specifically assaying TG digestion are badly needed. Here we present a novel High Performance Liquid Chromatography (HPLC) method that quantitatively differentiates TG and phospholipid (PL) molecules with one or two fluorescent FA analogues. We show how this tool may be used to discriminate between undigested and digested TG or phosphatidylcholine (PC), and also the products of TG or PC that have been digested, absorbed and re-synthesized into new lipid molecules. Using this approach, we explored the dietary requirement of zebrafish larvae for phospholipids. Here we demonstrate that dietary TG is digested and absorbed in the intestinal epithelium, but without dietary PC, TG accumulates and is not transported out of the enterocytes. Consequently, intestinal ER stress increases and the ingested lipid is not available support the energy and metabolic needs of other tissues. In TG diets with PC, TG is readily transported from the intestine and subsequently metabolized.
Collapse
Affiliation(s)
- Øystein Sæle
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway.
| | - Kari Elin L Rød
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway
| | - Vanessa H Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Shengrong Li
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA.
| |
Collapse
|
13
|
Su Q, Kumar V, Sud N, Mahato RI. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Adv Drug Deliv Rev 2018; 129:54-63. [PMID: 29391222 DOI: 10.1016/j.addr.2018.01.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) increases the risk of various liver injuries, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis, and ultimately hepatocellular carcinoma (HCC). Ample evidence has suggested that aberrant expression of microRNAs (miRNAs) is functionally involved in the activation of cellular stress, inflammation and fibrogenesis in hepatic cells, including hepatocytes, Kupffer and hepatic stellate cells (HSCs), at different pathological stages of NAFLD and liver fibrosis. Here, we overview recent findings on the potential role of miRNAs in the pathogenesis of NAFLD, including lipotoxicity, oxidative stress, metabolic inflammation and fibrogenesis. We critically assess the literatures on both human subjects and animal models of NAFLD and liver fibrosis with miRNA dysregulation and their mechanisms of actions in liver damage. We further highlight the potential use of miRNA mimics or antimiRNAs as therapeutic approaches for the prevention and treatment of NAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Qiaozhu Su
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetu Sud
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, Tang Y, Yao P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol 2018; 114:52-60. [PMID: 29438776 DOI: 10.1016/j.fct.2018.02.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Abstract
The consumption of a quercetin-rich diet has been well-established as a feasible method against non-alcoholic fatty liver disease (NAFLD); however, the molecular mechanisms underlying the progression of NAFLD and its intervention by quercetin remain largely obscure. Male Sprague-Dawley rats fed high-fat diet (HFD), and HepG2 cells stimulated with free fatty acid, were treated with quercetin and various pharmacological reagents to explore the effect of signaling pathways involved in endoplasmic reticulum stress on very low-density lipoprotein (VLDL) assembly and lipophagy. Quercetin intake decreased hepatic TG content by 39%, with a 1.5-fold increase in VLDL, and up-regulated spliced X-box binding protein 1 (XBP1s) expression compared with the HFD group. Thapsigargin or STF-083010 (an IRE1α endonuclease inhibitor) decreased VLDL content in a dose-dependent manner, partially counteracting the protective effects of quercetin, 4-PBA or APY-29 (an IRE1α endonuclease activator). Additionally, microsomal TG-transfer protein complex expression was increased with quercetin-treated and down-regulated by STF-083010. Moreover, quercetin increased co-localization of lysosomes with lipid droplets (LDs) accompanied by decreased p62 accumulation. STF-083010 partially abolished the effect of quercetin on LDs autophagy in an mTOR-independent manner. Collectively, these findings demonstrate that hepatic VLDL assembly and lipophagy are the main targets of quercetin against NAFLD via the IRE1a/XBP1s pathway.
Collapse
Affiliation(s)
- Xinhong Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peiyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Bito T, Koseki K, Moriguchi T, Sasaki Y, Yabuta Y, Ichiyanagi T, Watanabe F. Cycloalliin Inhibits Melanin Biosynthesis in B16 Mouse Melanoma Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University
| | - Kyohei Koseki
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University
| | - Tomohiro Moriguchi
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University
| | - Yu Sasaki
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University
| | - Yukinori Yabuta
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University
| | - Tsuyoshi Ichiyanagi
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University
| |
Collapse
|
16
|
Bai J, Wang P, Liu Y, Zhang Y, Li Y, He Z, Hou L, Liang R. Formaldehyde alters triglyceride synthesis and very low-density lipoprotein secretion in a time-dependent manner. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:15-20. [PMID: 28866046 DOI: 10.1016/j.etap.2017.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/26/2017] [Indexed: 05/10/2023]
Abstract
Formaldehyde is a common indoor air pollutant that is toxic to the liver. This study aimed to investigate the effects of formaldehyde on triglyceride metabolism in human hepatocellular carcinoma cells (HepG2). Cell viability was detected using a MTT (3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide) assay. Following treatment with different concentrations of formaldehyde for 24 and 48h, the intra and extra-hepatocellular triglyceride (TG) content was determined using a chemical-enzymatic method; Western blotting was used to detect the levels of fatty acid synthesis and VLDL-related proteins. Our results showed that cell viability significantly decreased after formaldehyde treatment (0.5-12.5mM, 24/48h). Extracellular TG levels in the hepatocytes increased after formaldehyde treatment at 0.004mM-0.1mM for 24h. SREBP-1c, ACC, FASN, and MTP, CES3 and DGAT1 proteins increased significantly after 24h of formaldehyde treatment. Intracellular TG levels decreased for 48h treatment of formaldehyde. AMPKα increased significantly in all tested groups and p-AMPK increased significantly after 0.1mM formaldehyde treatment for 48h. Our results indicated that short-term formaldehyde exposure balances triglyceride metabolism by promoting hepatocellular TG synthesis and VLDL secretion; Long-term formaldehyde disturbs the TG metabolism balance in the hepatocytes.
Collapse
Affiliation(s)
- Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Pan Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yanfei Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yaofu Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Zhen He
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lifang Hou
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| |
Collapse
|
17
|
Zeituni EM, Wilson MH, Zheng X, Iglesias PA, Sepanski MA, Siddiqi MA, Anderson JL, Zheng Y, Farber SA. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses. J Biol Chem 2016; 291:23804-23816. [PMID: 27655916 DOI: 10.1074/jbc.m116.749358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid.
Collapse
Affiliation(s)
- Erin M Zeituni
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Meredith H Wilson
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Xiaobin Zheng
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Pablo A Iglesias
- the Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Michael A Sepanski
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Mahmud A Siddiqi
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Jennifer L Anderson
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Yixian Zheng
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| | - Steven A Farber
- From the Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218 and
| |
Collapse
|