1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Aljohani MA, Sasaki H, Sun XL. Cellular translocation and secretion of sialidases. J Biol Chem 2024; 300:107671. [PMID: 39128726 PMCID: PMC11416241 DOI: 10.1016/j.jbc.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.
Collapse
Affiliation(s)
- Majdi A Aljohani
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hiroaki Sasaki
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Xu T, Heon-Roberts R, Moore T, Dubot P, Pan X, Guo T, Cairo CW, Holley R, Bigger B, Durcan TM, Levade T, Ausseil J, Amilhon B, Gorelik A, Nagar B, Sturiale L, Palmigiano A, Röckle I, Thiesler H, Hildebrandt H, Garozzo D, Pshezhetsky AV. Secondary deficiency of neuraminidase 1 contributes to CNS pathology in neurological mucopolysaccharidoses via hypersialylation of brain glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.587986. [PMID: 38712143 PMCID: PMC11071461 DOI: 10.1101/2024.04.26.587986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), β-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology. Graphical abstract
Collapse
|
4
|
Noel M, Cummings RD, Mealer RG. N-glycans show distinct spatial distribution in mouse brain. Glycobiology 2023; 33:935-942. [PMID: 37792804 PMCID: PMC10859635 DOI: 10.1093/glycob/cwad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/24/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
The development and function of the brain requires N-linked glycosylation of proteins, which is a ubiquitous modification in the secretory pathway. N-glycans have a distinct composition and undergo tight regulation in the brain, but the spatial distribution of these structures remains relatively unexplored. Here, we systematically employed carbohydrate binding lectins with differing specificities to various classes of N-glycans and appropriate controls to identify glycan expression in multiple regions of the mouse brain. Lectins binding high-mannose-type N-glycans, the most abundant class of brain N-glycans, showed diffuse staining with some punctate structures observed on high magnification. Lectins binding specific motifs of complex N-glycans, including fucose and bisecting GlcNAc, showed more partitioned labeling, including to the synapse-rich molecular layer of the cerebellum. Understanding the spatial distribution of N-glycans across the brain will aid future studies of these critical protein modifications in development and disease of the brain.
Collapse
Affiliation(s)
- Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 300 Brookline Ave, Boston, MA 02215, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 300 Brookline Ave, Boston, MA 02215, United States
| | - Robert G Mealer
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| |
Collapse
|
5
|
Noel M, Cummings RD, Mealer RG. N-glycans show distinct spatial distribution in mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542954. [PMID: 37398169 PMCID: PMC10312599 DOI: 10.1101/2023.05.30.542954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Protein N-linked glycosylation is a ubiquitous modification in the secretory pathway that plays a critical role in the development and function of the brain. N-glycans have a distinct composition and undergo tight regulation in the brain, but the spatial distribution of these structures remains relatively unexplored. Here, we systematically employed carbohydrate binding lectins with differing specificities to various classes of N-glycans and appropriate controls to identify multiple regions of the mouse brain. Lectins binding high-mannose-type N-glycans, the most abundant class of brain N-glycans, showed diffuse staining with some punctate structures observed on high magnification. Lectins binding specific motifs of complex N-glycans, including fucose and bisecting GlcNAc, showed more partitioned labeling, including to the synapse-rich molecular layer of the cerebellum. Understanding the distribution of N-glycans across the brain will aid future studies of these critical protein modifications in development and disease of the brain.
Collapse
Affiliation(s)
- Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 United States
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 United States
| | - Robert G. Mealer
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
6
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
7
|
Allendorf DH, Brown GC. Neu1 Is Released From Activated Microglia, Stimulating Microglial Phagocytosis and Sensitizing Neurons to Glutamate. Front Cell Neurosci 2022; 16:917884. [PMID: 35693885 PMCID: PMC9178234 DOI: 10.3389/fncel.2022.917884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 02/02/2023] Open
Abstract
Neuraminidase 1 (Neu1) hydrolyses terminal sialic acid residues from glycoproteins and glycolipids, and is normally located in lysosomes, but can be released onto the surface of activated myeloid cells and microglia. We report that endotoxin/lipopolysaccharide-activated microglia released Neu1 into culture medium, and knockdown of Neu1 in microglia reduced both Neu1 protein and neuraminidase activity in the culture medium. Release of Neu1 was reduced by inhibitors of lysosomal exocytosis, and accompanied by other lysosomal proteins, including protective protein/cathepsin A, known to keep Neu1 active. Extracellular neuraminidase or over-expression of Neu1 increased microglial phagocytosis, while knockdown of Neu1 decreased phagocytosis. Microglial activation caused desialylation of microglial phagocytic receptors Trem2 and MerTK, and increased binding to Trem2 ligand galectin-3. Culture media from activated microglia contained Neu1, and when incubated with neurons induced their desialylation, and increased the neuronal death induced by low levels of glutamate. Direct desialylation of neurons by adding sialidase or inhibiting sialyltransferases also increased glutamate-induced neuronal death. We conclude that activated microglia can release active Neu1, possibly by lysosomal exocytosis, and this can both increase microglial phagocytosis and sensitize neurons to glutamate, thus potentiating neuronal death.
Collapse
|
8
|
Suzuki T. Role of Glycoconjugates and Mammalian Sialidases Involved in Viral Infection and Neural Function. YAKUGAKU ZASSHI 2022; 142:381-388. [DOI: 10.1248/yakushi.21-00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takashi Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
9
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconj J 2021; 39:39-53. [PMID: 34757540 PMCID: PMC8979855 DOI: 10.1007/s10719-021-10023-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Collapse
|
11
|
Hui Yan T, Babji AS, Lim SJ, Sarbini SR. A Systematic Review of Edible Swiftlet's Nest (ESN): Nutritional bioactive compounds, health benefits as functional food, and recent development as bioactive ESN glycopeptide hydrolysate. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Bowles WHD, Gloster TM. Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Front Mol Biosci 2021; 8:705133. [PMID: 34395532 PMCID: PMC8358268 DOI: 10.3389/fmolb.2021.705133] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Sialidases (SAs) and sialyltransferases (STs), the enzymes responsible for removing and adding sialic acid to other glycans, play essential roles in viruses, bacteria, parasites, and humans. Sialic acid is often the terminal sugar on glycans protruding from the cell surface in humans and is an important component for recognition and cell function. Pathogens have evolved to exploit this and use sialic acid to either “cloak” themselves, ensuring they remain undetected, or as a mechanism to enable release of virus progeny. The development of inhibitors against SAs and STs therefore provides the opportunity to target a range of diseases. Inhibitors targeting viral, bacterial, or parasitic enzymes can directly target their pathogenicity in humans. Excellent examples of this can be found with the anti-influenza drugs Zanamivir (Relenza™, GlaxoSmithKline) and Oseltamivir (Tamiflu™, Roche and Gilead), which have been used in the clinic for over two decades. However, the development of resistance against these drugs means there is an ongoing need for novel potent and specific inhibitors. Humans possess 20 STs and four SAs that play essential roles in cellular function, but have also been implicated in cancer progression, as glycans on many cancer cells are found to be hyper-sialylated. Whilst much remains unknown about how STs function in relation to disease, it is clear that specific inhibitors of them can serve both as tools to gain a better understanding of their activity and form the basis for development of anti-cancer drugs. Here we review the recent developments in the design of SA and ST inhibitors against pathogens and humans.
Collapse
Affiliation(s)
- William H D Bowles
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
13
|
Neu1 deficiency induces abnormal emotional behavior in zebrafish. Sci Rep 2021; 11:13477. [PMID: 34188220 PMCID: PMC8241872 DOI: 10.1038/s41598-021-92778-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
NEU1 sialidase hydrolyzes sialic acids from glycoconjugates in lysosomes. Deficiency of NEU1 causes sialidosis with symptoms including facial dysmorphism, bone dysplasia, and neurodegeneration. However, the effects of NEU1 deficiency on emotional activity have not been explored. Here, we conducted the behavioral analysis using Neu1-knockout zebrafish (Neu1-KO). Neu1-KO zebrafish showed normal swimming similar to wild-type zebrafish (WT), whereas shoaling was decreased and accompanied by greater inter-fish distance than WT zebrafish. The aggression test showed a reduced aggressive behavior in Neu1-KO zebrafish than in WT zebrafish. In the mirror and 3-chambers test, Neu1-KO zebrafish showed more interest toward the opponent in the mirror and multiple unfamiliar zebrafish, respectively, than WT zebrafish. Furthermore, Neu1-KO zebrafish also showed increased interaction with different fish species, whereas WT zebrafish avoided them. In the black-white preference test, Neu1-KO zebrafish showed an abnormal preference for the white region, whereas WT zebrafish preferred the black region. Neu1-KO zebrafish were characterized by a downregulation of the anxiety-related genes of the hypothalamic-pituitary-adrenal axis and upregulation of lamp1a, an activator of lysosomal exocytosis, with their brains accumulating several sphingoglycolipids. This study revealed that Neu1 deficiency caused abnormal emotional behavior in zebrafish, possibly due to neuronal dysfunction induced by lysosomal exocytosis.
Collapse
|
14
|
The Function of Sialidase Revealed by Sialidase Activity Imaging Probe. Int J Mol Sci 2021; 22:ijms22063187. [PMID: 33804798 PMCID: PMC8003999 DOI: 10.3390/ijms22063187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.
Collapse
|
15
|
Minami A, Fujita Y, Goto J, Iuchi A, Fujita K, Mikami Y, Shiratori M, Ishii A, Mitragotri S, Iwao Y, Kanazawa H, Kurebayashi Y, Takahashi T, Otsubo T, Ikeda K, Suzuki T. Enhancement of elastin expression by transdermal administration of sialidase isozyme Neu2. Sci Rep 2021; 11:3302. [PMID: 33558588 PMCID: PMC7870814 DOI: 10.1038/s41598-021-82820-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Reduction of elastin in the skin causes various skin diseases as well as wrinkles and sagging with aging. Sialidase is a hydrolase that cleaves a sialic acid residue from sialoglycoconjugate. Cleavage of sialic acid from microfibrils by the sialidase isozyme Neu1 facilitates elastic fiber assembly. In the present study, we showed that a lower layer of the dermis and muscle showed relatively intense sialidase activity. The sialidase activity in the skin decreased with aging. Choline and geranate (CAGE), one of the ionic liquids, can deliver the sialidase subcutaneously while maintaining the enzymatic activity. The elastin level in the dermis was increased by applying sialidase from Arthrobacter ureafaciens (AUSA) with CAGE on the skin for 5 days in rats and senescence-accelerated mice prone 1 and 8. Sialidase activity in the dermis was considered to be mainly due to Neu2 based on the expression level of sialidase isozyme mRNA. Transdermal administration of Neu2 with CAGE also increased the level of elastin in the dermis. Therefore, not only Neu1 but also Neu2 would be involved in elastic fiber assembly. Transdermal administration of sialidase is expected to be useful for improvement of wrinkles and skin disorders due to the loss of elastic fibers.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Jun Goto
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ayano Iuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kosei Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasuyo Mikami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Mako Shiratori
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yasunori Iwao
- Laboratory of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
16
|
Boll I, Jensen P, Schwämmle V, Larsen MR. Depolarization-dependent Induction of Site-specific Changes in Sialylation on N-linked Glycoproteins in Rat Nerve Terminals. Mol Cell Proteomics 2020; 19:1418-1435. [PMID: 32518069 PMCID: PMC8143646 DOI: 10.1074/mcp.ra119.001896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.
Collapse
Affiliation(s)
- Inga Boll
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
17
|
Puigdellívol M, Allendorf DH, Brown GC. Sialylation and Galectin-3 in Microglia-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2020; 14:162. [PMID: 32581723 PMCID: PMC7296093 DOI: 10.3389/fncel.2020.00162] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia are brain macrophages that mediate neuroinflammation and contribute to and protect against neurodegeneration. The terminal sugar residue of all glycoproteins and glycolipids on the surface of mammalian cells is normally sialic acid, and addition of this negatively charged residue is known as “sialylation,” whereas removal by sialidases is known as “desialylation.” High sialylation of the neuronal cell surface inhibits microglial phagocytosis of such neurons, via: (i) activating sialic acid receptors (Siglecs) on microglia that inhibit phagocytosis and (ii) inhibiting binding of opsonins C1q, C3, and galectin-3. Microglial sialylation inhibits inflammatory activation of microglia via: (i) activating Siglec receptors CD22 and CD33 on microglia that inhibit phagocytosis and (ii) inhibiting Toll-like receptor 4 (TLR4), complement receptor 3 (CR3), and other microglial receptors. When activated, microglia release a sialidase activity that desialylates both microglia and neurons, activating the microglia and rendering the neurons susceptible to phagocytosis. Activated microglia also release galectin-3 (Gal-3), which: (i) further activates microglia via binding to TLR4 and TREM2, (ii) binds to desialylated neurons opsonizing them for phagocytosis via Mer tyrosine kinase, and (iii) promotes Aβ aggregation and toxicity in vivo. Gal-3 and desialylation may increase in a variety of brain pathologies. Thus, Gal-3 and sialidases are potential treatment targets to prevent neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David H Allendorf
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Minami A, Fujita Y, Shimba S, Shiratori M, Kaneko YK, Sawatani T, Otsubo T, Ikeda K, Kanazawa H, Mikami Y, Sekita R, Kurebayashi Y, Takahashi T, Miyagi T, Ishikawa T, Suzuki T. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid is a glucose-dependent potentiator of insulin secretion. Sci Rep 2020; 10:5198. [PMID: 32251344 PMCID: PMC7089948 DOI: 10.1038/s41598-020-62203-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sialidase cleaves sialic acid residues from a sialoglycoconjugate: oligosaccharides, glycolipids and glycoproteins that contain sialic acid. Histochemical imaging of the mouse pancreas using a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe used to assess sialidase activity, showed that pancreatic islets have intense sialidase activity. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA) remarkably enhances glutamate release from hippocampal neurons. Since there are many similar processes between synaptic vesicle exocytosis and secretory granule exocytosis, we investigated the effect of DANA on insulin release from β-cells. Insulin release was induced in INS-1D cells by treatment with 8.3 mM glucose, and the release was enhanced by treatment with DANA. In a mouse intraperitoneal glucose tolerance test, the increase in serum insulin levels was enhanced by intravenous injection with DANA. However, under fasting conditions, insulin release was not enhanced by treatment with DANA. Calcium oscillations induced by 8.3 mM glucose treatment of INS-1D cells were not affected by DANA. Blood insulin levels in sialidase isozyme Neu3-deficient mice were significantly higher than those in WT mice under ad libitum feeding conditions, but the levels were not different under fasting conditions. These results indicate that DANA is a glucose-dependent potentiator of insulin secretion. The sialidase inhibitor may be useful for anti-diabetic treatment with a low risk of hypoglycemia.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Sumika Shimba
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Mako Shiratori
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasuyo Mikami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Risa Sekita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Taeko Miyagi
- Miyagi Cancer Center Research Institute, Natori, 981-1293, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
19
|
Lipničanová S, Chmelová D, Ondrejovič M, Frecer V, Miertuš S. Diversity of sialidases found in the human body - A review. Int J Biol Macromol 2020; 148:857-868. [PMID: 31945439 DOI: 10.1016/j.ijbiomac.2020.01.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
Sialidases are enzymes essential for numerous organisms including humans. Hydrolytic sialidases (EC 3.2.1.18), trans-sialidases and anhydrosialidases (intramolecular trans-sialidases, EC 4.2.2.15) are glycoside hydrolase enzymes that cleave the glycosidic linkage and release sialic acid residues from sialyl substrates. The paper summarizes diverse sialidases present in the human body and their potential impact on development of antiviral compounds - inhibitors of viral neuraminidases. It includes a brief overview of catalytic mechanisms of action of sialidases and describes the origin of sialidases in the human body. This is followed by description of the structure and function of sialidase families with a special focus on the GH33 and GH34 families. Various effects of sialidases on human body are also briefly described. Modulation of sialidase activity may be considered a useful tool for effective treatment of various diseases. In some cases, it is desired to completely suppress the activity of sialidases by suitable inhibitors. Specific sialidase inhibitors are useful for the treatment of influenza, epilepsy, Alzheimer's disease, diabetes, different types of cancer, or heart defects. Challenges and future directions are shortly depicted in the final part of the paper.
Collapse
Affiliation(s)
- Sabina Lipničanová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-83232 Bratislava, Slovakia; ICARST n.o., Jamnického 19, SK-84101, Bratislava, Slovakia.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia; ICARST n.o., Jamnického 19, SK-84101, Bratislava, Slovakia.
| |
Collapse
|
20
|
A rotating operant chamber for use with microdialysis. J Neurosci Methods 2019; 326:108387. [PMID: 31377176 DOI: 10.1016/j.jneumeth.2019.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently, the time resolution of microdialysis followed by a chemical separation for quantitative analysis has improved. The advent of faster microdialysis measurements promises to aid in behavioral research on awake animals. However, microdialysis with awake animals generally employs a fluidic commutator (swivel). The swivel's volume is inimical to the time resolution of the measurements. NEW METHOD Animals can be housed in rotating cages so that the swivel is not required, but rotating operant chambers are not available. Here we describe the design and construction of a rotating operant chamber with microdialysis capability. We modified a rotating cage by adding operant behavior testing components to the side of the bowl-shaped cage. A modular on-board controller facilitates operant component/computer communication. A battery provides power to the controller and the operant components. The battery and controller rotate with the cage, and the controller communicates with the computer wirelessly. RESULTS The rotating operant chamber can be used to train a rat to retrieve a sucrose pellet following a cue. Microdialysis and online liquid chromatography can be used to measure dopamine at one minute intervals while the rat moves freely and interacts with operant behavior testing components. COMPARISON WITH EXISTING METHOD(S) We are not aware of one-minute dopamine measurements in awake animals in an operant chamber. CONCLUSIONS Rotating cage modifications are straightforward. One-minute observations of striatal dopamine can be accomplished while an animal is awake, moving, and interacting with its surroundings.
Collapse
|
21
|
Kurebayashi Y, Takahashi T, Miura T, Otsubo T, Minami A, Fujita Y, Sakakibara K, Tanabe M, Iuchi A, Ota R, Ikeda K, Suzuki T. Fluorogenic Probes for Accurate in Situ Imaging of Viral and Mammalian Sialidases. ACS Chem Biol 2019; 14:1195-1204. [PMID: 31120724 DOI: 10.1021/acschembio.9b00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialidases are widely distributed in nature and are involved in many physiological and pathological processes. Sialidases are expressed and work in various tissues and organelles. Clarification of the localization of sialidases is very helpful as a way to understand their functions. We previously developed a novel fluorogenic probe for sialidases, BTP3-Neu5Ac, that visualized the localization of sialidase activity in live cells and tissues by precipitating the hydrophobic fluorescent compound; however, for the purpose of accurate fluorescence imaging of sialidase-expressing cells or the distribution of intracellular sialidase activity, BTP3-Neu5Ac was inadequate in imaging performance. We report the design and development of a sialidase imaging probe that improves the sensitivity and accuracy of in situ fluorescence imaging performance as well as increases the hydrophobicity by attaching linear unsaturated hydrocarbon chains into the hydrophobic fluorescent compound of BTP3-Neu5Ac. The newly developed probe showed low diffusivity and high brightness for fluorescence imaging, and it enabled sensitive and highly accurate imaging of viral sialidase in virus-infected cells and sialidase-expressing cells as well as mammalian sialidase in the rat brain. The probe also enabled the fluorescence imaging of intracellular viral sialidase in live-virus-infected cells. The newly developed probe is expected to be a useful tool that will contribute to the progress of research on sialidases in various fields such as research on viruses and brains.
Collapse
Affiliation(s)
- Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Tomomi Miura
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 737-0112, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Keiko Sakakibara
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Momoko Tanabe
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Ayano Iuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Ryohei Ota
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan
| |
Collapse
|
22
|
Wei M, Wang PG. Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:25-57. [PMID: 30905454 DOI: 10.1016/bs.pmbts.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desialylation is a pivotal part of sialic acid metabolism, which initiates the catabolism of glycans by removing the terminal sialic acid residues on glycans, thereby modulating the structure and functions of glycans, glycoproteins, or glycolipids. The functions of sialic acids have been well recognized, whereas the function of desialylation process is underappreciated or largely ignored. However, accumulating evidence demonstrates that desialylation plays an important role in a variety of physiological and pathological processes. This chapter summarizes the current knowledge pertaining to desialylation in a variety of physiological and pathological processes, with a focus on the underlying molecular mechanisms. The potential of targeting desialylation process for diagnostic and therapeutic development is also discussed.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
23
|
Demina EP, Pierre WC, Nguyen ALA, Londono I, Reiz B, Zou C, Chakraberty R, Cairo CW, Pshezhetsky AV, Lodygensky GA. Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure. J Neuroinflammation 2018; 15:336. [PMID: 30518374 PMCID: PMC6282350 DOI: 10.1186/s12974-018-1367-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The extension of sepsis encompassing the preterm newborn's brain is often overlooked due to technical challenges in this highly vulnerable population, yet it leads to substantial long-term neurodevelopmental disabilities. In this study, we demonstrate how neonatal neuroinflammation following postnatal E. coli lipopolysaccharide (LPS) exposure in rat pups results in persistent reduction in sialylation of cerebral glycoproteins. METHODS Male Sprague-Dawley rat pups at postnatal day 3 (P3) were injected in the corpus callosum with saline or LPS. Twenty-four hours (P4) or 21 days (P24) following injection, brains were extracted and analyzed for neuraminidase activity and expression as well as for sialylation of cerebral glycoproteins and glycolipids. RESULTS At both P4 and P24, we detected a significant increase of the acidic neuraminidase activity in LPS-exposed rats. It correlated with significantly increased neuraminidase 1 (Neu1) mRNA in LPS-treated brains at P4 and with neuraminidases 1 and 4 at P24 suggesting that these enzymes were responsible for the rise of neuraminidase activity. At both P4 and P24, sialylation of N-glycans on brain glycoproteins decreased according to both mass-spectrometry analysis and lectin blotting, but the ganglioside composition remained intact. Finally, at P24, analysis of brain tissues by immunohistochemistry showed that neurons in the upper layers (II-III) of somatosensory cortex had a reduced surface content of polysialic acid. CONCLUSIONS Together, our data demonstrate that neonatal LPS exposure results in specific and sustained induction of Neu1 and Neu4, causing long-lasting negative changes in sialylation of glycoproteins on brain cells. Considering the important roles played by sialoglycoproteins in CNS function, we speculate that observed re-programming of the brain sialome constitutes an important part of pathophysiological consequences in perinatal infectious exposure.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Wyston C Pierre
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Annie L A Nguyen
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Irene Londono
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Bela Reiz
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Radhika Chakraberty
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Alexey V Pshezhetsky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, H3A0C7, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Gregory A Lodygensky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Pharmacology and Physiology, Université de Montréal, Montreal, H3T 1J4, QC, Canada. .,Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
24
|
Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN. Sialidase activity in human pathologies. Eur J Pharmacol 2018; 842:345-350. [PMID: 30439363 DOI: 10.1016/j.ejphar.2018.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Sialic acid residues are frequently located at the terminal positions of glycoconjugate chains of cellular glycocalyx. Sialidases, or neuraminidases, catalyse removal of these residues thereby modulating various normal and pathological cellular activities. Recent studies have revealed the involvement of sialidases in a wide range of human disorders, including neurodegenerative disorders, cancers, infectious diseases and cardiovascular diseases. The accumulating data make sialidases an interesting potential therapeutic target. Modulating the activity of these enzymes may have beneficial effects in several pathologies. Four types of mammalian sialidases have been described: NEU1, NEU2, NEU3 and NEU4. They are encoded by different genes and characterized by different subcellular localization. In this review, we will summarize the current knowledge on the roles of different sialidases in pathological conditions.
Collapse
Affiliation(s)
- Victor Yu Glanz
- Department of Genetics, Cytology and Bioengineering, Faculty of Biology and Medicine, Voronezh State University, Voronezh, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; Centre of Collective Use, Institute of Gene Biology, Russian Academy of Sciences, Moscow 121552, Russia.
| |
Collapse
|
25
|
Pshezhetsky AV, Ashmarina M. Keeping it trim: roles of neuraminidases in CNS function. Glycoconj J 2018; 35:375-386. [PMID: 30088207 PMCID: PMC6182584 DOI: 10.1007/s10719-018-9837-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
The sialylated glyconjugates (SGC) are found in abundance on the surface of brain cells, where they form a dense array of glycans mediating cell/cell and cell/protein recognition in numerous physiological and pathological processes. Metabolic genetic blocks in processing and catabolism of SGC result in development of severe storage disorders, dominated by CNS involvement including marked neuroinflammation and neurodegeneration, the pathophysiological mechanisms of which are still discussed. SGC patterns in the brain are cell and organelle-specific, dynamic and maintained by highly coordinated processes of their biosynthesis, trafficking, processing and catabolism. The changes in the composition of SGC during development and aging of the brain cannot be explained based solely on the regulation of the SGC-synthesizing enzymes, sialyltransferases, suggesting that neuraminidases (sialidases) hydrolysing the removal of terminal sialic acid residues also play an essential role. In the current review we summarize the roles of three mammalian neuraminidases: neuraminidase 1, neuraminidase 3 and neuraminidase 4 in processing brain SGC. Emerging data demonstrate that these enzymes with different, yet overlapping expression patterns, intracellular localization and substrate specificity play essential roles in the physiology of the CNS.
Collapse
Affiliation(s)
- Alexey V Pshezhetsky
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, CHU Ste-Justine, Centre de recherche, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, H3A0C7, Canada.
| | - Mila Ashmarina
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, CHU Ste-Justine, Centre de recherche, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| |
Collapse
|
26
|
Abstract
Sialidase releases sialic acid residues from the ends of sugar chains. The sialidases are involved in many physiological processes including cell differentiation and proliferation and immune function as well as pathophysiological conditions such as various human cancers and infections. Therefore visualization of sialidase activities with high sensitivity could provide valuable insights into these isozyme's activity. We developed novel fluorescent sialidase substrates, 2-benzothiazol-2-yl-phenol derivatives-based N-acetylneuraminic acid (Neu5Ac) (BTP-Neu5Ac) substrates, for highly sensitive and specific visualization of sialidase activity in living mammalian tissues and virus-infected cells. We found that BTP-Neu5Ac can visualize sialidase activities sensitively and selectively in rat tissues including brain slices. BTP-Neu5Ac can also clearly detect cancer cells implanted orthotopically in mouse colons and human colon cancers. In this review, I describe imaging of sialidase activity with BTP-Neu5Ac in animal tissues, detection of colon cancer, memory formation, detection of virus-infected cells, and application to drug-resistant influenza virus detection and separation.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
27
|
Minami A, Ishii A, Shimba S, Kano T, Fujioka E, Sai S, Oshio N, Ishibashi S, Takahashi T, Kurebayashi Y, Kanazawa H, Yuki N, Otsubo T, Ikeda K, Suzuki T. Down-regulation of glutamate release from hippocampal neurons by sialidase. J Biochem 2018; 163:273-280. [PMID: 29319803 DOI: 10.1093/jb/mvy003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Sialidase, which removes sialic acid residues in sialylglycoconjugates, is essential for hippocampal memory and synaptic plasticity. Enzyme activity of sialidase is rapidly increased in response to neural excitation. Because sialic acid bound to gangliosides such as the tetra-sialoganglioside GQ1b is crucial for calcium signalling and neurotransmitter release, neural activity-dependent removal of sialic acid may affect hippocampal neurotransmission. In the present study, we found that 2-deoxy-2, 3-didehydro-D-N-acetylneuraminic acid (DANA), a sialidase inhibitor, increased expression of ganglioside GQ1b/GT1a in hippocampal acute slices. Extracellular glutamate level in the rat hippocampus measured by using in vivo microdialysis was increased by the sialidase inhibitor 2, 3-dehydro-2-deoxy-N-glycolylneuraminic acid as well as DANA. Synaptic vesicle exocytosis and intracellular Ca2+ increase evoked by high-K+ were also enhanced by DANA in primary cultured hippocampal neurons. Expression of GQ1b/GT1a was rapidly decreased by depolarization with high-K+, suggesting that the increase in sialidase activity by neural excitation is sufficient for cleavage of sialic acid. Our findings indicate that sialidase down-regulates glutamate release from hippocampal neurons via Ca2+ signalling modulation. Neural activity-dependent desialylation by sialidase may be a negative-feedback factor against presynaptic activity.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Ami Ishii
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Sumika Shimba
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Takahiro Kano
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Eri Fujioka
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Saki Sai
- Department of Biochemistry, School of Pharmaceutical Sciences
| | - Nagisa Oshio
- Department of Biochemistry, School of Pharmaceutical Sciences
| | | | | | | | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nobuhiro Yuki
- Department of Neurology, Mishima Hospital, 1713-8 Fujikawa, Niigata 940-2302, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Hiroshima 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Hiroshima 737-0112, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences
| |
Collapse
|
28
|
Qiu ZK, Zhang GH, Zhong DS, He JL, Liu X, Chen JS, Wei DN. Puerarin ameliorated the behavioral deficits induced by chronic stress in rats. Sci Rep 2017; 7:6266. [PMID: 28740098 PMCID: PMC5524961 DOI: 10.1038/s41598-017-06552-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/27/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to investigate the mechanisms underlying the antidepressant-like effects of puerarin via the chronic unpredictable stress (CUS) procedure in rats. Similar to Sertraline (Ser), Chronic treatment of puerarin (60 and 120 mg/kg, i.g) elicited the antidepressant-like effects by reversing the decreased sucrose preference in sucrose preference test (SPT), by blocking the increased latency to feed in novelty-suppressed feeding test (NSFT) and the increased immobility time in forced swimming test (FST) without affecting locomotor activity. However, acute puerarin treatment did not ameliorate the antidepressant- and anxiolytic- like effects in FST and NSFT, respectively. In addition, enzyme linked immunosorbent assay (ELISA) and high performance liquid chromatography-electrochemical detection (HPLC-ECD) showed that chronic treatment of puerarin (60 and 120 mg/kg, i.g) reversed the decreased levels of progesterone, allopregnanolone, serotonin (5-HT) and 5-Hydroxyindoleacetic acid (5-HIAA) in prefrontal cortex and hippocampus of post-CUS rats. Furthermore, puerarin (60 and 120 mg/kg, i.g) blocked the increased corticotropin releasing hormone (CRH), corticosterone (Cort) and adrenocorticotropic hormone (ACTH). Collectively, repeated administration of puerarin alleviated the behavioral deficits induced by chronic stress which was associated with the biosynthesis of neurosteroids, normalization of serotonergic system and preventing HPA axis dysfunction.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Guan-Hua Zhang
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China
| | - De-Sheng Zhong
- Department of Pharmacy, Hui Zhou Municipal Centre Hospital, Huizhou, Guangdong, P.R. China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, P.R. China.
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, P.R. China
- Academy of Military Medical Sciences, Beijing, 100850, P.R. China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China.
| | - Da-Nian Wei
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China.
| |
Collapse
|