1
|
Shahin T, Jurkovic J, Dieng MM, Manikandan V, Abdrabou W, Alamad B, Bayaraa O, Diawara A, Sermé SS, Henry NB, Sombie S, Almojil D, Arnoux M, Drou N, Soulama I, Idaghdour Y. Single-cell transcriptomics reveals inter-ethnic variation in immune response to Falciparum malaria. Am J Hum Genet 2025; 112:709-723. [PMID: 39970911 PMCID: PMC11947175 DOI: 10.1016/j.ajhg.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Africa's environmental, cultural, and genetic diversity can profoundly shape population responses to infectious diseases, including malaria caused by Plasmodium falciparum. Differences in malaria susceptibility among populations are documented, but the underlying mechanisms remain poorly understood. Notably, the Fulani ethnic group in Africa is less susceptible to malaria compared to other sympatric groups, such as the Mossi. They exhibit lower disease rates and parasite load as well as enhanced serological protection. However, elucidating the molecular and cellular basis of this protection has been challenging in part due to limited immunological characterization at the cellular level. To address this question, we performed single-cell transcriptomic profiling of peripheral blood mononuclear cells from 126 infected and non-infected Fulani and Mossi children in rural Burkina Faso. This analysis generated over 70,000 single-cell transcriptomes and identified 30 distinct cell subtypes. We report a profound effect of ethnicity on the transcriptional landscape, particularly within monocyte populations. Differential expression analysis across cell subtypes revealed ethnic-specific immune signatures under both infected and non-infected states. Specifically, monocytes and T cell subtypes of the Fulani exhibited reduced pro-inflammatory responses, while their B cell subtypes displayed stronger activation and inflammatory profiles. Furthermore, single-cell expression quantitative trait locus (eQTL) analysis in monocytes of infected children revealed several significant regulatory variants with ethnicity-specific effects on immune-related genes, including CD36 and MT2A. Overall, we identify ethnic, cell-type-specific, and genetic regulatory effects on host immune responses to malaria and provide valuable single-cell eQTL and transcriptomic datasets from under-represented populations.
Collapse
Affiliation(s)
- Tala Shahin
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jakub Jurkovic
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Bana Alamad
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Odmaa Bayaraa
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noëlie Béré Henry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Dareen Almojil
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso; Institut de Recherche en Sciences de la Santé (IRSS)/CNRST, 03 BP 7192, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
McDonnell S, MacCormick IJ, Harkin K, Medina RJ, Rodriguez A, Stitt AW. From Bench to Bedside: Unraveling Cerebral Malaria and Malarial Retinopathy by Combining Clinical and Pre-Clinical Perspectives. Curr Eye Res 2025:1-15. [PMID: 39976257 DOI: 10.1080/02713683.2025.2463142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Infection with Plasmodium falciparum carries a significant risk of cerebral malaria (CM). Children are particularly susceptible to human CM (HCM) which manifests as an acute neurovascular encephalopathy leading to high levels of mortality. Occurring in parallel with CM, malarial retinopathy (MR) is readily detected on ophthalmoscopy as one or more of: white-centered retinal hemorrhage, retinal whitening, and vessel discoloration. It leads to several distinct types of blood retinal barrier (BRB) breakdown. The precise molecular mechanisms underpinning CM and MR remain ill-defined, but parasitemia is known to drive progressive neurovascular obstruction and inflammation leading to cerebral and retinal edema and ischemia. Extensive clinical studies in patients with CM have shown that retinal examination is a useful approach for understanding pathology and an indicator for risk of mortality and morbidity. Fully understanding the cellular and molecular mechanisms that underpin CM and MR is important for developing new therapeutic approaches and in this regard the murine model of experimental CM (ECM) has proved to offer considerable value. Much is known about brain pathology in this model although much less is understood about the retina. In this review, we seek to evaluate MR in clinical scenarios and make comparisons with the retina from mice with ECM. Through detailed in vivo and post-mortem studies in the mouse and human retina, this review highlights the links between CM and MR and how this will aid our understanding of the disease progression and pathogenesis.
Collapse
Affiliation(s)
- Shannon McDonnell
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | - Kevin Harkin
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- Department of Eye and Vision Sciences Institute for Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Alan W Stitt
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Liu L, Hao S, Gou S, Tang X, Zhang Y, Cai D, Xiao M, Zhang X, Zhang D, Shen J, Li Y, Chen Y, Zhao Y, Deng S, Wu X, Li M, Zhang Z, Xiao Z, Du F. Potential applications of dual haptoglobin expression in the reclassification and treatment of hepatocellular carcinoma. Transl Res 2024; 272:19-40. [PMID: 38815898 DOI: 10.1016/j.trsl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene within a subgroup of HCC malignant cells. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xinyi Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yan Li
- Public Center of Experimental Technology, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China.
| |
Collapse
|
4
|
Lyu Q, Lin Y, Pan Y, Guan X, Ji X, Peng M, Li Q, Wang Z, Zhang Z, Luo Z, Su P, Wang J. The polymorphism analysis for CD36 among platelet donors. Sci Rep 2024; 14:8534. [PMID: 38609394 PMCID: PMC11014998 DOI: 10.1038/s41598-024-58491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
CD36 may defect on platelets and/or monocytes in healthy individuals, which was defined as CD36 deficiency. However, we did not know the correlation between the molecular and protein levels completely. Here, we aim to determine the polymorphisms of the CD36 gene, RNA level, and CD36 on platelets and in plasma. The individuals were sequenced by Sanger sequencing. Bioinformational analysis was used by the HotMuSiC, CUPSAT, SAAFEC-SEQ, and FoldX. RNA analysis and CD36 protein detection were performed by qPCR, flow cytometry, and ELISA. In this study, we found c.1228_1239delATTGTGCCTATT (allele frequency = 0.0072) with the highest frequency among our cohort, and one mutation (c.1329_1354dupGATAGAAATGATCTTACTCAGTGTTG) was not present in the dbSNP database. 5 mutations located in the extracellular domain sequencing region with confirmation in deficient individuals, of which c.284T>C, c.512A>G, c.572C>T, and c.869T>C were found to have a deleterious impact on CD36 protein stability. Furthermore, the MFI of CD36 expression on platelets in the mutation-carry, deleterious-effect, and deficiency group was significantly lower than the no-mutation group (P < 0.0500). In addition, sCD36 levels in type II individuals were significantly lower compared with positive controls (P = 0.0060). Nevertheless, we found the presence of sCD36 in a type I individual. RNA analysis showed CD36 RNA levels in platelets of type II individuals were significantly lower than the positive individuals (P = 0.0065). However, no significant difference was observed in monocytes (P = 0.7500). We identified the most prevalent mutation (c.1228_1239delATTGTGCCTATT) among Kunming donors. Besides, our results suggested RNA level alterations could potentially underlie type II deficiency. Furthermore, sCD36 may hold promise for assessing immune reaction risk in CD36-deficient individuals, but more studies should be conducted to validate this hypothesis.
Collapse
Affiliation(s)
- Qilu Lyu
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, 610052, Sichuan, China
| | - Yuwei Lin
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, 610052, Sichuan, China
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yiming Pan
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, 610052, Sichuan, China
| | - Xiaoyu Guan
- Department of Blood Transfusion, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Ji
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, 610052, Sichuan, China
| | - Mozhen Peng
- Yunnan Kunming Blood Center, Kunming, 650000, Yunnan, China
| | - Qian Li
- Yunnan Kunming Blood Center, Kunming, 650000, Yunnan, China
| | - Zhijang Wang
- Yunnan Kunming Blood Center, Kunming, 650000, Yunnan, China
| | - Zhihui Zhang
- Yunnan Kunming Blood Center, Kunming, 650000, Yunnan, China
| | - Zhen Luo
- Yunnan Kunming Blood Center, Kunming, 650000, Yunnan, China.
| | - Pincan Su
- Department of Transfusion Medicine, Affiliated Hospital of Yunnan University, Kunming, 650000, Yunnan, China.
| | - Jue Wang
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
- Key Laboratory of Transfusion Adverse Reactions, CAMS, Chengdu, 610052, Sichuan, China.
| |
Collapse
|
5
|
He H, Tang L, Jin Y, Wang Y, Wang H, Ding S, Chen Y, Tian J, Wang M, Duan S. High-Throughput CD36 Phenotyping on Human Platelets Based on Sandwich ELISA and Mutant Gene Analysis. Transfus Med Hemother 2024; 51:32-40. [PMID: 38314240 PMCID: PMC10836864 DOI: 10.1159/000530039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/04/2023] [Indexed: 02/06/2024] Open
Abstract
Background CD36 deficiency is closely associated with fetal/neonatal alloimmune thrombocytopenia, platelet transfusion refractoriness, and other hemorrhage disorders, particularly in Asian and African populations. There is a clinical need for rapid and high-throughput methods of platelet CD36 (pCD36) phenotyping to improve the availability of CD36 typing of donors and assist clinical blood transfusions for patients with anti-CD36 antibodies. Such methods can also support the establishment of databases of pCD36-negative phenotypes. Study Design and Methods A sandwich enzyme-linked immunosorbent assay (ELISA) for CD36 phenotyping of human platelets was developed using anti-CD36 monoclonal antibodies. The reliability of the assay was evaluated by calculating the intra-assay and inter-assay coefficients of variation (CV). A total of 1,691 anticoagulant whole blood samples from healthy blood donors were randomly selected. PCD36 expression was measured using a sandwich ELISA. PCD36 deficiency was confirmed by flow cytometry (FC). Mutations underlying pCD36 deficiency were identified using polymerase chain reaction sequence-based typing (PCR-SBT). Results The sandwich ELISA for pCD36 phenotyping had high reliability (intra-assay CV, 2.1-4.8%; inter-assay CV, 2.3-5.2%). The sandwich ELISA was used to screen for CD36 expression on platelets isolated from 1,691 healthy blood donors. Of these, 36 samples were pCD36-negative. FC demonstrated absence of CD36 expression on monocytes in three of the 36 cases. In the present study population, the frequency of CD36 deficiency was 2.13% (36/1,691), of which 0.18% (3/1,691) was type I deficiency and 1.95% (33/1,691) was type II deficiency. In addition, we used PCR-SBT to characterize the gene mutations in exons 3-14 of the CD36 gene in 27 cases of CD36 deficiency and discovered 10 types of mutations in 13 pCD36-negative samples. Conclusion The present study describes the development and characterization of a highly reliable sandwich ELISA for high-throughput screening for pCD36 expression. This novel method is feasible for clinical applications and provides a useful tool for the establishment of databases of pCD36-negative phenotype donors.
Collapse
Affiliation(s)
| | | | | | - Yujue Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Hongmei Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shaohua Ding
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yezhou Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jingjing Tian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | | | - Shengbao Duan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
6
|
CD36-A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms 2022; 10:microorganisms10122356. [PMID: 36557610 PMCID: PMC9785914 DOI: 10.3390/microorganisms10122356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) present P. falciparum erythrocyte membrane protein 1 proteins (PfEMP1s) on the cell surface, via which they cytoadhere to various endothelial cell receptors (ECRs) on the walls of human blood vessels. This prevents the parasite from passing through the spleen, which would lead to its elimination. Each P. falciparum isolate has about 60 different PfEMP1s acting as ligands, and at least 24 ECRs have been identified as interaction partners. Interestingly, in every parasite genome sequenced to date, at least 75% of the encoded PfEMP1s have a binding domain for the scavenger receptor CD36 widely distributed on host endothelial cells and many other cell types. Here, we discuss why the interaction between PfIEs and CD36 is optimal to maintain a finely regulated equilibrium that allows the parasite to multiply and spread while causing minimal harm to the host in most infections.
Collapse
|
7
|
Donnelly E, de Water JV, Luckhart S. Malaria-induced bacteremia as a consequence of multiple parasite survival strategies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100036. [PMID: 34841327 PMCID: PMC8610325 DOI: 10.1016/j.crmicr.2021.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Globally, malaria continues to be an enormous public health burden, with concomitant parasite-induced damage to the gastrointestinal (GI) barrier resulting in bacteremia-associated morbidity and mortality in both adults and children. Infected red blood cells sequester in and can occlude the GI microvasculature, ultimately leading to disruption of the tight and adherens junctions that would normally serve as a physical barrier to translocating enteric bacteria. Mast cell (MC) activation and translocation to the GI during malaria intensifies damage to the physical barrier and weakens the immunological barrier through the release of enzymes and factors that alter the host response to escaped enteric bacteria. In this context, activated MCs release Th2 cytokines, promoting a balanced Th1/Th2 response that increases local and systemic allergic inflammation while protecting the host from overwhelming Th1-mediated immunopathology. Beyond the mammalian host, recent studies in both the lab and field have revealed an association between a Th2-skewed host response and success of parasite transmission to mosquitoes, biology that is evocative of parasite manipulation of the mammalian host. Collectively, these observations suggest that malaria-induced bacteremia may be, in part, an unintended consequence of a Th2-shifted host response that promotes parasite survival and transmission. Future directions of this work include defining the factors and mechanisms that precede the development of bacteremia, which will enable the development of biomarkers to simplify diagnostics, the identification of therapeutic targets to improve patient outcomes and better understanding of the consequences of clinical interventions to transmission blocking strategies.
Collapse
Affiliation(s)
- Erinn Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| |
Collapse
|
8
|
Possemiers H, Pham TT, Coens M, Pollenus E, Knoops S, Noppen S, Vandermosten L, D’haese S, Dillemans L, Prenen F, Schols D, Franke-Fayard B, Van den Steen PE. Skeleton binding protein-1-mediated parasite sequestration inhibits spontaneous resolution of malaria-associated acute respiratory distress syndrome. PLoS Pathog 2021; 17:e1010114. [PMID: 34843584 PMCID: PMC8659713 DOI: 10.1371/journal.ppat.1010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease. Malaria is still a severe global disease with more than 200 million cases and 400 000 deaths each year. Plasmodium falciparum is the species responsible for most malaria deaths globally. The propensity of these parasites to sequester in peripheral vascular beds is assumed to play an important role in disease severity and mortality. Although sequestration has been observed in lungs of malaria patients, its role in the pathogenesis of MA-ARDS, a severe lung complication in malaria, was previously unknown. Therefore, we used sequestration-deficient SBP-1 KO Plasmodium berghei NK65 parasites to study the role of sequestration in experimental MA-ARDS. We observed that MA-ARDS developed similarly in WT and SBP-1 KO infected mice, but the majority of SBP-1 KO-infected mice were able to resolve the lung pathology despite the continuous presence of the parasite. This coincided with a prolonged survival, a decrease in inflammatory cytokine expression and lower expression of cytotoxicity markers in pathogenic CD8+ T cells. These results give important new insights in the role of parasite sequestration in malaria pathology.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- Currently at Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Belgium
| | - Marion Coens
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sigrid D’haese
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- Currently at Neuro-Aging & Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Luna Dillemans
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | | | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- * E-mail:
| |
Collapse
|
9
|
Schmidt AE, Sahai T, Refaai MA, Sullivan M, Curtis BR. Severe Platelet Transfusion Refractoriness in Association with Antibodies Against CD36. Lab Med 2021; 51:540-544. [PMID: 31925433 DOI: 10.1093/labmed/lmz091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Platelet-transfusion refractoriness (PTR) is common in patients with hematological malignancies. The etiology of immune PTR is typically human leukocyte antigen (HLA) antibodies (Abs) from pregnancy or previous transfusion. Herein, we report PTR in the setting of induction chemotherapy for acute myelogenous leukemia (AML) from Abs against CD36/glycoprotein (GP)IV. A 66-year-old African American woman presented with anemia and thrombocytopenia. She was found to have transfusion-dependent AML, and a 7 + 3 regimen (7 days of standard-dose cytarabine and 3 days of an anthracycline antibiotic or an anthracenedione, most often daunorubicin) was initiated. The patient developed profound thrombocytopenia, with platelet nadir of 0 by day 13. The results of HLA antibody screening were negative. However, the results of a screening test for platelet-specific antibodies screen showed Abs against cluster of differentiation (CD)36. The platelets of the patient lacked expression of CD36, and DNA analysis showed mutations in the CD36 gene. HLA Ab-mediated PTR is common in patients with hematological malignancies. However, once HLA Abs are excluded, other less-frequent Abs should be considered, particularly in patient populations of Asian, African, or Middle Eastern descent.
Collapse
Affiliation(s)
- Amy E Schmidt
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Tanmay Sahai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,Department of Hematology and Oncology, Lenox Hill Hospital, New York, New York
| | - Majed A Refaai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Mia Sullivan
- The Platelet & Neutrophil Immunology Laboratory, Blood Center of Wisconsin (part of Versiti), Milwaukee, WI
| | - Brian R Curtis
- The Platelet & Neutrophil Immunology Laboratory, Blood Center of Wisconsin (part of Versiti), Milwaukee, WI
| |
Collapse
|
10
|
Dobri AM, Dudău M, Enciu AM, Hinescu ME. CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience 2020; 453:301-311. [PMID: 33212223 DOI: 10.1016/j.neuroscience.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CD36 is a membrane protein with wide distribution in the human body, is enriched in the monocyte-macrophage system and endothelial cells, and is involved in the cellular uptake of long chain fatty acids (LCFA) and oxidized low-density lipoproteins. It is also a scavenger receptor, binding hydrophobic amyloid fibrils found in the Alzheimer's disease (AD) brain. In neurobiology research, it has been mostly studied in relationship with chronic ischemia and stroke, but it was also related to amyloid clearance by microglial phagocytosis. In AD animal models, amyloid binding to CD36 has been consistently correlated with a pro-inflammatory response. Therapeutic approaches have two main focuses: CD36 blockade with monoclonal antibodies or small molecules, which is beneficial in terms of the inflammatory milieu, and upregulation of CD36 for increased amyloid clearance. The balance of the two approaches, centered on microglia, is poorly understood. Furthermore, CD36 evaluation in AD clinical studies is still at a very early stage and there is a gap in the knowledge regarding the impact of LCFA on AD progression and CD36 expression and genetic phenotype. This review summarizes the role played by CD36 in the pathogenic amyloid cascade and explore the translatability of preclinical data towards clinical research.
Collapse
Affiliation(s)
- Ana-Maria Dobri
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Maria Dudău
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Mihail Eugen Hinescu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania
| |
Collapse
|
11
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
12
|
Banesh S, Trivedi V. Therapeutic Potentials of Scavenger Receptor CD36 Mediated Innate Immune Responses Against Infectious and Non-Infectious Diseases. Curr Drug Discov Technol 2020; 17:299-317. [PMID: 31376823 DOI: 10.2174/1570163816666190802153319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CD36 is a multifunctional glycoprotein, expressed in different types of cells and known to play a significant role in the pathophysiology of the host. The structural studies revealed that the scavenger receptor consists of short cytosolic domains, two transmembrane domains, and a large ectodomain. The ectodomain serves as a receptor for a diverse number of endogenous and exogenous ligands. The CD36-specific ligands are involved in regulating the immune response during infectious and non-infectious diseases in the host. The role of CD36 in regulating the innate immune response during Pneumonia, Tuberculosis, Malaria, Leishmaniasis, HIV, and Sepsis in a ligand- mediated fashion. Apart from infectious diseases, it is also considered to be involved in metabolic disorders such as Atherosclerosis, Alzheimer's, cancer, and Diabetes. The ligand binding to scavenger receptor modulates the CD36 down-stream innate immune response, and it can be exploited to design suitable immuno-modulators. Hence, the current review focused on the role of the CD36 in innate immune response and therapeutic potentials of novel heterocyclic compounds as CD36 ligands during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Sooram Banesh
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
13
|
Zhang HJ, Xu W, Chen QM, Sun LN, Anderson A, Xia QY, Papanicolaou A. A phylogenomics approach to characterizing sensory neuron membrane proteins (SNMPs) in Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103313. [PMID: 31911087 DOI: 10.1016/j.ibmb.2020.103313] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Sensory neuron membrane proteins (SNMPs) play a critical role in the insect olfactory system but there is a deficit of functional studies beyond Drosophila. Here, we use a combination of available genome sequences, manual curation, genome and transcriptome data, phylogenetics, expression profiling and gene knockdown to investigate SNMP superfamily in various insect species with a focus on Lepidoptera. We curated 81 genes from 36 insect species and identified a novel lepidopteran SNMP gene family, SNMP3. Phylogenetic analysis shows that lepidopteran SNMP3, but not the previously annotated lepidopteran SNMP2, is the true homologue of the dipteran SNMP2. Digital expression, microarray and qPCR analyses show that the lepidopteran SNMP1 is specifically expressed in adult antennae. SNMP2 is widely expressed in multiple tissues while SNMP3 is specifically expressed in the larval midgut. Microarray analysis suggest SNMP3 may be involved in the silkworm immunity response to virus and bacterial infections. We functionally characterized SNMP1 in the silkworm using RNA interference (RNAi) and behavioral assays. Our results suggested that Bombyx mori SNMP1 is a functional orthologue of the Drosophila melanogaster SNMP1 and plays a critical role in pheromone detection. Split-ubiquitin yeast hybridization study shows that BmorSNMP1 has a protein-protein interaction with the pheromone receptor (BmorOR1), and the co-receptor (BmorOrco). Concluding, we propose a novel molecular model in which BmorOrco, BmorSNMP1 and BmorOR1 form a heteromer in the detection of the silkworm sex pheromone bombykol.
Collapse
Affiliation(s)
- Hui-Jie Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; CSIRO Food Futures Flagship, Canberra, ACT, 2601, Australia; CSIRO Ecosystem Sciences, Canberra, ACT, 2601, Australia
| | - Wei Xu
- Agricultural Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Quan-Mei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Le-Na Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | | | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.
| | - Alexie Papanicolaou
- CSIRO Ecosystem Sciences, Canberra, ACT, 2601, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Richmond, 2753, Australia.
| |
Collapse
|
14
|
Wang Y, Chen S, Chen J, Xie X, Gao S, Zhang C, Zhou S, Wang J, Mai R, Lin Q, Lin J, Matucci-Cerinic M, Zhang G, Furst DE. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome highlight T cell-initiated autoimmunity. Ann Rheum Dis 2020; 79:268-275. [PMID: 31848144 DOI: 10.1136/annrheumdis-2019-215533] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Familial aggregation of primary Sjögren's syndrome (pSS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and co-aggregation of these autoimmune diseases (ADs) (also called familial autoimmunity) is well recognised. However, the genetic predisposition variants that explain this clustering remains poorly defined. METHODS We used whole-exome sequencing on 31 families (9 pSS, 11 SLE, 6 RA and 5 mixed autoimmunity), followed by heterozygous filtering and cosegregation analysis of a family-focused approach to document rare variants predicted to be pathogenic by in silico analysis. Potential importance in immune-related processes, gene ontology, pathway enrichment and overlap analyses were performed to prioritise gene sets. RESULTS A range from 1 to 50 rare possible pathogenic variants, including 39 variants in immune-related genes across SLE, RA and pSS families, were identified. Among this gene set, regulation of T cell activation (p=4.06×10-7) and T cell receptor (TCR) signalling pathway (p=1.73×10-6) were particularly concentrated, including PTPRC (CD45), LCK, LAT-SLP76 complex genes (THEMIS, LAT, ITK, TEC, TESPA1, PLCL1), DGKD, PRKD1, PAK2 and NFAT5, shared across 14 SLE, RA and pSS families. TCR-interactive genes P2RX7, LAG3, PTPN3 and LAX1 were also detected. Overlap analysis demonstrated that the antiviral immunity gene DUS2 variant cosegregated with SLE, RA and pSS phenotypes in an extended family, that variants in the TCR-pathway genes CD45, LCK and PRKD1 occurred independently in three mixed autoimmunity families, and that variants in CD36 and VWA8 occurred in both RA-pSS and SLE-pSS families. CONCLUSIONS Our preliminary results define common genetic characteristics linked to familial pSS, SLE and RA and highlight rare genetic variations in TCR signalling pathway genes which might provide innovative molecular targets for therapeutic interventions for those three ADs.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
- Department of Experimental and Clinical Medicine, University of Florence & Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| | - Shaoqi Chen
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jingyao Chen
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xuezhen Xie
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Sini Gao
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chengpeng Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Songxia Zhou
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jing Wang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ruiqin Mai
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qisheng Lin
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jianqun Lin
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence & Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Daniel E Furst
- Department of Experimental and Clinical Medicine, University of Florence & Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy
- Division of Rheumatology, School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| |
Collapse
|
15
|
Goodier MR, Wolf AS, Riley EM. Differentiation and adaptation of natural killer cells for anti-malarial immunity. Immunol Rev 2019; 293:25-37. [PMID: 31762040 DOI: 10.1111/imr.12798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Natural killer cells employ a diverse arsenal of effector mechanisms to target intracellular pathogens. Differentiation of natural killer (NK) cell activation pathways occurs along a continuum from reliance on innate pro-inflammatory cytokines and stress-induced host ligands through to interaction with signals derived from acquired immune responses. Importantly, the degree of functional differentiation of the NK cell lineage influences the magnitude and specificity of interactions with host cells infected with viruses, bacteria, fungi, and parasites. Individual humans possess a vast diversity of distinct NK cell clones, each with the capacity to vary along this functional differentiation pathway, which - when combined - results in unique individual responses to different infections. Here we summarize these NK cell differentiation events, review evidence for direct interaction of malaria-infected host cells with NK cells and assess how innate inflammatory signals induced by malaria parasite-associated molecular patterns influence the indirect activation and function of NK cells. Finally, we discuss evidence that anti-malarial immunity develops in parallel with advancing NK differentiation, coincident with a loss of reliance on inflammatory signals, and a refined capacity of NK cells to target malaria parasites more precisely, particularly through antibody-dependent mechanisms.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Asia-Sophia Wolf
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.,Department of Infection and Immunity, University College London, London, UK
| | - Eleanor M Riley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
16
|
Circulating Monocytes, Tissue Macrophages, and Malaria. J Trop Med 2019; 2019:3720838. [PMID: 31662766 PMCID: PMC6791199 DOI: 10.1155/2019/3720838] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Malaria is a significant cause of global morbidity and mortality. The Plasmodium parasite has a complex life cycle with mosquito, liver, and blood stages. The blood stages can preferentially affect organs such as the brain and placenta. In each of these stages and organs, the parasite will encounter monocytes and tissue-specific macrophages—key cell types in the innate immune response. Interactions between the Plasmodium parasite and monocytes/macrophages lead to several changes at both cellular and molecular levels, such as cytokine release and receptor expression. In this review, we summarize current knowledge on the relationship between malaria and blood intervillous monocytes and tissue-specific macrophages of the liver (Kupffer cells), central nervous system (microglia), and placenta (maternal intervillous monocytes and fetal Hofbauer cells). We describe their potential roles in modulating outcomes from infection and areas for future investigation.
Collapse
|
17
|
Niculite CM, Enciu AM, Hinescu ME. CD 36: Focus on Epigenetic and Post-Transcriptional Regulation. Front Genet 2019; 10:680. [PMID: 31379931 PMCID: PMC6659770 DOI: 10.3389/fgene.2019.00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
CD36 is a transmembrane protein involved in fatty acid translocation, scavenging for oxidized fatty acids acting as a receptor for adhesion molecules. It is expressed on macrophages, as well as other types of cells, such as endothelial and adipose cells. CD36 participates in muscle lipid uptake, adipose energy storage, and gut fat absorption. Recently, several preclinical and clinical studies demonstrated that upregulation of CD36 is a prerequisite for tumor metastasis. Cancer metastasis-related research emerged much later and has been less investigated, though it is equally or even more important. CD36 protein expression can be modified by epigenetic changes and post-transcriptional interference from non-coding RNAs. Some data indicate modulation of CD36 expression in specific cell types by epigenetic changes via DNA methylation patterns or histone tails, or through miRNA interference, but this is largely unexplored. The few papers addressing this topic refer mostly to lipid metabolism-related pathologies, whereas in cancer research, data are even more scarce. The aim of this review was to summarize major epigenetic and post-transcriptional mechanisms that impact CD36 expression in relation to various pathologies while highlighting the areas in need of further exploration.
Collapse
Affiliation(s)
- Cristina-Mariana Niculite
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
18
|
Ng SS, Engwerda CR. Innate Lymphocytes and Malaria - Players or Spectators? Trends Parasitol 2018; 35:154-162. [PMID: 30579700 DOI: 10.1016/j.pt.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Malaria remains an important global disease. Despite significant advances over the past decade in reducing disease morbidity and mortality, new measures are needed if malaria is to be eliminated. Significant advances in our understanding about host immune responses during malaria have been made, opening up opportunities to generate long-lasting antiparasitic immunity through vaccination or immune therapy. However, there is still much debate over which immune cell populations contribute to immunity to malaria, including innate lymphocytes that comprise recently identified innate lymphoid cells (ILCs) and better known innate-like T cell subsets. Here, we review research on these immune cell subsets and discuss whether they have any important roles in immunity to malaria or if they are redundant.
Collapse
Affiliation(s)
- Susanna S Ng
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia; School of Environment and Science, Griffith University, QLD, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia.
| |
Collapse
|
19
|
Gowda DC, Wu X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front Immunol 2018; 9:3006. [PMID: 30619355 PMCID: PMC6305727 DOI: 10.3389/fimmu.2018.03006] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Malaria caused by the Plasmodium family of parasites, especially P.falciparum and P. vivax, is a major health problem in many countries in the tropical and subtropical regions of the world. The disease presents a wide array of systemic clinical conditions and several life-threatening organ pathologies, including the dreaded cerebral malaria. Like many other infectious diseases, malaria is an inflammatory response-driven disease, and positive outcomes to infection depend on finely tuned regulation of immune responses that efficiently clear parasites and allow protective immunity to develop. Immune responses initiated by the innate immune system in response to parasites play key roles both in protective immunity development and pathogenesis. Initial pro-inflammatory responses are essential for clearing infection by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged pro-inflammatory responses owing to inappropriate cellular programming contribute to disease conditions. A comprehensive knowledge of the molecular and cellular mechanisms that initiate immune responses and how these responses contribute to protective immunity development or pathogenesis is important for developing effective therapeutics and/or a vaccine. Historically, in efforts to develop a vaccine, immunity to malaria was extensively studied in the context of identifying protective humoral responses, targeting proteins involved in parasite invasion or clearance. The innate immune response was thought to be non-specific. However, during the past two decades, there has been a significant progress in understanding the molecular and cellular mechanisms of host-parasite interactions and the associated signaling in immune responses to malaria. Malaria infection occurs at two stages, initially in the liver through the bite of a mosquito, carrying sporozoites, and subsequently, in the blood through the invasion of red blood cells by merozoites released from the infected hepatocytes. Soon after infection, both the liver and blood stage parasites are sensed by various receptors of the host innate immune system resulting in the activation of signaling pathways and production of cytokines and chemokines. These immune responses play crucial roles in clearing parasites and regulating adaptive immunity. Here, we summarize the knowledge on molecular mechanisms that underlie the innate immune responses to malaria infection.
Collapse
Affiliation(s)
- D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
20
|
Huang HM, McMorran BJ, Foote SJ, Burgio G. Host genetics in malaria: lessons from mouse studies. Mamm Genome 2018; 29:507-522. [PMID: 29594458 DOI: 10.1007/s00335-018-9744-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Malaria remains a deadly parasitic disease caused by Plasmodium, claiming almost half a million lives every year. While parasite genetics and biology are often the major targets in many studies, it is becoming more evident that host genetics plays a crucial role in the outcome of the infection. Similarly, Plasmodium infections in mice also rely heavily on the genetic background of the mice, and often correlate with observations in human studies, due to their high genetic homology with humans. As such, murine models of malaria are a useful tool for understanding host responses during Plasmodium infections, as well as dissecting host-parasite interactions through various genetic manipulation techniques. Reverse genetic approach such as quantitative trait loci studies and random mutagenesis screens have been employed to discover novel host genes that affect malaria susceptibility in mouse models, while other targeted studies utilize mouse models to validate observation from human studies. Herein, we review the findings from the past and present studies on murine models of hepatic and erythrocytic stages of malaria and speculate on how the current mouse models benefit from the recent development in CRISPR/Cas9 gene editing technology.
Collapse
Affiliation(s)
- Hong Ming Huang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Simon J Foote
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia.
| |
Collapse
|