1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
Li C, Wang J, Lin H, Zhang Y, Ma Z, Bechthold A, Yu X. Protein X0P338, a GntR-type pleiotropic regulator for morphological differentiation and secondary metabolites production in Streptomyces diastatochromogenes 1628. J Basic Microbiol 2022; 62:788-800. [PMID: 35485240 DOI: 10.1002/jobm.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022]
Abstract
The nucleoside antibiotic, toyocamycin (TM) exhibits excellent potent activity against several phytopathogenic fungi. Despite of its importance, little is known about key factors regulating TM biosynthesis and morphological differentiation in S. diastatochromogenes 1628. Based on proteomics data obtained from the analysis between wild-type (WT) S. diastatochromogenes 1628 strain and mutant strain 1628-T62 having a low-yield of TM, we observed that the differentially expressed protein, X0P338, which was proposed to be a regulator of the GntR-family, exhibited a higher expression level in S. diastatochromogenes 1628. Therefore, in this study, to explore whether protein X0P338 was involved in morphological differentiation and biosynthesis of secondary metabolites, especially TM, the gene called the gntR sd -encoding protein X0P338 was cloned and over-expressed in WT strain 1628 and mutant strain 1628-T62, respectively. The results indicated that the over-expression of gntR sd enhanced TM production in both strain 1628 (120.6 mg/L vs. 306.6 mg/L) and strain 1628-T62 (15.6 mg/L vs. 258.9 mg/L). Besides, the over-expression of gntR sd had positive and negative effects on morphological differentiation in strain 1628 and strain 1628-T62, respectively. The results also showed opposite effects on tetraene macrolide production during the over-expression of gntR sd in strain 1628 and strain 1628-T62. Moreover, transcription levels of genes involved in morphological differentiation and secondary metabolites production were affected by the over-expression of gntR sd gene, both in strain 1628 and strain 1628-T62. These results confirm that X0P338 as a GntR-type pleiotropic regulator that regulates the morphological differentiation and biosynthesis of secondary metabolites, and especially has a positive effect on TM biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chouqiang Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Juan Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yongyong Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | | | - Andreas Bechthold
- University of Freiburg, Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Freiburg, Germany
| | | |
Collapse
|
3
|
Molecular mechanism of mureidomycin biosynthesis activated by introduction of an exogenous regulatory gene ssaA into Streptomyces roseosporus. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1949-1963. [PMID: 33580428 PMCID: PMC7880210 DOI: 10.1007/s11427-020-1892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/04/2022]
Abstract
Mureidomycins (MRDs), a group of unique uridyl-peptide antibiotics, exhibit antibacterial activity against the highly refractory pathogen Pseudomonas aeruginosa. Our previous study showed that the cryptic MRD biosynthetic gene cluster (BGC) mrd in Streptomyces roseosporus NRRL 15998 could not be activated by its endogenous regulator 02995 but activated by an exogenous activator SsaA from sansanmycin’s BGC ssa of Streptomyces sp. strain SS. Here we report the molecular mechanism for this inexplicable regulation. EMSAs and footprinting experiments revealed that SsaA could directly bind to a 14-nt palindrome sequence of 5′-CTGRCNNNNGTCAG-3′ within six promoter regions of mrd. Disruption of three representative target genes (SSGG-02981, SSGG-02987 and SSGG-02994) showed that the target genes directly controlled by SsaA were essential for MRD production. The regulatory function was further investigated by replacing six regions of SSGG-02995 with those of ssaA. Surprisingly, only the replacement of 343–450 nt fragment encoding the 115–150 amino acids (AA) of SsaA could activate MRD biosynthesis. Further bioinformatics analysis showed that the 115–150 AA situated between two conserved domains of SsaA. Our findings significantly demonstrate that constitutive expression of a homologous exogenous regulatory gene is an effective strategy to awaken cryptic biosynthetic pathways in Streptomyces.
Collapse
|
4
|
Vicente CM, Girardet JM, Hôtel L, Aigle B. Molecular Dynamics to Elucidate the DNA-Binding Activity of AlpZ, a Member of the Gamma-Butyrolactone Receptor Family in Streptomyces ambofaciens. Front Microbiol 2020; 11:1255. [PMID: 32714286 PMCID: PMC7343708 DOI: 10.3389/fmicb.2020.01255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cláudia M. Vicente
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- *Correspondence: Cláudia M. Vicente,
| | | | | | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Bertrand Aigle,
| |
Collapse
|
5
|
Murarka P, Srivastava P. Characterization of DNA binding and ligand binding properties of the TetR family protein involved in regulation of dsz operon in Gordonia sp. IITR100. Int J Biol Macromol 2019; 141:671-679. [PMID: 31493456 DOI: 10.1016/j.ijbiomac.2019.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 01/03/2023]
Abstract
Gordonia sp. IITR100 is a biodesulfurizing bacterium which can metabolize dibenzothiophene (DBT) to 2 hydroxybiphenyl in four steps via the 4S pathway. The genes involved in the metabolism are present in the form of an operon, dszABC, which gets activated by a TetR family protein. Here, we report the detailed characterization of the DNA binding and ligand binding property of the TetR family protein. The protein was found to be conserved across other desulfurizing organisms. The protein was purified and was found to exist as dimer. The presence of ligand binding site was identified by docking studies and the structural changes in the protein upon ligand binding were determined by CD spectroscopy and tryptophan fluorescence. Further, it was determined that this protein binds to an imperfect palindromic DNA sequence present in the dsz promoter DNA. Binding to the DNA also changes conformation of the protein.
Collapse
Affiliation(s)
- Pooja Murarka
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Xu G, Yang S. Regulatory and evolutionary roles of pseudo γ-butyrolactone receptors in antibiotic biosynthesis and resistance. Appl Microbiol Biotechnol 2019; 103:9373-9378. [PMID: 31728585 DOI: 10.1007/s00253-019-10219-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 01/30/2023]
Abstract
Bacteria modulate their physiological behavior by responding to various signal molecules. The signals are received by cognate receptors, which usually mediate transcriptional regulation. Streptomyces employ γ-butyrolactones (GBLs) and cognate GBL receptors (GblRs) to regulate secondary metabolism and morphological development. However, there are additional transcriptional regulators called pseudo GblR regulators, which cannot bind GBLs and are not directly associated with GBL synthase. The pseudo GblR regulators may act as transcriptional repressors and respond to antibiotic signals. They play regulatory roles in coordination of antibiotic biosynthesis by connecting the hormone feed-forward loops and the antibiotic feedback loops. As the TetR family members, they might also have evolutionary roles between the transcriptional regulators of quorum sensing and antibiotic resistance. Understanding the regulatory and evolutionary roles of the pseudo GblR family would be helpful for fine-tuning regulation of antibiotic biosynthesis and resistance.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
7
|
Xu J, Song Z, Xu X, Ma Z, Bechthold A, Yu X. ToyA, a positive pathway-specific regulator for toyocamycin biosynthesis in Streptomyces diastatochromogenes 1628. Appl Microbiol Biotechnol 2019; 103:7071-7084. [DOI: 10.1007/s00253-019-09959-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
|
8
|
Wu H, Chu Z, Zhang W, Zhang C, Ni J, Fang H, Chen Y, Wang Y, Zhang L, Zhang B. Transcriptome-guided target identification of the TetR-like regulator SACE_5754 and engineered overproduction of erythromycin in Saccharopolyspora erythraea. J Biol Eng 2019; 13:11. [PMID: 30697347 PMCID: PMC6346578 DOI: 10.1186/s13036-018-0135-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background Erythromycin A (Er-A) produced by the actinomycete Saccharopolyspora erythraea is an important antibiotic extensively used in human medicine. Dissecting of transcriptional regulators and their target genes associated with erythromycin biosynthesis is crucial to obtain erythromycin overproducer strains through engineering of relevant regulatory elements in S. erythraea. Results Here, we identified a TetR family transcriptional regulator (TFR), SACE_5754, negatively controlling erythromycin production. SACE_5754 indirectly repressed the transcription of ery cluster and cannot regulate itself and its adjacent gene SACE_5753. RNA-seq coupled with EMSAs and qRT-PCR was performed to identify the targets of SACE_5754, and confirmed that transcription of SACE_0388 (encoding a pyruvate, water diknase), SACE_3599 (encoding an antibiotic resistance macrolide glycosyltransferase) and SACE_6149 (encoding a FAD-binding monooxygenase) were directly repressed by SACE_5754. A consensus palindromic sequence TYMAGG-n2/n4/n11-KKTKRA (Y: C/T, M: A/C, K: T/G, R: A/G) was proved to be essential for SACE_5754 binding using DNase I footprinting and EMSAs. During the three target genes of SACE_5754, SACE_0388 and SACE_6149 exhibited the positive effect on erythromycin production. Overexpression of either SACE_0388 or SACE_6149 in ∆SACE_5754 further increased the Er-A production. By engineering the industrial strain S. erythraea WB with deletion of SACE_5754 combined with overexpression of either SACE_0388 or SACE_6149, Er-A production in WB∆SACE_5754/pIB139–0388 and WB∆SACE_5754/pIB139–6149 was successively increased by 42 and 30% compared to WB. Co-overexpression of SACE_0388 and SACE_6149 in WB∆SACE_5754 resulted in enhanced Er-A production by 64% relative to WB. In a 5-L fermenter, WB∆SACE_5754/pIB139–0388-6149 produced 4998 mg/L Er-A, a 48% increase over WB. Conclusion We have identified a TFR, SACE_5754, as a negative regulator of erythromycin biosynthesis, and engineering of SACE_5754 and its target genes, SACE_0388 and SACE_6149, resulted in enhanced erythromycin production in both wild-type and industrial S. erythraea strains. The strategy demonstrated here may be valuable to facilitate the manipulation of transcriptional regulators and their targets for production improvement of antibiotics in industrial actinomycetes. Electronic supplementary material The online version of this article (10.1186/s13036-018-0135-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hang Wu
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Zuling Chu
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Wanxiang Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Chi Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Jingshu Ni
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Heshi Fang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yuhong Chen
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yansheng Wang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Lixin Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China.,2State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Buchang Zhang
- 1School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| |
Collapse
|
9
|
Aleksic T, Gray N, Wu X, Rieunier G, Osher E, Mills J, Verrill C, Bryant RJ, Han C, Hutchinson K, Lambert AG, Kumar R, Hamdy FC, Weyer-Czernilofsky U, Sanderson MP, Bogenrieder T, Taylor S, Macaulay VM. Nuclear IGF1R Interacts with Regulatory Regions of Chromatin to Promote RNA Polymerase II Recruitment and Gene Expression Associated with Advanced Tumor Stage. Cancer Res 2018; 78:3497-3509. [PMID: 29735545 PMCID: PMC6031306 DOI: 10.1158/0008-5472.can-17-3498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Internalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models. In prostate cancers, IGF1R was predominantly membrane localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF1R, and nuclear IGF1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF1R-binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF1 also enriched RNAPol2 on promoters containing IGF1R-binding sites. These functions were inhibited by IGF1/II-neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected IGF1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF1R, with evidence of correlation between nuclear IGF1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs.Significance: These findings reveal a noncanonical nuclear role for IGF1R in tumorigenesis, with implications for therapeutic evaluation of IGF inhibitory drugs. Cancer Res; 78(13); 3497-509. ©2018 AACR.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Eliot Osher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| | | | - Adam G Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajeev Kumar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse, Munich, Germany
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
10
|
Yan L, Tang Q, Guan Z, Pei K, Zou T, He J. Structural insights into operator recognition by BioQ in the Mycobacterium smegmatis biotin synthesis pathway. Biochim Biophys Acta Gen Subj 2018; 1862:1843-1851. [PMID: 29852200 DOI: 10.1016/j.bbagen.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/18/2018] [Accepted: 05/19/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Biotin is an essential cofactor in living organisms. The TetR family transcriptional regulator (TFTR) BioQ is the main regulator of biotin synthesis in Mycobacterium smegmatis. BioQ represses the expression of its target genes by binding to a conserved palindromic DNA sequence (the BioQ operator). However, the mechanism by which BioQ recognizes this DNA element has not yet been fully elucidated. METHODS/RESULTS We solved the crystal structures of the BioQ homodimer in its apo-form and in complex with its specific operator at 2.26 Å and 2.69 Å resolution, respectively. BioQ inserts the N-terminal recognition helix of each protomer into the corresponding major grooves of its operator and stabilizes the formation of the complex via electrostatic interactions and hydrogen bonding to induce conformational changes in both the DNA and BioQ. The DNA interface of BioQ is rich in positively charged residues, which help BioQ stabilize DNA binding. We elucidated the structural basis of DNA recognition by BioQ for the first time and identified the amino acid residues responsible for DNA binding via further site-directed mutagenesis. GENERAL SIGNIFICANCE Our findings clearly elucidate the mechanism by which BioQ recognizes its operator in the biotin synthesis pathway and reveal the unique structural characteristics of BioQ that are distinct from other TFTR members.
Collapse
Affiliation(s)
- Ling Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zeyuan Guan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kai Pei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tingting Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|