1
|
Sun L, Wang Z, Liu Z, Mu G, Cui Y, Xiang Q. C-type lectin-like receptor 2: roles and drug target. Thromb J 2024; 22:27. [PMID: 38504248 PMCID: PMC10949654 DOI: 10.1186/s12959-024-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
C-type lectin-like receptor-2 (CLEC-2) is a member of the C-type lectin superfamily of cell surface receptors. The first confirmed endogenous and exogenous ligands of CLEC-2 are podoplanin and rhodocytin, respectively. CLEC-2 is expressed on the surface of platelets, which participates in platelet activation and aggregation by binding with its ligands. CLEC-2 and its ligands are involved in pathophysiological processes, such as atherosclerosis, cancer, inflammatory thrombus status, maintenance of vascular wall integrity, and cancer-related thrombosis. In the last 5 years, different anti- podoplanin antibody types have been developed for the treatment of cancers, such as glioblastoma and lung cancer. New tests and new diagnostics targeting CLEC-2 are also discussed. CLEC-2 mediates thrombosis in various pathological states, but CLEC-2-specific deletion does not affect normal hemostasis, which would provide a new therapeutic tool for many thromboembolic diseases. The CLEC-2-podoplanin interaction is a target for cancer treatment. CLEC-2 may be applied in clinical practice and play a therapeutic role.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China.
- Institute of Clinical Pharmacology, Peking University, Beijing, China.
| |
Collapse
|
2
|
Awamura T, Nakasone ES, Gangcuangco LM, Subia NT, Bali AJ, Chow DC, Shikuma CM, Park J. Platelet and HIV Interactions and Their Contribution to Non-AIDS Comorbidities. Biomolecules 2023; 13:1608. [PMID: 38002289 PMCID: PMC10669125 DOI: 10.3390/biom13111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Platelets are anucleate cytoplasmic cell fragments that circulate in the blood, where they are involved in regulating hemostasis. Beyond their normal physiologic role, platelets have emerged as versatile effectors of immune response. During an infection, cell surface receptors enable platelets to recognize viruses, resulting in their activation. Activated platelets release biologically active molecules that further trigger host immune responses to protect the body against infection. Their impact on the immune response is also associated with the recruitment of circulating leukocytes to the site of infection. They can also aggregate with leukocytes, including lymphocytes, monocytes, and neutrophils, to immobilize pathogens and prevent viral dissemination. Despite their host protective role, platelets have also been shown to be associated with various pathophysiological processes. In this review, we will summarize platelet and HIV interactions during infection. We will also highlight and discuss platelet and platelet-derived mediators, how they interact with immune cells, and the multifaceted responsibilities of platelets in HIV infection. Furthermore, we will give an overview of non-AIDS comorbidities linked to platelet dysfunction and the impact of antiretroviral therapy on platelet function.
Collapse
Affiliation(s)
- Thomas Awamura
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Elizabeth S. Nakasone
- University of Hawai‘i Cancer Center, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
| | - Louie Mar Gangcuangco
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Natalie T. Subia
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Aeron-Justin Bali
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Dominic C. Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Cecilia M. Shikuma
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| |
Collapse
|
3
|
Chiang KC, Gupta A, Sundd P, Krishnamurti L. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines 2023; 11:338. [PMID: 36830874 PMCID: PMC9953430 DOI: 10.3390/biomedicines11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
People with sickle cell disease (SCD) are at greater risk of severe illness and death from respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated by endothelial injury, complement activation, inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore, the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases; and lastly, examine the therapeutic targets and potential treatments for the two diseases.
Collapse
Affiliation(s)
| | - Ajay Gupta
- KARE Biosciences, Orange, CA 89128, USA
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA
| | - Prithu Sundd
- Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Zhou H, Zhu J, Wan H, Shao C, Chen T, Yang J, He Y, Wan H. The combination of danhong injection plus tissue plasminogen activator ameliorates mouse tail thrombosis-induced by κ-carrageenan. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154320. [PMID: 35830758 DOI: 10.1016/j.phymed.2022.154320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND After thrombosis, t-PA thrombolysis is the first choice, but the use of t-PA can easily lead to hemorrhagic injury and neurotoxicity. The combination of Danhong injection (DHI) and tissue plasminogen activator (t-PA) therapy may be a new strategy to find high-efficiency anti-thrombosis and low bleeding risk. However, nothing is about the effect of DHI plus t-PA on platelet activation. PURPOSE The present research was to explore the optimal dose of DHI and t-PA in vivo and mechanisms involved with the treatment of combining DHI and t-PA for thrombotic disease and determined whether DHI plus t-PA affects thrombotic processes related to platelet activation. METHODS Mice were induced by administering κ-carrageenan intraperitoneally, the ratio of different doses of DHI and t-PA in vivo, and the optimal dose effects on platelet aggregation, platelet adhesion, thrombosis formation, and platelet activation were determined. The effects of the αIIbβ3 signaling pathway were analyzed in mice. RESULTS In vitro, DHI (62% v/v), t-PA (1 mg/ml), and DHI + t-PA (62% v/v + 1 mg/ml) decreased rat platelet aggregation and adhesion, with a stronger effect from the combination as compared to t-PA monotherapy. In vivo, injections of κ-carrageenan were used to induce BALB/c mice. The optimal dose of DHI, t-PA, and DHI + t-PA is 12 ml/kg, 10 mg/kg, and 12 ml/kg + 7.5 mg/kg. The administration of DHI (12 ml/kg), t-PA (10 mg/kg), and DHI + t-PA (12 ml/kg + 7.5 mg/kg) decreased thrombi in mouse tissue vessels. Furthermore, the reduction of thrombosis formation by DHI, t-PA, and DHI + t-PA was related to lower collagen deposition, and lowered expressions of collagen I, matrix metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9) in mouse tails, with increased efficacy in combination as compared to t-PA alone. The anti-thrombosis actions of DHI, t-PA, and their combination regulated the expression of CD41, purinergic receptor (P2Y12), guanine nucleotide-binding protein G (q) subunit alpha (GNAQ), phosphatidylinositol phospholipase c beta (PLCβ), Ras-related protein 1 (Rap1), RIAM, talin1, fibrinogen alpha chain (FG), kindlin-3, and RAS guany1-releasing protein 1 (RasGRP1). CONCLUSIONS Based on expression, the mechanism responsible for thrombosis may be attributed to platelet activation via the αIIbβ3 signaling pathway. Combination therapy with DHI and t-PA exerted potent thrombolytic effects. Thus, our data can be used as a foundation for further clinical studies examining the efficacy of traditional Chinese medicines for the treatment of thrombosis.
Collapse
Affiliation(s)
- Huifen Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiaqi Zhu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chongyu Shao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Tianhang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Haitong Wan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
5
|
Factors Associated with Platelet Activation-Recent Pharmaceutical Approaches. Int J Mol Sci 2022; 23:ijms23063301. [PMID: 35328719 PMCID: PMC8955963 DOI: 10.3390/ijms23063301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Platelets are at the forefront of human health and disease following the advances in their research presented in past decades. Platelet activation, their most crucial function, although beneficial in the case of vascular injury, may represent the initial step for thrombotic complications characterizing various pathologic states, primarily atherosclerotic cardiovascular diseases. In this review, we initially summarize the structural and functional characteristics of platelets. Next, we focus on the process of platelet activation and its associated factors, indicating the potential molecular mechanisms involving inflammation, endothelial dysfunction, and miRs. Finally, an overview of the available antiplatelet agents is being portrayed, together with agents possessing off-set platelet-inhibitory actions, while an extensive presentation of drugs under investigation is being given.
Collapse
|
6
|
Foster H, Wilson C, Gauer JS, Xu RG, Howard MJ, Manfield IW, Ariëns R, Naseem K, Vidler LR, Philippou H, Foster R. A Comparative Assessment Study of Known Small-molecule GPVI Modulators. ACS Med Chem Lett 2022; 13:171-181. [PMID: 35178172 PMCID: PMC8842102 DOI: 10.1021/acsmedchemlett.1c00414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.
Collapse
Affiliation(s)
- Holly Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Clare Wilson
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Julia S. Gauer
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Rui-Gang Xu
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Iain W. Manfield
- Faculty
of Biological Sciences and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Robert Ariëns
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Khalid Naseem
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Helen Philippou
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| | - Richard Foster
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Leeds
Institute of Cardiovascular and Metabolic Medicine (LICAMM), School
of Medicine, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
7
|
Chiang KC, Rizk JG, Nelson DJ, Krishnamurti L, Subbian S, Imig JD, Khan I, Reddy ST, Gupta A. Ramatroban for chemoprophylaxis and treatment of COVID-19: David takes on Goliath. Expert Opin Ther Targets 2022; 26:13-28. [PMID: 35068281 PMCID: PMC10119876 DOI: 10.1080/14728222.2022.2031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In COVID-19 pneumonia, there is a massive increase in fatty acid levels and lipid mediators with a predominance of cyclooxygenase metabolites, notably TxB2 ≫ PGE2 > PGD2 in the lungs, and 11-dehydro-TxB2, a TxA2 metabolite, in the systemic circulation. While TxA2 stimulates thromboxane prostanoid (TP) receptors, 11-dehydro-TxB2 is a full agonist of DP2 (formerly known as the CRTh2) receptors for PGD2. Anecdotal experience of using ramatroban, a dual receptor antagonist of the TxA2/TP and PGD2/DP2 receptors, demonstrated rapid symptomatic relief from acute respiratory distress and hypoxemia while avoiding hospitalization. AREAS COVERED Evidence supporting the role of TxA2/TP receptors and PGD2/DP2 receptors in causing rapidly progressive lung injury associated with hypoxemia, a maladaptive immune response and thromboinflammation is discussed. An innovative perspective on the dual antagonism of TxA2/TP and PGD2/DP2 receptor signaling as a therapeutic approach in COVID-19 is presented. This paper examines ramatroban an anti-platelet, immunomodulator, and antifibrotic agent for acute and long-haul COVID-19. EXPERT OPINION Ramatroban, a dual blocker of TP and DP2 receptors, has demonstrated efficacy in animal models of respiratory dysfunction, atherosclerosis, thrombosis, and sepsis, as well as preliminary evidence for rapid relief from dyspnea and hypoxemia in COVID-19 pneumonia. Ramatroban merits investigation as a promising antithrombotic and immunomodulatory agent for chemoprophylaxis and treatment.
Collapse
Affiliation(s)
| | - John G. Rizk
- Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
- Arizona State University, Edson College, Phoenix, AZ, USA
| | | | - Lakshmanan Krishnamurti
- Department of Pediatric Hematology and Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Selvakumar Subbian
- Rutgers University, New Jersey Medical School and Public Health Research Institute, Newark, NJ, USA
| | - John D. Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Imran Khan
- Department of Pathology and Laboratory Medicine, the University of California at Davis, Sacramento, CA, USA
| | - Srinivasa T. Reddy
- Departments of Medicine, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Toxicology Interdepartmental Degree Program, UCLA, Los Angeles, CA, USA
| | - Ajay Gupta
- Charak Foundation, Orange, CA
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, CA, USA
| |
Collapse
|
8
|
Chiang KC, Imig JD, Kalantar-Zadeh K, Gupta A. Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. Curr Opin Nephrol Hypertens 2022; 31:36-46. [PMID: 34846312 DOI: 10.1097/mnh.0000000000000750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Severe COVID-19 disease is often complicated by acute kidney injury (AKI), which may transition to chronic kidney disease (CKD). Better understanding of underlying mechanisms is important in advancing therapeutic approaches. RECENT FINDINGS SARS-CoV-2-induced endothelial injury initiates platelet activation, platelet-neutrophil partnership and release of neutrophil extracellular traps. The resulting thromboinflammation causes ischemia-reperfusion (I/R) injury to end organs. Severe COVID-19 induces a lipid-mediator storm with massive increases in thromboxane A2 (TxA2) and PGD2, which promote thromboinflammation and apoptosis of renal tubular cells, respectively, and thereby enhance renal fibrosis. COVID-19-associated AKI improves rapidly in the majority. However, 15-30% have protracted renal injury, raising the specter of transition from AKI to CKD. SUMMARY In COVID-19, the lipid-mediator storm promotes thromboinflammation, ischemia-reperfusion injury and cytotoxicity. The thromboxane A2 and PGD2 signaling presents a therapeutic target with potential to mitigate AKI and transition to CKD. Ramatroban, the only dual antagonist of the thromboxane A2/TPr and PGD2/DPr2 signaling could potentially mitigate renal injury in acute and long-haul COVID. Urgent studies targeting the lipid-mediator storm are needed to potentially reduce the heavy burden of kidney disease emerging in the wake of the current pandemic.
Collapse
Affiliation(s)
| | - John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| | - Ajay Gupta
- KARE Biosciences, Orange, California
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| |
Collapse
|
9
|
Diverse innate stimuli activate basophils through pathways involving Syk and IκB kinases. Proc Natl Acad Sci U S A 2021; 118:2019524118. [PMID: 33727419 DOI: 10.1073/pnas.2019524118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mature basophils play critical inflammatory roles during helminthic, autoimmune, and allergic diseases through their secretion of histamine and the type 2 cytokines interleukin 4 (IL-4) and IL-13. Basophils are activated typically by allergen-mediated IgE cross-linking but also by endogenous "innate" factors. The aim of this study was to identify the innate stimuli (cytokines, chemokines, growth factors, hormones, neuropeptides, metabolites, and bacterial products) and signaling pathways inducing primary basophil activation. Basophils from naïve mice or helminth-infected mice were cultured with up to 96 distinct stimuli and their influence on basophil survival, activation, degranulation, and IL-4 or IL-13 expression were investigated. Activated basophils show a heterogeneous phenotype and segregate into distinct subsets expressing IL-4, IL-13, activation, or degranulation markers. We find that several innate stimuli including epithelial derived inflammatory cytokines (IL-33, IL-18, TSLP, and GM-CSF), growth factors (IL-3, IL-7, TGFβ, and VEGF), eicosanoids, metabolites, TLR ligands, and type I IFN exert significant direct effects on basophils. Basophil activation mediated by distinct upstream signaling pathways is always sensitive to Syk and IκB kinases-specific inhibitors but not necessarily to NFAT, STAT5, adenylate cyclase, or c-fos/AP-1 inhibitors. Thus, basophils are activated by very diverse mediators, but their activation seem controlled by a core checkpoint involving Syk and IκB kinases.
Collapse
|
10
|
Pretorius E. Platelets in HIV: A Guardian of Host Defence or Transient Reservoir of the Virus? Front Immunol 2021; 12:649465. [PMID: 33968041 PMCID: PMC8102774 DOI: 10.3389/fimmu.2021.649465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
The immune and inflammatory responses of platelets to human immunodeficiency virus 1 (HIV-1) and its envelope proteins are of great significance to both the treatment of the infection, and to the comorbidities related to systemic inflammation. Platelets can interact with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1 replication, or the virus can temporarily hide from the immune system inside platelets, whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the host defence system, and transient reservoirs of the virus. Such reservoirs may be of particular significance during combination antiretroviral therapy (cART) interruption, as it may drive viral persistence, and result in significant implications for treatment. Both HIV-1 envelope proteins and circulating inflammatory molecules can also initiate platelet complex formation with immune cells and erythrocytes. Complex formation cause platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively short lifespan, platelets are important signalling entities, and could be targeted more directly during HIV-1 infection and cART.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Patt J, Alenfelder J, Pfeil EM, Voss JH, Merten N, Eryilmaz F, Heycke N, Rick U, Inoue A, Kehraus S, Deupi X, Müller CE, König GM, Crüsemann M, Kostenis E. An experimental strategy to probe Gq contribution to signal transduction in living cells. J Biol Chem 2021; 296:100472. [PMID: 33639168 PMCID: PMC8024710 DOI: 10.1016/j.jbc.2021.100472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.
Collapse
Affiliation(s)
- Julian Patt
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Funda Eryilmaz
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Uli Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Schlegel JG, Tahoun M, Seidinger A, Voss JH, Kuschak M, Kehraus S, Schneider M, Matthey M, Fleischmann BK, König GM, Wenzel D, Müller CE. Macrocyclic Gq Protein Inhibitors FR900359 and/or YM-254890-Fit for Translation? ACS Pharmacol Transl Sci 2021; 4:888-897. [PMID: 33860209 DOI: 10.1021/acsptsci.1c00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide-binding proteins (G proteins) transduce extracellular signals received by G protein-coupled receptors (GPCRs) to intracellular signaling cascades. While GPCRs represent the largest class of drug targets, G protein inhibition has only recently been recognized as a novel strategy for treating complex diseases such as asthma, inflammation, and cancer. The structurally similar macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent selective inhibitors of the Gq subfamily of G proteins. FR and YM differ in two positions, FR being more lipophilic than YM. Both compounds are utilized as pharmacological tools to block Gq proteins in vitro and in vivo. However, no detailed characterization of FR and YM has been performed, which is a prerequisite for the compounds' translation into clinical application. Here, we performed a thorough study of both compounds' physicochemical, pharmacokinetic, and pharmacological properties. Chemical stability was high across a large range of pH values, with FR being somewhat more stable than YM. Oral bioavailability and brain penetration of both depsipeptides were low. FR showed lower plasma protein binding and was metabolized significantly faster than YM by human and mouse liver microsomes. FR accumulated in lung after chronic intratracheal or intraperitoneal application, while YM was more distributed to other organs. Most strikingly, the previously observed longer residence time of FR resulted in a significantly prolonged pharmacologic effect as compared to YM in a methacholine-induced bronchoconstriction mouse model. These results prove that changes within a molecule which seem marginal compared to its structural complexity can lead to crucial pharmacological differences.
Collapse
Affiliation(s)
- Jonathan G Schlegel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexander Seidinger
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Markus Kuschak
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany.,Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
13
|
Xie Z, Shao B, Hoover C, McDaniel M, Song J, Jiang M, Ma Z, Yang F, Han J, Bai X, Ruan C, Xia L. Monocyte upregulation of podoplanin during early sepsis induces complement inhibitor release to protect liver function. JCI Insight 2020; 5:134749. [PMID: 32641582 DOI: 10.1172/jci.insight.134749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple organ failure in sepsis is a progressive failure of several interdependent organ systems. Liver dysfunction occurs early during sepsis and is directly associated with patient death; however, the underlying mechanism of liver dysfunction is unclear. Platelet transfusion benefits patients with sepsis, and inhibition of complement activation protects liver function in septic animals. Herein, we explored the potential link between platelets, complement activation, and liver dysfunction in sepsis. We found that deletion of platelet C-type lectin-like receptor 2 (CLEC-2) exacerbated liver dysfunction in early sepsis. Platelet CLEC-2-deficient mice exhibited higher complement activation, more severe complement attack in the liver, and lower plasma levels of complement inhibitors at early time points after E. coli infection. Circulating monocytes expressed the CLEC-2 ligand podoplanin in early sepsis, and podoplanin binding induced release of complement inhibitors from platelets. Injection of complement inhibitors released from platelets reduced complement attack and attenuated liver dysfunction in septic mice. These findings indicate a new function of platelets in the regulation of complement activation during sepsis.
Collapse
Affiliation(s)
- Zhanli Xie
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China.,Collaborative Innovation Center of Hematology and.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China.,Collaborative Innovation Center of Hematology and.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Jiangsu, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Collaborative Innovation Center of Hematology and
| |
Collapse
|
14
|
Martyanov AA, Balabin FA, Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN. Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling. Biophys J 2020; 118:2641-2655. [PMID: 32396849 DOI: 10.1016/j.bpj.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets are blood cells responsible for vascular integrity preservation. The activation of platelet receptor C-type lectin-like receptor II-type (CLEC-2) could partially mediate the latter function. Although this receptor is considered to be of importance for hemostasis, the rate-limiting steps of CLEC-2-induced platelet activation are not clear. Here, we aimed to investigate CLEC-2-induced platelet signal transduction using computational modeling in combination with experimental approaches. We developed a stochastic multicompartmental computational model of CLEC-2 signaling. The model described platelet activation beginning with CLEC-2 receptor clustering, followed by Syk and Src family kinase phosphorylation, determined by the cluster size. Active Syk mediated linker adaptor for T cell protein phosphorylation and membrane signalosome formation, which resulted in the activation of Bruton's tyrosine kinase, phospholipase and phosphoinositide-3-kinase, calcium, and phosphoinositide signaling. The model parameters were assessed from published experimental data. Flow cytometry, total internal reflection fluorescence and confocal microscopy, and western blotting quantification of the protein phosphorylation were used for the assessment of the experimental dynamics of CLEC-2-induced platelet activation. Analysis of the model revealed that the CLEC-2 receptor clustering leading to the membrane-based signalosome formation is a critical element required for the accurate description of the experimental data. Both receptor clustering and signalosome formation are among the rate-limiting steps of CLEC-2-mediated platelet activation. In agreement with these predictions, the CLEC-2-induced platelet activation, but not activation mediated by G-protein-coupled receptors, was strongly dependent on temperature conditions and cholesterol depletion. Besides, the model predicted that CLEC-2-induced platelet activation results in cytosolic calcium spiking, which was confirmed by single-platelet total internal reflection fluorescence microscopy imaging. Our results suggest a refined picture of the platelet signal transduction network associated with CLEC-2. We show that tyrosine kinase activation is not the only rate-limiting step in CLEC-2-induced activation of platelets. Translocation of receptor-agonist complexes to the signaling region and linker adaptor for T cell signalosome formation in this region are limiting CLEC-2-induced activation as well.
Collapse
Affiliation(s)
- Alexey A Martyanov
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Fedor A Balabin
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Joanne L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, United Kingdom
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, United Kingdom
| | - Anastasia N Sveshnikova
- Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
15
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
16
|
The endothelial barrier and cancer metastasis: Does the protective facet of platelet function matter? Biochem Pharmacol 2020; 176:113886. [PMID: 32113813 DOI: 10.1016/j.bcp.2020.113886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Overwhelming evidence suggests that platelets have a detrimental role in promoting cancer spread via platelet-cancer cell interactions linked to thrombotic mechanisms. On the other hand, a beneficial role of platelets in the preservation of the endothelial barrier in inflammatory conditions has been recently described, a phenomenon that could also operate in cancer-related inflammation. It is tempting to speculate that some antiplatelet strategies to combat cancer metastasis may impair the endogenous platelet-dependent mechanisms preserving endothelial barrier function. If the protective function of platelets is impaired, it may lead to increased endothelial permeability and more efficient cancer cell intravasation in the primary tumor and cancer cell extravasation at metastatic sites. In this commentary, we discuss current evidence that could support this hypothesis.
Collapse
|
17
|
Martyanov AA, Kaneva VN, Panteleev MA, Sveshnikova AN. [CLEC-2 induced signalling in blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:387-396. [PMID: 30378555 DOI: 10.18097/pbmc20186405387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. CLEC-2 and podoplanin are involved in the processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor methastasis progression, Salmonella sepsis, deep-vein thrombosis. CLEC-2 signalling cascade includes tyrosine-kinases (Syk, SFK, Btk) as well as adapter LAT and phospholipase Cg2, which induces calcium signalling. CLEC-2, podoplanin and proteins, participating in CLEC-2 signalling cascade, are perspective targets for antithrombotic therapy.
Collapse
Affiliation(s)
- A A Martyanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - V N Kaneva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - M A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
18
|
Kostyak JC, Mauri BR, Dangelmaier C, Patel A, Zhou Y, Eble JA, Tsygankov AY, McKenzie SE, Kunapuli SP. TULA-2 Deficiency Enhances Platelet Functional Responses to CLEC-2 Agonists. TH OPEN 2018; 2:e411-e419. [PMID: 31249969 PMCID: PMC6524918 DOI: 10.1055/s-0038-1676358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Platelet activation is essential for hemostasis. Central to platelet activation are the signals transmitted through surface receptors such as glycoprotein VI, the protease-activated receptors, and C-type lectin-like receptor 2 (CLEC-2). CLEC-2 is a HemITAM (hem-immunoreceptor tyrosine activation motif)-bearing receptor that binds podoplanin and signals through spleen tyrosine kinase (Syk). T-cell ubiquitin ligand-2 (TULA-2) is a protein tyrosine phosphatase that is highly expressed in platelets and targets phosphorylated Y352 of Syk. We wanted to determine whether TULA-2 regulates Syk phosphorylation and activity downstream of CLEC-2. To that end, we used TULA-2 knockout mice and wild-type (WT) littermate controls. We found that TULA-2 deficiency enhances the aggregation and secretion response following stimulation with an excitatory CLEC-2 antibody or the CLEC-2 agonist rhodocytin. Consistently, Syk phosphorylation of Y346 is enhanced, as well as phosphorylation of the downstream signaling molecule PLCγ2, in TULA-2 knockout platelets treated with either CLEC-2 antibody or rhodocytin, compared with WT control platelets. Furthermore, the kinetics of Syk phosphorylation, as well as that of PLCγ2 and SLP-76, is enhanced in TULA-2 knockout platelets treated with 2.5-μg/mL CLEC-2 antibody compared with WT platelets. Similarly, thromboxane production was enhanced, in both amount and kinetics, in TULA-2
−/−
platelets treated with 2.5-μg/mL CLEC-2 antibody. TULA-2 acts as a negative regulator of CLEC-2 signaling by dephosphorylating Syk on Y346 and restraining subsequent Syk-mediated signaling.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Benjamin R Mauri
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Yuhang Zhou
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Munster, Waldeyerstasse, Munster, Germany
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.,Department of Immunology and Microbiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Steven E McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
19
|
Martyanov AA, Kaneva VN, Panteleev MA, Sveshnikova AN. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor. ONCOHEMATOLOGY 2018. [DOI: 10.17650/1818-8346-2018-13-3-83-90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. Association of CLEC-2 with podoplanin is involved in processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor metastasis progression, Salmonella sepsis and deep-vein thrombosis. This makes CLEC-2 and podoplanin a perspective target for pharmacological treatment. Aspirin and Ibrutinib are considered to be perspective for abrogation of podoplanin-induced platelet activation via CLEC-2. The present review discusses already known pathological and physiological roles of CLEC-2 and possibilities of a targeted therapy for CLEC-2 associated diseases.
Collapse
Affiliation(s)
- A. A. Martyanov
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences
| | - V. N. Kaneva
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics
| | - M. A. Panteleev
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University), Faculty of Biological and Medical Physics
| | - A. N. Sveshnikova
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences
| |
Collapse
|
20
|
Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev 2018; 70:526-548. [PMID: 29925522 PMCID: PMC6013590 DOI: 10.1124/pr.117.014530] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelets are essential for clotting in the blood and maintenance of normal hemostasis. Under pathologic conditions such as atherosclerosis, vascular injury often results in hyperactive platelet activation, resulting in occlusive thrombus formation, myocardial infarction, and stroke. Recent work in the field has elucidated a number of platelet functions unique from that of maintaining hemostasis, including regulation of tumor growth and metastasis, inflammation, infection, and immune response. Traditional therapeutic targets for inhibiting platelet activation have primarily been limited to cyclooxygenase-1, integrin αIIbβ3, and the P2Y12 receptor. Recently identified signaling pathways regulating platelet function have made it possible to develop novel approaches for pharmacological intervention in the blood to limit platelet reactivity. In this review, we cover the newly discovered roles for platelets as well as their role in hemostasis and thrombosis. These new roles for platelets lend importance to the development of new therapies targeted to the platelet. Additionally, we highlight the promising receptor and enzymatic targets that may further decrease platelet activation and help to address the myriad of pathologic conditions now known to involve platelets without significant effects on hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Wenjie Li
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Michael Holinstat
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Mitchell J, Kim SJ, Seelmann A, Veit B, Shepard B, Im E, Rhee SH. Src family kinase tyrosine phosphorylates Toll-like receptor 4 to dissociate MyD88 and Mal/Tirap, suppressing LPS-induced inflammatory responses. Biochem Pharmacol 2017; 147:119-127. [PMID: 29175418 DOI: 10.1016/j.bcp.2017.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) are a family of protein tyrosine kinases containing nine members: Src, Lyn, Fgr, Hck, Lck, Fyn, Blk, Yes, and Ylk. Although SFK activation is a major immediate signaling event in LPS/Toll-like receptor 4 (TLR4) signaling, its precise role has remained elusive due to various contradictory results obtained from a certain SFK member-deficient mice or cells. The observed inconsistencies may be due to the compensation or redundancy by other SFKs upon a SFK deficiency. The chemical rescuing approach was suggested to induce temporal and precise SFK activation in living cells, thereby limiting the chance of cellular adaption to a SFK-deficient condition. Using the rescuing approach, we demonstrate that restoring SFK activity not only induces tyrosine phosphorylation of TLR4, but also inhibits LPS-induced NFκB and JNK1/2 activation and consequently suppresses LPS-induced cytokine production. TLR4 normally recruits TIR domain-containing adaptors in response to LPS, however, temporally restored SFK activation disrupts the LPS-induced association of MyD88 and Mal/Tirap with TLR4. Additionally, using kinase-dead SFK-Lyn (Y397/508F) and constitutively active SFK-Lyn (Y508F), we found that the kinase-dead SFK inhibits TLR4 tyrosine phosphorylation with reduced binding affinity to TLR4, while the kinase-active SFK strongly binds to TLR4 and promotes TLR4 tyrosine phosphorylation, suggesting that SFK kinase activity is required for TLR4 tyrosine phosphorylation and TLR4-SFK interaction. Together, our results demonstrate that SFK activation induces TLR4 tyrosine phosphorylation, consequently dissociating MyD88 and Mal/Tirap from TLR4 and inhibiting LPS-induced inflammatory responses, suggesting a negative feedback loop regulated by SFK-induced tyrosine phosphorylation in TLR4.
Collapse
Affiliation(s)
- Jonathon Mitchell
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Su Jin Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Alexandra Seelmann
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brendan Veit
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Brooke Shepard
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, South Korea.
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|