1
|
Vinay G, Seppen J, Setlow P, Brul S. Bile acids as germinants for Clostridioides difficile spores, evidence of adaptation to the gut? FEMS Microbiol Rev 2025; 49:fuaf005. [PMID: 39924167 DOI: 10.1093/femsre/fuaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 12/16/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025] Open
Abstract
Bacterial spores formed upon metabolic stress have minimal metabolic activity and can remain dormant for years. Nevertheless, they can sense the environment and germinate quickly upon exposure to various germinants. Germinated spores can then outgrow into vegetative cells. Germination of spores of some anaerobes, especially Clostridioides difficile, is triggered by cholic acid and taurocholic acid. Elevated levels of these bile acids are thought to correlate with a perturbed gut microbiome, which cannot efficiently convert primary bile acids into secondary bile acids. That bile acids are germination-triggers suggests these bacteria have a life cycle taking place partially in the mammalian digestive tract where bile acids are plentiful; notably bile acids can be made by all vertebrates. Thus, spores survive in the environment until taken up by a host where they encounter an environment suitable for germination and then proliferate in the largely anaerobic large intestine; some ultimately sporulate there, regenerating environmentally resistant spores in the C. difficile life cycle. This review summarizes current literature on the effects of bile acids and their metabolites on spore germination in the gut and evidence that adaptation to bile acids as germinants is a consequence of a life cycle both inside and outside the digestive tract.
Collapse
Affiliation(s)
- Gianni Vinay
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, United States
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
2
|
Osborne MS, Brehm JN, Olivença C, Cochran AM, Serrano M, Henriques AO, Sorg JA. The Impact of YabG Mutations on Clostridioides difficile Spore Germination and Processing of Spore Substrates. Mol Microbiol 2024; 122:534-548. [PMID: 39258427 DOI: 10.1111/mmi.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
YabG is a sporulation-specific protease that is conserved among sporulating bacteria. Clostridioides difficile YabG processes the cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabGC207A (a catalytically inactive allele), C. difficile yabGA46D, C. difficile yabGG37E, and C. difficile yabGP153L strains germinated in response to taurocholic acid alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the presequence from preproSleC. Interestingly, only YabGA46D showed any activity toward purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.
Collapse
Affiliation(s)
- Morgan S Osborne
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Joshua N Brehm
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alicia M Cochran
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Sum R, Lim SJM, Sundaresan A, Samanta S, Swaminathan M, Low W, Ayyappan M, Lim TW, Choo MD, Huang GJ, Cheong I. Clostridium septicum manifests a bile salt germinant response mediated by Clostridioides difficile csp gene orthologs. Commun Biol 2024; 7:947. [PMID: 39103440 PMCID: PMC11300598 DOI: 10.1038/s42003-024-06617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Clostridium septicum infections are highly predictive of certain malignancies in human patients. To initiate infections, C. septicum spores must first germinate and regain vegetative growth. Yet, what triggers the germination of C. septicum spores is still unknown. Here, we observe that C. septicum germinates in response to specific bile salts. Putative bile salt recognition genes are identified in C. septicum based on their similarity in sequence and organization to bile salt-responsive csp genes in Clostridioides difficile. Inactivating two of these csp orthologs (cspC-82 and cspC-1718) results in mutant spores that no longer germinate in the presence of their respective cognate bile salts. Additionally, inactivating the putative cspBA or sleC genes in C. septicum abrogates the germination response to all bile salt germinants, suggesting that both act at a convergent point downstream of cspC-82 and cspC-1718. Molecular dynamics simulations show that both CspC-82 and CspC-1718 bear a strong structural congruence with C. difficile's CspC. The existence of functional bile salt germination sensors in C. septicum may be relevant to the association between infection and malignancy.
Collapse
Affiliation(s)
- Rongji Sum
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sylvester Jian Ming Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ajitha Sundaresan
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | - Wayne Low
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Madhumitha Ayyappan
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Ting Wei Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Marvin Dragon Choo
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | | | - Ian Cheong
- Temasek Life Sciences Laboratory, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Osborne MS, Brehm JN, Olivença C, Cochran AM, Serrano M, Henriques AO, Sorg JA. The impact of YabG mutations on C. difficile spore germination and processing of spore substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598338. [PMID: 38915615 PMCID: PMC11195116 DOI: 10.1101/2024.06.10.598338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
YabG is a sporulation-specific protease that is conserved among sporulating bacteria. C. difficile YabG processes cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabG C207A (catalytically inactive), C. difficile yabG A46D, C. difficile yabG G37E, and C. difficile yabG P153L strains germinated in response to TA alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the pre sequence from preproSleC. Interestingly, only YabGA46D showed any activity towards purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.
Collapse
Affiliation(s)
- Morgan S. Osborne
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alicia M. Cochran
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
5
|
Hao M, Wang M, Tang T, Zhao D, Yin S, Shi Y, Liu X, Wudong G, Yang Y, Zhang M, Qi L, Zhou D, Liu W, Jin Y, Wang A. Regulation of the Gene for Alanine Racemase Modulates Amino Acid Metabolism with Consequent Alterations in Cell Wall Properties and Adhesive Capability in Brucella spp. Int J Mol Sci 2023; 24:16145. [PMID: 38003334 PMCID: PMC10671322 DOI: 10.3390/ijms242216145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Brucella, a zoonotic facultative intracellular pathogenic bacterium, poses a significant threat both to human health and to the development of the livestock industry. Alanine racemase (Alr), the enzyme responsible for alanine racemization, plays a pivotal role in regulating virulence in this bacterium. Moreover, Brucella mutants with alr gene deletions (Δalr) exhibit potential as vaccine candidates. However, the mechanisms that underlie the detrimental effects of alr knockouts on Brucella pathogenicity remain elusive. Here, initially, we conducted a bioinformatics analysis of Alr, which demonstrated a high degree of conservation of the protein within Brucella spp. Subsequent metabolomics studies unveiled alterations in amino acid pathways following deletion of the alr gene. Furthermore, alr deletion in Brucella suis S2 induced decreased resistance to stress, antibiotics, and other factors. Transmission electron microscopy of simulated macrophage intracellular infection revealed damage to the cell wall in the Δalr strain, whereas propidium iodide staining and alkaline phosphatase and lactate dehydrogenase assays demonstrated alterations in cell membrane permeability. Changes in cell wall properties were revealed by measurements of cell surface hydrophobicity and zeta potential. Finally, the diminished adhesion capacity of the Δalr strain was shown by immunofluorescence and bacterial enumeration assays. In summary, our findings indicate that the alr gene that regulates amino acid metabolism in Brucella influences the properties of the cell wall, which modulates bacterial adherence capability. This study is the first demonstration that Alr impacts virulence by modulating bacterial metabolism, thereby providing novel insights into the pathogenic mechanisms of Brucella spp.
Collapse
Affiliation(s)
- Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Ting Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Danyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Shurong Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Gaowa Wudong
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Mengyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
6
|
Hao M, Wang M, Zhao D, Shi Y, Yuan Y, Li J, Zhai Y, Liu X, Zhou D, Chen H, Lin P, Tang K, Liu W, Jin Y, Wang A. Alr Gene in Brucella suis S2: Its Role in Lipopolysaccharide Biosynthesis and Bacterial Virulence in RAW264.7. Int J Mol Sci 2023; 24:10744. [PMID: 37445922 DOI: 10.3390/ijms241310744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Brucella suis, the causative agent of brucellosis, poses a significant public health and animal husbandry threat. However, the role of the alanine racemase (alr) gene, which encodes alanine racemase in Brucella, remains unclear. Here, we analyzed an alr deletion mutant and a complemented strain of Brucella suis S2. The knockout strain displayed an unaltered, smooth phenotype in acriflavine agglutination tests but lacked the core polysaccharide portion of lipopolysaccharide (LPS). Genes involved in the LPS synthesis were significantly upregulated in the deletion mutant. The alr deletion strain exhibited reduced intracellular viability in the macrophages, increased macrophage-mediated killing, and upregulation of the apoptosis markers. Bcl2, an anti-apoptotic protein, was downregulated, while the pro-apoptotic proteins, Bax, Caspase-9, and Caspase-3, were upregulated in the macrophages infected with the deletion strain. The infected macrophages showed increased mitochondrial membrane permeability, Cytochrome C release, and reactive oxygen species, activating the mitochondrial apoptosis pathway. These findings revealed that alanine racemase was dispensable in B. suis S2 but influenced the strain's rough features and triggered the mitochondrial apoptosis pathway during macrophage invasion. The deletion of the alr gene reduced the intracellular survival and virulence. This study enhances our understanding of the molecular mechanism underlying Brucella's survival and virulence and, specifically, how alr gene affects host immune evasion by regulating bacterial LPS biosynthesis.
Collapse
Affiliation(s)
- Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Danyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Ye Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
7
|
Sundaresan A, Le Ngoc M, Wew MU, Ramkumar V, Raninga P, Sum R, Cheong I. A design of experiments screen reveals that Clostridium novyi-NT spore germinant sensing is stereoflexible for valine and its analogs. Commun Biol 2023; 6:118. [PMID: 36709236 PMCID: PMC9884283 DOI: 10.1038/s42003-023-04496-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
Although Clostridium novyi-NT is an anti-cancer bacterial therapeutic which germinates within hypoxic tumors to kill cancer cells, the actual germination triggers for C. novyi-NT are still unknown. In this study, we screen candidate germinants using combinatorial experimental designs and discover by serendipity that D-valine is a potent germinant, inducing 50% spore germination at 4.2 mM concentration. Further investigation revealed that five D-valine analogs are also germinants and four of these analogs are enantiomeric pairs. This stereoflexible effect of L- and D-amino acids shows that spore germination is a complex process where enantiomeric interactions can be confounders. This study also identifies L-cysteine as a germinant, and hypoxanthine and inosine as co-germinants. Several other amino acids promote (L-valine, L-histidine, L-threonine and L-alanine) or inhibit (L-arginine, L-glycine, L-lysine, L-tryptophan) germination in an interaction-dependent manner. D-alanine inhibits all germination, even in complex growth media. This work lays the foundation for improving the germination efficacy of C. novyi-NT spores in tumors.
Collapse
Affiliation(s)
- Ajitha Sundaresan
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mai Le Ngoc
- grid.4280.e0000 0001 2180 6431NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Marvell Ung Wew
- grid.4280.e0000 0001 2180 6431NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Varsha Ramkumar
- grid.4280.e0000 0001 2180 6431NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Prahlad Raninga
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Rongji Sum
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ian Cheong
- grid.226688.00000 0004 0620 9198Temasek Life Sciences Laboratory, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Zhu H, Xu C, Chen Y, Liang Y. His-Ala-Phe-Lys peptide from Burkholderia arboris possesses antifungal activity. Front Microbiol 2022; 13:1071530. [PMID: 36560956 PMCID: PMC9763614 DOI: 10.3389/fmicb.2022.1071530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Burkholderia arboris, which belongs to the Burkholderia cepacia complex, has been shown to possess antifungal activity against several plant fungal pathogens; however, the antifungal compounds are yet to be identified. Here, we identified the antifungal compounds produced by B. arboris using genetic and metabolomic approaches. We generated a Tn5 transposon mutation library of 3,000 B. arboris mutants and isolated three mutants with reduced antifungal activity against the plant fungal pathogen Fusarium oxysporum. Among the mutants, the M464 mutant exhibited the weakest antifungal activity. In the M464 genome, the transposon was inserted into the cobA gene, encoding uroporphyrin-III methyltransferase. Deletion of the cobA gene also resulted in reduced antifungal activity, indicating that the cobA gene contributed to the antifungal activity of B. arboris. Furthermore, a comparison of the differential metabolites between wild type B. arboris and the ∆cobA mutant showed a significantly decreased level of tetrapeptide His-Ala-Phe-Lys (Hafk) in the ∆cobA mutant. Therefore, a Hafk peptide with D-amino acid residues was synthesized and its antifungal activity was evaluated. Notably, the Hafk peptide displayed significant antifungal activity against F. oxysporum and Botrytis cinerea, two plant pathogens that cause destructive fungal diseases. Overall, a novel antifungal compound (Hafk) that can be used for the biocontrol of fungal diseases in plants was identified in B. arboris.
Collapse
Affiliation(s)
- Huajie Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Cuihong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China,*Correspondence: Yan Liang, ; Yicun Chen,
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China,*Correspondence: Yan Liang, ; Yicun Chen,
| |
Collapse
|
9
|
BELITSKY BORISR. VanG- and D-Ala-D-Ser-dependent peptidoglycan synthesis and vancomycin resistance in Clostridioides difficile. Mol Microbiol 2022; 118:526-540. [PMID: 36065735 PMCID: PMC9671823 DOI: 10.1111/mmi.14980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
A Clostridioides difficile strain deficient in the ddl gene is unable to synthesize the dipeptide D-Ala-D-Ala, an essential component of peptidoglycan and the target of vancomycin. We isolated spontaneous suppressors of a ∆ddl mutation that allowed cell growth in the absence of D-Ala-D-Ala. The mutations caused constitutive or partly constitutive expression of the vancomycin-inducible vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The mutations mapped to the vanS or vanR genes, which regulate expression of the vanG operon. The constitutive level of vanG expression was about 10-fold above that obtained by vancomycin induction. The incorporation of D-Ala-D-Ser into peptidoglycan due to high expression of the vanG operon conferred only low-level resistance to vancomycin, but VanG was found to synthesize D-Ala-D-Ala in addition to D-Ala-D-Ser. However, the same, low resistance to vancomycin was also observed in cells completely unable to synthesize D-Ala-D-Ala and grown in the presence of D-Ala-D-Ser. D-Ala-D-Ala presence was required for efficient vancomycin induction of the vanG operon showing that vancomycin is not by itself able to activate VanS. D-Ala-D-Ser, similar to D-Ala-D-Ala, served as an anti-activator of DdlR, the positive regulator of the ddl gene, thereby coupling vanG and ddl expression.
Collapse
Affiliation(s)
- BORIS R. BELITSKY
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
10
|
Girinathan BP, DiBenedetto N, Worley JN, Peltier J, Arrieta-Ortiz ML, Immanuel SRC, Lavin R, Delaney ML, Cummins CK, Hoffman M, Luo Y, Gonzalez-Escalona N, Allard M, Onderdonk AB, Gerber GK, Sonenshein AL, Baliga NS, Dupuy B, Bry L. In vivo commensal control of Clostridioides difficile virulence. Cell Host Microbe 2021; 29:1693-1708.e7. [PMID: 34637781 DOI: 10.1016/j.chom.2021.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.
Collapse
Affiliation(s)
- Brintha P Girinathan
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay N Worley
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; National Center of Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-yvette Cedex, France
| | | | | | - Richard Lavin
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary L Delaney
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Christopher K Cummins
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Hoffman
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Andrew B Onderdonk
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Georg K Gerber
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Jenior ML, Leslie JL, Powers DA, Garrett EM, Walker KA, Dickenson ME, Petri WA, Tamayo R, Papin JA. Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis. mSystems 2021; 6:e0091921. [PMID: 34609164 PMCID: PMC8547418 DOI: 10.1128/msystems.00919-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Deborah A. Powers
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M. Garrett
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Kimberly A. Walker
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Mary E. Dickenson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - William A. Petri
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Rita Tamayo
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Onizuka S, Tanaka M, Mishima R, Nakayama J. Cultivation of Spore-Forming Gut Microbes Using a Combination of Bile Acids and Amino Acids. Microorganisms 2021; 9:1651. [PMID: 34442730 PMCID: PMC8401671 DOI: 10.3390/microorganisms9081651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Spores of certain species belonging to Firmicutes are efficiently germinated by nutrient germinators, such as amino acids, in addition to bile acid. We attempted to culture difficult-to-culture or yet-to-be cultured spore-forming intestinal bacteria, using a combination of bile acids and amino acids. The combination increased the number of colonies that formed on agar medium plated with ethanol-treated feces. The operational taxonomic units of these colonized bacteria were classified into two types. One type was colonized only by the bile acid (BA) mixture and the other type was colonized using amino acids, in addition to the BA mixture. The latter contained 13 species, in addition to 14 species of the former type, which mostly corresponds to anaerobic difficult-to-culture Clostridiales species, including several new species candidates. The use of a combination of BAs and amino acids effectively increased the culturability of spore-forming intestinal bacteria.
Collapse
Affiliation(s)
| | | | | | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan; (S.O.); (M.T.); (R.M.)
| |
Collapse
|
13
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
14
|
Zhang H, Venkatesan S, Nan B. Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis. Microorganisms 2021; 9:microorganisms9050916. [PMID: 33923279 PMCID: PMC8144978 DOI: 10.3390/microorganisms9050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental question in biology is how cell shapes are genetically encoded and enzymatically generated. Prevalent shapes among walled bacteria include spheres and rods. These shapes are chiefly determined by the peptidoglycan (PG) cell wall. Bacterial division results in two daughter cells, whose shapes are predetermined by the mother. This makes it difficult to explore the origin of cell shapes in healthy bacteria. In this review, we argue that the Gram-negative bacterium Myxococcus xanthus is an ideal model for understanding PG assembly and bacterial morphogenesis, because it forms rods and spheres at different life stages. Rod-shaped vegetative cells of M. xanthus can thoroughly degrade their PG and form spherical spores. As these spores germinate, cells rebuild their PG and reestablish rod shape without preexisting templates. Such a unique sphere-to-rod transition provides a rare opportunity to visualize de novo PG assembly and rod-like morphogenesis in a well-established model organism.
Collapse
|
15
|
Sidiq KR, Chow MW, Zhao Z, Daniel RA. Alanine metabolism in Bacillus subtilis. Mol Microbiol 2020; 115:739-757. [PMID: 33155333 DOI: 10.1111/mmi.14640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Both isomeric forms of alanine play a crucial role in bacterial growth and viability; the L-isomer of this amino acid is one of the building blocks for protein synthesis, and the D-isomer is incorporated into the bacterial cell wall. Despite a long history of genetic manipulation of Bacillus subtilis using auxotrophic markers, the genes involved in alanine metabolism have not been characterized fully. In this work, we genetically characterized the major enzymes involved in B. subtilis alanine biosynthesis and identified an alanine permease, AlaP (YtnA), which we show has a major role in the assimilation of D-alanine from the environment. Our results provide explanations for the puzzling fact that growth of B. subtilis does not result in the significant accumulation of extracellular D-alanine. Interestingly, we find that in B. subtilis, unlike E. coli where multiple enzymes have a biochemical activity that can generate alanine, the primary synthetic enzyme for alanine is encoded by alaT, although a second gene, dat, can support slow growth of an L-alanine auxotroph. However, our results also show that Dat mediates the synthesis of D-alanine and its activity is influenced by the abundance of L-alanine. This work provides valuable insights into alanine metabolism that suggests that the relative abundance of D- and L-alanine might be linked with cytosolic pool of D and L-glutamate, thereby coupling protein and cell envelope synthesis with the metabolic status of the cell. The results also suggest that, although some of the purified enzymes involved in alanine biosynthesis have been shown to catalyze reversible reactions in vitro, most of them function unidirectionally in vivo.
Collapse
Affiliation(s)
- Karzan R Sidiq
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Man W Chow
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Zhao Zhao
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| | - Richard A Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
16
|
The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infect Immun 2020; 88:IAI.00865-19. [PMID: 32661122 DOI: 10.1128/iai.00865-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.
Collapse
|
17
|
Tanaka M, Onizuka S, Mishima R, Nakayama J. Cultural isolation of spore-forming bacteria in human feces using bile acids. Sci Rep 2020; 10:15041. [PMID: 32929101 PMCID: PMC7490687 DOI: 10.1038/s41598-020-71883-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023] Open
Abstract
Structurally-diversified bile acids (BAs) are involved in shaping of intestinal microbiota as well as absorption of dietary lipids. Taurocholic acid, a conjugated form of BA, has been reported to be a factor triggering germination of a wide range of spore-forming bacteria in intestine. To test a hypothesis that other BAs also promote germination of intestinal bacteria, we attempted culture of bacteria from ethanol-treated feces by using a series of BAs. It was found that conjugated-BAs, notably three glycine-conjugated BAs, glycodeoxycholic acid and glycochenodeoxycholic acid, significantly increased the number and the species variety of colonies formed on the agar plate. These colonized bacteria mostly belonged to class Clostridia, mainly consisting of families Lachnospiraceae, Clostridiaceae, and Peptostreptococcaceae. There were several types of bacteria associated with different sensitivity to each BA. Eventually, we isolated 72 bacterial species of which 61 are known and 11 novel. These results demonstrate that the culturable range of bacteria in intestine can be widened using the germination-inducing activity of BAs. This approach would advance the research on spore-forming Clostridia that contains important but difficult-to-cultured bacteria associate with host health and diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Sakura Onizuka
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Riko Mishima
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
18
|
Lawler AJ, Lambert PA, Worthington T. A Revised Understanding of Clostridioides difficile Spore Germination. Trends Microbiol 2020; 28:744-752. [DOI: 10.1016/j.tim.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
|
19
|
d-Methionine and d-Phenylalanine Improve Lactococcus lactis F44 Acid Resistance and Nisin Yield by Governing Cell Wall Remodeling. Appl Environ Microbiol 2020; 86:AEM.02981-19. [PMID: 32111594 DOI: 10.1128/aem.02981-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/22/2020] [Indexed: 12/30/2022] Open
Abstract
Lactococcus lactis encounters various environmental challenges, especially acid stress, during its growth. The cell wall can maintain the integrity and shape of the cell under environmental stress, and d-amino acids play an important role in cell wall synthesis. Here, by analyzing the effects of 19 different d-amino acids on the physiology of L. lactis F44, we found that exogenously supplied d-methionine and d-phenylalanine increased the nisin yield by 93.22% and 101.29%, respectively, as well as significantly increasing the acid resistance of L. lactis F44. The composition of the cell wall in L. lactis F44 with exogenously supplied d-Met or d-Phe was further investigated via a vancomycin fluorescence experiment and a liquid chromatography-mass spectrometry assay, which demonstrated that d-Met could be incorporated into the fifth position of peptidoglycan (PG) muropeptides and d-Phe could be added to the fourth and fifth positions. Moreover, overexpression of the PG synthesis gene murF further enhanced the levels of d-Met and d-Phe involved in PG and increased the survival rate under acid stress and the nisin yield of the strain. This study reveals that the exogenous supply of d-Met or d-Phe can change the composition of the cell wall and influence acid tolerance as well as nisin yield in L. lactis IMPORTANCE As d-amino acids play an important role in cell wall synthesis, we analyzed the effects of 19 different d-amino acids on L. lactis F44, demonstrating that d-Met and d-Phe can participate in peptidoglycan (PG) synthesis and improve the acid resistance and nisin yield of this strain. murF overexpression further increased the levels of d-Met and d-Phe incorporated into PG and contributed to the acid resistance of the strain. These findings suggest that d-Met and d-Phe can be incorporated into PG to improve the acid resistance and nisin yield of L. lactis, and this study provides new ideas for the enhancement of nisin production.
Collapse
|
20
|
Muhammad M, Li Y, Gong S, Shi Y, Ju J, Zhao B, Liu D. Purification, Characterization and Inhibition of Alanine Racemase from a Pathogenic Strain of Streptococcus iniae. Pol J Microbiol 2019; 68:331-341. [PMID: 31880879 PMCID: PMC7256847 DOI: 10.33073/pjm-2019-036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/25/2023] Open
Abstract
Streptococcus iniae is a pathogenic and zoonotic bacteria that impacted high mortality to many fish species as well as capable of causing serious disease to humans. Alanine racemase (Alr, EC 5.1.1.1) is a pyridoxal-5’-phosphate (PLP)-containing homodimeric enzyme that catalyzes the racemization of L-alanine and D-alanine. In this study, we purified alanine racemase from S. iniae that was isolated from an infected Chinese sturgeon (Acipenser sinensis), as well as determined its biochemical characteristics and inhibitors. The alr gene has an open reading frame (ORF) of 1107 bp, encoding a protein of 369 amino acids, which has a molecular mass of 40 kDa. The enzyme has optimal activity at a temperature of 35°C and a pH of 9.5. It belongs to the PLP-dependent enzymes family and is highly specific to L-alanine. S. iniae Alr (SiAlr) could be inhibited by some metal ions, hydroxylamine and dithiothreitol (DTT). The kinetic parameters Km and Vmax of the enzyme were 33.11 mM, 2426 units/mg for L-alanine, and 14.36 mM, 963.6 units/mg for D-alanine. Finally, the 50% inhibitory concentrations (IC50) values and antibiotic activity of two alanine racemase inhibitors (homogentisic acid and hydroquinone), were determined and found to be effective against both Gram-positive and Gram-negative bacteria employed in this study.
Collapse
Affiliation(s)
- Murtala Muhammad
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Yangyang Li
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Siyu Gong
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Yanmin Shi
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Dong Liu
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| |
Collapse
|
21
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
22
|
Shrestha R, Cochran AM, Sorg JA. The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathog 2019; 15:e1007681. [PMID: 30943268 PMCID: PMC6464247 DOI: 10.1371/journal.ppat.1007681] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/15/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile spore germination is critical for the transmission of disease. C. difficile spores germinate in response to cholic acid derivatives, such as taurocholate (TA), and amino acids, such as glycine or alanine. Although the receptor with which bile acids are recognized (germinant receptor) is known, the amino acid co-germinant receptor has remained elusive. Here, we used EMS mutagenesis to generate mutants with altered requirements for the amino acid co-germinant, similar to the strategy we used previously to identify the bile acid germinant receptor, CspC. Surprisingly, we identified strains that do not require co-germinants, and the mutant spores germinated in response to TA alone. Upon sequencing these mutants, we identified different mutations in yabG. In C. difficile, yabG expression is required for the processing of key germination components to their mature forms (e.g., CspBA to CspB and CspA). A defined yabG mutant exacerbated the EMS mutant phenotype. Building upon this work, we found that small deletions in cspA resulted in spores that germinated in the presence of TA alone without the requirement of a co-germinant. cspA encodes a pseudoprotease that was previously shown to be important for incorporation of the CspC germinant receptor. Herein, our study builds upon the role of CspA during C. difficile spore germination by providing evidence that CspA is important for recognition of co-germinants during C. difficile spore germination. Our work suggests that two pseudoproteases (CspC and CspA) likely function as the C. difficile germinant receptors. Germination by C. difficile spores is one of the very first steps in the pathogenesis of this organism. The transition from the metabolically dormant spore form to the actively-growing, toxin-producing vegetative form is initiated by certain host-derived bile acids and amino acid signals. Despite near universal conservation in endospore-forming bacteria of the Ger-type germinant receptors, C. difficile and related organisms do not encode these proteins. In prior work, we identified the C. difficile bile acid germinant receptor as the CspC pseudoprotease. In this manuscript, we implicate the CspA pseudoprotease as the C. difficile co-germinant receptor. C. difficile cspA is encoded as a translational fusion to cspB. The resulting CspBA protein is processed post-translationally by the YabG protease. Inactivation of yabG resulted in strains whose spores no longer responded to amino acids or divalent cations as co-germinants and germinated in response to bile acid alone. Building upon this, we found that small deletions in the cspA portion of cspBA resulted in spores that could germinate in response to bile acids alone. Our results suggest that two pseudoproteases regulate C. difficile spore germination and provide further evidence that C. difficile spore germination proceeds through a novel spore germination pathway.
Collapse
Affiliation(s)
- Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Alicia M. Cochran
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, United States of America
- * E-mail:
| |
Collapse
|
23
|
Shrestha R, Sorg JA. Terbium chloride influences Clostridium difficile spore germination. Anaerobe 2019; 58:80-88. [PMID: 30926439 DOI: 10.1016/j.anaerobe.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
The germination of Clostridium difficile spores is an important stage of the C. difficile life cycle. In other endospore-forming bacteria, the composition of the medium in which the spores are generated influences the abundance of germination-specific proteins, thereby influencing the sensitivity of the spores towards germinants. In C. difficile media composition on the spores has only been reported to influence the number of spores produced. One of the measures of spore germination is the analysis of the release of DPA from the spore core. To detect DPA release in real time, terbium chloride is often added to the germination conditions because Tb3+ complexes with the released DPA and this can be detected using fluorescence measurements. Although C. difficile spores germinate in response to TA and glycine, recently calcium was identified as an enhancer for spore germination. Here, we find that germination by spores prepared in peptone rich media, such as 70:30, is positively influenced by terbium. We hypothesize that, in these assays, Tb3+ functions similarly to calcium. Although the mechanism(s) causing increased sensitivity of the C. difficile spores that are prepared in peptone rich media to terbium is still unknown, we suggest that the TbCl3 concentration used in the analysis of C. difficile DPA release be carefully titrated so as not to misinterpret future findings.
Collapse
Affiliation(s)
- Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
24
|
Miyamoto T, Katane M, Saitoh Y, Sekine M, Homma H. Elucidation of the d-lysine biosynthetic pathway in the hyperthermophile Thermotoga maritima. FEBS J 2018; 286:601-614. [PMID: 30548096 DOI: 10.1111/febs.14720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
Various d-amino acids are involved in peptidoglycan and biofilm metabolism in bacteria, suggesting that these compounds are necessary for successful adaptation to environmental changes. In addition to the conventional d-alanine (d-Ala) and d-glutamate, the peptidoglycan of the hyperthermophilic bacterium Thermotoga maritima contains both l-lysine (l-Lys) and d-Lys, but not meso-diaminopimelate (meso-Dpm). d-Lys is an uncommon component of peptidoglycan, and its biosynthetic pathway remains unclear. In this study, we identified and characterized a novel Lys racemase (TM1597) and Dpm epimerase (TM1522) associated with the d-Lys biosynthetic pathway in T. maritima. The Lys racemase had a dimeric structure containing pyridoxal 5'-phosphate as a cofactor. Among the amino acids, it exhibited the highest racemase activity toward d- and l-Lys, and also had relatively high activity toward d- and l-enantiomers of ornithine and Ala. The Dpm epimerase had the highest epimerization activity toward ll- and meso-Dpm, and also measurably racemized certain amino acids, including Lys. These results suggest that Lys racemase contributes to production of d-Lys and d-Ala for use as peptidoglycan components, and that Dpm epimerase converts ll-Dpm to meso-Dpm, a precursor in the l-Lys biosynthetic pathway.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
25
|
Bhattacharjee D, Sorg JA. Conservation of the "Outside-in" Germination Pathway in Paraclostridium bifermentans. Front Microbiol 2018; 9:2487. [PMID: 30386321 PMCID: PMC6199464 DOI: 10.3389/fmicb.2018.02487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile spore germination is initiated in response to certain bile acids and amino acids (e.g., glycine). Though the amino acid-recognizing germinant receptor is unknown, the bile acid germinant receptor is the germination-specific, subtilisin-like pseudoprotease, CspC. In C. difficile the CspB, CspA, and CspC proteins are involved in spore germination. Of these, only CspB is predicted to have catalytic activity because the residues important for catalysis are mutated in the cspA and cspC sequence. The CspB, CspA, and CspC proteins are likely localized to the outer layers of the spore (e.g., the cortex or the coat layers) and not the inner membrane where the Ger-type germinant receptors are located. In C. difficile, germination proceeds in an “outside-in” direction, instead of the “‘inside-out” direction observed during the germination of Bacillus subtilis spores. During C. difficile spore germination, cortex fragments are released prior to the release of 2,4-dipicolinic acid (DPA) from the spore core. This is opposite to what occurs during B. subtilis spore germination. To understand if the mechanism C. difficile spore germination is unique or if spores from other organisms germinate in a similar fashion, we analyzed the germination of Paraclostridium bifermentans spores. We find that P. bifermentans spores release cortex fragments prior to DPA during germination and the DPA release from the P. bifermentans spore core can be blocked by high concentrations of osmolytes. Moreover, we find that P. bifermentans spores do not respond to steroid-like compounds (unlike the related C. difficile and P. sordellii organisms), indicating that the mere presence of the Csp proteins does permit germination in response to steroid compounds. Our findings indicate that the “outside in” mechanism of spore germination observed in C. difficile can be found in other bacteria suggesting that this mechanism is a novel pathway for endospore germination.
Collapse
Affiliation(s)
- Disha Bhattacharjee
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
26
|
Abstract
Clostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI. Clostridium difficile is a Gram-positive obligate anaerobe that forms spores in order to survive for long periods in the unfavorable environment outside a host. C. difficile is the leading cause of nosocomial infectious diarrhea worldwide. C. difficile infection (CDI) arises after a patient treated with broad-spectrum antibiotics ingests infectious spores. The first step in C. difficile pathogenesis is the metabolic reactivation of dormant spores within the gastrointestinal (GI) tract through a process known as germination. In this work, we aim to elucidate the specific conditions and the location within the GI tract that facilitate this process. Our data suggest that C. difficile germination occurs through a two-step biochemical process that is regulated by pH and bile salts, amino acids, and calcium present within the GI tract. Maximal germination occurs at a pH ranging from 6.5 to 8.5 in the terminal small intestine prior to bile salt and calcium reabsorption by the host. Germination can be initiated by lower concentrations of germinants when spores are incubated with a combination of bile salts, calcium, and amino acids, and this synergy is dependent on the availability of calcium. The synergy described here allows germination to proceed in the presence of inhibitory bile salts and at physiological concentrations of germinants, effectively decreasing the concentrations of nutrients required to initiate an essential step of pathogenesis. IMPORTANCEClostridium difficile is an anaerobic spore-forming human pathogen that is the leading cause of nosocomial infectious diarrhea worldwide. Germination of infectious spores is the first step in the development of a C. difficile infection (CDI) after ingestion and passage through the stomach. This study investigates the specific conditions that facilitate C. difficile spore germination, including the following: location within the gastrointestinal (GI) tract, pH, temperature, and germinant concentration. The germinants that have been identified in culture include combinations of bile salts and amino acids or bile salts and calcium, but in vitro, these function at concentrations that far exceed normal physiological ranges normally found in the mammalian GI tract. In this work, we describe and quantify a previously unreported synergy observed when bile salts, calcium, and amino acids are added together. These germinant cocktails improve germination efficiency by decreasing the required concentrations of germinants to physiologically relevant levels. Combinations of multiple germinant types are also able to overcome the effects of inhibitory bile salts. In addition, we propose that the acidic conditions within the GI tract regulate C. difficile spore germination and could provide a biological explanation for why patients taking proton pump inhibitors are associated with increased risk of developing a CDI.
Collapse
|
27
|
Jones RM, Popham DL, Schmidt AL, Neidle EL, Stabb EV. Vibrio fischeri DarR Directs Responses to d-Aspartate and Represents a Group of Similar LysR-Type Transcriptional Regulators. J Bacteriol 2018; 200:e00773-17. [PMID: 29437849 PMCID: PMC6040199 DOI: 10.1128/jb.00773-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence suggests that d-amino acids play previously underappreciated roles in diverse organisms. In bacteria, even d-amino acids that are absent from canonical peptidoglycan (PG) may act as growth substrates, as signals, or in other functions. Given these proposed roles and the ubiquity of d-amino acids, the paucity of known d-amino-acid-responsive transcriptional control mechanisms in bacteria suggests that such regulation awaits discovery. We found that DarR, a LysR-type transcriptional regulator (LTTR), activates transcription in response to d-Asp. The d-Glu auxotrophy of a Vibrio fischerimurI::Tn mutant was suppressed, with the wild-type PG structure maintained, by a point mutation in darR This darR mutation resulted in the overexpression of an adjacent operon encoding a putative aspartate racemase, RacD, which compensated for the loss of the glutamate racemase encoded by murI Using transcriptional reporters, we found that wild-type DarR activated racD transcription in response to exogenous d-Asp but not upon the addition of l-Asp, l-Glu, or d-Glu. A DNA sequence typical of LTTR-binding sites was identified between darR and the divergently oriented racD operon, and scrambling this sequence eliminated activation of the reporter in response to d-Asp. In several proteobacteria, genes encoding LTTRs similar to DarR are linked to genes with predicted roles in d- and/or l-Asp metabolism. To test the functional similarities in another bacterium, darR and racD mutants were also generated in Acinetobacter baylyi In V. fischeri and A. baylyi, growth on d-Asp required the presence of both darR and racD Our results suggest that multiple bacteria have the ability to sense and respond to d-Asp.IMPORTANCE d-Amino acids are prevalent in the environment and are generated by organisms from all domains of life. Although some biological roles for d-amino acids are understood, in other cases, their functions remain uncertain. Given the ubiquity of d-amino acids, it seems likely that bacteria will initiate transcriptional responses to them. Elucidating d-amino acid-responsive regulators along with the genes they control will help uncover bacterial uses of d-amino acids. Here, we report the discovery of DarR, a novel LTTR in V. fischeri that mediates a transcriptional response to environmental d-Asp and underpins the catabolism of d-Asp. DarR represents the founding member of a group of bacterial homologs that we hypothesize control aspects of aspartate metabolism in response to d-Asp and/or to d-Asp-containing peptides.
Collapse
Affiliation(s)
- Richard M Jones
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Alicia L Schmidt
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
28
|
Abstract
Germination of Clostridium difficile spores is a crucial early requirement for colonization of the gastrointestinal tract. Likewise, C. difficile cannot cause disease pathologies unless its spores germinate into metabolically active, toxin-producing cells. Recent advances in our understanding of C. difficile spore germination mechanisms indicate that this process is both complex and unique. This review defines unique aspects of the germination pathways of C. difficile and compares them to those of two other well-studied organisms, Bacillus anthracis and Clostridium perfringensC. difficile germination is unique, as C. difficile does not contain any orthologs of the traditional GerA-type germinant receptor complexes and is the only known sporeformer to require bile salts in order to germinate. While recent advances describing C. difficile germination mechanisms have been made on several fronts, major gaps in our understanding of C. difficile germination signaling remain. This review provides an updated, in-depth summary of advances in understanding of C. difficile germination and potential avenues for the development of therapeutics, and discusses the major discrepancies between current models of germination and areas of ongoing investigation.
Collapse
|
29
|
Diaz OR, Sayer CV, Popham DL, Shen A. Clostridium difficile Lipoprotein GerS Is Required for Cortex Modification and Thus Spore Germination. mSphere 2018; 3:e00205-18. [PMID: 29950380 PMCID: PMC6021603 DOI: 10.1128/msphere.00205-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile, also known as Clostridioides difficile, is a Gram-positive, spore-forming bacterium that is a leading cause of antibiotic-associated diarrhea. C. difficile infections begin when its metabolically dormant spores germinate to form toxin-producing vegetative cells. Successful spore germination depends on the degradation of the cortex, a thick layer of modified peptidoglycan that maintains dormancy. Cortex degradation is mediated by the SleC cortex lytic enzyme, which is thought to recognize the cortex-specific modification muramic-δ-lactam. C. difficile cortex degradation also depends on the Peptostreptococcaceae-specific lipoprotein GerS for unknown reasons. In this study, we tested whether GerS regulates production of muramic-δ-lactam and thus controls the ability of SleC to recognize its cortex substrate. By comparing the muropeptide profiles of ΔgerS spores to those of spores lacking either CwlD or PdaA, both of which mediate cortex modification in Bacillus subtilis, we determined that C. difficile GerS, CwlD, and PdaA are all required to generate muramic-δ-lactam. Both GerS and CwlD were needed to cleave the peptide side chains from N-acetylmuramic acid, suggesting that these two factors act in concert. Consistent with this hypothesis, biochemical analyses revealed that GerS and CwlD directly interact and that CwlD modulates GerS incorporation into mature spores. Since ΔgerS, ΔcwlD, and ΔpdaA spores exhibited equivalent germination defects, our results indicate that C. difficile spore germination depends on cortex-specific modifications, reveal GerS as a novel regulator of these processes, and highlight additional differences in the regulation of spore germination in C. difficile relative to B. subtilis and other spore-forming organisms.IMPORTANCE The Gram-positive, spore-forming bacterium Clostridium difficile is a leading cause of antibiotic-associated diarrhea. Because C. difficile is an obligate anaerobe, its aerotolerant spores are essential for transmitting disease, and their germination into toxin-producing cells is necessary for causing disease. Spore germination requires the removal of the cortex, a thick layer of modified peptidoglycan that maintains spore dormancy. Cortex degradation is mediated by the SleC hydrolase, which is thought to recognize cortex-specific modifications. Cortex degradation also requires the GerS lipoprotein for unknown reasons. In our study, we tested whether GerS is required to generate cortex-specific modifications by comparing the cortex composition of ΔgerS spores to the cortex composition of spores lacking two putative cortex-modifying enzymes, CwlD and PdaA. These analyses revealed that GerS, CwlD, and PdaA are all required to generate cortex-specific modifications. Since loss of these modifications in ΔgerS, ΔcwlD, and ΔpdaA mutants resulted in spore germination and heat resistance defects, the SleC cortex lytic enzyme depends on cortex-specific modifications to efficiently degrade this protective layer. Our results further indicate that GerS and CwlD are mutually required for removing peptide chains from spore peptidoglycan and revealed a novel interaction between these proteins. Thus, our findings provide new mechanistic insight into C. difficile spore germination.
Collapse
Affiliation(s)
- Oscar R Diaz
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- NIH Postbaccalaureate Research Education Program (PREP), Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cameron V Sayer
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Cystathionine β-lyase is involved in d-amino acid metabolism. Biochem J 2018; 475:1397-1410. [PMID: 29592871 DOI: 10.1042/bcj20180039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Non-canonical d-amino acids play important roles in bacteria including control of peptidoglycan metabolism and biofilm disassembly. Bacteria appear to produce non-canonical d-amino acids to adapt to various environmental changes, and understanding the biosynthetic pathways is important. We identified novel amino acid racemases possessing the ability to produce non-canonical d-amino acids in Escherichia coli and Bacillus subtilis in our previous study, whereas the biosynthetic pathways of these d-amino acids still remain unclear. In the present study, we demonstrated that two cystathionine β-lyases (MetC and MalY) from E. coli produce non-canonical d-amino acids including non-proteinogenic amino acids. Furthermore, MetC displayed d- and l-serine (Ser) dehydratase activity. We characterised amino acid racemase, Ser dehydratase and cysteine lyase activities, and all were higher for MetC. Interestingly, all three activities were at a comparable level for MetC, although optimal conditions for each reaction were distinct. These results indicate that MetC and MalY are multifunctional enzymes involved in l-methionine metabolism and the production of d-amino acids, as well as d- and l-Ser metabolism. To our knowledge, this is the first evidence that cystathionine β-lyase is a multifunctional enzyme with three different activities.
Collapse
|
31
|
Zhu D, Sorg JA, Sun X. Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Front Cell Infect Microbiol 2018; 8:29. [PMID: 29473021 PMCID: PMC5809512 DOI: 10.3389/fcimb.2018.00029] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, toxin-producing anaerobe, and an important nosocomial pathogen. Due to the strictly anaerobic nature of the vegetative form, spores are the main morphotype of infection and transmission of the disease. Spore formation and their subsequent germination play critical roles in C. difficile infection (CDI) progress. Under suitable conditions, C. difficile spores will germinate and outgrow to produce the pathogenic vegetative form. During CDI, C. difficile produces toxins (TcdA and TcdB) that are required to initiate the disease. Meanwhile, it also produces spores that are responsible for the persistence and recurrence of C. difficile in patients. Recent studies have shed light on the regulatory mechanisms of C. difficile sporulation and germination. This review is to summarize recent advances on the regulation of sporulation/germination in C. difficile and the corresponding therapeutic strategies that are aimed at these important processes.
Collapse
Affiliation(s)
- Duolong Zhu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
32
|
Shrestha R, Sorg JA. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe 2018; 49:41-47. [PMID: 29221987 PMCID: PMC5844826 DOI: 10.1016/j.anaerobe.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/17/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
Bile acids are an important signal for germination of Clostridioides difficile spores; however, the bile acid signal alone is not sufficient. Amino acids, such as glycine, are another signal necessary for germination by C. difficile spores. Prior studies on the amino acid signal required for germination have shown that there is a preference for the amino acid used as a signal for germination. Previously we found that d-alanine can function as a co-germinant for C. difficile spores at 37 °C but not at 25 °C. Here, we tested the ability of other amino acids to act as co-germinants with taurocholate (TA) at 37 °C and found that many amino acids previously categorized as non-co-germinants are co-germinants at 37 °C. Based on the EC50 values calculated for two different strains, we found that C. difficile spores recognize different amino acids with varying efficiencies. Using this data, we ranked the amino acids based on their effect on germination and found that in addition to d-alanine, other D-forms of amino acids are also used by C. difficile spores as co-germinants. Among the different types of amino acids, ones with branched chains such as valine, leucine, and isoleucine are the poorest co-germinants. However, glycine is still the most effective amino acid signal for both strains. Our results suggest that the yet-to-be-identified amino acid germinant receptor is highly promiscuous.
Collapse
Affiliation(s)
- Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX 77843, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
33
|
Kohler LJ, Quirk AV, Welkos SL, Cote CK. Incorporating germination-induction into decontamination strategies for bacterial spores. J Appl Microbiol 2017; 124:2-14. [PMID: 28980459 DOI: 10.1111/jam.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Bacterial spores resist environmental extremes and protect key spore macromolecules until more supportive conditions arise. Spores germinate upon sensing specific molecules, such as nutrients. Germination is regulated by specialized mechanisms or structural features of the spore that limit contact with germinants and enzymes that regulate germination. Importantly, germination renders spores more susceptible to inactivating processes such as heat, desiccation, and ultraviolet radiation, to which they are normally refractory. Thus, germination can be intentionally induced through a process called germination-induction and subsequent treatment of these germinated spores with common disinfectants or gentle heat will inactivate them. However, while the principle of germination-induction has been shown effective in the laboratory, this strategy has not yet been fully implemented in real-word scenarios. Here, we briefly review the mechanisms of bacterial spore germination and discuss the evolution of germination-induction as a decontamination strategy. Finally, we examine progress towards implementing germination-induction in three contexts: biodefense, hospital settings and food manufacture. SIGNIFICANCE AND IMPACT This article reviews implementation of germination-induction as part of a decontamination strategy for the cleanup of bacterial spores. To our knowledge this is the first time that germination-induction studies have been reviewed in this context. This article will provide a resource which summarizes the mechanisms of germination in Clostridia and Bacillus species, challenges and successes in germination-induction, and potential areas where this strategy may be implemented.
Collapse
Affiliation(s)
- L J Kohler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - A V Quirk
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|