1
|
Palmioli A, Airoldi C. An NMR Toolkit to Probe Amyloid Oligomer Inhibition in Neurodegenerative Diseases: From Ligand Screening to Dissecting Binding Topology and Mechanisms of Action. Chempluschem 2024; 89:e202400243. [PMID: 38712695 DOI: 10.1002/cplu.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The aggregation of amyloid peptides and proteins into toxic oligomers is a hallmark of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Machado-Joseph's disease, and transmissible spongiform encephalopathies. Inhibition of amyloid oligomers formation and interactions with biological counterparts, as well as the triggering of non-toxic amorphous aggregates, are strategies towards preventive interventions against these pathologies. NMR spectroscopy addresses the need for structural characterization of amyloid proteins and their aggregates, their binding to inhibitors, and rapid screening of compound libraries for ligand identification. Here we briefly discuss the solution experiments constituting the NMR spectroscopist's toolkit and provide examples of their application.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
2
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
3
|
Martinez Pomier K, Ahmed R, Huang J, Melacini G. Inhibition of toxic metal-alpha synuclein interactions by human serum albumin. Chem Sci 2024; 15:3502-3515. [PMID: 38455030 PMCID: PMC10915811 DOI: 10.1039/d3sc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Human serum albumin (HSA), the most abundant protein in plasma and cerebrospinal fluid, not only serves as a crucial carrier of various exogenous and endogenous ligands but also modulates the aggregation of amyloidogenic proteins, including alpha synuclein (αSyn), which is associated with Parkinson's disease and other α-synucleinopathies. HSA decreases αSyn toxicity through the direct binding to monomeric and oligomeric αSyn species. However, it is possible that HSA also sequesters metal ions that otherwise promote aggregation. Cu(ii) ions, for example, enhance αSyn fibrillization in vitro, while also leading to neurotoxicity by generating reactive oxygen species (ROS). However, it is currently unclear if and how HSA affects Cu(ii)-binding to αSyn. Using an integrated set of NMR experiments, we show that HSA is able to chelate Cu(ii) ions from αSyn more efficiently than standard chelators such as EDTA, revealing an unexpected cooperativity between the HSA metal-binding sites. Notably, fatty acid binding to HSA perturbs this cooperativity, thus interfering with the sequestration of Cu(ii) ions from αSyn. We also observed that glycation of HSA diminished Cu(ii)-binding affinity, while largely preserving the degree of cooperativity between the HSA metal-binding sites. Additionally, our results show that Cu(ii)-binding to HSA stabilizes the interactions of HSA with αSyn primarily at two different regions, i.e. the N-terminus, Tyr 39 and the majority of the C-terminus. Our study not only unveils the effect of fatty acid binding and age-related posttranslational modifications, such as glycation, on the neuroprotective mechanisms of HSA, but also highlights the potential of αSyn as a viable NMR-based sensor to investigate HSA-metal interactions.
Collapse
Affiliation(s)
| | - Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
4
|
Ullah A, Lee GJ, Kwon HT, Lim SI. Covalent immobilization of human serum albumin on cellulose acetate membrane for scavenging amyloid beta - A stepping extracorporeal strategy for ameliorating Alzheimer's disease. Colloids Surf B Biointerfaces 2024; 234:113753. [PMID: 38241888 DOI: 10.1016/j.colsurfb.2024.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by interrupted neurocognitive functions and impaired mental development presumably caused by the accumulation of amyloid beta (Aβ) in the form of plaques. Targeting Aβ has been considered a promising approach for treating AD. In the current study, human serum albumin (HSA), a natural Aβ binder, is covalently immobilized onto the surface of a cellulose acetate (CA) membrane to devise an extracorporeal Aβ sequester. The immobilization of HSA at 3.06 ± 0.22 μg/mm2 of the CA membrane was found to be active functionally, as evidenced by the esterase-like activity converting p-nitrophenyl acetate into p-nitrophenol. The green fluorescent protein-Aβ (GFP-Aβ) fusion protein, recombinantly produced as a model ligand, exhibited characteristics of native Aβ. These features include the propensity to form aggregates or fibrils and an affinity for HSA with a dissociation constant (KD) of 0.91 μM. The HSA on the CA membrane showed concentration-dependent sequestration of GFP-Aβ in the 1-10-μM range. Moreover, it had a greater binding capacity than HSA immobilized on a commercial amine-binding plate. Results suggest that the covalent immobilization of HSA on the CA surface can be used as a potential platform for sequestering Aβ to alleviate AD.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Gyu-Jin Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Gai Z, Li F, Yang X. Electrochemiluinescence monitoring the interaction between human serum albumin and amyloid-β peptide. Bioelectrochemistry 2022; 149:108315. [DOI: 10.1016/j.bioelechem.2022.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|
6
|
Al-Harthi S, Kharchenko V, Mandal P, Gourdoupis S, Jaremko Ł. Zinc ions prevent α-synuclein aggregation by enhancing chaperone function of human serum albumin. Int J Biol Macromol 2022; 222:2878-2887. [DOI: 10.1016/j.ijbiomac.2022.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
7
|
Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem 2022; 282:106743. [PMID: 35093643 DOI: 10.1016/j.bpc.2021.106743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Human Serum Albumin (HSA), the most abundant protein in plasma, serves a diverse repertoire of biological functions including regulation of oncotic pressure and redox potential, transport of serum solutes, but also chaperoning of misfolded proteins. Here we review how HSA interacts with a wide spectrum of client proteins including intrinsically disordered proteins (IDPs) such as Aβ, the islet amyloid peptide (IAPP), alpha synuclein and stressed globular proteins such as insulin. The comparative analysis of the HSA chaperone - client interactions reveals that the amyloid-inhibitory function of HSA arises from at least four emerging mechanisms. Two mechanisms (the monomer stabilizer model and the monomer competitor model) involve the direct binding of HSA to either IDP monomers or oligomers, while other mechanisms (metal chelation and membrane protection) rely on the indirect modulation by HSA of other factors that drive IDP aggregation. While HSA is not the only extracellular chaperone, given its abundance, HSA is likely to account for a significant fraction of the chaperoning effects in plasma, thus opening new therapeutic opportunities in the context of the peripheral sink hypothesis.
Collapse
|
8
|
Ahmed R, Huang J, Lifshitz R, Martinez Pomier K, Melacini G. Structural determinants of the interactions of catechins with Aβ oligomers and lipid membranes. J Biol Chem 2021; 298:101502. [PMID: 34929173 PMCID: PMC8800114 DOI: 10.1016/j.jbc.2021.101502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
The aberrant self-assembly of intrinsically disordered proteins (IDPs) into soluble oligomers and their interactions with biological membranes underlie the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease. Catechins have emerged as useful tools to reduce the toxicity of IDP oligomers by modulating their interactions with membranes. However, the structural determinants of catechin binding to IDP oligomers and membranes remain largely elusive. Here, we assemble a catechin library by combining several naturally occurring chemical modifications and, using a coupled NMR-statistical approach, we map at atomic resolution the interactions of such library with the Alzheimer's-associated amyloid-beta (Aβ) oligomers and model membranes. Our results reveal multiple catechin affinity drivers and show that the combination of affinity-reducing covalent changes may lead to unexpected net gains in affinity. Interestingly, we find that the positive cooperativity is more prevalent for Aβ oligomers than membrane binding, and that the determinants underlying catechin recognition by membranes are markedly different from those dissected for Aβ oligomers. Notably, we find that the unanticipated positive cooperativity arises from the critical regulatory role of the gallate catechin moiety, which recruits previously disengaged substituents into the binding interface and leads to an overall greater compaction of the receptor-bound conformation. Overall, the previously elusive structural attributes mapped here provide an unprecedented foundation to establish structure-activity relationships of catechins.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Romi Lifshitz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,For correspondence: Giuseppe Melacini
| |
Collapse
|
9
|
Rejc L, Gómez-Vallejo V, Rios X, Cossío U, Baz Z, Mujica E, Gião T, Cotrina EY, Jiménez-Barbero J, Quintana J, Arsequell G, Cardoso I, Llop J. Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. J Alzheimers Dis 2021; 77:99-112. [PMID: 32804152 DOI: 10.3233/jad-200570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer's disease. OBJECTIVE We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer's disease using positron emission tomography (PET). METHODS Female mice (AβPPswe/PS1A246E/TTR+/-) were divided into 3 groups (n = 7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100 mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age = 14 months. RESULTS Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age = 5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages = 5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age = 14 months. CONCLUSION Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions.
Collapse
Affiliation(s)
- Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Xabier Rios
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Edurne Mujica
- Biochemistry and Molecular Biology, EHU-UPV, Leioa, Spain
| | - Tiago Gião
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department Organic Chemistry II, Faculty Science & Technology, EHU-UPV, Leioa, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
10
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
11
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
12
|
Boada M, Martínez-Lage P, Serrano-Castro P, Costa M, Páez A. Therapeutic plasma exchange with albumin: a new approach to treat Alzheimer's disease. Expert Rev Neurother 2021; 21:843-849. [PMID: 34338566 DOI: 10.1080/14737175.2021.1960823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common cause of dementia. It has a complex pathophysiology that is not yet completely understood, where multiple central, systemic, and environmental factors play a key role in disease progression. Understanding the multifactorial nature of AD is paramount to formulate new therapies. AREAS COVERED The authors reviewed the role of the amyloid-β-binding, antioxidant, and immunomodulatory properties of albumin in AD and the use of therapeutic plasma exchange (PE) in neurology. The results from the Alzheimer Management By Albumin Replacement (AMBAR) trial that combined the use of PE with albumin replacement in patients with mild-to-moderate AD, are also analyzed. EXPERT OPINION Findings from the AMBAR study provide encouraging results in the treatment of AD with PE and albumin replacement, especially in patients at the moderate stage of the disease, who showed less cognitive decline from baseline compared with placebo in most of the variables analyzed. Further research is warranted to ascertain the possible mechanisms of action underlying these results. Different cohorts of patients that may also benefit from this treatment, such as those with mild cognitive impairment or other types of dementia, could also be the target of additional studies.
Collapse
Affiliation(s)
- Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional De Catalunya, Barcelona, Spain
| | - Pablo Martínez-Lage
- Centro De Investigación Y Clínica Memoria, Fundación CITA-Alzheimer Fundazioa, Donostia, San Sebastián, Spain
| | - Pedro Serrano-Castro
- Instituto De Investigación Biomédica De Málaga, Hospital Regional Universitario De Málaga, Málaga, Spain
| | | | - Antonio Páez
- Grifols Bioscience Research Group, Barcelona, Spain
| |
Collapse
|
13
|
Zhao M, Guo C. Multipronged Regulatory Functions of Serum Albumin in Early Stages of Amyloid-β Aggregation. ACS Chem Neurosci 2021; 12:2409-2420. [PMID: 34160192 DOI: 10.1021/acschemneuro.1c00150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human serum albumin (HSA) is a major interacting-partner of Alzheimer's amyloid-β (Aβ) peptide in the plasma and has emerged as a promising therapeutic target. HSA inhibits Aβ fibrillization, but the underlying molecular mechanism is not well elucidated. In this work, we investigated the role of HSA in the early stages of Aβ aggregation by simulating the binding process of multiple Aβ monomers and protofibrils to HSA with extensive molecular dynamics simulations. HSA could simultaneously trap multiple Aβ monomers and accommodate the formation of nonfibrillar Aβ oligomers after binding. In particular, domains I and III show stronger binding capacities and hold preferable interaction sites for oligomers. Consequently, HSA prevents the formation of fibrillar oligomers in water, thus interfering with the nucleation process. On the other aspect, when protofibrils are preformed, HSA tends to block the β-strand spanning the central hydrophobic core located at the protofibril end, preventing the addition of monomers to protofibrils. Furthermore, Aβ protofibril structures are severely disrupted both globally and locally. Thus, further growth of protofibrils to fibrils is impeded by HSA. Our results collectively indicate that HSA performs multipronged regulatory functions in the early stages of Aβ aggregation. Our work advances the understanding of the amyloid inhibition of Aβ by HSA and provides theoretical guidance for developing rational therapies of Alzheimer's disease.
Collapse
Affiliation(s)
- Mengjuan Zhao
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
14
|
Noncanonical protein kinase A activation by oligomerization of regulatory subunits as revealed by inherited Carney complex mutations. Proc Natl Acad Sci U S A 2021; 118:2024716118. [PMID: 34006641 DOI: 10.1073/pnas.2024716118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Familial mutations of the protein kinase A (PKA) R1α regulatory subunit lead to a generalized predisposition for a wide range of tumors, from pituitary adenomas to pancreatic and liver cancers, commonly referred to as Carney complex (CNC). CNC mutations are known to cause overactivation of PKA, but the molecular mechanisms underlying such kinase overactivity are not fully understood in the context of the canonical cAMP-dependent activation of PKA. Here, we show that oligomerization-induced sequestration of R1α from the catalytic subunit of PKA (C) is a viable mechanism of PKA activation that can explain the CNC phenotype. Our investigations focus on comparative analyses at the level of structure, unfolding, aggregation, and kinase inhibition profiles of wild-type (wt) PKA R1α, the A211D and G287W CNC mutants, as well as the cognate acrodysostosis type 1 (ACRDYS1) mutations A211T and G287E. The latter exhibit a phenotype opposite to CNC with suboptimal PKA activation compared with wt. Overall, our results show that CNC mutations not only perturb the classical cAMP-dependent allosteric activation pathway of PKA, but also amplify significantly more than the cognate ACRDYS1 mutations nonclassical and previously unappreciated activation pathways, such as oligomerization-induced losses of the PKA R1α inhibitory function.
Collapse
|
15
|
Xie H, Guo C. Albumin Alters the Conformational Ensemble of Amyloid-β by Promiscuous Interactions: Implications for Amyloid Inhibition. Front Mol Biosci 2021; 7:629520. [PMID: 33708792 PMCID: PMC7940760 DOI: 10.3389/fmolb.2020.629520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Human serum albumin (HSA) is a key endogenous inhibitor of amyloid-β (Αβ) aggregation. In vitro HSA inhibits Aβ fibrillization and targets multiple species along the aggregation pathway including monomers, oligomers, and protofibrils. Amyloid inhibition by HSA has both pathological implications and therapeutic potential, but the underlying molecular mechanism remains elusive. As a first step towards addressing this complex question, we studied the interactions of an Aβ42 monomer with HSA by molecular dynamics simulations. To adequately sample the conformational space, we adapted the replica exchange with solute tempering (REST2) method to selectively heat the Aβ42 peptide in the absence and presence of HSA. Aβ42 binds to multiple sites on HSA with a preference to domain III and adopts various conformations that all differ from the free state. The β-sheet abundances of H14-E22 and A30-M33 regions are significantly reduced by HSA, so are the β-sheet lengths. HSA shifts the conformational ensemble towards more disordered states and alters the β-sheet association patterns. In particular, the frequent association of Q15-V24 and N27-V36 regions into β-hairpin which is critical for aggregation is impeded. HSA primarily interacts with the latter β-region and the N-terminal charged residues. They form promiscuous interactions characterized by salt bridges at the edge of the peptide-protein interface and hydrophobic cores at the center. Consequently, intrapeptide interactions crucial for β-sheet formation are disrupted. Our work builds the bridge between the modification of Aβ conformational ensemble and amyloid inhibition by HSA. It also illustrates the potential of the REST2 method in studying interactions between intrinsically disordered peptides and globular proteins.
Collapse
Affiliation(s)
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Ahmed R, Melacini G. A biophysical toolset to probe the microscopic processes underlying protein aggregation and its inhibition by molecular chaperones. Biophys Chem 2021; 269:106508. [PMID: 33310607 DOI: 10.1016/j.bpc.2020.106508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Given the breadth and depth of the scientific contributions of Sir Christopher Dobson, with over 870 publications to date, it is inconceivable to convey in a single review the impact of his work and its legacy. This review therefore primarily focuses on his contributions to the development of strategies for preventing aberrant protein misfolding. The first section of this review highlights his seminal work on the elucidation of the microscopic nucleation processes underlying protein aggregation. Next, we discuss the specific inhibition of these steps by candidate drugs and biologics, with a particular emphasis on the role of molecular chaperones. In the final section, we review how protein aggregation principles can be exploited for the rational design of novel and more potent aggregation inhibitors. These milestones serve as excellent examples of the profound impact of Dobson's seminal work on fundamental science and its translation into drug discovery.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada.
| |
Collapse
|
17
|
Wang Y, Xue Y, Wang S, Huang J, Yang X. Real-Time Analysis of Specific Binding between Apolipoprotein E Isoforms and Amyloid β-Peptide by Dual Polarization Interferometry. Anal Chem 2021; 93:1472-1479. [PMID: 33342209 DOI: 10.1021/acs.analchem.0c03542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the pathogenesis hypotheses of Alzheimer's disease (AD) is amyloid depositions and neurofibrillary tangles. Apolipoprotein E (Apo E) acts a vital part in the development of AD by affecting the aggregation and clearance of amyloid-β (Aβ). In this paper, a dual polarization interferometry (DPI) technique was employed for a real-time investigation toward the binding events of Apo E isoforms, for instance, Apo E2, Apo E3, and Apo E4, with Aβ1-40. By evaluation of detailed binding information provided by DPI, the affinities between Apo E isoforms and Aβ1-40 follow the order of E4 > E3 > E2, and the dissociation constants (KD) of Aβ1-40 with Apo E2, Apo E3, and Apo E4 were determined to be 251 ± 37, 40 ± 0.65, and 24.6 ± 2.42 nM, respectively. Our findings reveal the isoform-specific binding behaviors from a kinetics perspective, which can help us understand that Apo E4 has a higher risk of causing AD because of its promoting effect on Aβ aggregation and fibrillation and inefficient clearance of Aβ. Remarkably, this work provides a promising method for exploring the dynamics of interactions between biomolecules and expectantly contributes to the development of AD drugs and therapies targeting Apo E and Aβ.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Cotrina EY, Gimeno A, Llop J, Jiménez-Barbero J, Quintana J, Prohens R, Cardoso I, Arsequell G. An Assay for Screening Potential Drug Candidates for Alzheimer's Disease That Act as Chaperones of the Transthyretin and Amyloid-β Peptides Interaction. Chemistry 2020; 26:17462-17469. [PMID: 32761825 DOI: 10.1002/chem.202002933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Indexed: 11/08/2022]
Abstract
The protein transthyretin (TTR) modulates amyloid-β (Aβ) peptides deposition and processing and this physiological effect is further enhanced by treatment with iododiflunisal (IDIF), a small-molecule compound (SMC) with TTR tetramer stabilization properties, which behaves as chaperone of the complex. This knowledge has prompted us to design and optimize a rapid and simple high-throughput assay that relies on the ability of test compounds to form ternary soluble complexes TTR/Aβ/SMC that prevent Aβ aggregation. The method uses the shorter Aβ(12-28) sequence which is cheaper and simpler to use while retaining the aggregation properties of their parents Aβ(1-40) and Aβ(1-42). The test is carried out in 96-plate wells that are UV monitored for turbidity during 6 h. Given its reproducibility, we propose that this test can be a powerful tool for efficient screening of SMCs that act as chaperones of the TTR/Aβ interaction that may led to potential AD therapies.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain.,Ikerbasque-Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain.,Ikerbasque-Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003, Barcelona, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnologics, Universitat de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
19
|
García-Viñuales S, Ahmed R, Sciacca MFM, Lanza V, Giuffrida ML, Zimbone S, Romanucci V, Zarrelli A, Bongiorno C, Spinella N, Galati C, Di Fabio G, Melacini G, Milardi D. Trehalose Conjugates of Silybin as Prodrugs for Targeting Toxic Aβ Aggregates. ACS Chem Neurosci 2020; 11:2566-2576. [PMID: 32687307 DOI: 10.1021/acschemneuro.0c00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is linked to the abnormal accumulation of amyloid β peptide (Aβ) aggregates in the brain. Silybin B, a natural compound extracted from milk thistle (Silybum marianum), has been shown to significantly inhibit Aβ aggregation in vitro and to exert neuroprotective properties in vivo. However, further explorations of silybin B's clinical potential are currently limited by three main factors: (a) poor solubility, (b) instability in blood serum, and (c) only partial knowledge of silybin's mechanism of action. Here, we address these three limitations. We demonstrate that conjugation of a trehalose moiety to silybin significantly increases both water solubility and stability in blood serum without significantly compromising its antiaggregation properties. Furthermore, using a combination of biophysical techniques with different spatial resolution, that is, TEM, ThT fluorescence, CD, and NMR spectroscopy, we profile the interactions of the trehalose conjugate with both Aβ monomers and oligomers and evidence that silybin may shield the "toxic" surfaces formed by the N-terminal and central hydrophobic regions of Aβ. Finally, comparative analysis with silybin A, a less active diastereoisomer of silybin B, revealed how even subtle differences in chemical structure may entail different effects on amyloid inhibition. The resulting insight on the mechanism of action of silybins as aggregation inhibitors is anticipated to facilitate the future investigation of silybin's therapeutic potential.
Collapse
Affiliation(s)
- Sara García-Viñuales
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Rashik Ahmed
- Departments of Chemistry and Chemical Biology & Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Michele F. M. Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Stefania Zimbone
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valeria Romanucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Corrado Bongiorno
- Institute for Microelectronics and Microsystems, National Research Council, Stradale Primosole 50, 95121 Catania, Italy
| | | | - Clelia Galati
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Giuseppe Melacini
- Departments of Chemistry and Chemical Biology & Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
20
|
Martinez Pomier K, Ahmed R, Melacini G. Catechins as Tools to Understand the Molecular Basis of Neurodegeneration. Molecules 2020; 25:E3571. [PMID: 32781559 PMCID: PMC7465241 DOI: 10.3390/molecules25163571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding as well as the subsequent self-association and deposition of amyloid aggregates is implicated in the progression of several neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Modulators of amyloidogenic aggregation serve as essential tools to dissect the underlying molecular mechanisms and may offer insight on potential therapeutic solutions. These modulators include green tea catechins, which are potent inhibitors of amyloid aggregation. Although catechins often exhibit poor pharmacokinetic properties and bioavailability, they are still essential tools for identifying the drivers of amyloid aggregation and for developing other aggregation modulators through structural mimicry. As an illustration of such strategies, here we review how catechins have been used to map the toxic surfaces of oligomeric amyloid-like species and develop catechin-based phenolic compounds with enhanced anti-amyloid activity.
Collapse
Affiliation(s)
- Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada;
| |
Collapse
|
21
|
Ahmed R, Huang J, Weber DK, Gopinath T, Veglia G, Akimoto M, Khondker A, Rheinstädter MC, Huynh V, Wylie RG, Bozelli JC, Epand RM, Melacini G. Molecular Mechanism for the Suppression of Alpha Synuclein Membrane Toxicity by an Unconventional Extracellular Chaperone. J Am Chem Soc 2020; 142:9686-9699. [DOI: 10.1021/jacs.0c01894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Daniel K. Weber
- Department of Biochemistry, Chemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tata Gopinath
- Department of Biochemistry, Chemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Chemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton ON L8S 4M1, Canada
| | | | - Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - José C. Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| |
Collapse
|
22
|
Sahoo BR, Cox SJ, Ramamoorthy A. High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Chem Commun (Camb) 2020; 56:4627-4639. [PMID: 32300761 PMCID: PMC7254607 DOI: 10.1039/d0cc01551b] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Alzheimer's disease (AD), soluble oligomers of amyloid-β (Aβ) are emerging as a crucial entity in driving disease progression as compared to insoluble amyloid deposits. The lacuna in establishing the structure to function relationship for Aβ oligomers prevents the development of an effective treatment for AD. While the transient and heterogeneous properties of Aβ oligomers impose many challenges for structural investigation, an effective use of a combination of NMR techniques has successfully identified and characterized them at atomic-resolution. Here, we review the successful utilization of solution and solid-state NMR techniques to probe the aggregation and structures of small and large oligomers of Aβ. Biophysical studies utilizing the commonly used solution and 19F based NMR experiments to identify the formation of small size early intermediates and to obtain their structures, and dock-lock mechanism of fiber growth at atomic-resolution are discussed. In addition, the use of proton-detected magic angle spinning (MAS) solid-state NMR experiments to obtain high-resolution insights into the aggregation pathways and structures of large oligomers and other aggregates is also presented. We expect these NMR based studies to be valuable for real-time monitoring of the depletion of monomers and the formation of toxic oligomers and high-order aggregates under a variety of conditions, and to solve the high-resolution structures of small and large size oligomers for most amyloid proteins, and therefore to develop inhibitors and drugs.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
23
|
Tsao FH, Barnes JN, Amessoudji A, Li Z, Meyer KC. Aging-Related and Gender Specific Albumin Misfolding in Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:67-77. [PMID: 32328565 PMCID: PMC7175925 DOI: 10.3233/adr-200168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Aging-related protein misfolding and aggregation may play critical roles in the pathogenesis of numerous diseases. In the brain, extracellular aggregated amyloid-β (Aβ) is closely related to the death of neurons in individuals with Alzheimer's disease (AD). Albumin-Aβ binding is important in preventing Aβ fibril aggregation. However, because albumin is the most abundant and important antioxidant in the circulation, aging-related oxidative stress could have a significant effect on the molecular conformation and binding capacities of albumin. To investigate the link between misfolded albumin and AD, we developed fluorescent assays to determine the effects of misfolded albumin on membrane integrity in the presence of a lipolytic, inflammatory response-like enzyme, secretory phospholipase A2 (sPLA2). We found that misfolded albumin increased degradation of phospholipids in highly fluid bilayer membranes in the presence of sPLA2 due to hydrophobic effects of misfolded albumin. High amounts of misfolded albumin were present in sera of elderly (average 74 years) versus young (average 24 years) subjects (p < 0.0001). Albumin in cerebrospinal fluid (CSF) of elderly subjects, though present in small concentrations, had a 2- to 3-fold increased capacity to promote sPLA2-catalyzed membrane phospholipid degradation as compared with the same amount of albumin in serum (p < 0.0001). In addition, the fatty acid binding capacity of albumin in CSF from female subjects was considerably lower than values obtained for men, especially for individuals diagnosed with AD (p = 0.0006). This study suggests that inflammation, misfolded albumin and/or other dysfunctional proteins, and changes in membrane fluidity could alter cell membrane integrity and homeostasis and contribute to the pathogenesis of aging-related dementia and AD.
Collapse
Affiliation(s)
- Francis H.C. Tsao
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Jill N. Barnes
- Department of Kinesiology, University of Wisconsin-Madison, WI, USA
| | - Amy Amessoudji
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Zhanhai Li
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI, USA
| | - Keith C. Meyer
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
24
|
Cotrina EY, Gimeno A, Llop J, Jiménez-Barbero J, Quintana J, Valencia G, Cardoso I, Prohens R, Arsequell G. Calorimetric Studies of Binary and Ternary Molecular Interactions between Transthyretin, Aβ Peptides, and Small-Molecule Chaperones toward an Alternative Strategy for Alzheimer's Disease Drug Discovery. J Med Chem 2020; 63:3205-3214. [PMID: 32124607 PMCID: PMC7115756 DOI: 10.1021/acs.jmedchem.9b01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Transthyretin
(TTR) modulates the deposition, processing, and toxicity
of Abeta (Aβ) peptides. We have shown that this effect is enhanced
in mice by treatment with small molecules such as iododiflunisal (IDIF, 4), a good TTR stabilizer. Here, we describe the thermodynamics
of the formation of binary and ternary complexes among TTR, Aβ(1–42)
peptide, and TTR stabilizers using isothermal titration calorimetry
(ITC). A TTR/Aβ(1–42) (1:1)
complex with a dissociation constant of Kd = 0.94 μM is formed; with IDIF
(4), this constant improves up to Kd = 0.32 μM, indicating
the presence of a ternary complex TTR/IDIF/Aβ(1–42).
However, with the drugs diflunisal (1) or Tafamidis (2), an analogous chaperoning effect could not be observed.
Similar phenomena could be recorded with the shorter peptide Aβ(12–28)
(7). We propose the design of a simple assay system for
the search of other chaperones that behave like IDIF and may become
potential candidate drugs for Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003 Barcelona, Spain
| | - Gregorio Valencia
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Isabel Cardoso
- IBMC-Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Cientı́fics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Gemma Arsequell
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| |
Collapse
|
25
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
26
|
Sahoo BR, Bekier ME, Liu Z, Kocman V, Stoddard AK, Anantharamaiah GM, Nowick J, Fierke CA, Wang Y, Ramamoorthy A. Structural Interaction of Apolipoprotein A-I Mimetic Peptide with Amyloid-β Generates Toxic Hetero-oligomers. J Mol Biol 2019; 432:1020-1034. [PMID: 31866295 DOI: 10.1016/j.jmb.2019.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 01/21/2023]
Abstract
Apolipoproteins are involved in pathological conditions of Alzheimer's disease (AD), and it has been reported that truncated apolipoprotein fragments and β-amyloid (Aβ) peptides coexist as neurotoxic heteromers within the plaques. Therefore, it is important to investigate these complexes at the molecular level to better understand their properties and roles in the pathology of AD. Here, we present a mechanistic insight into such heteromerization using a structurally homologue apolipoprotein fragment of apoA-I (4F) complexed with Aβ(M1-42) and characterize their toxicity. The 4F peptide slows down the aggregation kinetics of Aβ(M1-42) by constraining its structural plasticity. NMR and CD experiments identified 4F-Aβ(M1-42) heteromers comprised of unstructured Aβ(M1-42) and helical 4F. A uniform two-fold reduction in 15N/1H NMR signal intensities of Aβ(M1-42) with no observable chemical shift perturbation indicated the formation of a large complex, which was further confirmed by diffusion NMR experiments. Microsecond-scale atomistic molecular dynamics simulations showed that 4F interaction with Aβ(M1-42) is electrostatically driven and induces unfolding of Aβ(M1-42). Neurotoxicity profiling of Aβ(M1-42) complexed with 4F confirms a significant reduction in cell viability and neurite growth. Thus, the molecular architecture of heteromerization between 4F and Aβ(M1-42) discovered in this study provides evidence toward our understanding of the role of apolipoproteins or their truncated fragments in exacerbating AD pathology.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Michael E Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Zichen Liu
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Vojc Kocman
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Andrea K Stoddard
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, 35294, USA
| | - James Nowick
- Department of Chemistry, University of California-Irvine, Irvine, CA, 92697-2025, USA
| | - Carol A Fierke
- Department of Chemistry, University of Texas A&M, College Station, TX, 77843-3255, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
27
|
Tomaselli S, La Vitola P, Pagano K, Brandi E, Santamaria G, Galante D, D’Arrigo C, Moni L, Lambruschini C, Banfi L, Lucchetti J, Fracasso C, Molinari H, Forloni G, Balducci C, Ragona L. Biophysical and in Vivo Studies Identify a New Natural-Based Polyphenol, Counteracting Aβ Oligomerization in Vitro and Aβ Oligomer-Mediated Memory Impairment and Neuroinflammation in an Acute Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4462-4475. [PMID: 31603646 DOI: 10.1021/acschemneuro.9b00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study natural-based complex polyphenols, obtained through a smart synthetic approach, have been evaluated for their ability to inhibit the formation of Aβ42 oligomers, the most toxic species causing synaptic dysfunction, neuroinflammation, and neuronal death leading to the onset and progression of Alzheimer's disease. In vitro neurotoxicity tests on primary hippocampal neurons have been employed to select nontoxic candidates. Solution NMR and molecular docking studies have been performed to clarify the interaction mechanism of Aβ42 with the synthesized polyphenol derivatives, and highlight the sterical and chemical requirements important for their antiaggregating activity. NMR results indicated that the selected polyphenolic compounds target Aβ42 oligomeric species. Combined NMR and docking studies indicated that the Aβ42 central hydrophobic core, namely, the 17-31 region, is the main interaction site. The length of the peptidomimetic scaffold and the presence of a guaiacol moiety were identified as important requirements for the antiaggregating activity. In vivo experiments on an Aβ42 oligomer-induced acute mouse model highlighted that the most promising polyphenolic derivative (PP04) inhibits detrimental effects of Aβ42 oligomers on memory and glial cell activation. NMR kinetic studies showed that PP04 is endowed with the chemical features of true inhibitors, strongly affecting both the Aβ42 nucleation and growth rates, thus representing a promising candidate to be further developed into an effective drug against neurodegenerative diseases of the amyloid type.
Collapse
Affiliation(s)
- Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| | - Pietro La Vitola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| | - Edoardo Brandi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Giulia Santamaria
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Denise Galante
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Genoa 16149, Italy
| | - Cristina D’Arrigo
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Genoa 16149, Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, Università di Genova, Genova 16146, Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, Università di Genova, Genova 16146, Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry, Università di Genova, Genova 16146, Italy
| | - Jacopo Lucchetti
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Claudia Fracasso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| |
Collapse
|
28
|
Rios X, Gómez-Vallejo V, Martín A, Cossío U, Morcillo MÁ, Alemi M, Cardoso I, Quintana J, Jiménez-Barbero J, Cotrina EY, Valencia G, Arsequell G, Llop J. Radiochemical examination of transthyretin (TTR) brain penetration assisted by iododiflunisal, a TTR tetramer stabilizer and a new candidate drug for AD. Sci Rep 2019; 9:13672. [PMID: 31541162 PMCID: PMC6754432 DOI: 10.1038/s41598-019-50071-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/31/2019] [Indexed: 12/21/2022] Open
Abstract
It is well settled that the amyloidogenic properties of the plasma protein transporter transthyretin (TTR) can be modulated by compounds that stabilize its native tetrameric conformation. TTR is also present in cerebrospinal fluid where it can bind to Aβ-peptides and prevent Aβ aggregation. We have previously shown that treatment of Alzheimer’s Disease (AD) model mice with iododiflunisal (IDIF), a TTR tetramer stabilizing compound, prevents AD pathologies. This evidence positioned IDIF as a new lead drug for AD. In dissecting the mechanism of action of IDIF, we disclose here different labeling strategies for the preparation of 131I-labeled IDIF and 131I- and 124I-labeled TTR, which have been further used for the preparation of IDIF-TTR complexes labeled either on the compound or the protein. The biodistribution of all labeled species after intravenous administration has been investigated in mice using ex vivo and in vivo techniques. Our results confirm the capacity of TTR to cross the blood brain barrier (BBB) and suggest that the formation of TTR-IDIF complexes enhances BBB permeability of both IDIF and TTR. The increased TTR and IDIF brain concentrations may result in higher Aβ-peptide sequestration capacity with the subsequent inhibition of AD symptoms as we have previously observed in mice.
Collapse
Affiliation(s)
- Xabier Rios
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014, San Sebastián, Guipúzcoa, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014, San Sebastián, Guipúzcoa, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, 48940, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Maria Díaz de Haro 3, 48013, Bilbao, Spain
| | - Unai Cossío
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014, San Sebastián, Guipúzcoa, Spain
| | - Miguel Ángel Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit, CIEMAT, 28040, Madrid, Spain
| | - Mobina Alemi
- IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, 4200-135, Porto, Portugal
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Celular e Molecular, i3S-Instituto de Investigação e Inovação em Saúde, 4200-135, Porto, Portugal
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), 08028, Barcelona, Spain.,Research Programme on Biomedical Informatics, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Jesús Jiménez-Barbero
- Ikerbasque Basque Foundation for Science, Maria Díaz de Haro 3, 48013, Bilbao, Spain.,CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160, Derio, Spain
| | - Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034, Barcelona, Spain
| | - Gregorio Valencia
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034, Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034, Barcelona, Spain.
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014, San Sebastián, Guipúzcoa, Spain. .,Centro de Investigación Biomédica en Red- Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
29
|
Picón-Pagès P, Bonet J, García-García J, Garcia-Buendia J, Gutierrez D, Valle J, Gómez-Casuso CE, Sidelkivska V, Alvarez A, Perálvarez-Marín A, Suades A, Fernàndez-Busquets X, Andreu D, Vicente R, Oliva B, Muñoz FJ. Human Albumin Impairs Amyloid β-peptide Fibrillation Through its C-terminus: From docking Modeling to Protection Against Neurotoxicity in Alzheimer's disease. Comput Struct Biotechnol J 2019; 17:963-971. [PMID: 31360335 PMCID: PMC6639691 DOI: 10.1016/j.csbj.2019.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative process characterized by the accumulation of extracellular deposits of amyloid β-peptide (Aβ), which induces neuronal death. Monomeric Aβ is not toxic but tends to aggregate into β-sheets that are neurotoxic. Therefore to prevent or delay AD onset and progression one of the main therapeutic approaches would be to impair Aβ assembly into oligomers and fibrils and to promote disaggregation of the preformed aggregate. Albumin is the most abundant protein in the cerebrospinal fluid and it was reported to bind Aβ impeding its aggregation. In a previous work we identified a 35-residue sequence of clusterin, a well-known protein that binds Aβ, that is highly similar to the C-terminus (CTerm) of albumin. In this work, the docking experiments show that the average binding free energy of the CTerm-Aβ1-42 simulations was significantly lower than that of the clusterin-Aβ1-42 binding, highlighting the possibility that the CTerm retains albumin's binding properties. To validate this observation, we performed in vitro structural analysis of soluble and aggregated 1 μM Aβ1-42 incubated with 5 μM CTerm, equimolar to the albumin concentration in the CSF. Reversed-phase chromatography and electron microscopy analysis demonstrated a reduction of Aβ1-42 aggregates when the CTerm was present. Furthermore, we treated a human neuroblastoma cell line with soluble and aggregated Aβ1-42 incubated with CTerm obtaining a significant protection against Aβ-induced neurotoxicity. These in silico and in vitro data suggest that the albumin CTerm is able to impair Aβ aggregation and to promote disassemble of Aβ aggregates protecting neurons.
Collapse
Key Words
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Albumin
- Alzheimer's disease
- Amyloid
- Aß, Amyloid-ß peptide
- CD, Circular dichroism
- CSF, cerebrospinal fluid
- CTerm, albumin C-terminus
- Docking
- HPLC, high performance liquid chromatography
- LC-MS, Liquid chromatography-mass spectrometry
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NMR, nuclear magnetic resonance
- PBS, phosphate-buffered saline
- PDB, Protein Data Bank
- PPI, protein-protein interactions
- SDS, sodium dodecyl sulfate
- TEM, transmission electron microscopy
- TFA, trifluoroacetic acid
- UV, ultraviolet
- fAβ1–42, HiLyte Fluor488 labelled human Aβ1–42
- β-Sheet
Collapse
Affiliation(s)
- Pol Picón-Pagès
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bonet
- Laboratory of Structural Bioinformatics (GRIB), Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier García-García
- Laboratory of Structural Bioinformatics (GRIB), Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Garcia-Buendia
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniela Gutierrez
- Cell Signaling Laboratory, Centro UC de Envejecimiento y Regeneración (CARE), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Valle
- Laboratory of Proteomics and Protein Chemistry, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carmen E.S. Gómez-Casuso
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valeriya Sidelkivska
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alejandra Alvarez
- Cell Signaling Laboratory, Centro UC de Envejecimiento y Regeneración (CARE), Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Suades
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Laboratory of Structural Bioinformatics (GRIB), Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
30
|
Zhang T, Loschwitz J, Strodel B, Nagel-Steger L, Willbold D. Interference with Amyloid-β Nucleation by Transient Ligand Interaction. Molecules 2019; 24:E2129. [PMID: 31195746 PMCID: PMC6600523 DOI: 10.3390/molecules24112129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Amyloid-β peptide (Aβ) is an intrinsically disordered protein (IDP) associated with Alzheimer's disease. The structural flexibility and aggregation propensity of Aβ pose major challenges for elucidating the interaction between Aβ monomers and ligands. All-D-peptides consisting solely of D-enantiomeric amino acid residues are interesting drug candidates that combine high binding specificity with high metabolic stability. Here we characterized the interaction between the 12-residue all-D-peptide D3 and Aβ42 monomers, and how the interaction influences Aβ42 aggregation. We demonstrate for the first time that D3 binds to Aβ42 monomers with submicromolar affinities. These two highly unstructured molecules are able to form complexes with 1:1 and other stoichiometries. Further, D3 at substoichiometric concentrations effectively slows down the β-sheet formation and Aβ42 fibrillation by modulating the nucleation process. The study provides new insights into the molecular mechanism of how D3 affects Aβ assemblies and contributes to our knowledge on the interaction between two IDPs.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Jennifer Loschwitz
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Luitgard Nagel-Steger
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
31
|
Boulton S, Selvaratnam R, Ahmed R, Van K, Cheng X, Melacini G. Mechanisms of Specific versus Nonspecific Interactions of Aggregation-Prone Inhibitors and Attenuators. J Med Chem 2019; 62:5063-5079. [PMID: 31074269 PMCID: PMC7255057 DOI: 10.1021/acs.jmedchem.9b00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A common source of false positives in drug discovery is ligand self-association into large colloidal assemblies that nonspecifically inhibit target proteins. However, the mechanisms of aggregation-based inhibition (ABI) and ABI-attenuation by additives, such as Triton X-100 (TX) and human serum albumin (HSA), are not fully understood. Here, we investigate the molecular basis of ABI and ABI-attenuation through the lens of NMR and coupled thermodynamic cycles. We unexpectedly discover a new class of aggregating ligands that exhibit negligible interactions with proteins but act as competitive sinks for the free inhibitor, resulting in bell-shaped dose-response curves. TX attenuates ABI by converting inhibitory, protein-binding aggregates into nonbinding coaggregates, whereas HSA minimizes nonspecific ligand interactions by functioning as a reservoir for free inhibitor and preventing self-association. Hence, both TX and HSA are useful tools to minimize false positives arising from nonspecific binding but at the cost of potentially introducing false negatives due to suppression of specific interactions.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rajeevan Selvaratnam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Laboratory Medicine, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
32
|
Ahmed R, Akcan M, Khondker A, Rheinstädter MC, Bozelli JC, Epand RM, Huynh V, Wylie RG, Boulton S, Huang J, Verschoor CP, Melacini G. Atomic resolution map of the soluble amyloid beta assembly toxic surfaces. Chem Sci 2019; 10:6072-6082. [PMID: 31360412 PMCID: PMC6585597 DOI: 10.1039/c9sc01331h] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022] Open
Abstract
Atomic resolution map of the soluble amyloid beta assembly (Aβn) “toxic surfaces” that facilitate the early pathogenic events in Alzheimer's disease (AD).
Soluble amyloid beta assemblies (Aβn) are neurotoxic and play a central role in the early phases of the pathogenesis cascade leading to Alzheimer's disease. However, the current knowledge about the molecular determinants of Aβn toxicity is at best scant. Here, we comparatively analyze Aβn prepared in the absence or presence of a catechin library that modulates cellular toxicity. By combining solution NMR with dynamic light scattering, fluorescence spectroscopy, electron microscopy, wide-angle X-ray diffraction and cell viability assays, we identify a cluster of unique molecular signatures that distinguish toxic vs. nontoxic Aβ assemblies. These include the exposure of a hydrophobic surface spanning residues 17–28 and the concurrent shielding of the highly charged N-terminus. We show that the combination of these two dichotomous structural transitions promotes the colocalization and insertion of β-sheet rich Aβn into the membrane, compromising membrane integrity. These previously elusive toxic surfaces mapped here provide an unprecedented foundation to establish structure-toxicity relationships of Aβ assemblies.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8S 4M1 , Canada .
| | - Michael Akcan
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8S 4M1 , Canada .
| | - Adree Khondker
- Department of Physics and Astronomy , McMaster University , Hamilton , ON L8S 4M1 , Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy , McMaster University , Hamilton , ON L8S 4M1 , Canada
| | - José C Bozelli
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8S 4M1 , Canada .
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8S 4M1 , Canada .
| | - Vincent Huynh
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , ON L8S 4M1 , Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , ON L8S 4M1 , Canada
| | - Stephen Boulton
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8S 4M1 , Canada .
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , ON L8S 4M1 , Canada
| | - Chris P Verschoor
- Department of Health Research Methods, Evidence, and Impact (HEI) , McMaster University , Hamilton , ON L8S 4M1 , Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , ON L8S 4M1 , Canada . .,Department of Chemistry and Chemical Biology , McMaster University , Hamilton , ON L8S 4M1 , Canada
| |
Collapse
|
33
|
Bhattacharyya D, Mohite GM, Krishnamoorthy J, Gayen N, Mehra S, Navalkar A, Kotler SA, Ratha BN, Ghosh A, Kumar R, Garai K, Mandal AK, Maji SK, Bhunia A. Lipopolysaccharide from Gut Microbiota Modulates α-Synuclein Aggregation and Alters Its Biological Function. ACS Chem Neurosci 2019; 10:2229-2236. [PMID: 30855940 DOI: 10.1021/acschemneuro.8b00733] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Altered intestinal permeability has been correlated with Parkinson's pathophysiology in the enteric nervous system, before manifestations in the central nervous system (CNS). The inflammatory endotoxin or lipopolysaccharide (LPS) released by gut bacteria is known to modulate α-synuclein amyloidogenesis through the formation of intermediate nucleating species. Here, biophysical techniques in conjunction with microscopic images revealed the molecular interaction between lipopolysaccharide and α-synuclein that induce rapid nucleation events. This heteromolecular interaction stabilizes the α-helical intermediates in the α-synuclein aggregation pathway. Multitude NMR studies probed the residues involved in the LPS-binding structural motif that modulates the nucleating forms, affecting the cellular internalization and associated cytotoxicity. Collectively, our data characterizes this heteromolecular interaction associated with an alternative pathway in Parkinson's disease progression.
Collapse
Affiliation(s)
| | - Ganesh M. Mohite
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | | | - Nilanjan Gayen
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Samuel A. Kotler
- Laboratory of Chemical Physics, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bhisma N. Ratha
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Anirban Ghosh
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Kanchan Garai
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Hyderabad 500075, India
| | - Atin K. Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| |
Collapse
|
34
|
Guo C, Zhou HX. Fatty Acids Compete with Aβ in Binding to Serum Albumin by Quenching Its Conformational Flexibility. Biophys J 2018; 116:248-257. [PMID: 30580919 DOI: 10.1016/j.bpj.2018.11.3133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Human serum albumin (HSA) has been identified as an important regulator of amyloid-β (Aβ) fibrillization both in blood plasma and in cerebrospinal fluid. Fatty acids bind to HSA, and high serum levels of fatty acids increase the risk of Alzheimer's disease. In vitro, fatty-acid-loaded HSA (FA·HSA) loses the protective effect against Aβ fibrillization, but the mechanism underlying the interference of fatty acids on Aβ-HSA interactions has been unclear. Here, we used molecular dynamics simulations to gain atomic-level insight on the weak binding of monomeric Aβ40 and Aβ42 peptides with apo and FA·HSA. Consistent with recent NMR data, C-terminal residues of the Aβ peptides have the highest propensities for interacting with apo HSA. Interestingly, the Aβ binding residues of apo and FA·HSA exhibit distinct patterns, which qualitatively correlate with backbone flexibility. In FA·HSA, both flexibilities and Aβ binding propensities are relatively even among the three domains. In contrast, in apo HSA, domain III shows the highest flexibility and is the primary target for Aβ binding. Specifically, deformation of apo HSA creates strong binding sites within subdomain IIIb, around the interface between subdomains IIIa and IIIb, and at the cleft between domains III and I. Therefore, much like disordered proteins, HSA can take advantage of flexibility in forming promiscuous interactions with partners, until the flexibility is quenched by fatty-acid binding. Our work explains the effect of fatty acids on Aβ-HSA binding and contributes to the understanding of HSA regulation of Aβ aggregation.
Collapse
Affiliation(s)
- Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, China.
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
35
|
Multiphasic effect of vinyl pyrrolidone polymers on amyloidogenesis, from macromolecular crowding to inhibition. Biochem J 2018; 475:3417-3436. [DOI: 10.1042/bcj20180715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Deposition of misfolded amyloid polypeptides, associated with cell death, is the hallmark of many degenerative diseases (e.g. type II diabetes mellitus and Alzheimer's disease). In vivo, cellular and extracellular spaces are occupied by a high volume fraction of macromolecules. The resulting macromolecular crowding energetically affects reactions. Amyloidogenesis can either be promoted by macromolecular crowding through the excluded volume effect or inhibited due to a viscosity increase reducing kinetics. Macromolecular crowding can be mimicked in vitro by the addition of non-specific polymers, e.g. Ficoll, dextran and polyvinyl pyrrolidone (PVP), the latter being rarely used to study amyloid systems. We investigated the effect of PVP on amyloidogenesis of full-length human islet amyloid polypeptide (involved in type II diabetes) using fibrillisation and surface activity assays, ELISA, immunoblot and microscale thermophoresis. We demonstrate that high molecular mass PVP360 promotes amyloidogenesis due to volume exclusion and increase in effective amyloidogenic monomer concentration, like other crowders, but without the confounding effects of viscosity and surface activity. Interestingly, we also show that low molecular mass PVP10 has unique inhibitory properties as inhibition of fibril elongation occurs mainly in the bulk solution and is due to PVP10 directly and strongly interacting with amyloid species rather than the increase in viscosity typically associated with macromolecular crowding. In vivo, amyloidogenesis might be affected by the properties and proximity of endogenous macromolecular crowders, which could contribute to changes in associated pathogenesis. More generally, the PVP10 molecular backbone could be used to design small compounds as potential inhibitors of toxic species formation.
Collapse
|
36
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
37
|
Kakinen A, Javed I, Faridi A, Davis TP, Ke PC. Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1803-1809. [DOI: 10.1016/j.bbamem.2018.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
|
38
|
Byun JA, Melacini G. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes. Methods 2018; 148:19-27. [DOI: 10.1016/j.ymeth.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
|
39
|
Singh V, Deepak RNVK, Sengupta B, Joshi AS, Fan H, Sen P, Thakur AK. Calmidazolium Chloride and Its Complex with Serum Albumin Prevent Huntingtin Exon1 Aggregation. Mol Pharm 2018; 15:3356-3368. [PMID: 29979597 DOI: 10.1021/acs.molpharmaceut.8b00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Huntington's disease (HD) is a genetic disorder caused by a CAG expansion mutation in Huntingtin gene leading to polyglutamine (polyQ) expansion in the N-terminus side of Huntingtin (Httex1) protein. Neurodegeneration in HD is linked to aggregates formed by Httex1 bearing an expanded polyQ. Initiation and elongation steps of Httex1 aggregation are potential target steps for the discovery of therapeutic molecules for HD, which is currently untreatable. Here we report Httex1 aggregation inhibition by calmidazolium chloride (CLC) by acting on the initial aggregation event. Because it is hydrophobic, CLC was adsorbed to the vial surface and could not sustain an inhibition effect for a longer duration. The use of bovine serum albumin (BSA) prevented CLC adsorption by forming a BSA-CLC complex. This complex showed improved Httex1 aggregation inhibition by interacting with the aggregation initiator, the NT17 part of Httex1. Furthermore, biocompatible CLC-loaded BSA nanoparticles were made which reduced the polyQ aggregates in HD-150Q cells.
Collapse
Affiliation(s)
- Virender Singh
- Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | | | - Bhaswati Sengupta
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Abhayraj S Joshi
- Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Hao Fan
- Bioinformatics Institute , 30 Biopolis Street, Matrix #07-01 , Singapore 138671.,Department of Biological Sciences , National University of Singapore , Singapore 117545
| | - Pratik Sen
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Ashwani Kumar Thakur
- Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| |
Collapse
|
40
|
Pagano K, Galante D, D'Arrigo C, Corsaro A, Nizzari M, Florio T, Molinari H, Tomaselli S, Ragona L. Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity. Mol Neurobiol 2018; 56:1957-1971. [PMID: 29981054 DOI: 10.1007/s12035-018-1202-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Soluble Aβ oligomers are widely recognized as the toxic forms responsible for triggering AD, and Aβ receptors are hypothesized to represent the first step in a neuronal cascade leading to dementia. Cellular prion protein (PrP) has been reported as a high-affinity binder of Aβ oligomers. The interactions of PrP with both Aβ42 and the highly toxic N-truncated pyroglutamylated species (AβpE3-42) are here investigated, at a molecular level, by means of ThT fluorescence, NMR and TEM. We demonstrate that soluble PrP binds both Aβ42 and AβpE3-42, preferentially interacting with oligomeric species and delaying fibril formation. Residue level analysis of Aβ42 oligomerization process reveals, for the first time, that PrP is able to differently interact with the forming oligomers, depending on the aggregation state of the starting Aβ42 sample. A distinct behavior is observed for Aβ42 1-30 region and C-terminal residues, suggesting that PrP protects Aβ42 N-tail from entangling on the mature NMR-invisible fibril, consistent with the hypothesis that Aβ42 N-tail is the locus of interaction with PrP. PrP/AβpE3-42 interactions are here reported for the first time. All interaction data are validated and complemented by cellular tests performed on Wt and PrP-silenced neuronal cell lines, clearly showing PrP dependent Aβ oligomer cell internalization and toxicity. The ability of soluble PrP to compete with membrane-anchored PrP for binding to Aβ oligomers bears relevance for studies of druggable pathways.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy
| | | | | | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, and Center of Excellence for Biomedical research (CEBR), University of Genoa, Genoa, Italy
| | | | - Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy.
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan, Italy.
| |
Collapse
|
41
|
Romano M, Fusco G, Choudhury HG, Mehmood S, Robinson CV, Zirah S, Hegemann JD, Lescop E, Marahiel MA, Rebuffat S, De Simone A, Beis K. Structural Basis for Natural Product Selection and Export by Bacterial ABC Transporters. ACS Chem Biol 2018; 13:1598-1609. [PMID: 29757605 DOI: 10.1021/acschembio.8b00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacteria under stress produce ribosomally synthesized and post-translationally modified peptides (RiPPs) to target closely related species, such as the lasso peptide microcin J25 (MccJ25). These peptides are also toxic to the producing organisms that utilize dedicated ABC transporters to achieve self-immunity. MccJ25 is exported by the Escherichia coli ABC transporter McjD through a complex mechanism of recognition that has remained elusive. Here, we used biomolecular NMR to study this interaction and identified a region of the toxic peptide that is crucial to its recognition by the ABC transporter. Our study provides evidence that McjD is highly specific to MccJ25 and not to other RiPPs or antibiotics, unlike multidrug ABC transporters. Additionally, we show that MccJ25 is not exported by another natural product ABC transporter. Therefore, we propose that specific interactions between natural product ABC transporters and their substrate provides them with their high degree of specificity. Taken together, these findings suggest that ABC transporters might have acquired structural elements in their binding cavity to recognize and allow promiscuous export of a larger variety of compounds.
Collapse
Affiliation(s)
- Maria Romano
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom
| | - Giuliana Fusco
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Hassanul G. Choudhury
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Séverine Zirah
- Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier 75005 Paris, France
| | - Julian D. Hegemann
- Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana—Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mohamed A. Marahiel
- Department of Chemistry/Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Sylvie Rebuffat
- Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier 75005 Paris, France
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
42
|
Wallin C, Hiruma Y, Wärmländer SKTS, Huvent I, Jarvet J, Abrahams JP, Gräslund A, Lippens G, Luo J. The Neuronal Tau Protein Blocks in Vitro Fibrillation of the Amyloid-β (Aβ) Peptide at the Oligomeric Stage. J Am Chem Soc 2018; 140:8138-8146. [DOI: 10.1021/jacs.7b13623] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Yoshitaka Hiruma
- Divisions of Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 10691 Stockholm, Sweden
| | - Guy Lippens
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, CNRS, Institut National des Sciences Appliquées, Institut National de Recherche Agronomique, Université de Toulouse, 31077 Toulouse, France
| | - Jinghui Luo
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
43
|
Sciacca MFM, Chillemi R, Sciuto S, Greco V, Messineo C, Kotler SA, Lee DK, Brender JR, Ramamoorthy A, La Rosa C, Milardi D. A blend of two resveratrol derivatives abolishes hIAPP amyloid growth and membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1793-1802. [PMID: 29555190 DOI: 10.1016/j.bbamem.2018.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Type II diabetes mellitus (T2DM) is characterized by the presence of amyloid deposits of the human islet amyloid polypeptide (hIAPP) in pancreatic β-cells. A wealth of data supports the hypothesis that hIAPP's toxicity is related to an abnormal interaction of amyloids with islet cell membranes. Thus, many studies aimed at finding effective therapies for T2DM focus on the design of molecules that are able to inhibit hIAPP's amyloid growth and the related membrane damage as well. Based on this view and inspired by its known anti-amyloid properties, we have functionalized resveratrol with a phosphoryl moiety (4'-O-PR) that improves its solubility and pharmacological properties. A second resveratrol derivative has also been obtained by conjugating resveratrol with a dimyristoylphosphatidyl moiety (4'-DMPR). The use of both compounds resulted in abolishing both amyloid growth and amyloid mediated POPC/POPS membrane damage in tube tests. We propose that a mixture of a water-soluble anti-aggregating compound and its lipid-anchored derivative may be employed as a general strategy to prevent and/or to halt amyloid-related membrane damage.
Collapse
Affiliation(s)
- Michele F M Sciacca
- Istituto CNR di Biostrutture e Bioimmagini- Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Rosa Chillemi
- Università degli Studi di Catania, Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Sebastiano Sciuto
- Università degli Studi di Catania, Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Valentina Greco
- Università degli Studi di Catania, Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Concetta Messineo
- Università degli Studi di Catania, Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Samuel A Kotler
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Dong-Kuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jeffrey R Brender
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carmelo La Rosa
- Università degli Studi di Catania, Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Danilo Milardi
- Istituto CNR di Biostrutture e Bioimmagini- Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
44
|
Lautenschläger J, Stephens AD, Fusco G, Ströhl F, Curry N, Zacharopoulou M, Michel CH, Laine R, Nespovitaya N, Fantham M, Pinotsi D, Zago W, Fraser P, Tandon A, St George-Hyslop P, Rees E, Phillips JJ, De Simone A, Kaminski CF, Schierle GSK. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat Commun 2018; 9:712. [PMID: 29459792 PMCID: PMC5818535 DOI: 10.1038/s41467-018-03111-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/19/2018] [Indexed: 01/04/2023] Open
Abstract
Alpha-synuclein is known to bind to small unilamellar vesicles (SUVs) via its N terminus, which forms an amphipathic alpha-helix upon membrane interaction. Here we show that calcium binds to the C terminus of alpha-synuclein, therewith increasing its lipid-binding capacity. Using CEST-NMR, we reveal that alpha-synuclein interacts with isolated synaptic vesicles with two regions, the N terminus, already known from studies on SUVs, and additionally via its C terminus, which is regulated by the binding of calcium. Indeed, dSTORM on synaptosomes shows that calcium mediates the localization of alpha-synuclein at the pre-synaptic terminal, and an imbalance in calcium or alpha-synuclein can cause synaptic vesicle clustering, as seen ex vivo and in vitro. This study provides a new view on the binding of alpha-synuclein to synaptic vesicles, which might also affect our understanding of synucleinopathies.
Collapse
Affiliation(s)
- Janin Lautenschläger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Giuliana Fusco
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Nathan Curry
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Maria Zacharopoulou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Claire H Michel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Romain Laine
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Nadezhda Nespovitaya
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Marcus Fantham
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Dorothea Pinotsi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern Weg 3, CH8093, Zurich, Switzerland
| | - Wagner Zago
- Prothena Biosciences Inc, South San Francisco, CA, 94080, USA
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Jonathan J Phillips
- Department of Biosciences, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
45
|
Ahmed R, Melacini G. A solution NMR toolset to probe the molecular mechanisms of amyloid inhibitors. Chem Commun (Camb) 2018; 54:4644-4652. [DOI: 10.1039/c8cc01380b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A chemical exchange-based solution NMR toolset to probe the molecular mechanisms of amyloid inhibitors.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
- Department of Chemistry and Chemical Biology
| |
Collapse
|
46
|
VanSchouwen B, Ahmed R, Milojevic J, Melacini G. Functional dynamics in cyclic nucleotide signaling and amyloid inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1529-1543. [PMID: 28911813 DOI: 10.1016/j.bbapap.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
It is now established that understanding the molecular basis of biological function requires atomic resolution maps of both structure and dynamics. Here, we review several illustrative examples of functional dynamics selected from our work on cyclic nucleotide signaling and amyloid inhibition. Although fundamentally diverse, a central aspect common to both fields is that function can only be rationalized by considering dynamic equilibria between distinct states of the accessible free energy landscape. The dynamic exchange between ground and excited states of signaling proteins is essential to explain auto-inhibition and allosteric activation. The dynamic exchange between non-toxic monomeric species and toxic oligomers of amyloidogenic proteins provides a foundation to understand amyloid inhibition. NMR ideally probes both types of dynamic exchange at atomic resolution. Specifically, we will show how NMR was utilized to reveal the dynamical basis of cyclic nucleotide affinity, selectivity, agonism and antagonism in multiple eukaryotic cAMP and cGMP receptors. We will also illustrate how NMR revealed the mechanism of action of plasma proteins that act as extracellular chaperones and inhibit the self-association of the prototypical amyloidogenic Aβ peptide. The examples outlined in this review illustrate the widespread implications of functional dynamics and the power of NMR as an indispensable tool in molecular pharmacology and pathology.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Julijana Milojevic
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|