1
|
Verdejo-Torres O, Klein DC, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A, Bakhshian A, Fitisemanu FM, Jiménez-González ML, Flinn L, Pezacki AT, Lanzirotti A, Ortiz Frade LA, Chang CJ, Navea JG, Blaby-Haas CE, Hainer SJ, Padilla-Benavides T. Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation and metal homeostasis. PLoS Genet 2024; 20:e1011495. [PMID: 39637238 DOI: 10.1371/journal.pgen.1011495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Copper (Cu) is essential for respiration, neurotransmitter synthesis, oxidative stress response, and transcription regulation, with imbalances leading to neurological, cognitive, and muscular disorders. Here we show the role of a novel Cu-binding protein (Cu-BP) in mammalian transcriptional regulation, specifically on skeletal muscle differentiation using murine primary myoblasts. Utilizing synchrotron X-ray fluorescence-mass spectrometry, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a key Cu-BP abundant in both nuclear and cytosolic fractions. mCrip2 binds two to four Cu+ ions with high affinity and presents limited redox potential. CRISPR/Cas9-mediated deletion of mCrip2 impaired myogenesis, likely due to Cu accumulation in cells. CUT&RUN and transcriptome analyses revealed its association with gene promoters, including MyoD1 and metallothioneins, suggesting a novel Cu-responsive regulatory role for mCrip2. Our work describes the significance of mCrip2 in skeletal muscle differentiation and metal homeostasis, expanding understanding of the Cu-network in myoblasts. Copper (Cu) is essential for various cellular processes, including respiration and stress response, but imbalances can cause serious health issues. This study reveals a new Cu-binding protein (Cu-BP) involved in muscle development in primary myoblasts. Using unbiased metalloproteomic techniques and high throughput sequencing, we identified mCrip2 as a key Cu-BP found in cell nuclei and cytoplasm. mCrip2 binds up to four Cu+ ions and has a limited redox potential. Deleting mCrip2 using CRISPR/Cas9 disrupted muscle formation due to Cu accumulation. Further analyses showed that mCrip2 regulates the expression of genes like MyoD1, essential for muscle differentiation, and metallothioneins in response to copper supplementation. This research highlights the importance of mCrip2 in muscle development and metal homeostasis, providing new insights into the Cu-network in cells.
Collapse
Affiliation(s)
- Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - David C Klein
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry. Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Jaime Carrazco-Carrillo
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Denzel Bonilla-Pinto
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Antonio Rivera
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Arpie Bakhshian
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Fa'alataitaua M Fitisemanu
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Martha L Jiménez-González
- Departamento de Electroquímica, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Santiago de Querétaro, Querétaro, México
| | - Lyra Flinn
- Chemistry Department. Skidmore College, Saratoga Springs, New York, United States of America
| | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry. University of California, Berkeley, California, United States of America
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, The University of Chicago, Lemont, Illinois, United States of America
| | - Luis Antonio Ortiz Frade
- Departamento de Electroquímica, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Santiago de Querétaro, Querétaro, México
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry. University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology. University of California, Berkeley, California, United States of America
| | - Juan G Navea
- Chemistry Department. Skidmore College, Saratoga Springs, New York, United States of America
| | - Crysten E Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California & DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sarah J Hainer
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvanian United States of America
| | - Teresita Padilla-Benavides
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
2
|
Nayeri N, Górecki K, Lindkvist-Petersson K, Gourdon P, Li P. Isolation and crystallization of copper resistance protein B (CopB) from Acinetobacter baumannii. Protein Expr Purif 2024; 227:106635. [PMID: 39608619 DOI: 10.1016/j.pep.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic, Gram-negative human pathogen, which is predominantly found in hospital patients. Its antimicrobial resistance is escalating, leading to less efficient treatments, and an increasing interest in identifying new therapeutic drugs. Metals as antimicrobials are vital in healthcare and agriculture, and copper-containing surfaces are known to reduce microbial counts, also in clinical settings. Indeed, copper (Cu) is an essential element required for survival in all organisms from bacteria to humans, but nevertheless elevated levels are highly toxic for cells. Through different regulatory mechanisms, cells maintain Cu homeostasis, and ion channels and transporters are critical in this process. Precise understanding of such ion transport requires insight into the protein structures of the involved proteins, which will also provide information important for applied sciences. Considering the medical significance of A. baumannii and the possibility to exploit Cu to handle such infections, channels and transporters represent appealing targets. Here we approached the putative outer membrane CopB (Copper resistance protein B) from A. baumannii that is postulated to conduct Cu, with characterization of its structure and function as well as to enable rational drug-design. To this end, we demonstrate in this work procedures to produce purified sample and to recover diffracting protein crystals of CopB. The protein was overproduced in E. coli and membrane extracted in a range of detergents. The solubilized protein was subjected to crystallization, which yielded hits that scatter X-rays to low resolution. Our findings have the potential to pave the way for subsequent drug discovery.
Collapse
Affiliation(s)
- Niloofar Nayeri
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Kamil Górecki
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Karin Lindkvist-Petersson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Ping Li
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden.
| |
Collapse
|
3
|
Ricardi MM, Tribelli PM, Costa CS, Pezzoni M. Global transcriptional response of Pseudomonas aeruginosa to UVA radiation. Photochem Photobiol Sci 2024; 23:2029-2044. [PMID: 39470974 DOI: 10.1007/s43630-024-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.
Collapse
Affiliation(s)
- Martiniano M Ricardi
- IFIByNE (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN (CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Contaldo U, Savant-Aira D, Vergnes A, Becam J, Biaso F, Ilbert M, Aussel L, Ezraty B, Lojou E, Mazurenko I. Methionine-rich domains emerge as facilitators of copper recruitment in detoxification systems. Proc Natl Acad Sci U S A 2024; 121:e2402862121. [PMID: 39378088 PMCID: PMC11494321 DOI: 10.1073/pnas.2402862121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The Escherichia coli multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various E. coli CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.
Collapse
Affiliation(s)
- Umberto Contaldo
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Dylan Savant-Aira
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Alexandra Vergnes
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Jérôme Becam
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Frédéric Biaso
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Marianne Ilbert
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Laurent Aussel
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Benjamin Ezraty
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Elisabeth Lojou
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Ievgen Mazurenko
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| |
Collapse
|
5
|
Otur Ç, Okay S, Konuksever Ö, Duyar O, Kaya Y, Kurt-Kızıldoğan A. Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19. World J Microbiol Biotechnol 2024; 40:347. [PMID: 39397126 DOI: 10.1007/s11274-024-04153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, 06230, Türkiye.
| | - Ömer Konuksever
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Oğuzhan Duyar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Yılmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye.
| |
Collapse
|
6
|
Zhou Y, Zhang X, Yu W, Fu Y, Ni L, Yu J, Wang X, Song W, Wang C. Enhancing Pseudomonas cell growth for the production of medium-chain-length polyhydroxyalkanoates from Antarctic krill shell waste. Int J Biol Macromol 2024; 277:133364. [PMID: 38917919 DOI: 10.1016/j.ijbiomac.2024.133364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Antarctic krill shell waste (AKSW), a byproduct of Antarctic krill processing, has substantial quantity but low utilization. Utilizing microbial-based cell factories, with Pseudomonas putida as a promising candidate, offers an ecofriendly and sustainable approach to producing valuable bioproducts from renewable sources. However, the high fluoride content in AKSW impedes the cell growth of P. putida. This study aims to investigate the transcriptional response of P. putida to fluoride stress from AKSW and subsequently conduct genetic modification of the strain based on insights gained from transcriptomic analysis. Notably, the engineered strain KT+16840+03100 exhibited a remarkable 33.7-fold increase in cell growth, capable of fermenting AKSW for medium-chain-length-polyhydroxyalkanoates (mcl-PHA) biosynthesis, achieving a 40.3-fold increase in mcl-PHA yield compared to the control strain. This research advances our understanding of how P. putida responds to fluoride stress from AKSW and provides engineered strains that serve as excellent platforms for producing mcl-PHA through AKSW.
Collapse
Affiliation(s)
- Yueyue Zhou
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| | - Xingyu Zhang
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China
| | - Wenying Yu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang, China
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang, China
| | - Lijuan Ni
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China
| | - Jiayi Yu
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China
| | - Xiaopeng Wang
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| | - Weiwei Song
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| | - Chunlin Wang
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| |
Collapse
|
7
|
Yasin A, Mandato A, Hofmann L, Igbaria-Jaber Y, Shenberger Y, Gevorkyan-Airapetov L, Saxena S, Ruthstein S. The Dynamic Plasticity of P. aeruginosa CueR Copper Transcription Factor upon Cofactor and DNA Binding. Chembiochem 2024; 25:e202400279. [PMID: 38776258 DOI: 10.1002/cbic.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
Bacteria use specialized proteins, like transcription factors, to rapidly control metal ion balance. CueR is a Gram-negative bacterial copper regulator. The structure of E. coli CueR complexed with Cu(I) and DNA was published, since then many studies have shed light on its function. However, P. aeruginosa CueR, which shows high sequence similarity to E. coli CueR, has been less studied. Here, we applied room-temperature electron paramagnetic resonance (EPR) measurements to explore changes in dynamics of P. aeruginosa CueR in dependency of copper concentrations and interaction with two different DNA promoter regions. We showed that P. aeruginosa CueR is less dynamic than the E. coli CueR protein and exhibits much higher sensitivity to DNA binding as compared to its E. coli CueR homolog. Moreover, a difference in dynamical behavior was observed when P. aeruginosa CueR binds to the copZ2 DNA promoter sequence compared to the mexPQ-opmE promoter sequence. Such dynamical differences may affect the expression levels of CopZ2 and MexPQ-OpmE proteins in P. aeruginosa. Overall, such comparative measurements of protein-DNA complexes derived from different bacterial systems reveal insights about how structural and dynamical differences between two highly homologous proteins lead to quite different DNA sequence-recognition and mechanistic properties.
Collapse
Affiliation(s)
- Ameer Yasin
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Yasmin Igbaria-Jaber
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel, 5290002
| |
Collapse
|
8
|
Edvardsen PKT, Askarian F, Zurich R, Nizet V, Vaaje-Kolstad G. Exploring roles of the chitinase ChiC in modulating Pseudomonas aeruginosa virulence phenotypes. Microbiol Spectr 2024; 12:e0054624. [PMID: 38819151 PMCID: PMC11218509 DOI: 10.1128/spectrum.00546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Chitinases are ubiquitous enzymes involved in biomass degradation and chitin turnover in nature. Pseudomonas aeruginosa (PA), an opportunistic human pathogen, expresses ChiC, a secreted glycoside hydrolase 18 family chitinase. Despite speculation about ChiC's role in PA disease pathogenesis, there is scant evidence supporting this hypothesis. Since PA cannot catabolize chitin, we investigated the potential function(s) of ChiC in PA pathophysiology. Our findings show that ChiC exhibits activity against both insoluble (α- and β-chitin) and soluble chitooligosaccharides. Enzyme kinetics toward (GlcNAc)4 revealed a kcat of 6.50 s-1 and a KM of 1.38 mM, the latter remarkably high for a canonical chitinase. In our label-free proteomics investigation, ChiC was among the most abundant proteins in the Pel biofilm, suggesting a potential contribution to PA biofilm formation. Using an intratracheal challenge model of PA pneumonia, the chiC::ISphoA/hah transposon insertion mutant paradoxically showed slightly increased virulence compared to the wild-type parent strain. Our results indicate that ChiC is a genuine chitinase that contributes to a PA pathoadaptive pathway.IMPORTANCEIn addition to performing chitin degradation, chitinases from the glycoside hydrolase 18 family have been found to play important roles during pathogenic bacterial infection. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing pneumonia in immunocompromised individuals. Despite not being able to grow on chitin, the bacterium produces a chitinase (ChiC) with hitherto unknown function. This study describes an in-depth characterization of ChiC, focusing on its potential contribution to the bacterium's disease-causing ability. We demonstrate that ChiC can degrade both polymeric chitin and chitooligosaccharides, and proteomic analysis of Pseudomonas aeruginosa biofilm revealed an abundance of ChiC, hinting at a potential role in biofilm formation. Surprisingly, a mutant strain incapable of ChiC production showed higher virulence than the wild-type strain. While ChiC appears to be a genuine chitinase, further investigation is required to fully elucidate its contribution to Pseudomonas aeruginosa virulence, an important task given the evident health risk posed by this bacterium.
Collapse
Affiliation(s)
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Raymond Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
9
|
Elsen S, Simon V, Attrée I. Cross-regulation and cross-talk of conserved and accessory two-component regulatory systems orchestrate Pseudomonas copper resistance. PLoS Genet 2024; 20:e1011325. [PMID: 38861577 PMCID: PMC11195947 DOI: 10.1371/journal.pgen.1011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Bacteria use diverse strategies and molecular machinery to maintain copper homeostasis and to cope with its toxic effects. Some genetic elements providing copper resistance are acquired by horizontal gene transfer; however, little is known about how they are controlled and integrated into the central regulatory network. Here, we studied two copper-responsive systems in a clinical isolate of Pseudomonas paraeruginosa and deciphered the regulatory and cross-regulation mechanisms. To do so, we combined mutagenesis, transcriptional fusion analyses and copper sensitivity phenotypes. Our results showed that the accessory CusRS two-component system (TCS) responds to copper and activates both its own expression and that of the adjacent nine-gene operon (the pcoA2 operon) to provide resistance to elevated levels of extracellular copper. The same locus was also found to be regulated by two core-genome-encoded TCSs-the copper-responsive CopRS and the zinc-responsive CzcRS. Although the target palindromic sequence-ATTCATnnATGTAAT-is the same for the three response regulators, transcriptional outcomes differ. Thus, depending on the operon/regulator pair, binding can result in different activation levels (from none to high), with the systems demonstrating considerable plasticity. Unexpectedly, although the classical CusRS and the noncanonical CopRS TCSs rely on distinct signaling mechanisms (kinase-based vs. phosphatase-based), we discovered cross-talk in the absence of the cognate sensory kinases. This cross-talk occurred between the proteins of these two otherwise independent systems. The cusRS-pcoA2 locus is part of an Integrative and Conjugative Element and was found in other Pseudomonas strains where its expression could provide copper resistance under appropriate conditions. The results presented here illustrate how acquired genetic elements can become part of endogenous regulatory networks, providing a physiological advantage. They also highlight the potential for broader effects of accessory regulatory proteins through interference with core regulatory proteins.
Collapse
Affiliation(s)
- Sylvie Elsen
- University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Victor Simon
- University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Ina Attrée
- University Grenoble Alpes, Institute of Structural Biology, UMR5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| |
Collapse
|
10
|
Huang M, Liu W, Qin C, Xu Y, Zhou X, Wen Q, Ma W, Huang Y, Chen X. Copper Resistance Mechanism and Copper Response Genes in Corynebacterium crenatum. Microorganisms 2024; 12:951. [PMID: 38792781 PMCID: PMC11124244 DOI: 10.3390/microorganisms12050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Heavy metal resistance mechanisms and heavy metal response genes are crucial for microbial utilization in heavy metal remediation. Here, Corynebacterium crenatum was proven to possess good tolerance in resistance to copper. Then, the transcriptomic responses to copper stress were investigated, and the vital pathways and genes involved in copper resistance of C. crenatum were determined. Based on transcriptome analysis results, a total of nine significantly upregulated DEGs related to metal ion transport were selected for further study. Among them, GY20_RS0100790 and GY20_RS0110535 belong to transcription factors, and GY20_RS0110270, GY20_RS0100790, and GY20_RS0110545 belong to copper-binding peptides. The two transcription factors were studied for the function of regulatory gene expression. The three copper-binding peptides were displayed on the C. crenatum surface for a copper adsorption test. Furthermore, the nine related metal ion transport genes were deleted to investigate the effect on growth in copper stress. This investigation provided the basis for utilizing C. crenatum in copper bioremediation.
Collapse
Affiliation(s)
- Mingzhu Huang
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Wenxin Liu
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Chunyan Qin
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Yang Xu
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Xu Zhou
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Qunwei Wen
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Wenbin Ma
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Yanzi Huang
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Xuelan Chen
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| |
Collapse
|
11
|
Verdejo-Torres O, Klein DC, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A, Fitisemanu F, Jiménez-González ML, Flinn L, Pezacki AT, Lanzirotti A, Ortiz-Frade LA, Chang CJ, Navea JG, Blaby-Haas C, Hainer SJ, Padilla-Benavides T. Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592485. [PMID: 38746126 PMCID: PMC11092763 DOI: 10.1101/2024.05.03.592485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells. In this context, our lab investigates the contributions of novel Cu-BPs in skeletal muscle differentiation using murine primary myoblasts. Through an unbiased synchrotron X-ray fluorescence-mass spectrometry (XRF/MS) metalloproteomic approach, we identified the murine cysteine rich intestinal protein 2 (mCrip2) in a sample that showed enriched Cu signal, which was isolated from differentiating primary myoblasts derived from mouse satellite cells. Immunolocalization analyses showed that mCrip2 is abundant in both nuclear and cytosolic fractions. Thus, we hypothesized that mCrip2 might have differential roles depending on its cellular localization in the skeletal muscle lineage. mCrip2 is a LIM-family protein with 4 conserved Zn2+-binding sites. Homology and phylogenetic analyses showed that mammalian Crip2 possesses histidine residues near two of the Zn2+-binding sites (CX2C-HX2C) which are potentially implicated in Cu+-binding and competition with Zn2+. Biochemical characterization of recombinant human hsCRIP2 revealed a high Cu+-binding affinity for two and four Cu+ ions and limited redox potential. Functional characterization using CRISPR/Cas9-mediated deletion of mCrip2 in primary myoblasts did not impact proliferation, but impaired myogenesis by decreasing the expression of differentiation markers, possibly attributed to Cu accumulation. Transcriptome analyses of proliferating and differentiating mCrip2 KO myoblasts showed alterations in mRNA processing, protein translation, ribosome synthesis, and chromatin organization. CUT&RUN analyses showed that mCrip2 associates with a select set of gene promoters, including MyoD1 and metallothioneins, acting as a novel Cu-responsive or Cu-regulating protein. Our work demonstrates novel regulatory functions of mCrip2 that mediate skeletal muscle differentiation, presenting new features of the Cu-network in myoblasts.
Collapse
Affiliation(s)
- Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, CT, 06459. USA
| | - David C. Klein
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, PA. 15207. USA
| | - Lorena Novoa-Aponte
- Present address: Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD. USA
| | | | - Denzel Bonilla-Pinto
- Department of Molecular Biology and Biochemistry, Wesleyan University, CT, 06459. USA
| | - Antonio Rivera
- Department of Molecular Biology and Biochemistry, Wesleyan University, CT, 06459. USA
| | | | | | - Lyra Flinn
- Chemistry Department. Skidmore College, Saratoga Springs New York, 12866. USA
| | - Aidan T. Pezacki
- Department of Chemistry. University of California, Berkeley, California, 94720. USA
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, The University of Chicago, Lemont, IL 60439. USA
| | | | - Christopher J. Chang
- Department of Chemistry. University of California, Berkeley, California, 94720. USA
- Department of Molecular and Cell Biology. University of California, Berkeley, California, 94720. USA
| | - Juan G. Navea
- Chemistry Department. Skidmore College, Saratoga Springs New York, 12866. USA
| | - Crysten Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA & DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA. USA
| | - Sarah J. Hainer
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, PA. 15207. USA
| | | |
Collapse
|
12
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
13
|
Li T, Cao H, Duan C, Chen S, Xu Z. Activation of CzcS/CzcR during zinc excess regulates copper tolerance and pyochelin biosynthesis of Pseudomonas aeruginosa. Appl Environ Microbiol 2024; 90:e0232723. [PMID: 38376236 PMCID: PMC10952498 DOI: 10.1128/aem.02327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Zinc is an important transition metal that is essential for numerous physiological processes while excessive zinc is cytotoxic. Pseudomonas aeruginosa is a ubiquitous opportunistic human pathogen equipped with an exquisite zinc homeostatic system, and the two-component system CzcS/CzcR plays a key role in zinc detoxification. Although an increasing number of studies have shown the versatility of CzcS/CzcR, its physiological functions are still not fully understood. In this study, transcriptome analysis was performed, which revealed that CzcS/CzcR is silenced in the absence of the zinc signal but modulates global gene expression when the pathogen encounters zinc excess. CzcR was demonstrated to positively regulate the copper tolerance gene ptrA and negatively regulate the pyochelin biosynthesis regulatory gene pchR through direct binding to their promoters. Remarkably, the upregulation of ptrA and downregulation of pchR were shown to rescue the impaired capacity of copper tolerance and prevent pyochelin overproduction, respectively, caused by zinc excess. This study not only advances our understanding of the regulatory spectrum of CzcS/CzcR but also provides new insights into stress adaptation mediated by two-component systems in bacteria to balance the cellular processes that are disturbed by their signals. IMPORTANCE CzcS/CzcR is a two-component system that has been found to modulate zinc homeostasis, quorum sensing, and antibiotic resistance in Pseudomonas aeruginosa. To fully understand the physiological functions of CzcS/CzcR, we performed a comparative transcriptome analysis in this study and discovered that CzcS/CzcR controls global gene expression when it is activated during zinc excess. In particular, we demonstrated that CzcS/CzcR is critical for maintaining copper tolerance and iron homeostasis, which are disrupted during zinc excess, by inducing the expression of the copper tolerance gene ptrA and repressing the pyochelin biosynthesis genes through pchR. This study revealed the global regulatory functions of CzcS/CzcR and described a new and intricate adaptive mechanism in response to zinc excess in P. aeruginosa. The findings of this study have important implications for novel anti-infective interventions by incorporating metal-based drugs.
Collapse
Affiliation(s)
- Ting Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheng Duan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Rivera-Millot A, Harrison LB, Veyrier FJ. Copper management strategies in obligate bacterial symbionts: balancing cost and benefit. Emerg Top Life Sci 2024; 8:29-35. [PMID: 38095549 PMCID: PMC10903467 DOI: 10.1042/etls20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 02/23/2024]
Abstract
Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Luke B. Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
15
|
Wang H, Zhang S, Zhang J. The copper resistance mechanism in a newly isolated Pseudoxanthomonas spadix ZSY-33. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:484-496. [PMID: 37328952 PMCID: PMC10667631 DOI: 10.1111/1758-2229.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Resolving the heavy metal resistance mechanisms of microbes is crucial for understanding the bioremediation of the ecological environment. In this study, a multiple heavy metal resistance bacterium, Pseudoxanthomonas spadix ZSY-33 was isolated and characterized. The copper resistance mechanism was revealed by analysis of the physiological traits, copper distribution, and genomic and transcriptomic data of strain ZSY-33 cultured with different concentrations of copper. The growth inhibition assay in basic medium showed that the growth of strain ZSY-33 was inhibited in the presence of 0.5 mM copper. The production of extracellular polymeric substances increased at a lower concentration of copper and decreased at a higher concentration of copper. Integrative analysis of genomic and transcriptomic, the copper resistance mechanism in strain ZSY-33 was elucidated. At a lower concentration of copper, the Cus and Cop systems were responsible for the homeostasis of intracellular copper. As the concentration of copper increased, multiple metabolism pathways, including the metabolism of sulfur, amino acids, and pro-energy were cooperated with the Cus and Cop systems to deal with copper stress. These results indicated a flexible copper resistance mechanism in strain ZSY-33, which may acquire from the long-term interaction with the living environment.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- Institute of Xiong'an New AreaHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
- College of Life ScienceHebei UniversityBaodingPeople's Republic of China
| | - Siyao Zhang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
| | - Jing Zhang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- Institute of Xiong'an New AreaHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
- College of Life ScienceHebei UniversityBaodingPeople's Republic of China
| |
Collapse
|
16
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
17
|
Krzyżanowska DM, Jabłońska M, Kaczyński Z, Czerwicka-Pach M, Macur K, Jafra S. Host-adaptive traits in the plant-colonizing Pseudomonas donghuensis P482 revealed by transcriptomic responses to exudates of tomato and maize. Sci Rep 2023; 13:9445. [PMID: 37296159 PMCID: PMC10256816 DOI: 10.1038/s41598-023-36494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Pseudomonads are metabolically flexible and can thrive on different plant hosts. However, the metabolic adaptations required for host promiscuity are unknown. Here, we addressed this knowledge gap by employing RNAseq and comparing transcriptomic responses of Pseudomonas donghuensis P482 to root exudates of two plant hosts: tomato and maize. Our main goal was to identify the differences and the common points between these two responses. Pathways upregulated only by tomato exudates included nitric oxide detoxification, repair of iron-sulfur clusters, respiration through the cyanide-insensitive cytochrome bd, and catabolism of amino and/or fatty acids. The first two indicate the presence of NO donors in the exudates of the test plants. Maize specifically induced the activity of MexE RND-type efflux pump and copper tolerance. Genes associated with motility were induced by maize but repressed by tomato. The shared response to exudates seemed to be affected both by compounds originating from the plants and those from their growth environment: arsenic resistance and bacterioferritin synthesis were upregulated, while sulfur assimilation, sensing of ferric citrate and/or other iron carriers, heme acquisition, and transport of polar amino acids were downregulated. Our results provide directions to explore mechanisms of host adaptation in plant-associated microorganisms.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka-Pach
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
18
|
Wang S, Zhang K, Zhang Q, Li Y, Yin Y, Liu W, An S, Zhang R, Zhang Z. Pseudomonas aeruginosa Y12 play positive roles regulating larval gut communities when housefly encountered copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114978. [PMID: 37150108 DOI: 10.1016/j.ecoenv.2023.114978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Heavy metal contamination has become a global concern that threatens the lives of animals and insects throughout the food chain. Pseudomonas is a commonly found genus of bacteria that colonizes the intestines of insects and constitutes a necessary part of the insect gut microbiota. This research analyzed the influence of different concentrations of Cu2+ on housefly larval development, gut microbial structure and antioxidant defense system, and investigated the regulatory mechanism of P. aeruginosa Y12 on the gut microbiota when houseflies were exposed to Cu2+. We found that adding Cu2+ to the larval diet inhibited larval growth, while the mixed addition of P. aeruginosa Y12 and Cu2+ to the diet reduced the inhibitory effects of Cu2+ on larval growth. Oral administration of Cu2+ significantly changed the gut community structure and increased larval gut bacterial diversity. In vitro analysis revealed that P. aeruginosa Y12 showed Cu2+ adsorption effects and increased Cu2+ aggregation. The mixed addition of low concentrations of P. aeruginosa Y12 and Cu2+ to the larval diet caused a dynamic shift in the gut microbiota and resulted in a novel gut community structure with an increase in beneficial bacteria and a decrease in pathogenic bacteria. Furthermore, P. aeruginosa Y12 treatment influenced the activity of antioxidant enzymes in housefly larvae, indicating that the addition of P. aeruginosa Y12 to the larval diet could further influence the antioxidant system through P. aeruginosa Y12-Cu2+ interactions. In conclusion, our research revealed that intestinal flora dysbiosis was the essential reason why copper inhibits housefly larval growth. However, proper supplementation with P. aeruginosa Y12 played positive roles in regulating larval gut communities and protecting insects from toxic heavy metals.
Collapse
Affiliation(s)
- Shumin Wang
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Kexin Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Qian Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Ying Li
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Yansong Yin
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Wenjuan Liu
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Sha An
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Ruiling Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China.
| | - Zhong Zhang
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Weifang Medical University, Weifang 261021, Shandong, China.
| |
Collapse
|
19
|
Norambuena J, Al-Tameemi H, Bovermann H, Kim J, Beavers WN, Skaar EP, Parker D, Boyd JM. Copper ions inhibit pentose phosphate pathway function in Staphylococcus aureus. PLoS Pathog 2023; 19:e1011393. [PMID: 37235600 PMCID: PMC10249872 DOI: 10.1371/journal.ppat.1011393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
To gain a better insight of how Copper (Cu) ions toxify cells, metabolomic analyses were performed in S. aureus strains that lacks the described Cu ion detoxification systems (ΔcopBL ΔcopAZ; cop-). Exposure of the cop- strain to Cu(II) resulted in an increase in the concentrations of metabolites utilized to synthesize phosphoribosyl diphosphate (PRPP). PRPP is created using the enzyme phosphoribosylpyrophosphate synthetase (Prs) which catalyzes the interconversion of ATP and ribose 5-phosphate to PRPP and AMP. Supplementing growth medium with metabolites requiring PRPP for synthesis improved growth in the presence of Cu(II). A suppressor screen revealed that a strain with a lesion in the gene coding adenine phosphoribosyltransferase (apt) was more resistant to Cu. Apt catalyzes the conversion of adenine with PRPP to AMP. The apt mutant had an increased pool of adenine suggesting that the PRPP pool was being redirected. Over-production of apt, or alternate enzymes that utilize PRPP, increased sensitivity to Cu(II). Increasing or decreasing expression of prs resulted in decreased and increased sensitivity to growth in the presence of Cu(II), respectively. We demonstrate that Prs is inhibited by Cu ions in vivo and in vitro and that treatment of cells with Cu(II) results in decreased PRPP levels. Lastly, we establish that S. aureus that lacks the ability to remove Cu ions from the cytosol is defective in colonizing the airway in a murine model of acute pneumonia, as well as the skin. The data presented are consistent with a model wherein Cu ions inhibits pentose phosphate pathway function and are used by the immune system to prevent S. aureus infections.
Collapse
Affiliation(s)
- Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hannah Bovermann
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
20
|
Ndugire W, Truong D, Hasitha Raviranga NG, Lao J, Ramström O, Yan M. Turning on the Antimicrobial Activity of Gold Nanoclusters Against Multidrug-Resistant Bacteria. Angew Chem Int Ed Engl 2023; 62:e202214086. [PMID: 36642692 PMCID: PMC10356176 DOI: 10.1002/anie.202214086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
In this work, we show that the addition of thiourea (TU) initiated broad-spectrum antimicrobial activity of otherwise inactive D-maltose-capped gold nanoclusters (AuNC-Mal). For example, AuNC-Mal/TU was effective against multidrug-resistant Pseudomonas aeruginosa with a minimum inhibitory concentration (MIC) of 1 μg mL-1 (2.5 μM [Au]) while having 30-60 times lower in vitro cytotoxicity against mammalian cells. The reaction of AuNC-Mal and TU generated the antimicrobial species of [Au(TU)2 ]+ and smaller AuNCs. TU increased the accumulation of Au in bacteria and helped maintain the oxidation state as AuI (vs. AuIII ). The modes of action included the inhibition of thioredoxin reductase, interference with the CuI regulation and depletion of ATP. Moreover, the antimicrobial activity did not change in the presence of colistin or carbonyl cyanide 3-chlorophenylhydrazone, suggesting that AuNC-Mal/TU was indifferent to the outer membrane barrier and to bacterial efflux pumps.
Collapse
Affiliation(s)
- William Ndugire
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - Dang Truong
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - Jingzhe Lao
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA-01854, USA
| |
Collapse
|
21
|
Metabolic Sensing of Extracytoplasmic Copper Availability via Translational Control by a Nascent Exported Protein. mBio 2023; 14:e0304022. [PMID: 36598193 PMCID: PMC9973294 DOI: 10.1128/mbio.03040-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Metabolic sensing is a crucial prerequisite for cells to adjust their physiology to rapidly changing environments. In bacteria, the response to intra- and extracellular ligands is primarily controlled by transcriptional regulators, which activate or repress gene expression to ensure metabolic acclimation. Translational control, such as ribosomal stalling, can also contribute to cellular acclimation and has been shown to mediate responses to changing intracellular molecules. In the current study, we demonstrate that the cotranslational export of the Rhodobacter capsulatus protein CutF regulates the translation of the downstream cutO-encoded multicopper oxidase CutO in response to extracellular copper (Cu). Our data show that CutF, acting as a Cu sensor, is cotranslationally exported by the signal recognition particle pathway. The binding of Cu to the periplasmically exposed Cu-binding motif of CutF delays its cotranslational export via its C-terminal ribosome stalling-like motif. This allows for the unfolding of an mRNA stem-loop sequence that shields the ribosome-binding site of cutO, which favors its subsequent translation. Bioinformatic analyses reveal that CutF-like proteins are widely distributed in bacteria and are often located upstream of genes involved in transition metal homeostasis. Our overall findings illustrate a highly conserved control mechanism using the cotranslational export of a protein acting as a sensor to integrate the changing availability of extracellular nutrients into metabolic acclimation. IMPORTANCE Metabolite sensing is a fundamental biological process, and the perception of dynamic changes in the extracellular environment is of paramount importance for the survival of organisms. Bacteria usually adjust their metabolisms to changing environments via transcriptional regulation. Here, using Rhodobacter capsulatus, we describe an alternative translational mechanism that controls the bacterial response to the presence of copper, a toxic micronutrient. This mechanism involves a cotranslationally secreted protein that, in the presence of copper, undergoes a process resembling ribosomal stalling. This allows for the unfolding of a downstream mRNA stem-loop and enables the translation of the adjacent Cu-detoxifying multicopper oxidase. Bioinformatic analyses reveal that such proteins are widespread, suggesting that metabolic sensing using ribosome-arrested nascent secreted proteins acting as sensors may be a common strategy for the integration of environmental signals into metabolic adaptations.
Collapse
|
22
|
Li YQ, Wang MJ, Luo CB. Highly efficient polyhydroxyalkanoate production from lignin using genetically engineered Halomonas sp. Y3. BIORESOURCE TECHNOLOGY 2023; 370:128526. [PMID: 36572161 DOI: 10.1016/j.biortech.2022.128526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Lignin degradation represents a significant challenge in biological valorization, but it is suffering from insufficiency, putting barriers to efficient lignin conversion. Herein, the study first develops a highly efficient laccase secretion apparatus, enabling high enzyme activity of 184 U/mL, complementing the biochemical limits on lignin depolymerization well in Halomonas sp. Y3. Further engineering of PHA biosynthesis produces a significantly high PHA titer of 286, 742, and 868 mg/L from alkaline lignin, catechol, and protocatechuate, respectively. The integration of laccase-secretion and PHA production modules enables a record titer of 693 and 1209 mg/L in converting lignin and lignin-containing stream to PHA, respectively. The titer is improved furtherly to 740 and 1314 mg/L by developing a non-sterilized fermentation. This study advances a cheaper and greener production of valuable chemicals from lignin by constructing a biosynthetic platform for PHA production and provides novel insight into the lignin conversion by extremophilic microbes.
Collapse
Affiliation(s)
- Yuan-Qiu Li
- College of Life Science, Leshan Normal University, Leshan 614000, China; College of Life Sciences, Capital Normal University, Beijing 100064, China
| | - Ming-Jun Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Chao-Bing Luo
- College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
23
|
The impact of agarose immobilization on the activity of lytic Pseudomonas aeruginosa phages combined with chemicals. Appl Microbiol Biotechnol 2023; 107:897-913. [PMID: 36625915 PMCID: PMC9842590 DOI: 10.1007/s00253-022-12349-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
The implementation of non-traditional antibacterials is currently one of the most intensively explored areas of modern medical and biological sciences. One of the most promising alternative strategies to combat bacterial infections is the application of lytic phages combined with established and new antibacterials. The presented study investigates the potential of agarose-based biocomposites containing lytic Pseudomonas phages (KT28, KTN4, and LUZ19), cupric ions (Cu2+), strawberry furanone (HDMF), and gentamicin (GE) as antibacterials and anti-virulent compounds for novel wound dressings. Phages (KT28, KTN4, LUZ19, and triple-phage cocktail) alone and in combination with a triple-chemical mixture (Cu + GE + HDMF) when applied as the liquid formulation caused a significant bacterial count reduction and biofilm production inhibition of clinical P. aeruginosa strains. The immobilization in the agarose scaffold significantly impaired the bioavailability and diffusion of phage particles, depending on virion morphology and targeted receptor specificity. The antibacterial potential of chemicals was also reduced by the agarose scaffold. Moreover, the Cu + GE + HDMF mixture impaired the lytic activity of phages depending on viral particles' susceptibility to cupric ion toxicity. Therefore, three administration types were tested and the optimal turned out to be the one separating antibacterials both physically and temporally. Taken together, the additive effect of phages combined with chemicals makes biocomposite a good solution for designing new wound dressings. Nevertheless, the phage utilization should involve an application of aqueous cocktails directly onto the wound, followed by chemicals immobilized in hydrogel dressings which allow for taking advantage of the antibacterial and anti-virulent effects of all components. KEY POINTS: • The immobilization in the agarose impairs the bioavailability of phage particles and the Cu + GE + HDMF mixture. • The cupric ions are toxic to phages and are sequestrated on phage particles and agarose matrix. • The elaborated TIME-SHIFT administration effectively separates antibacterials both physically and temporally.
Collapse
|
24
|
Ducret V, Gonzalez D, Perron K. Zinc homeostasis in Pseudomonas. Biometals 2022:10.1007/s10534-022-00475-5. [PMID: 36472780 PMCID: PMC10393844 DOI: 10.1007/s10534-022-00475-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
AbstractIn the genus Pseudomonas, zinc homeostasis is mediated by a complete set of import and export systems, whose expression is precisely controlled by three transcriptional regulators: Zur, CzcR and CadR. In this review, we describe in detail our current knowledge of these systems, their regulation, and the biological significance of zinc homeostasis, taking Pseudomonas aeruginosa as our paradigm. Moreover, significant parts of this overview are dedicated to highlight interactions and cross-regulations between zinc and copper import/export systems, and to shed light, through a review of the literature and comparative genomics, on differences in gene complement and function across the whole Pseudomonas genus. The impact and importance of zinc homeostasis in Pseudomonas and beyond will be discussed throughout this review.
Graphical abstract
Collapse
|
25
|
Mendoza JI, Lescano J, Soncini FC, Checa SK. The protein scaffold calibrates metal specificity and activation in MerR sensors. Microb Biotechnol 2022; 15:2992-3002. [PMID: 36134649 PMCID: PMC9733647 DOI: 10.1111/1751-7915.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
MerR metalloregulators are the central components of many biosensor platforms designed to report metal contamination. However, most MerR proteins are non-specific. This makes it difficult to apply these biosensors in the analysis of real environmental samples. On-demand implementation of molecular engineering to modify the MerR metal preferences is innovative, although it does not always yield the expected results. As the metal binding loop region (MBL) of these sensors has been proposed to be the major modulator of their specificity, we surgically switched this region for that of well-characterized specific and non-specific homologues. We found that identical modifications in different MerR proteins result in synthetic sensors displaying particular metal-detection patterns that cannot be predicted from the nature of the assembled modules. For instance, the MBL from a native Hg(II) sensor provided non-specificity or specificity toward Hg(II) or Cd(II) depending on the MerR scaffold into which it was integrated. These and other evidences reveal that residues outside the MBL are required to modulate ion recognition and transduce the input signal to the target promoter. Revealing their identity and their interactions with other residues is a critical step toward the design of more efficient biosensor devices for environmental metal monitoring.
Collapse
Affiliation(s)
- Julián I. Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR)Universidad Nacional de Rosario (UNR)‐Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)RosarioArgentina
| | - Julián Lescano
- Instituto de Biología Molecular y Celular de Rosario (IBR)Universidad Nacional de Rosario (UNR)‐Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)RosarioArgentina
| | - Fernando C. Soncini
- Instituto de Biología Molecular y Celular de Rosario (IBR)Universidad Nacional de Rosario (UNR)‐Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)RosarioArgentina,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| | - Susana K. Checa
- Instituto de Biología Molecular y Celular de Rosario (IBR)Universidad Nacional de Rosario (UNR)‐Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)RosarioArgentina,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| |
Collapse
|
26
|
Górecki K, Hansen JS, Li P, Nayeri N, Lindkvist-Petersson K, Gourdon P. Microfluidic-Derived Detection of Protein-Facilitated Copper Flux Across Lipid Membranes. Anal Chem 2022; 94:11831-11837. [PMID: 35969432 PMCID: PMC9434548 DOI: 10.1021/acs.analchem.2c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Measurement of protein-facilitated copper flux across
biological
membranes is a considerable challenge. Here, we demonstrate a straightforward
microfluidic-derived approach for visualization and measurement of
membranous Cu flux. Giant unilamellar vesicles, reconstituted with
the membrane protein of interest, are prepared, surface-immobilized,
and assessed using a novel quencher–sensor reporter system
for detection of copper. With the aid of a syringe pump, the external
buffer is exchanged, enabling consistent and precise exchange of solutes,
without causing vesicle rupture or uneven local metal concentrations
brought about by rapid mixing. This approach bypasses common issues
encountered when studying heavy metal-ion flux, thereby providing
a new platform for in vitro studies of metal homeostasis
aspects that are critical for all cells, health, and disease.
Collapse
Affiliation(s)
- Kamil Górecki
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Jesper S Hansen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Ping Li
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Niloofar Nayeri
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Karin Lindkvist-Petersson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund SE-22100, Sweden.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| |
Collapse
|
27
|
Wu P, Rane NR, Xing C, Patil SM, Roh HS, Jeon BH, Li X. Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129002. [PMID: 35490635 DOI: 10.1016/j.jhazmat.2022.129002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
A comprehensive understanding of the cellular response of microbes to metal stress is necessary for the rational development of microbe-based biosorbents for metal removal. The present study investigated the copper (Cu) sorption and resistance mechanism of Bacillus cereus strain T6, a newly isolated Cu-resistant bacterium, by integrative analyses of physiochemistry, genomics, transcriptomics, and metabolomics. The growth inhibition assay and biosorption determination showed that this bacterium exhibited high tolerance to Cu, with a minimum inhibitory concentration of 4.0 mM, and accumulated Cu by both extracellular adsorption and intracellular binding. SEM microscopic images and FTIR spectra showed significant cellular surface changes at the high Cu level but not at low, and the involvement of surface functional groups in the biosorption of Cu, respectively. Transcriptomic and untargeted metabolomic analyses detected 362 differentially expressed genes and 60 significantly altered metabolites, respectively. Integrative omics analyses revealed that Cu exposure dramatically induced a broad spectrum of genes involved in Cu transport and iron homeostasis, and suppressed the denitrification pathway, leading to significant accumulation of metabolites for metal transporter synthesis, membrane remolding, and antioxidant activities. The results presented here provide a new perspective on the intricate regulatory network of Cu homeostasis in bacteria.
Collapse
Affiliation(s)
- Ping Wu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chao Xing
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|
28
|
Focarelli F, Giachino A, Waldron KJ. Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PLoS Pathog 2022; 18:e1010617. [PMID: 35862345 PMCID: PMC9302775 DOI: 10.1371/journal.ppat.1010617] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper is an essential micronutrient for most organisms that is required as a cofactor for crucial copper-dependent enzymes encoded by both prokaryotes and eukaryotes. Evidence accumulated over several decades has shown that copper plays important roles in the function of the mammalian immune system. Copper accumulates at sites of infection, including the gastrointestinal and respiratory tracts and in blood and urine, and its antibacterial toxicity is directly leveraged by phagocytic cells to kill pathogens. Copper-deficient animals are more susceptible to infection, whereas those fed copper-rich diets are more resistant. As a result, copper resistance genes are important virulence factors for bacterial pathogens, enabling them to detoxify the copper insult while maintaining copper supply to their essential cuproenzymes. Here, we describe the accumulated evidence for the varied roles of copper in the mammalian response to infections, demonstrating that this metal has numerous direct and indirect effects on immune function. We further illustrate the multifaceted response of pathogenic bacteria to the elevated copper concentrations that they experience when invading the host, describing both conserved and species-specific adaptations to copper toxicity. Together, these observations demonstrate the roles of copper at the host–pathogen interface and illustrate why bacterial copper detoxification systems can be viable targets for the future development of novel antibiotic drug development programs. Copper is required by both animals and bacteria in small quantities as a micronutrient. During infection, the mammalian immune system increases the local concentration of copper, which gives rise to copper toxicity in the pathogen. In turn, bacterial pathogens possess specialized systems to resist this copper toxicity. Copper also plays important, indirect roles in the function of the immune system. In this review, we explain the diverse roles of copper in the human body with a focus on its functions within the immune system. We also describe how bacterial pathogens respond to the copper toxicity that they experience within the host during infection, illustrating both conserved copper homeostasis and detoxification systems in bacteria and species-specific adaptations that have been shown to be important to pathogenicity. The key role of copper at the host–pathogen interface and the essential requirement for pathogenic bacteria to resist copper toxicity makes the protein components that confer resistance on pathogens potential targets for future development of novel antibiotic drugs.
Collapse
Affiliation(s)
- Francesca Focarelli
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrea Giachino
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin John Waldron
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. J Biol Inorg Chem 2022; 27:509-528. [PMID: 35802193 PMCID: PMC9470648 DOI: 10.1007/s00775-022-01947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Abstract Copper is essential in cells as a cofactor for key redox enzymes. Bacteria have acquired molecular components that sense, uptake, distribute, and expel copper ensuring that cuproenzymes are metallated and steady-state metal levels are maintained. Toward preventing deleterious reactions, proteins bind copper ions with high affinities and transfer the metal via ligand exchange, warranting that copper ions are always complexed. Consequently, the directional copper distribution within cell compartments and across cell membranes requires specific dynamic interactions and metal exchange between cognate holo-apo protein partners. These metal exchange reactions are determined by thermodynamic and kinetics parameters and influenced by mass action. Then, copper distribution can be conceptualized as a molecular system of singular interacting elements that maintain a physiological copper homeostasis. This review focuses on the impact of copper high-affinity binding and exchange reactions on the homeostatic mechanisms, the conceptual models to describe the cell as a homeostatic system, the various molecule functions that contribute to copper homeostasis, and the alternative system architectures responsible for copper homeostasis in model bacteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.,Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
Li P, Nayeri N, Górecki K, Becares ER, Wang K, Mahato DR, Andersson M, Abeyrathna SS, Lindkvist‐Petersson K, Meloni G, Missel JW, Gourdon P. PcoB is a defense outer membrane protein that facilitates cellular uptake of copper. Protein Sci 2022; 31:e4364. [PMID: 35762724 PMCID: PMC9210255 DOI: 10.1002/pro.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 01/17/2023]
Abstract
Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical β-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Niloofar Nayeri
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Kamil Górecki
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Eva Ramos Becares
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kaituo Wang
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Sameera S. Abeyrathna
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Gabriele Meloni
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Pontus Gourdon
- Department of Experimental Medical ScienceLund UniversityLundSweden
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
31
|
Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol 2022; 12:909888. [PMID: 35846739 PMCID: PMC9280163 DOI: 10.3389/fcimb.2022.909888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.
Collapse
Affiliation(s)
- Alexis Hope Branch
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Julie L. Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
32
|
Méndez AAE, Mendoza JI, Echarren ML, Terán I, Checa SK, Soncini FC. Evolution of Copper Homeostasis and Virulence in Salmonella. Front Microbiol 2022; 13:823176. [PMID: 35369444 PMCID: PMC8966772 DOI: 10.3389/fmicb.2022.823176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Salmonella enterica sv. Typhimurium modulates the expression of factors essential for virulence, contributing to its survival against the surge of copper (Cu) in the Salmonella-containing vacuole. This bactericidal host innate immune component primarily targets the bacterial envelope, where most cuproproteins are localized. While in most enteric species periplasmic Cu homeostasis is maintained by the CusR/CusS-controlled CusCFBA efflux system encoded in the cus locus, we noticed that these genes were lost from the Salmonella-core genome. At the same time, Salmonella acquired cueP, coding for a periplasmic Cu chaperone. As cus, cueP was shown to be essential for bacterial survival in a copper-rich environment under anaerobiosis, suggesting that it can functionally substitute the CusCFBA system. In the present study, the whole Escherichia coli cus locus was reintroduced to the chromosome of the Salmonella wild-type or the ΔcueP strain. While the integrated cus locus did not affect Cu resistance under aerobic conditions, it increases Cu tolerance under anaerobiosis, irrespective of the presence or absence of cueP. In contrast to the Cus system, CueP expression is higher at high copper concentrations and persisted over time, suggesting separate functions. Finally, we observed that, regardless of the presence or absence of cus, a mutant deleted of cueP shows a deficiency in replication inside macrophages compared to the wild-type strain. Our results demonstrate that CueP and CusCFBA exert redundant functions for metal resistance, but not for intracellular survival, and therefore for the virulence of this pathogen.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Julián I Mendoza
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - María Laura Echarren
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Ignacio Terán
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| |
Collapse
|
33
|
Virieux-Petit M, Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Romano-Bertrand S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes (Basel) 2022; 13:genes13020301. [PMID: 35205346 PMCID: PMC8872213 DOI: 10.3390/genes13020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The hospital environment constitutes a reservoir of opportunistic pathogens responsible for healthcare-associated infections (HCAI) such as Pseudomonas aeruginosa (Pa). Pa persistence within technological niches, the increasing emergence of epidemic high-risk clones in HCAI, the epidemiological link between plumbing strains and clinical strains, make it a major nosocomial pathogen. Therefore, understanding the mechanisms of Pa adaptation to hospital water systems would be useful in preventing HCAI. This review deciphers how copper resistance contributes to Pa adaptation and persistence in a hospital environment, especially within copper water systems, and ultimately to its success as a causative agent of HCAI. Numerous factors are involved in copper homeostasis in Pa, among which active efflux conferring copper tolerance, and copper-binding proteins regulating the copper compartmentalization between periplasm and cytoplasm. The functional harmony of copper homeostasis is regulated by several transcriptional regulators. The genomic island GI-7 appeared as especially responsible for the copper resistance in Pa. Mechanisms of copper and antibiotic cross-resistance and co-resistance are also identified, with potential co-regulation processes between them. Finally, copper resistance of Pa confers selective advantages in colonizing and persisting in hospital environments but also appears as an asset at the host/pathogen interface that helps in HCAI occurrence.
Collapse
Affiliation(s)
- Maxine Virieux-Petit
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Florence Hammer-Dedet
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Fabien Aujoulat
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
| | - Sara Romano-Bertrand
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
- UMR 5151 HSM, Equipe Pathogènes Hydriques Santé et Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
- Correspondence: ; Tel.: +33-4-11-75-94-30
| |
Collapse
|
34
|
Yu L, Cao Q, Chen W, Yang N, Yang CG, Ji Q, Wu M, Bae T, Lan L. A novel copper-sensing two-component system for inducing Dsb gene expression in bacteria. Sci Bull (Beijing) 2022; 67:198-212. [PMID: 36546013 DOI: 10.1016/j.scib.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 01/06/2023]
Abstract
In nature, bacteria must sense copper and tightly regulate gene expression to evade copper toxicity. Here, we identify a new copper-responsive two-component system named DsbRS in the important human pathogen Pseudomonas aeruginosa; in this system, DsbS is a sensor histidine kinase, and DsbR, its cognate response regulator, directly induces the transcription of genes involved in protein disulfide bond formation (Dsb) (i.e., the dsbDEG operon and dsbB). In the absence of copper, DsbS acts as a phosphatase toward DsbR, thus blocking the transcription of Dsb genes. In the presence of copper, the metal ion directly binds to the sensor domain of DsbS, and the Cys82 residue plays a critical role in this process. The copper-binding behavior appears to inhibit the phosphatase activity of DsbS, leading to the activation of DsbR. The copper resistance of the dsbRS knock-out mutant is restored by the ectopic expression of the dsbDEG operon, which is a DsbRS major target. Strikingly, cognates of the dsbRS-dsbDEG pair are widely distributed across eubacteria. In addition, a DsbR-binding site, which contains the consensus sequence 5'-TTA-N8-TTAA-3', is detected in the promoter region of dsbDEG homologs in these species. These findings suggest that the regulation of Dsb genes by DsbRS represents a novel mechanism by which bacterial cells cope with copper stress.
Collapse
Affiliation(s)
- Liang Yu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Nana Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks ND 58203-9037, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary IN 46408, USA
| | - Lefu Lan
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| |
Collapse
|
35
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
36
|
Mosby CA, Bhar S, Phillips MB, Edelmann MJ, Jones MK. Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria. J Extracell Vesicles 2022; 11:e12172. [PMID: 34981901 PMCID: PMC8725172 DOI: 10.1002/jev2.12172] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/22/2023] Open
Abstract
Intestinal commensal bacteria contribute to maintaining gut homeostasis. Disruptions to the commensal flora are linked to the development and persistence of disease. The importance of these organisms is further demonstrated by the widespread ability of enteric viruses to exploit commensal bacteria to enhance viral infection. These viruses interact directly with commensal bacteria, and while the impact of this interaction on viral infection is well described for several viruses, the impact on the commensal bacteria has yet to be explored. In this article, we demonstrate, for the first time, that enteric viruses alter the gene expression and phenotype of individual commensal bacteria. Human and murine norovirus interaction with bacteria resulted in genome-wide differential gene expression and marked changes in the surface architecture of the bacterial cells. Furthermore, the interaction of the virus with bacteria led to increased production of smaller outer membrane vesicles (OMVs). Enhanced production of smaller vesicles was also observed when noroviruses were incubated with other commensal bacteria, indicating a potentially broad impact of norovirus interaction. The vesicle production observed in the in vivo model followed a similar trend where an increased quantity of smaller bacterial vesicles was observed in stool collected from virus-infected mice compared to mock-infected mice. Furthermore, changes in vesicle size were linked to changes in protein content and abundance, indicating that viral binding induced a shift in the mechanism of the OMV biogenesis. Collectively, these data demonstrate that enteric viruses induce specific changes in bacterial gene expression, leading to changes in bacterial extracellular vesicle production that can potentially impact host responses to infection.
Collapse
Affiliation(s)
- Chanel A. Mosby
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Sutonuka Bhar
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Matthew B. Phillips
- Department of Molecular Genetics and MicrobiologyCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Mariola J. Edelmann
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Melissa K. Jones
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
37
|
Durand A, Fouesnard M, Bourbon ML, Steunou AS, Lojou E, Dorlet P, Ouchane S. A periplasmic cupredoxin with a green CuT1.5 center is involved in bacterial copper tolerance. Metallomics 2021; 13:6428408. [PMID: 34791351 DOI: 10.1093/mtomcs/mfab067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
The importance of copper resistance pathways in pathogenic bacteria is now well recognized, since macrophages use copper to fight bacterial infections. Additionally, considering the increase of antibiotic resistance, growing attention is given to the antimicrobial properties of copper. It is of primary importance to understand how bacteria deal with copper. The Cu-resistant cuproprotein CopI is present in many human bacterial pathogens and environmental bacteria and crucial under microaerobiosis (conditions for most pathogens to thrive within their host). Hence, understanding its mechanism of function is essential. CopI proteins share conserved histidine, cysteine, and methionine residues that could be ligands for different copper binding sites, among which the cupredoxin center could be involved in the protein function. Here, we demonstrated that Vibrio cholerae and Pseudomonas aeruginosa CopI restore the Cu-resistant phenotype in the Rubrivivax gelatinosus ΔcopI mutant. We identified that Cys125 (ligand in the cupredoxin center) and conserved histidines and methionines are essential for R. gelatinosus CopI (RgCopI) function. We also performed spectroscopic analyses of the purified RgCopI protein and showed that it is a green cupredoxin able to bind a maximum of three Cu(II) ions: (i) a green Cu site (CuT1.5), (ii) a type 2 Cu binding site (T2) located in the N-terminal region, and (iii) a third site with a yet unidentified location. CopI is therefore one member of the poorly described CuT1.5 center cupredoxin family. It is unique, since it is a single-domain cupredoxin with more than one Cu site involved in Cu resistance.
Collapse
Affiliation(s)
- Anne Durand
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mélanie Fouesnard
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marie-Line Bourbon
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne-Soisig Steunou
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | - Soufian Ouchane
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
38
|
Patteson JB, Putz AT, Tao L, Simke WC, Bryant LH, Britt RD, Li B. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 2021; 374:1005-1009. [PMID: 34793213 PMCID: PMC8939262 DOI: 10.1126/science.abj6749] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-binding natural products contribute to metal acquisition and bacterial virulence, but their roles in metal stress response are underexplored. We show that a five-enzyme pathway in Pseudomonas aeruginosa synthesizes a small-molecule copper complex, fluopsin C, in response to elevated copper concentrations. Fluopsin C is a broad-spectrum antibiotic that contains a copper ion chelated by two minimal thiohydroxamates. Biosynthesis of the thiohydroxamate begins with cysteine and requires two lyases, two iron-dependent enzymes, and a methyltransferase. The iron-dependent enzymes remove the carboxyl group and the α carbon from cysteine through decarboxylation, N-hydroxylation, and methylene excision. Conservation of the pathway in P. aeruginosa and other bacteria suggests a common role for fluopsin C in the copper stress response, which involves fusing copper into an antibiotic against other microbes.
Collapse
Affiliation(s)
- Jon B. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew T. Putz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - William C. Simke
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L. Henry Bryant
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
39
|
Bhamidimarri SP, Young TR, Shanmugam M, Soderholm S, Baslé A, Bumann D, van den Berg B. Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biol 2021; 19:e3001446. [PMID: 34762655 PMCID: PMC8610252 DOI: 10.1371/journal.pbio.3001446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Copper, while toxic in excess, is an essential micronutrient in all kingdoms of life due to its essential role in the structure and function of many proteins. Proteins mediating ionic copper import have been characterised in detail for eukaryotes, but much less so for prokaryotes. In particular, it is still unclear whether and how gram-negative bacteria acquire ionic copper. Here, we show that Pseudomonas aeruginosa OprC is an outer membrane, TonB-dependent transporter that is conserved in many Proteobacteria and which mediates acquisition of both reduced and oxidised ionic copper via an unprecedented CxxxM-HxM metal binding site. Crystal structures of wild-type and mutant OprC variants with silver and copper suggest that acquisition of Cu(I) occurs via a surface-exposed "methionine track" leading towards the principal metal binding site. Together with whole-cell copper quantitation and quantitative proteomics in a murine lung infection model, our data identify OprC as an abundant component of bacterial copper biology that may enable copper acquisition under a wide range of conditions.
Collapse
Affiliation(s)
| | - Tessa R. Young
- Department of Biosciences, Durham University, United Kingdom
| | - Muralidharan Shanmugam
- Photon Science Institute and Manchester Institute of Biotechnology, University of Manchester, Oxford Road, United Kingdom
| | - Sandra Soderholm
- Focal Area Infection Biology, University of Basel, Basel, Switzerland
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dirk Bumann
- Focal Area Infection Biology, University of Basel, Basel, Switzerland
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
40
|
The Human Innate Immune Protein Calprotectin Elicits a Multimetal Starvation Response in Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0051921. [PMID: 34549997 PMCID: PMC8557868 DOI: 10.1128/spectrum.00519-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To combat infections, the mammalian host limits availability of essential transition metals such as iron (Fe), zinc (Zn), and manganese (Mn) in a strategy termed "nutritional immunity." The innate immune protein calprotectin (CP) contributes to nutritional immunity by sequestering these metals to exert antimicrobial activity against a broad range of microbial pathogens. One such pathogen is Pseudomonas aeruginosa, which causes opportunistic infections in vulnerable populations, including individuals with cystic fibrosis. CP was previously shown to withhold Fe(II) and Zn(II) from P. aeruginosa and induce Fe and Zn starvation responses in this pathogen. In this work, we performed quantitative, label-free proteomics to further elucidate how CP impacts metal homeostasis pathways in P. aeruginosa. We report that CP induces an incomplete Fe starvation response, as many Fe-containing proteins that are repressed by Fe limitation are not affected by CP treatment. The Zn starvation response elicited by CP seems to be more complete than the Fe starvation response and includes increases in Zn transporters and Zn-independent proteins. CP also induces the expression of membrane-modifying proteins, and metal depletion studies indicate this response results from the sequestration of multiple metals. Moreover, the increased expression of membrane-modifying enzymes upon CP treatment correlates with increased tolerance to polymyxin B. Thus, the response of P. aeruginosa to CP treatment includes both single- and multimetal starvation responses and includes many factors related to virulence potential, broadening our understanding of this pathogen's interaction with the host. IMPORTANCE Transition metal nutrients are critical for growth and infection by all pathogens, and the innate immune system withholds these metals from pathogens to limit their growth in a strategy termed "nutritional immunity." While multimetal depletion by the host is appreciated, the majority of studies have focused on individual metals. Here, we use the innate immune protein calprotectin (CP), which complexes with several metals, including iron (Fe), zinc (Zn), and manganese (Mn), and the opportunistic pathogen Pseudomonas aeruginosa to investigate multimetal starvation. Using an unbiased label-free proteomics approach, we demonstrate that multimetal withholding by CP induces a regulatory response that is not merely additive of individual metal starvation responses, including the induction of lipid A modification proteins.
Collapse
|
41
|
Ducret V, Abdou M, Goncalves Milho C, Leoni S, Martin-Pelaud O, Sandoz A, Segovia Campos I, Tercier-Waeber ML, Valentini M, Perron K. Global Analysis of the Zinc Homeostasis Network in Pseudomonas aeruginosa and Its Gene Expression Dynamics. Front Microbiol 2021; 12:739988. [PMID: 34690984 PMCID: PMC8531726 DOI: 10.3389/fmicb.2021.739988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to counteract bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptive homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Melina Abdou
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Catarina Goncalves Milho
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Oriane Martin-Pelaud
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Antoine Sandoz
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Inés Segovia Campos
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.,Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | | | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Andrei A, Di Renzo MA, Öztürk Y, Meisner A, Daum N, Frank F, Rauch J, Daldal F, Andrade SLA, Koch HG. The CopA2-Type P 1B-Type ATPase CcoI Serves as Central Hub for cbb 3-Type Cytochrome Oxidase Biogenesis. Front Microbiol 2021; 12:712465. [PMID: 34589071 PMCID: PMC8475189 DOI: 10.3389/fmicb.2021.712465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maria Agostina Di Renzo
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Alexandra Meisner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fabian Frank
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Susana L A Andrade
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Dorotkiewicz-Jach A, Markwitz P, Drulis-Kawa Z. The In Vitro Anti-Pseudomonal Activity of Cu 2+, Strawberry Furanone, Gentamicin, and Lytic Phages Alone and in Combination: Pros and Cons. Int J Mol Sci 2021; 22:ijms22189830. [PMID: 34575991 PMCID: PMC8469652 DOI: 10.3390/ijms22189830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated the anti-pseudomonal activity of cupric ions (Cu2+), strawberry furanone (HDMF), gentamicin (GE), and three lytic Pseudomonas aeruginosa bacteriophages (KT28, KTN4, LUZ19), separately and in combination. HDMF showed an anti-virulent effect but only when applied with Cu2+ or GE. GE, at a sub-minimal inhibitory concentration, slowed down phage progeny production due to protein synthesis inhibition. Cu2+ significantly reduced both the bacterial cell count and the number of infective phage particles, likely due to its genotoxicity or protein inactivation and cell membrane disruption effects. Furthermore, Cu2+‘s probable sequestration by phage particles led to the reduction of free toxic metal ions available in the solution. An additive antibacterial effect was only observed for the combination of GE and Cu2+, potentially due to enhanced ROS production or to outer membrane permeabilization. This study indicates that possible interference between antibacterial agents needs to be carefully investigated for the preparation of effective therapeutic cocktails.
Collapse
|
44
|
Öztürk Y, Blaby-Haas CE, Daum N, Andrei A, Rauch J, Daldal F, Koch HG. Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Front Microbiol 2021; 12:720644. [PMID: 34566924 PMCID: PMC8456105 DOI: 10.3389/fmicb.2021.720644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb 3-type cytochrome oxidase (cbb 3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb 3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.
Collapse
Affiliation(s)
- Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Crysten E. Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Cunrath O, Palmer JD. An overview of Salmonella enterica metal homeostasis pathways during infection. ACTA ACUST UNITED AC 2021; 2:uqab001. [PMID: 34250489 PMCID: PMC8264917 DOI: 10.1093/femsml/uqab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Nutritional immunity is a powerful strategy at the core of the battlefield between host survival and pathogen proliferation. A host can prevent pathogens from accessing biological metals such as Mg, Fe, Zn, Mn, Cu, Co or Ni, or actively intoxicate them with metal overload. While the importance of metal homeostasis for the enteric pathogen Salmonella enterica Typhimurium was demonstrated many decades ago, inconsistent results across various mouse models, diverse Salmonella genotypes, and differing infection routes challenge aspects of our understanding of this phenomenon. With expanding access to CRISPR-Cas9 for host genome manipulation, it is now pertinent to re-visit past results in the context of specific mouse models, identify gaps and incongruities in current knowledge landscape of Salmonella homeostasis, and recommend a straight path forward towards a more universal understanding of this historic host-microbe relationship.
Collapse
Affiliation(s)
- Olivier Cunrath
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, UK OX1 3SZ
| | - Jacob D Palmer
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, UK OX1 3SZ
| |
Collapse
|
46
|
Yan X, Yang J, Wang Q, Lin S. Transcriptomic analysis reveals resistance mechanisms of Klebsiella michiganensis to copper toxicity under acidic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111919. [PMID: 33476853 DOI: 10.1016/j.ecoenv.2021.111919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to elucidate the effect of pH on bacterial resistance mechanisms to copper (Cu) stress by genomic and transcriptomic analysis. Klebsiella michiganensis cells were exposed to 0.5 mM CuCl2 at pH 4 and 5. Lower pH (pH < 4) strongly inhibited K. michiganensis growth, while Cu stress and higher pH (pH > 5) induced Cu precipitation in the medium. Transcriptomic analyses indicated that two groups of genes related to quorum sensing (QS) systems (lsrABCDFGKR) and type II secretion systems (T2SS) (gspCDEFGHIJKLM) were significantly up-regulated at pH 4 only. These results suggest that T2SS may be induced and controlled by QS, thereby contributing to the formation of extracellular polymeric substances (EPS) and the secretion of proteins to prevent Cu ions from entering cells. Six Cu resistance genes (cusABF, copA, cueO, and gene05308) were more significantly up-regulated at pH 4 than at pH 5. In addition, the relative expression (log2|FC=) of the sulfur assimilation genes cysHJIK was relatively higher at pH 4 than at pH 5, while the gene encoding organic sulfur metabolism, tauB, was also significantly up-regulated at only pH 4. These results indicate that the Cu efflux system can remove intracellular Cu ions from cells, and that the sulfur assimilation system is related to the detoxification of Cu ions. Furthermore, increased free Cu ions at lower pH (4) could induce communication signals among cells, thereby stimulating the response of T2SS-related genes in K. michiganensis to tolerate Cu stress. Consequently, the resistance of K. michiganensis to Cu stress is a multisystem collaborative process composed of intracellular and extracellular components.
Collapse
Affiliation(s)
- Xiaoxue Yan
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Junlin Yang
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Qi Wang
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Shanshan Lin
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China.
| |
Collapse
|
47
|
Portelinha J, Angeles-Boza AM. The Antimicrobial Peptide Gad-1 Clears Pseudomonas aeruginosa Biofilms under Cystic Fibrosis Conditions. Chembiochem 2021; 22:1646-1655. [PMID: 33428273 DOI: 10.1002/cbic.202000816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specifically Pseudomonas aeruginosa biofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo-antimicrobial peptide Gaduscidin-1 (Gad-1) eradicates established P. aeruginosa biofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad-1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad-1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road Storrs, Connecticut, CT 06269, USA.,Institute of Material Science, University of Connecticut, 97 N. Eagleville Road Storrs, Connecticut, CT 06269, USA
| |
Collapse
|
48
|
Hofmann L, Hirsch M, Ruthstein S. Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:2050. [PMID: 33669570 PMCID: PMC7922089 DOI: 10.3390/ijms22042050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.
Collapse
Affiliation(s)
| | | | - Sharon Ruthstein
- Institute of Nanotechnology and Advanced Materials & Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (M.H.)
| |
Collapse
|
49
|
Rivera-Millot A, Slupek S, Chatagnon J, Roy G, Saliou JM, Billon G, Alaimo V, Hot D, Salomé-Desnoulez S, Locht C, Antoine R, Jacob-Dubuisson F. Streamlined copper defenses make Bordetella pertussis reliant on custom-made operon. Commun Biol 2021; 4:46. [PMID: 33420409 PMCID: PMC7794356 DOI: 10.1038/s42003-020-01580-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Copper is both essential and toxic to living beings, which tightly controls its intracellular concentration. At the host-pathogen interface, copper is used by phagocytic cells to kill invading microorganisms. We investigated copper homeostasis in Bordetella pertussis, which lives in the human respiratory mucosa and has no environmental reservoir. B. pertussis has considerably streamlined copper homeostasis mechanisms relative to other Gram-negative bacteria. Its single remaining defense line consists of a metallochaperone diverted for copper passivation, CopZ, and two peroxide detoxification enzymes, PrxGrx and GorB, which together fight stresses encountered in phagocytic cells. Those proteins are encoded by an original, composite operon assembled in an environmental ancestor, which is under sensitive control by copper. This system appears to contribute to persistent infection in the nasal cavity of B. pertussis-infected mice. Combining responses to co-occurring stresses in a tailored operon reveals a strategy adopted by a host-restricted pathogen to optimize survival at minimal energy expenditure.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Stéphanie Slupek
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jonathan Chatagnon
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Gauthier Roy
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Michel Saliou
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Gabriel Billon
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8516 – LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - Véronique Alaimo
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8516 – LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - David Hot
- grid.410463.40000 0004 0471 8845Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Sophie Salomé-Desnoulez
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France ,grid.503422.20000 0001 2242 6780Bio Imaging Center Lille platform (BICeL), Univ. Lille, Lille, France
| | - Camille Locht
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Rudy Antoine
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- grid.463727.30000 0004 0386 3856Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019- UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
50
|
The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism. mSphere 2020; 5:5/6/e01193-20. [PMID: 33361129 PMCID: PMC7763554 DOI: 10.1128/msphere.01193-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Copper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins and generating damaging free radicals. Two-component systems control periplasmic Cu+ homeostasis in Gram-negative bacteria. In characterized systems such as Escherichia coli CusRS, upon Cu+ binding to the periplasmic sensing region of CusS, a cytoplasmic phosphotransfer domain of the sensor phosphorylates the response regulator CusR. This drives the expression of efflux transporters, chaperones, and redox enzymes to ameliorate metal toxic effects. Here, we show that the Pseudomonas aeruginosa two-component sensor histidine kinase CopS exhibits a Cu-dependent phosphatase activity that maintains CopR in a nonphosphorylated state when the periplasmic Cu levels are below the activation threshold of CopS. Upon Cu+ binding to the sensor, the phosphatase activity is blocked and the phosphorylated CopR activates transcription of the CopRS regulon. Supporting the model, mutagenesis experiments revealed that the ΔcopS strain exhibits maximal expression of the CopRS regulon, lower intracellular Cu+ levels, and increased Cu tolerance compared to wild-type cells. The invariant phosphoacceptor residue His235 of CopS was not required for the phosphatase activity itself but was necessary for its Cu dependency. To sense the metal, the periplasmic domain of CopS binds two Cu+ ions at its dimeric interface. Homology modeling of CopS based on CusS structure (four Ag+ binding sites) clearly supports the different binding stoichiometries in the two systems. Interestingly, CopS binds Cu+/2+ with 3 × 10−14 M affinity, pointing to the absence of free (hydrated) Cu+/2+ in the periplasm. IMPORTANCE Copper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins and generating damaging free radicals. Consequently, copper overload is a strategy that eukaryotic cells use to combat pathogens. Bacteria have developed copper-sensing transcription factors to control copper homeostasis. The cell envelope is the first compartment that has to cope with copper stress. Dedicated two-component systems control the periplasmic response to metal overload. This paper shows that the sensor kinase of the copper-sensing two-component system present in Pseudomonadales exhibits a signal-dependent phosphatase activity controlling the activation of its cognate response regulator, distinct from previously described periplasmic Cu sensors. Importantly, the data show that the system is activated by copper levels compatible with the absence of free copper in the cell periplasm. These observations emphasize the diversity of molecular mechanisms that have evolved in bacteria to manage the copper cellular distribution.
Collapse
|