1
|
Fang F, Wu T, Wang M, Li W, You Z, Chen M, Guan H. Matrix Metalloproteinase-9 is associated with tumor microenvironment remodeling of bladder cancer. Biol Direct 2025; 20:8. [PMID: 39819701 PMCID: PMC11737229 DOI: 10.1186/s13062-025-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Tumor microenvironment (TME) takes an essential part in the bladder cancer progression, which is associated with intercellular cross-talk between stroma cells and cancer. We aimed use bioinformatics tools to analyze tumor microenvironment remodeling in bladder cancer. CIBERSORT and ESTIMATE are bioinformatics tools based on deconvolution for calculating proportions of tumor-infiltrating immune cells and stromal components in TME. We utilized these two algorithms to analyze the immune components of 433 bladder cancer cases from The Cancer Genome Atlas database, aiming to compensate for the current lack of large-sample single-cell information. Then we used Cox regression to analyze the prognostic value of differentially expressed genes, and the protein-protein interaction network was constructed. Matrix Metalloproteinase-9 (MMP9) was identified as a predictive biomarker related to immune microenvironment. Using Gene Set Enrichment Analysis, the genes from the group with high MMP9 expression gathered in items related to immune diseases, and genes in the group with low MMP9 expression were negatively associated with valine, leucine and isoleucine degradation and glycosylphosphatidylinositol anchor biosynthesis. MMP9 expression and presence of macrophages M0 were positively correlated, while naïve B cells, activated dendritic cells, monocytes and plasma cells were negatively correlated. The results were confirmed by brightfield and multiplex fluorescence immunohistochemistry using stained bladder cancer and normal tissue.
Collapse
Affiliation(s)
- Fang Fang
- Department of Immunology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
| | - Tiange Wu
- Medical School of Southeast University, Nanjing, China
| | - Mengxue Wang
- Medical School of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Zonghao You
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
2
|
Kawa H, Ahmed Z, Majid A, Chen R. Inhibition of matrix metalloproteinases to reduce blood brain barrier disruption and haemorrhagic transformation in ischaemic stroke: Go broad or go narrow? Neuropharmacology 2025; 262:110192. [PMID: 39419277 DOI: 10.1016/j.neuropharm.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke characterises impulsive cerebral-region hypoxia due to deep intracerebral arteriole blockage, often accompanied by permanent cerebral infarction and cognitive impairment. Thrombolysis with recombinant tissue plasminogen activator (rtPA) and thrombectomy remain the only guidance-approved therapies. However, emerging data draws clear links between such therapies and haemorrhage transformation, which occur when cerebral vasculature is damaged during ischaemia/reperfusion. Studies have shown that matrix metalloproteinases (MMPs) play a significant role in haemorrhage transformation, by depleting the extracellular matrix (ECM) and disrupting the blood brain barrier (BBB). Inhibitors of MMPs may be used to prevent ischaemic stroke patients from BBB disruption and haemorrhage transformation, particularly for those receiving rtPA treatment. Preclinical studies found that inhibition of MMPs with agents or in knock out mice, effectively reduced BBB disruption and infarct volume, leading to improved ischaemic stroke outcomes. At present, MMP inhibition is not an approved therapy for stroke patients. There remain concerns about timing, dosing, duration of MMP inhibition and selection of either broad spectrum or specific MMP inhibitors for stroke patients. This review aims to summarize current knowledge on MMP inhibition in ischaemic stroke and explore whether a broad spectrum or a specific MMP inhibitor should be used for ischaemic stroke patient treatment. It is crucial to inhibit MMP activities early and sufficiently to ensure BBB intact during ischaemia and reperfusion, but also to reduce side effects of MMP inhibitors to minimum. Recent advance in stroke therapy by thrombectomy could aid in such treatment with intra-arterially delivery of MMP inhibitors (and/or antioxidants).
Collapse
Affiliation(s)
- Hala Kawa
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Arshad Majid
- Division of Neurosciences, School of Medicine and Population Health, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
3
|
Silva TCG, Silva PCV, de Lima ELS, Muniz MTC, Lopes EP, Domingues ALC. Influence of metalloproteinase-3 (-1171 5A>6A) polymorphism on periportal fibrosis in patients with schistosomiasis mansoni, Pernambuco, Brazil. Acta Trop 2024; 260:107450. [PMID: 39489411 DOI: 10.1016/j.actatropica.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
In schistosomiasis mansoni (SM), periportal fibrosis (PPF) arises due to an inflammatory response exacerbated by parasite eggs in the intrahepatic portal space, culminating in the deposition of collagen and extracellular matrix proteins. This fibrosis results from a remodeling process of the extracellular matrix, in which metalloproteinases play a significant role. The study evaluated the association between MMP-3 polymorphism (-1171 5A>6A) (rs 3025058) and sociodemographic factors with PPF in individuals with SM. This is an analytical cross-sectional study involving 242 individuals infected with S. mansoni, of these 122 were diagnosed with hepatosplenic form (HS) and 119 hepatointestinal form (HI), all from the state of Pernambuco, Brazil. Polymerase chain reaction with restriction enzyme digestion (Psyl) was used to determine the MMP-3 polymorphism (-1171 5A>6A). There was a significant association between the male gender and the HS form (OR = 1.7623 95% CI [1.0481-2.9631]; p-value = 0.0439) as well as individuals aged over 41, also had a greater chance of developing this clinical form of the disease (OR = 2.8299; 95% CI [1.5211-5.2650]; p-value = 0.0014), with greater emphasis on individuals over 61 years old (OR= 8.5541; 95% CI [3.6895-19.8326], p-value= 0.0000). There was no statistically significant association between the MMP-3 polymorphism (-1171 5A>6A) between the clinical groups (5A6A CI [0.7144-1.9879] p-value 0.5882 5A5A CI [0.0912-2.9231] p-value 0.7331 5A6A / 5A5A CI [0.6904-1.8937] p-value 0.6949). In conclusion, the results showed no association between the MMP-3 polymorphism (-1171 5A>6A) and the development of PPF. In addition, males, and age over 41 were predictive factors for the HS form of the disease in this Brazilian population.
Collapse
Affiliation(s)
- Thaysa Carolina Gonçalves Silva
- Postgraduate Program in Tropical Medicine, Center of Medical Sciences, Federal University of Pernambuco - Recife Campus - UFPE, Cidade Universitária, Av. Professor Moraes Rego, 1235, CEP: 50670-901, Recife, PE, Brazil.
| | - Paula Carolina Valença Silva
- Federal University of Pernambuco - Academic Center of Vitoria - UFPE/CAV, R. Alto do Reservatório - Alto José Leal, CEP: 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Elker Lene Santos de Lima
- Laboratory of Molecular Biology, Hospital Universitário Oswaldo Cruz - HUOC, University of Pernambuco - UPE, Recife, Brazil; Postgraduate Program in Applied Cell and Molecular Biology, Institute of Biological Sciences, University of Pernambuco - UPE, Recife, Brazil
| | - Maria Tereza Cartaxo Muniz
- Postgraduate Program in Applied Cell and Molecular Biology, Institute of Biological Sciences, University of Pernambuco - UPE, Recife, Brazil
| | - Edmundo Pessoa Lopes
- Gastroenterology Department, Hospital das Clínicas/EBSERH - Federal University of Pernambuco - UFPE, Recife, Brazil
| | - Ana Lúcia Coutinho Domingues
- Gastroenterology Department, Hospital das Clínicas/EBSERH - Federal University of Pernambuco - UFPE, Recife, Brazil
| |
Collapse
|
4
|
Liu M, Zhang H, Li Y, Huang D, Zuo H, Yang J, Chen Z. Loss of MMP9 disturbs cranial suture fusion via suppressing cell proliferation, chondrogenesis and osteogenesis in mice. Matrix Biol 2024; 134:93-106. [PMID: 39374863 DOI: 10.1016/j.matbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cranial sutures function as growth centers for calvarial bones. Abnormal suture closure will cause permanent cranium deformities. MMP9 is a member of the gelatinases that degrades components of the extracellular matrix. MMP9 has been reported to regulate bone development and remodeling. However, the function of MMP9 in cranial suture development is still unknown. Here, we identified that the expression of Mmp9 was specifically elevated during fusion of posterior frontal (PF) suture compared with other patent sutures in mice. Interestingly, inhibition of MMP9 ex vivo or knockout of Mmp9 in mice (Mmp9-/-) disturbed the fusion of PF suture. Histological analysis showed that knockout of Mmp9 resulted in wider distance between osteogenic fronts, suppressed cell condensation and endocranial bone formation in PF suture. Proliferation, chondrogenesis and osteogenesis of suture cells were decreased in Mmp9-/- mice, leading to the PF suture defects. Moreover, transcriptome analysis of PF suture revealed upregulated ribosome biogenesis and downregulated IGF signaling associated with abnormal closure of PF suture in Mmp9-/- mice. Inhibition of the ribosome biogenesis partially rescued PF suture defects caused by Mmp9 knockout. Altogether, these results indicate that MMP9 is critical for the fusion of cranial sutures, thus suggesting MMP9 as a potential therapeutic target for cranial suture diseases.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hanshu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
5
|
Gamal H, Ismail KA, Omar AMME, Teleb M, Abu-Serie MM, Huang S, Abdelsattar AS, Zamponi GW, Fahmy H. Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2388209. [PMID: 39140776 PMCID: PMC11328607 DOI: 10.1080/14756366.2024.2388209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
Collapse
Affiliation(s)
- Hassan Gamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Khadiga A Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| | - A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Abdalla S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Sciences and Technology, October Gardens, Giza, Egypt
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
6
|
Leal VNC, Bork F, Mateo Tortola M, von Guilleaume JC, Greve CL, Bugl S, Danker B, Bittner ZA, Grimbacher B, Pontillo A, Weber ANR. Bruton's tyrosine kinase (BTK) and matrix metalloproteinase-9 (MMP-9) regulate NLRP3 inflammasome-dependent cytokine and neutrophil extracellular trap responses in primary neutrophils. J Allergy Clin Immunol 2024:S0091-6749(24)01186-2. [PMID: 39547282 DOI: 10.1016/j.jaci.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Inflammation is a double-edged state of immune activation that is required to resolve threats harmful to the host, but can also cause severe collateral damage. Polymorphonuclear neutrophils (PMNs), the primary leukocyte population in humans, mediate inflammation through the release of cytokines and neutrophil extracellular traps (NETs). Although the pathophysiological importance of NETs is unequivocal, the multiple molecular pathways driving NET release are not fully defined. Recently, NET release was linked to the NLRP3 inflammasome, which is regulated by Bruton's tyrosine kinase (BTK) in macrophages. OBJECTIVE As NLRP3 inflammasome regulation by BTK has not been studied in neutrophils, we explored a potential regulatory role of BTK in primary murine and human neutrophils and matched monocytes or macrophages from Btk-deficient versus wild-type mice, or from healthy donors versus BTK-deficient patients with X-linked agammaglobulinemia. METHODS Cytokine, myeloperoxidase, and matrix metalloproteinase-9 (MMP-9) release were quantified by ELISA, NET release, and inflammasome formation by immunofluorescence microscopy. RESULTS Surprisingly, in both mouse and human primary neutrophils, we observed a significant increase in NLRP3 inflammasome-dependent IL-1β and NETs when BTK was absent or inhibited, whereas IL-1β release was decreased in corresponding primary mouse macrophages or human PBMCs. This suggests a novel negative regulatory role of BTK in terms of neutrophil NLRP3 activation. IL-1β and NET release in both mouse and human primary neutrophils was strictly dependent on NLRP3, caspase-1 and, surprisingly, MMP-9. CONCLUSIONS This study highlights BTK and MMP-9 as novel and versatile inflammasome regulators and may have implications for the clinical use of BTK inhibitors.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Maria Mateo Tortola
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | | | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bettina Danker
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Zsofia A Bittner
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bodo Grimbacher
- Klinik für Rheumatologie/Klinische Immunologie, Universitätsklinikum Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany; CMFI-Cluster of Excellence (EXC 2124) "Controlling Microbes to Fight Infection," University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Akhlaghipour I, Moghbeli M. Matrix metalloproteinases as the critical regulators of cisplatin response and tumor cell invasion. Eur J Pharmacol 2024; 982:176966. [PMID: 39216742 DOI: 10.1016/j.ejphar.2024.176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CDDP) as one of the most common first-line chemotherapy drugs plays a vital role in the treatment of a wide range of malignant tumors. Nevertheless, CDDP resistance is observed as a therapeutic challenge in a large number of cancer patients. Considering the CDDP side effects in normal tissues, predicting the CDDP response of cancer patients can significantly help to choose the appropriate therapeutic strategy. In this regard, investigating the molecular mechanisms involved in CDDP resistance can lead to the introduction of prognostic markers in cancer patients. Matrix metalloproteinases (MMPs) have critical roles in tissue remodeling and cell migration through extracellular matrix degradation. Therefore, defects in MMPs functions can be associated with tumor metastasis and chemo resistance. In the present review, we discussed the role of MMPs in CDDP response and tumor cell invasion. PubMed, Scopus, Google Scholar, and Web of Science were searched using "MMP", "cisplatin", and "cancer" keywords for data retrieval that was limited to Apr 20, 2024. It has been reported that MMPs can increase CDDP resistance in tumor cells as the effectors of PI3K/AKT, MAPK, and NF-κB signaling pathways or independently through the regulation of structural proteins, autophagy, and epithelial-to-mesenchymal transition (EMT) process. This review has an effective role in introducing MMPs as the prognostic markers and therapeutic targets in CDDP-resistant cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Abikar A, Mustafa MMS, Athalye RR, Nadig N, Tamboli N, Babu V, Keshavamurthy R, Ranganathan P. Comparative transcriptome of normal and cancer-associated fibroblasts. BMC Cancer 2024; 24:1231. [PMID: 39369238 PMCID: PMC11456241 DOI: 10.1186/s12885-024-13006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND The characteristics of a tumor are largely determined by its interaction with the surrounding micro-environment (TME). TME consists of both cellular and non-cellular components. Cancer-associated fibroblasts (CAFs) are a major component of the TME. They are a source of many secreted factors that influence the survival and progression of tumors as well as their response to drugs. Identification of markers either overexpressed in CAFs or unique to CAFs would pave the way for novel therapeutic strategies that in combination with conventional chemotherapy are likely to have better patient outcome. METHODS Fibroblasts have been derived from Benign Prostatic Hyperplasia (BPH) and prostate cancer. RNA from these has been used to perform a transcriptome analysis in order to get a comparative profile of normal and cancer-associated fibroblasts. RESULTS The study has identified 818 differentially expressed mRNAs and 17 lincRNAs between normal and cancer-associated fibroblasts. Also, 15 potential lincRNA-miRNA-mRNA combinations have been identified which may be potential biomarkers. CONCLUSIONS This study identified differentially expressed markers between normal and cancer-associated fibroblasts that would help in targeted therapy against CAFs/derived factors, in combination with conventional therapy. However, this would in future need more experimental validation.
Collapse
Affiliation(s)
- Apoorva Abikar
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | | | | | | | | | - Vinod Babu
- Institute of Nephro-Urology, Bengaluru, India
| | | | - Prathibha Ranganathan
- Centre for Human Genetics, Bengaluru, India.
- Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
9
|
Pang G, Ye L, Jiang Y, Wu Y, Zhang R, Yang H, Yang Y. Unveiling the bidirectional role of MMP9: A key player in kidney injury. Cell Signal 2024; 122:111312. [PMID: 39074714 DOI: 10.1016/j.cellsig.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent proteolytic metalloenzymes that are involved in numerous pathological conditions, including nephropathy. MMP9, a member of the MMPs family, is categorized as a constituent of the gelatinase B subgroup, and its involvement in extracellular matrix (ECM) remodeling and renal fibrosis highlights its importance in the development and progression of renal diseases. The exact role of MMP9 in the development of kidney diseases is still controversial. This study investigated the dual role of MMP9 in kidney injury, discussing its implications in the pathogenesis of kidney diseases and investigating the design and mechanism of MMP9 inhibitors based on previous studies. This study provides an effective basis for the development of novel and selective MMP9 inhibitors for treating renal diseases.
Collapse
Affiliation(s)
- Guiying Pang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Ling Ye
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yinxiao Jiang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yilin Wu
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Rufeng Zhang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China
| | - Hongxu Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China.
| | - Yi Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China.
| |
Collapse
|
10
|
Sunny A, James RR, Menon SR, Rayaroth S, Daniel A, Thompson NA, Tharakan B. Matrix Metalloproteinase-9 inhibitors as therapeutic drugs for traumatic brain injury. Neurochem Int 2024; 172:105642. [PMID: 38008261 DOI: 10.1016/j.neuint.2023.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality among young adults and the elderly. In the United States, TBI is responsible for around 30 percent of all injuries brought on by injuries in general. Vasogenic cerebral edema due to blood-brain barrier (BBB) dysfunction and the associated elevation of intracranial pressure (ICP) are some of the major causes of secondary injuries following traumatic brain injury. Matrix metalloproteinase-9 (MMP-9) is a therapeutic target for being an enzyme that degrades the proteins that make up a part of the microvascular basal lamina as well as inter-endothelial tight junctions of the blood-brain barrier. MMP-9-mediated BBB dysfunctions and the compromise of the BBB is a major pathway that leads the development of vasogenic cerebral edema, elevation of ICP, poor cerebral perfusion and brain herniation following traumatic brain injury. That makes MMP-9 an effective therapeutic target and endogenous or exogenous MMP-9 inhibitors as therapeutic drugs for preventing secondary brain damage after traumatic brain injury. Although our understanding of the mechanisms that underlie the primary and secondary stages of damage following a TBI has significantly improved in recent years, such information has not yet resulted in the successful development of novel pharmacological treatment options for traumatic brain injury. Recent pre-clinical and/or clinical studies have demonstrated that there are several compounds with specific or non-specific MMP-9 inhibitory properties either directly binding and inhibiting MMP-9 or by indirectly inhibiting MMP-9, with potential as therapeutic agents for traumatic brain injury. This article reviews the efficacy of several such medications and potential agents that include endogenous and exogeneous compounds that are at various levels of research and development. MMP-9-based therapeutic drug development has enormous potential in the pharmacological treatment of cerebral edema and/or neuronal injury resulting from traumatic brain injury.
Collapse
Affiliation(s)
- Angel Sunny
- Icahn School of Medicine at Mount Sinai, Elmhurst, NY, USA
| | | | | | | | - Abhijith Daniel
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Namita Ann Thompson
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Nishikawa-Shimono R, Kuwabara M, Fujisaki S, Matsuda D, Endo M, Kamitani M, Futamura A, Nomura Y, Yamaguchi-Sasaki T, Yabuuchi T, Yamaguchi C, Tanaka-Yamamoto N, Satake S, Abe-Sato K, Funayama K, Sakata M, Takahashi S, Hirano K, Fukunaga T, Uozumi Y, Kato S, Tamura Y, Nakamori T, Mima M, Mishima-Tsumagari C, Nozawa D, Imai Y, Asami T. Discovery of novel indole derivatives as potent and selective inhibitors of proMMP-9 activation. Bioorg Med Chem Lett 2024; 97:129541. [PMID: 37952596 DOI: 10.1016/j.bmcl.2023.129541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a secreted zinc-dependent endopeptidase that degrades the extracellular matrix and basement membrane of neurons, and then contributes to synaptic plasticity by remodeling the extracellular matrix. Inhibition of MMP-9 activity has therapeutic potential for neurodegenerative diseases such as fragile X syndrome. This paper reports the molecular design, synthesis, and in vitro studies of novel indole derivatives as inhibitors of proMMP-9 activation. High-throughput screening (HTS) of our internal compound library and subsequent merging of hit compounds 1 and 2 provided compound 4 as a bona-fide lead. X-ray structure-based design and subsequent lead optimization led to the discovery of compound 33, a highly potent and selective inhibitor of proMMP-9 activation.
Collapse
Affiliation(s)
- Rie Nishikawa-Shimono
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Motoi Kuwabara
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Sho Fujisaki
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Daisuke Matsuda
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan.
| | - Mayumi Endo
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Aya Futamura
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Yusaku Nomura
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Toru Yamaguchi-Sasaki
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Tetsuya Yabuuchi
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Chitose Yamaguchi
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Nozomi Tanaka-Yamamoto
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Shunya Satake
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Kumi Abe-Sato
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Kosuke Funayama
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Mayumi Sakata
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Shinji Takahashi
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Koga Hirano
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Takuya Fukunaga
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Yoriko Uozumi
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Sayaka Kato
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Yunoshin Tamura
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Tomoaki Nakamori
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Masashi Mima
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Chiemi Mishima-Tsumagari
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Dai Nozawa
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Yudai Imai
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan
| | - Taiji Asami
- Medicinal Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530, Japan.
| |
Collapse
|
12
|
Swift LM, Roberts A, Pressman J, Guerrelli D, Allen S, Haq KT, Reisz JA, D’Alessandro A, Posnack NG. Evidence for the cardiodepressive effects of the plasticizer di-2-ethylhexyl phthalate. Toxicol Sci 2023; 197:79-94. [PMID: 37812252 PMCID: PMC10734602 DOI: 10.1093/toxsci/kfad105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Di-2-ethylhexyl phthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell units stored between 7 and 42 days (17-119 μg/ml). Using these concentrations as a guide, Langendorff-perfused rat heart preparations were acutely exposed to DEHP. Sinus activity remained stable with lower doses of DEHP (25-50 μg/ml), but sinus rate declined by 43% and sinus node recovery time (SNRT) prolonged by 56.5% following 30-min exposure to 100 μg/ml DEHP. DEHP exposure also exerted a negative dromotropic response, as indicated by a 69.4% longer PR interval, 108.5% longer Wenckebach cycle length (WBCL), and increased incidence of atrioventricular (AV) uncoupling (60-min exposure). Pretreatment with doxycycline partially rescued the effects of DEHP on sinus activity, but did not ameliorate the effects on AV conduction. DEHP exposure also prolonged the ventricular action potential and effective refractory period, but had no measurable effect on intracellular calcium transient duration. Follow-up studies using human-induced pluripotent stem cell-derived cardiomyocytes confirmed that DEHP slows electrical conduction in a time (15 min-3 h) and dose-dependent manner (10-100 μg/ml). Previous studies have suggested that phthalate toxicity is specifically attributed to metabolites of DEHP, including mono-2-ethylhexylphthalate. This study demonstrates that DEHP exposure also contributes to cardiac dysfunction in a dose- and time-dependent manner. Future work is warranted to investigate the impact of DEHP (and its metabolites) on human health, with special consideration for clinical procedures that employ plastic materials.
Collapse
Affiliation(s)
- Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Anysja Roberts
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Jenna Pressman
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| | - Samuel Allen
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Kazi T Haq
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia 20037, USA
- Department of Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia 20037, USA
| |
Collapse
|
13
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
14
|
Bian Y, Xiang Z, Wang Y, Ren Q, Chen G, Xiang B, Wang J, Zhang C, Pei S, Guo S, Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023; 14:1285455. [PMID: 38035026 PMCID: PMC10684723 DOI: 10.3389/fphar.2023.1285455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaofeng Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Guoming Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bei Xiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengbo Zhang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqiang Pei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianbo Xiao
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Pawar NR, Buzza MS, Duru N, Strong AA, Antalis TM. Matriptase drives dissemination of ovarian cancer spheroids by a PAR-2/PI3K/Akt/MMP9 signaling axis. J Cell Biol 2023; 222:e202209114. [PMID: 37737895 PMCID: PMC10515437 DOI: 10.1083/jcb.202209114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
The transmembrane serine protease matriptase is a key regulator of both barrier-disruptive and protective epithelial cell-cell interactions. Elevated matriptase is a consistent feature of epithelial ovarian cancers (OvCa), where multicellular spheroids shed from the primary tumor into the peritoneal cavity are critical drivers of metastasis. Dynamic cell-to-cell adhesive contacts are required for spheroid formation and maintenance. Here, we show that overactive matriptase, reflected in an increased ratio of matriptase to its inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), disrupts cell-cell contacts to produce loose prometastatic spheroids that display increased mesothelial cell adhesion and submesothelial invasion. We show that these activities are dependent on the matriptase activation of a protease-activated receptor-2 (PAR-2) signaling pathway involving PI3K/Akt and MMP9-induced disruption of cell-cell adhesion by the release of the soluble E-cadherin ectodomain. These data reveal a novel pathological connection between matriptase activation of PAR-2 and disruption of cell-cell adhesion, and support the clinical investigation of this signaling axis as a therapeutic strategy for aggressive metastatic OvCa.
Collapse
Affiliation(s)
- Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, USA
| | - Nadire Duru
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amando A. Strong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
16
|
Tufail M. Unlocking the potential of the tumor microenvironment for cancer therapy. Pathol Res Pract 2023; 251:154846. [PMID: 37837860 DOI: 10.1016/j.prp.2023.154846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The tumor microenvironment (TME) holds a crucial role in the progression of cancer. Epithelial-derived tumors share common traits in shaping the TME. The Warburg effect is a notable phenomenon wherein tumor cells exhibit resistance to apoptosis and an increased reliance on anaerobic glycolysis for energy production. Recognizing the pivotal role of the TME in controlling tumor growth and influencing responses to chemotherapy, researchers have focused on developing potential cancer treatment strategies. A wide array of therapies, including immunotherapies, antiangiogenic agents, interventions targeting cancer-associated fibroblasts (CAF), and therapies directed at the extracellular matrix, have been under investigation and have demonstrated efficacy. Additionally, innovative techniques such as tumor tissue explants, "tumor-on-a-chip" models, and multicellular tumor spheres have been explored in laboratory research. This comprehensive review aims to provide insights into the intricate cross-talk between cancer-associated signaling pathways and the TME in cancer progression, current therapeutic approaches targeting the TME, the immune landscape within solid tumors, the role of the viral TME, and cancer cell metabolism.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
17
|
Toraih EA, Hussein MH, Al Ageeli E, Ellaban M, Kattan SW, Moroz K, Fawzy MS, Kandil E. Matrix Metalloproteinase 9/microRNA-145 Ratio: Bridging Genomic and Immunological Variabilities in Thyroid Cancer. Biomedicines 2023; 11:2953. [PMID: 38001954 PMCID: PMC10669161 DOI: 10.3390/biomedicines11112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Matrix metalloproteinase 9 (MMP9) and microRNA-145 (miR-145) have emerged as essential biomarkers in thyroid cancer progression and metastasis. However, their combined evaluation and clinical utility as a unified prognostic marker across diverse thyroid cancer subgroups remain unexplored. We investigated the diagnostic and prognostic value of the MMP9/miR-145 ratio in thyroid cancer, hypothesizing it may overcome inter-patient heterogeneity and serve as a versatile biomarker regardless of genetic mutations or autoimmune status. MMP9 and miR-145 expressions were analyzed in 175 paired papillary thyroid cancer (PTC) and normal tissues. Plasma levels were assessed perioperatively and longitudinally over 12-18 months in 86 matched PTC patients. The associations with clinicopathological parameters and patient outcomes were evaluated. MMP9 was upregulated, and miR-145 downregulated in cancer tissues, with a median MMP9/miR-145 ratio 17.6-fold higher versus controls. The tissue ratio accurately diagnosed thyroid malignancy regardless of BRAF mutation or Hashimoto's thyroiditis status, overcoming genetic and autoimmune heterogeneity. A high preoperative circulating ratio predicted aggressive disease features, including lymph node metastasis, extrathyroidal extension, progression/relapse, and recurrence. Although the preoperative plasma ratio was elevated in patients with unfavorable outcomes, it had limited utility for post-surgical monitoring. In conclusion, the MMP9/miR-145 ratio is a promising biomarker in PTC that bridges genetic and immunological variabilities, enhancing preoperative diagnosis and prognostication across diverse patient subgroups. It accurately stratifies heterogenous cases by aggressiveness. The longitudinal trends indicate decreasing applicability for post-thyroidectomy surveillance. Further large-scale validation and protocol standardization can facilitate clinical translation of the MMP9/miR-145 ratio to guide personalized thyroid cancer management.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohamad Ellaban
- Faculty of Medicine, Port Said University, Port Said 42526, Egypt;
| | - Shahd W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia;
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (M.H.H.); (E.K.)
| |
Collapse
|
18
|
Korzeń D, Sierka O, Dąbek J. Transcriptional Activity of Metalloproteinase 9 (MMP-9) and Tissue Metalloproteinase 1 (TIMP-1) Genes as a Diagnostic and Prognostic Marker of Heart Failure Due to Ischemic Heart Disease. Biomedicines 2023; 11:2776. [PMID: 37893149 PMCID: PMC10604598 DOI: 10.3390/biomedicines11102776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The most common cause of heart failure (HF) is coronary artery disease (CAD). The aim of this study was to evaluate the transcriptional activity of the metalloproteinase 9 (MMP-9) and tissue metalloproteinase inhibitor 1 (TIMP-1) genes in a study group of patients with HF due to CAD and in the control group, as well as assess the transcriptional activity of the examined genes, taking into account the number of affected coronary arteries and the severity of heart failure. The study group consisted of a total of 150 (100%) patients. The material for the study was peripheral blood, and molecular tests were performed using the quantitative QRT-PCR technique. The transcriptional activity of the MMP-9 gene was significantly higher in the group of patients with CAD and HF. It was also significantly higher with the progression of heart failure. TIMP-1 gene transcriptional activity was significantly lower with the advancement of heart failure. The transcriptional activity of the MMP-9 and TIMP-1 genes differentiated the examined patients. The severity of HF, and a significant increase in the QRT-PCR transcriptional activity of the MMP-9 gene with a simultaneous decrease in the activity of the TIMP-1 gene, makes them useful diagnostic and prognostic markers in clinical practice.
Collapse
Affiliation(s)
- Dariusz Korzeń
- Provincial Specialist Hospital Megrez Sp. z o. o., Edukacji Street 102, 43-100 Tychy, Poland
| | - Oskar Sierka
- Student Research Group at the Department of Cardiology, Department of Cardiology, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Ziołowa Street 45/47, 40-635 Katowice, Poland
| | - Józefa Dąbek
- Department of Cardiology, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Ziołowa Street 45/47, 40-635 Katowice, Poland
| |
Collapse
|
19
|
Li YY, Zhang LY, Xiang YH, Li D, Zhang J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: promote or inhibit? Front Oncol 2023; 13:1127407. [PMID: 37823051 PMCID: PMC10562598 DOI: 10.3389/fonc.2023.1127407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) play a vital role in the pathogenesis of multiple myeloma (MM), especially for tumor invasion and osteolytic osteopathy. By breaking down extracellular matrix (ECM) components and releasing the proteins composing the ECM and growth factors, as well as their receptors, MMPs affect tissue integrity and promote cancer cell invasion and metastasis. A vital pathophysiological characteristic of MM is the progress of osteolytic lesions, which are brought on by interactions between myeloma cells and the bone marrow microenvironment. MMPs, certainly, are one of the fundamental causes of myeloma bone disease due to their ability to degrade various types of collagens. TIMPs, as important regulators of MMP hydrolysis or activation, also participate in the occurrence and evolution of MM and the formation of bone disease. This review focuses on the role of MMP-1, MMP-2, MMP-7, MMP-9, MMP-13, MMP-14, and MMP-15 and the four types of TIMPs in the invasion of myeloma cells, angiogenesis, osteolytic osteopathy, to offer some novel perspectives on the clinical diagnostics and therapeutics of MM.
Collapse
Affiliation(s)
- Yan-Ying Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liu-Yun Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Hui Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Zhang
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Swift LM, Roberts A, Pressman J, Guerrelli D, Allen S, Haq KT, Reisz JA, D'Alessandro A, Posnack NG. Evidence for the cardiodepressive effects of the plasticizer di-2-ethylhexylphthalate (DEHP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541729. [PMID: 37293060 PMCID: PMC10245927 DOI: 10.1101/2023.05.22.541729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Di-2-ethylhexylphthalate (DEHP) is commonly used in the manufacturing of plastic materials, including intravenous bags, blood storage bags, and medical-grade tubing. DEHP can leach from plastic medical products, which can result in inadvertent patient exposure. DEHP concentrations were measured in red blood cell (RBC) units stored between 7-42 days (23-119 μg/mL). Using these concentrations as a guide, Langendorff-perfused rat heart preparations were acutely exposed to DEHP. Sinus activity remained stable with lower doses of DEHP (25-50 μg/mL), but sinus rate declined by 43% and sinus node recovery time prolonged by 56.5% following 30-minute exposure to 100 μg/ml DEHP. DEHP exposure also exerted a negative dromotropic response, as indicated by a 69.4% longer PR interval, 108.5% longer Wenckebach cycle length, and increased incidence of atrioventricular uncoupling. Pretreatment with doxycycline partially rescued the effects of DEHP on sinus activity, but did not ameliorate the effects on atrioventricular conduction. DEHP exposure also prolonged the ventricular action potential and effective refractory period, but had no measurable effect on intracellular calcium transient duration. Follow-up studies using hiPSC-CM confirmed that DEHP slows electrical conduction in a time (15 min - 3 hours) and dose-dependent manner (10-100 μg/mL). Previous studies have suggested that phthalate toxicity is specifically attributed to metabolites of DEHP, including mono-2-ethylhexyl phthalate (MEHP). This study demonstrates that DEHP exposure also contributes to cardiac dysfunction in a dose- and time-dependent manner. Future work is warranted to investigate the impact of DEHP (and its metabolites) on human health, with special consideration for clinical procedures that employ plastic materials.
Collapse
|
21
|
Rashid ZA, Bardaweel SK. Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment. Int J Mol Sci 2023; 24:12133. [PMID: 37569509 PMCID: PMC10418771 DOI: 10.3390/ijms241512133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency.
Collapse
Affiliation(s)
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
22
|
Babar Q, Saeed A, Tabish TA, Sarwar M, Thorat ND. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166746. [PMID: 37160171 DOI: 10.1016/j.bbadis.2023.166746] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Cellular and stromal components including tumor cells, immune cells, mesenchymal cells, cancer-linked fibroblasts, and extracellular matrix, constituent tumor microenvironment (TME). TME plays a crucial role in reprogramming tumor initiation, uncontrolled proliferation, invasion and metastasis as well as response to therapeutic modalities. In recent years targeting the TME has developed as a potential strategy for treatment of cancer because of its life-threatening functions in restricting tumor development and modulating responses to standard-of-care medicines. Cold atmospheric plasma, oncolytic viral therapy, bacterial therapy, nano-vaccine, and repurposed pharmaceuticals with combination therapy, antiangiogenic drugs, and immunotherapies are among the most effective therapies directed by TME that have either been clinically authorized or are currently being studied. This article discusses above-mentioned therapies in light of targeting TME. We also cover problems related to the TME-targeted therapies, as well as future insights and practical uses in this rapidly growing field.
Collapse
Affiliation(s)
- Quratulain Babar
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Mohsin Sarwar
- Department of Biochemistry University of Management and Technology, Lahore, Pakistan
| | - Nanasaheb D Thorat
- Department of Physics, Bernal Institute, Castletroy, Limerick V94T9PX, Ireland; Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick V94T9PX, Ireland.
| |
Collapse
|
23
|
Li Z, Wei J, Chen B, Wang Y, Yang S, Wu K, Meng X. The Role of MMP-9 and MMP-9 Inhibition in Different Types of Thyroid Carcinoma. Molecules 2023; 28:molecules28093705. [PMID: 37175113 PMCID: PMC10180081 DOI: 10.3390/molecules28093705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9), one of the most investigated and studied biomarkers of the MMPs family, is a zinc-dependent proteolytic metalloenzyme whose primary function is degrading the extracellular matrix (ECM). It has been proved that MMP-9 expression elevates in multiple pathological conditions, including thyroid carcinoma. MMP-9 has a detectable higher level in malignant or metastatic thyroid tumor tissues than in normal or benign tissues and acts as an additional marker to distinguish different tumor stages because of its close correlations with clinical features, such as lymph node metastasis, TNM stage, tumor size and so on. Natural and non-natural MMP-9 inhibitors suppress its expression, block the progression of diseases, and play a role in therapy consequently. MMP-9 inhibitory molecules also assist in treating thyroid tumors by suppressing the proliferation, invasion, migration, metastasis, viability, adhesion, motility, epithelial-mesenchymal transition (EMT), and other risk factors of different thyroid cancer cells. In a word, discovering and designing MMP-9 inhibitors provide great therapeutic effects and promising clinical values in various types of thyroid carcinoma.
Collapse
Affiliation(s)
- Zhenshengnan Li
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bowen Chen
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoqi Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Yang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Kehui Wu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xianying Meng
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
24
|
Malekipour MH, Shirani F, Moradi S, Taherkhani A. Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: molecular docking and dynamics simulations. Genomics Inform 2023; 21:e9. [PMID: 37037467 PMCID: PMC10085732 DOI: 10.5808/gi.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 04/03/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is a zinc and calcium-dependent proteolytic enzyme involved in extracellular matrix degradation. Overexpression of MMP-9 has been confirmed in several disorders, including cancers, Alzheimer′s disease, autoimmune diseases, cardiovascular diseases, and dental caries. Therefore, MMP-9 inhibition is recommended as a therapeutic strategy for combating various diseases. Cinnamic acid derivatives have shown therapeutic effects in different cancers, Alzheimer′s disease, cardiovascular diseases, and dental caries. A computational drug discovery approach was performed to evaluate the binding affinity of selected cinnamic acid derivatives to the MMP-9 active site. The stability of docked poses for top-ranked compounds was also examined. Twelve herbal cinnamic acid derivatives were tested for possible MMP-9 inhibition using the AutoDock 4.0 tool. The stability of the docked poses for the most potent MMP-9 inhibitors was assessed by molecular dynamics (MD) in 10 nanosecond simulations. Interactions between the best MMP-9 inhibitors in this study and residues incorporated in the MMP-9 active site were studied before and after MD simulations. Cynarin, chlorogenic acid, and rosmarinic acid revealed a considerable binding affinity to the MMP-9 catalytic domain (ΔGbinding < -10 kcal/mol). The inhibition constant value for cynarin and chlorogenic acid were calculated at the picomolar scale and assigned as the most potent MMP-9 inhibitor from the cinnamic acid derivatives. The root-mean-square deviations for cynarin and chlorogenic acid were below 2 Å in the 10 ns simulation. Cynarin, chlorogenic acid, and rosmarinic acid might be considered drug candidates for MMP-9 inhibition.
Collapse
Affiliation(s)
- Mohammad Hossein Malekipour
- Dental Students Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Farzaneh Shirani
- Dental Research Center, Dental Research Institute, Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Shadi Moradi
- Department of Medical Immunology, School of Medicine, Hamadan University of Medical Science, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
- Corresponding author E-mail:
| |
Collapse
|
25
|
Shaikh AS, Sethi A, Makhal PN, Rathi B, Kaki VR. Quest for selective MMP9 inhibitors: a computational approach. J Biomol Struct Dyn 2023; 41:15053-15066. [PMID: 36905674 DOI: 10.1080/07391102.2023.2186710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/13/2023]
Abstract
Matrix Metalloproteinases-9 (MMP-9) is one of the important targets that play a vital role in various diseases such as cancer, Alzheimer's, arthritis, etc. Traditionally, MMP-9 inhibitors have been unable to achieve selectivity to get around this target; thereby, novel mechanisms such as inhibition of activated MMP-9 zymogen (pro-MMP-9) have been discovered. The JNJ0966 was one of the few compounds that attained the requisite selectivity by inhibiting the activation of MMP-9 zymogen (pro-MMP-9). Since JNJ0966, no other small molecules have been identified. Herein, extensive in silico studies were called upon to bolster the prospect of exploring potential candidates. The key objective of this research is to identify the potential hits from the ChEMBL database via molecular docking and dynamics approach. Protein with PDB ID: 5UE4, having a unique inhibitor in an allosteric binding pocket of MMP-9, was chosen for the study. Structure-based virtual screening and MMGBSA binding affinity calculations were performed, and five potential hits were finalized. Detailed analysis of the best-scoring molecules was performed with ADMET analysis and molecular dynamics (MD) simulation. All five hits outperformed JNJ0966 in the docking assessment, ADMET analysis, and molecular dynamics simulation. Accordingly, our research findings imply that these hits can be investigated for in vitro and in vivo studies against proMMP9 and might be explored as potential anticancer drugs. The outcome of our research might contribute in expediting the exploration of drugs that inhibits proMMP-9.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arbaz Sujat Shaikh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aaftaab Sethi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
- HeteroChem InnoTech Pvt. Ltd., Hansraj College Campus, University of Delhi, Delhi, India
| | - Priyanka N Makhal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
- HeteroChem InnoTech Pvt. Ltd., Hansraj College Campus, University of Delhi, Delhi, India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
26
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
27
|
Olsson-Brown A, Yip V, Ogiji ED, Jolly C, Ressel L, Sharma A, Bergfeld W, Liu X, Khirwadkar N, Bellon T, Dickinson A, Ahmed S, Langton A, Watson R, Pirmohamed M, Carr DF. TNF-α‒Mediated Keratinocyte Expression and Release of Matrix Metalloproteinase 9: Putative Mechanism of Pathogenesis in Stevens‒Johnson Syndrome/Toxic Epidermal Necrolysis. J Invest Dermatol 2022; 143:1023-1030.e7. [PMID: 36581093 DOI: 10.1016/j.jid.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 12/27/2022]
Abstract
Stevens‒Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are severe cutaneous adverse drug reactions characterized by widespread keratinocyte cell death and epidermal detachment. At present, there is little understanding of how the detachment occurs or how it is abrogated by the TNF-α inhibitor etanercept, an effective SJS/TEN treatment. RNA sequencing was used to identify upregulated transcripts in formalin-fixed paraffin-embedded SJS/TEN skin biopsies. Epidermal matrix metalloproteinase 9 (MMP9) expression was assessed by immunohistochemistry in skin biopsies and cultured human skin explants exposed to serum from patients with cutaneous adverse drug reactions. TNF-α‒induced MMP9 expression and activity and its abrogation by etanercept were determined using the HaCaT immortalized keratinocyte cell line. Epidermal MMP9 expression was significantly higher in SJS/TEN skin (70.6%) than in healthy control skin (0%) (P = 0.0098) and nonbullous skin reactions (10.7%) (P = 0.0002). SJS/TEN serum induced significant MMP9 expression and collagenase activity in healthy skin explants, which was reduced by etanercept. Etanercept was also able to negate the TNF-α‒induced MMP9 expression in the HaCaT cell line. Data suggest that elevated epidermal MMP9 expression and collagenase activity are a putative pathogenic mechanism in SJS/TEN, which is limited by etanercept. Modulation of MMP9 expression and activity represents, to our knowledge, a previously unreported therapeutic target for the treatment of SJS/TEN.
Collapse
Affiliation(s)
- Anna Olsson-Brown
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Vincent Yip
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Emeka D Ogiji
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Carol Jolly
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Anurag Sharma
- Department of Dermatology and Dermatopathology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Wilma Bergfeld
- Department of Dermatology and Dermatopathology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Xuan Liu
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Nitin Khirwadkar
- Department of Cellular Pathology. Liverpool Clinical Laboratories, Royal Liverpool University Hospital NHS Trust, Liverpool, United Kingdom
| | - Teresa Bellon
- La Paz University Hospital Health Research Institute (IdiPAZ), Madrid, Spain
| | - Anne Dickinson
- Alcyomics Ltd, The Biosphere, Newcastle-upon-Tyne, United Kingdom
| | - Shaheda Ahmed
- Alcyomics Ltd, The Biosphere, Newcastle-upon-Tyne, United Kingdom
| | - Abigail Langton
- Centre for Dermatology Research, The University of Manchester, Manchester, United Kingdom
| | - Rachel Watson
- Centre for Dermatology Research, The University of Manchester, Manchester, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Daniel F Carr
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
28
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
29
|
Bodas KS, Bagul CD, Shinde VM. Evaluation of wound healing effect of Mallotus philippensis (Lam.) Mull. Arg. by in silico multitargets directed for multiligand approach. In Silico Pharmacol 2022; 10:19. [PMID: 36199809 PMCID: PMC9527269 DOI: 10.1007/s40203-022-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/17/2022] [Indexed: 10/07/2022] Open
Abstract
The healing of wound is a tightly-regulated cascade of events, involving interplay of enormous factors. Now a days, pain alleviation and faster wound healing have attracted considerable attention. Several natural compounds have played crucial role in this intriguing process. The present study deals with five selected molecules from the plant Mallotus philippensis (Lam.) Mull. Arg. targeting the eight essential proteins involved in the wound healing and inflammatory process. Considering that various phytoconstituents of medicinal plant can simultaneously interacts with multiple targets, in current work multiligand and multitarget approach was employed instead of traditional one ligand-multitarget approach. Docking studies were performed using AutoDock Vina and molecular dynamics was performed using GROMACS 2019. The current study revealed the potential interactions of five selected constituents with multiple chronic wound healing targets. The wound healing effect of Mallotus philippensis (Lam.) Mull. Arg. fruits may be due to combined effect of all these compounds. Effective interactions with the amino acid residues present in the active site of some of the essential proteins involved in the wound healing process also suggests possible mechanism in the wound healing process. The current work thus provides a meaningful insight that Mallotus philippensis (Lam.) Mull. Arg. fruits could be used as potential candidate for faster healing of wound. Also, in silico studies depicting interaction with the targets and receptors provide a meaningful insight that this plant would be used as potential candidate for new drug development.
Collapse
Affiliation(s)
- Kaumudee S. Bodas
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Pune, Maharashtra 411038 India
| | - Chandrakant D. Bagul
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041 India
| | - Vaibhav M. Shinde
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Pune, Maharashtra 411038 India
| |
Collapse
|
30
|
Opdenakker G, Vermeire S, Abu El-Asrar A. How to place the duality of specific MMP-9 inhibition for treatment of inflammatory bowel diseases into clinical opportunities? Front Immunol 2022; 13:983964. [PMID: 36164340 PMCID: PMC9509204 DOI: 10.3389/fimmu.2022.983964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) with the involvement of immune cells and molecules, including cytokines, chemokines and proteases. A previous extensive review about the molecular biology of matrix metalloproteases (MMPs) and tissue inhibitors of metalloproteases (TIMPs), related to intestinal barrier destruction and restoration functions in IBD, is here complemented with the literature from the last five years. We also compare IBD as a prototypic mucosal inflammation of an epithelial barrier against microorganisms with inflammatory retinopathy as a disease with a barrier dysfunction at the level of blood vessels. Multiple reasons are at the basis of halting clinical trials with monoclonal antibodies against MMP-9 for IBD treatment. These include (i) the absence of a causative role of MMP-9 in the pathology in animal models of IBD, (ii) the fact that endotoxins, crossing the intestinal barrier, induce massive local release of both neutrophil collagenase (MMP-8) and gelatinase B (MMP-9), (iii) insufficient recognition that MMPs modify the activities of cytokines, chemokines and their receptors, (iv) ignorance that MMPs exist as mixtures of proteoforms with different posttranslational modifications and with different specific activities and (v) the fact that MMPs and TIMPs act in an interactive network, possibly having also beneficial effects on IBD evolution. Nevertheless, inhibition of MMPs may be a useful therapeutic approach during specific IBD disease phases or in specific sub-phenotypes. This temporary “window of opportunity” for MMP-9 inhibition may be complemented by a locoregional one, provided that the pharmacological agents are targeted in time to affected tissues, as is achieved in ophthalmological inflammation. Thus, in order to discover spatial and temporal windows of opportunity for MMP inhibition as treatment of IBD, more preclinical work including well controlled animal studies will be further needed. In this respect, MMP-9/NGAL complex analysis in various body compartments is helpful for better stratification of IBD patients who may benefit from anti-MMP-9.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Ghislain Opdenakker,
| | | | | |
Collapse
|
31
|
Therapeutic Potential of 5'-Methylschweinfurthin G in Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma. Viruses 2022; 14:v14091848. [PMID: 36146655 PMCID: PMC9506461 DOI: 10.3390/v14091848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 02/08/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of natural compounds previously displayed potent and selective growth inhibitory activity against the NCI-60 panel of human-derived cancer cell lines. Here, we investigated the impact of schweinfurthin on human MCC cell lines. Treatment with the schweinfurthin analog, 5'-methylschweinfurth G (MeSG also known as TTI-3114), impaired metabolic activity through induction of an apoptotic pathway. MeSG also selectively inhibited PI3K/AKT and MAPK/ERK pathways in the MCPyV-positive MCC cell line, MS-1. Interestingly, expression of the MCPyV small T (sT) oncogene selectively sensitizes mouse embryonic fibroblasts to MeSG. These results suggest that the schweinfurthin family of compounds display promising potential as a novel therapeutic option for virus-induced MCCs.
Collapse
|
32
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
33
|
Kousalová J, Šírová M, Kostka L, Šubr V, Kovářová J, Běhalová K, Studenovský M, Kovář M, Etrych T. Metastatic spread inhibition of cancer cells through stimuli-sensitive HPMA copolymer-bound actinonin nanomedicines. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102578. [PMID: 35779856 DOI: 10.1016/j.nano.2022.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jana Kousalová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Jiřina Kovářová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Kateřina Běhalová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Martin Studenovský
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Marek Kovář
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic.
| |
Collapse
|
34
|
Tune BXJ, Sim MS, Poh CL, Guad RM, Woon CK, Hazarika I, Das A, Gopinath SCB, Rajan M, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Batumalaie K, Wu YS. Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. JOURNAL OF ONCOLOGY 2022; 2022:3249766. [PMID: 35586209 PMCID: PMC9110224 DOI: 10.1155/2022/3249766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
Cancer is one of the major causes of death worldwide. Its treatments usually fail when the tumor has become malignant and metastasized. Metastasis is a key source of cancer recurrence, which often leads to resistance towards chemotherapeutic agents. Hence, most cancer-related deaths are linked to the occurrence of chemoresistance. Although chemoresistance can emerge through a multitude of mechanisms, chemoresistance and metastasis share a similar pathway, which is an epithelial-to-mesenchymal transition (EMT). Matrix metalloproteinases (MMPs), a class of zinc and calcium-chelated enzymes, are found to be key players in driving cancer migration and metastasis through EMT induction. The aim of this review is to discuss the regulatory roles and associated molecular mechanisms of specific MMPs in regulating chemoresistance, particularly EMT initiation and resistance to apoptosis. A brief presentation on their potential diagnostic and prognostic values was also deciphered. It also aimed to describe existing MMP inhibitors and the potential of utilizing other strategies to inhibit MMPs to reduce chemoresistance, such as upstream inhibition of MMP expressions and MMP-responsive nanomaterials to deliver drugs as well as epigenetic regulations. Hence, manipulation of MMP expression can be a powerful tool to aid in treating patients with chemo-resistant cancers. However, much still needs to be done to bring the solution from bench to bedside.
Collapse
Affiliation(s)
- Bernadette Xin Jie Tune
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, 47000 Selangor, Malaysia
| | - Iswar Hazarika
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Anju Das
- Department of Pharmacology, Royal School of Pharmacy, Royal Global University, Guwahati 781035, India
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah 08100, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| |
Collapse
|
35
|
Tumor Stimulus-Responsive Biodegradable Diblock Copolymer Conjugates as Efficient Anti-Cancer Nanomedicines. J Pers Med 2022; 12:jpm12050698. [PMID: 35629120 PMCID: PMC9145326 DOI: 10.3390/jpm12050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022] Open
Abstract
Biodegradable nanomedicines are widely studied as candidates for the effective treatment of various cancerous diseases. Here, we present the design, synthesis and evaluation of biodegradable polymer-based nanomedicines tailored for tumor-associated stimuli-sensitive drug release and polymer system degradation. Diblock polymer systems were developed, which enabled the release of the carrier drug, pirarubicin, via a pH-sensitive spacer allowing for the restoration of the drug cytotoxicity solely in the tumor tissue. Moreover, the tailored design enables the matrix-metalloproteinases- or reduction-driven degradation of the polymer system into the polymer chains excretable from the body by glomerular filtration. Diblock nanomedicines take advantage of an enhanced EPR effect during the initial phase of nanomedicine pharmacokinetics and should be easily removed from the body after tumor microenvironment-associated biodegradation after fulfilling their role as a drug carrier. In parallel with the similar release profiles of diblock nanomedicine to linear polymer conjugates, these diblock polymer conjugates showed a comparable in vitro cytotoxicity, intracellular uptake, and intratumor penetration properties. More importantly, the diblock nanomedicines showed a remarkable in vivo anti-tumor efficacy, which was far more superior than conventional linear polymer conjugates. These findings suggested the advanced potential of diblock polymer conjugates for anticancer polymer therapeutics.
Collapse
|
36
|
Lim H, Hong H, Hwang S, Kim SJ, Seo SY, No KT. Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. Int J Mol Sci 2022; 23:4438. [PMID: 35457257 PMCID: PMC9030947 DOI: 10.3390/ijms23084438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion, rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity prediction, we made a scoring function with the FMO method and applied the function to two protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors (laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6 and 0.614 μM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and good binding affinity.
Collapse
Affiliation(s)
- Hocheol Lim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Hansol Hong
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Seonik Hwang
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Song Ja Kim
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Sung Yum Seo
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea
| |
Collapse
|
37
|
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022; 14:cancers14071847. [PMID: 35406619 PMCID: PMC8998077 DOI: 10.3390/cancers14071847] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Having the capability to proteolyze diverse structural and signaling proteins, matrix metalloproteinase 9 (MMP9), one of the best-studied secretory endopeptidases, has been identified as a crucial mediator of processes closely associated with tumorigenesis, such as the extracellular matrix reorganization, epithelial to mesenchymal transition, cell migration, new blood vessel formation, and immune response. In this review, we present the current state of knowledge on MMP9 and its role in cancer growth in the context of cell adhesion/migration, cancer-related inflammation, and tumor microenvironment formation. We also summarize recent achievements in the development of selective MMP9 inhibitors and the limitations of using them as anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| | | | - Renata Tabola
- Department of Thoracic Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamilla Stach
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
38
|
Das S, Amin SA, Gayen S, Jha T. Insight into the structural requirements of gelatinases (MMP-2 and MMP-9) inhibitors by multiple validated molecular modelling approaches: Part II. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:167-192. [PMID: 35301933 DOI: 10.1080/1062936x.2022.2041722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Inhibition of the matrix metalloproteinases (MMPs) is effective against metastasis of secondary tumours. Previous MMP inhibitors have failed in clinical trials due to their off-target toxicity in solid tumours. Thus, newer MMP inhibitors now have paramount importance. Here, different molecular modelling techniques were applied on a dataset of 110 gelatinase (MMP-2 and MMP-9) inhibitors. The objectives of the present study were to identify structural fingerprints for gelatinase inhibition and also to develop statistically validated QSAR models for the screening and prediction of different derivatives as MMP-2 (gelatinase A) and MMP-9 (gelatinase B) inhibitors. The Bayesian classification study provided the ROC values for the training set of 0.837 and 0.815 for MMP-2 and MMP-9, respectively. The linear model also produced the leave-one-out cross-validated Q2 of 0.805 (eq. 1, MMP-2) and 0.724 (eq. 2, MMP-9), an r2 of 0.845 (eq. 1, MMP-2) and 0.782 (eq. 2, MMP-9), an r2Pred of 0.806 (eq. 1, MMP-2) and 0.732 (eq. 2, MMP-9). Similarly, non-linear learning models were also statistically significant and reliable. Overall, this study may help in the rational design of newer compounds with higher gelatinase inhibition to fight against both primary and secondary cancers in future.
Collapse
Affiliation(s)
- S Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
39
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
40
|
Tsaban T, Varga JK, Avraham O, Ben-Aharon Z, Khramushin A, Schueler-Furman O. Harnessing protein folding neural networks for peptide-protein docking. Nat Commun 2022; 13:176. [PMID: 35013344 PMCID: PMC8748686 DOI: 10.1038/s41467-021-27838-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022] Open
Abstract
Highly accurate protein structure predictions by deep neural networks such as AlphaFold2 and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show that, although these deep learning approaches have originally been developed for the in silico folding of protein monomers, AlphaFold2 also enables quick and accurate modeling of peptide-protein interactions. Our simple implementation of AlphaFold2 generates peptide-protein complex models without requiring multiple sequence alignment information for the peptide partner, and can handle binding-induced conformational changes of the receptor. We explore what AlphaFold2 has memorized and learned, and describe specific examples that highlight differences compared to state-of-the-art peptide docking protocol PIPER-FlexPepDock. These results show that AlphaFold2 holds great promise for providing structural insight into a wide range of peptide-protein complexes, serving as a starting point for the detailed characterization and manipulation of these interactions.
Collapse
Affiliation(s)
- Tomer Tsaban
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Avraham
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ziv Ben-Aharon
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alisa Khramushin
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
41
|
Zhang Q, Ni Y, Wang S, Agbana YL, Han Q, Liu W, Bai H, Yi Z, Yi X, Zhu Y, Sai B, Yang L, Shi Q, Kuang Y, Yang Z, Zhu Y. G6PD upregulates Cyclin E1 and MMP9 to promote clear cell renal cell carcinoma progression. Int J Med Sci 2022; 19:47-64. [PMID: 34975298 PMCID: PMC8692124 DOI: 10.7150/ijms.58902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is a cell metabolic disease with high metastasis rate and poor prognosis. Our previous studies demonstrate that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in ccRCC and predicts poor outcomes of ccRCC patients. The aims of this study were to confirm the oncogenic role of G6PD in ccRCC and unravels novel mechanisms involving Cyclin E1 and MMP9 in G6PD-mediated ccRCC progression. Methods: Real-time RT-PCR, Western blot and immunohistochemistry were used to determine the expression patterns of G6PD, Cyclin E1 and MMP9 in ccRCC. TCGA dataset mining was used to identify Cyclin E1 and MMP9 correlations with G6PD expression, relationships between clinicopathological characteristics of ccRCC and the genes of interest, as well as the prognosis of ccRCC patients. The role of G6PD in ccRCC progression and the regulatory effect of G6PD on Cyclin E1 and MMP9 expression were investigated by using a series of cytological function assays in vitro. To verify this mechanism in vivo, xenografted mice models were established. Results: G6PD, Cyclin E1 and MMP9 were overexpressed and positively correlated in ccRCC, and they were associated with poor prognosis of ccRCC patients. Moreover, G6PD changed cell cycle dynamics, facilitated cells proliferation, promoted migration in vitro, and enhanced ccRCC development in vivo, more likely through enhancing Cyclin E1 and MMP9 expression. Conclusion: These findings present G6PD, Cyclin E1 and MMP9, which contribute to ccRCC progression, as novel biomarkers and potential therapeutic targets for ccRCC treatment.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Shujie Wang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Yannick Luther Agbana
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Qiaoqiao Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Wenjing Liu
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Honggang Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
- Department of Clinical Laboratory, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Zihan Yi
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, Kunming 650118, P.R. China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Yuzhi Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| | - Qiong Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, Kunming 650118, P.R. China
| | - Yingmin Kuang
- Departments of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, P.R. China
| |
Collapse
|
42
|
Liu ZZ(G, Taiyab A, West-Mays JA. MMP9 Differentially Regulates Proteins Involved in Actin Polymerization and Cell Migration during TGF-β-Induced EMT in the Lens. Int J Mol Sci 2021; 22:ijms222111988. [PMID: 34769418 PMCID: PMC8584335 DOI: 10.3390/ijms222111988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrotic cataracts have been attributed to transforming growth factor-beta (TGF-β)-induced epithelial-to-mesenchymal transition (EMT). Using mouse knockout (KO) models, our laboratory has identified MMP9 as a crucial protein in the TGF-β-induced EMT process. In this study, we further revealed an absence of alpha-smooth muscle actin (αSMA) and filamentous-actin (F-actin) stress fibers in MMP9KO mouse lens epithelial cell explants (LECs). Expression analysis using NanoString revealed no marked differences in αSMA (ACTA2) and beta-actin (β-actin) (ACTB) mRNA between the lenses of TGF-β-overexpressing (TGF-βtg) mice and TGF-βtg mice on a MMP9KO background. We subsequently conducted a protein array that revealed differential regulation of proteins known to be involved in actin polymerization and cell migration in TGF-β-treated MMP9KO mouse LECs when compared to untreated controls. Immunofluorescence analyses using rat LECs and the novel MMP9-specific inhibitor, JNJ0966, revealed similar differential regulation of cortactin, FAK, LIMK1 and MLC2 as observed in the array. Finally, a reduction in the nuclear localization of MRTF-A, a master regulator of cytoskeletal remodeling during EMT, was observed in rat LECs co-treated with JNJ0966 and TGF-β. In conclusion, MMP9 deficiency results in differential regulation of proteins involved in actin polymerization and cell migration, and this in turn prevents TGF-β-induced EMT in the lens.
Collapse
Affiliation(s)
| | | | - Judith A. West-Mays
- Correspondence: ; Tel.: +1-(905)-525-9140 (ext. 26237); Fax: +1-(905)-525-7400
| |
Collapse
|
43
|
Wann SR, Chi PL, Huang WC, Cheng CC, Chang YT. Combination therapy of iPSC-derived conditioned medium with ceftriaxone alleviates bacteria-induced lung injury by targeting the NLRP3 inflammasome. J Cell Physiol 2021; 237:1299-1314. [PMID: 34612516 DOI: 10.1002/jcp.30596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023]
Abstract
The lung is the first and most frequent organ to fail among sepsis patients. The mortality rate of sepsis-related acute lung injury (ALI) is high. Despite appropriate antimicrobial therapy, no treatment strategies are available for sepsis-induced ALI. Stem cell-mediated paracrine signaling is a potential treatment method for various diseases. This study aimed to examine the effects of induced pluripotent stem cell-derived conditioned medium (iPSC-CM) combined with antibiotics on ALI in a rat model of Escherichia coli-induced sepsis. Rats were administered either iPSC-CM or the vehicle (saline) with antibiotics (ceftriaxone). After 72 h, liquid biopsy, bronchoalveolar lavage fluid (BALF), and tissues were harvested for analysis. Survival rates were observed for up to 3 days. Furthermore, we examined the effects of iPSC-CM on cytokine production, metalloproteinase 9 (MMP-9) expression, and NLRP3-ASC interaction in RAW264.7 cells stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ). Combined treatment of iPSC-CM with antibiotics significantly improved survival in E. coli-infected rats (p = 0.0006). iPSC-CM ameliorated E. coli-induced infiltration of macrophages, reducing the number of cells in BALF, and suppressing interleukin (IL)-1β, MIP-2, IL-6, and MMP-9 messenger RNA in lung sections. iPSC-CM treatment attenuated NLRP3 expression and inhibited NLRP3 inflammasome activation by disrupting NLRP3-mediated ASC complex formation in LPS/IFN-γ-primed RAW264.7 cells. This study reveals the mechanisms underlying iPSC-CM-conferred anti-inflammatory activity in ALI through the attenuation of macrophage recruitment to the lung, thus inactivating NLRP3 inflammasomes in macrophages. iPSC-CM therapy may be a useful adjuvant treatment to reduce sepsis-related mortality by ameliorating ALI.
Collapse
Affiliation(s)
- Shue-Ren Wann
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan.,Department of Medicine, Kaohsiung Veterans General Hospital, Pingtung Branch, Pintung, Taiwan
| | - Pei-Ling Chi
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Wei-Chun Huang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.,Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Yun-Te Chang
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.,Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Departement of Nursing, Yuh-Ing Junior College of Health Care and Management, Kaohsiung City, Taiwan
| |
Collapse
|
44
|
Jiang S, Xu Y, Fan Y, Hu Y, Zhang Q, Su W. Busulfan impairs blood-testis barrier and spermatogenesis by increasing noncollagenous 1 domain peptide via matrix metalloproteinase 9. Andrology 2021; 10:377-391. [PMID: 34535976 DOI: 10.1111/andr.13112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUNDS Sterility induced by anti-cancer treatments has caused significant concern, yet the mechanism and treatment exploration are little for male infertility after cancer therapy. Busulfan, the antineoplastic that was widely applied before bone marrow transplantation, was known to induce male reproductive disorder. OBJECTIVES To investigate the effect of busulfan on blood-testis barrier function in adult rats and determine whether noncollagenous 1 domain peptide, the biologically active fragment proteolyzed from the collagen α3 chain (IV) by matrix metalloproteinase 9, was involved during this process. MATERIALS AND METHODS Adult male rats were treated with one-dose or double-dose of busulfan (10 mg/kg) before euthanized at day 35. Blood-testis barrier integrity assay, HE staining, immunofluorescence, and Western blot were used to validate the effect of busulfan on blood-testis barrier permeability and spermatogenesis. JNJ0966 was applied to specifically inhibit the matrix metalloproteinase 9 activity. The polymerization activity of F-actin/G-actin and microtubule/tubulin in the testis were assessed by using commercial kits. RESULTS A noteworthy blood-testis barrier injury and significant up-regulation of matrix metalloproteinase 9 activity and noncollagenous 1 level after a single-dose busulfan (10 mg/kg) treatment in adult rat testis were revealed. The application of JNJ0966 was found to decrease noncollagenous 1 level and rescue the busulfan-induced blood-testis barrier injury including the mis-localization of junction proteins across the seminiferous epithelium, by recovering the organization and polymerization of both F-actin and microtubule. The busulfan-induced spermatogenesis impairment was also improved by JNJ0966. CONCLUSION These findings thus demonstrate that the elevation in matrix metalloproteinase 9 and noncollagenous 1 might participate in busulfan-induced blood-testis barrier disruption in adult male rats. As such, busulfan-induced male infertility could possibly be managed through interventions on noncollagenous 1 production.
Collapse
Affiliation(s)
- Shuyi Jiang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China.,Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Yunxia Fan
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| |
Collapse
|
45
|
Simultaneous targeting of CD44 and MMP9 catalytic and hemopexin domains as a therapeutic strategy. Biochem J 2021; 478:1139-1157. [PMID: 33600567 PMCID: PMC7959692 DOI: 10.1042/bcj20200628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Crosstalk of the oncogenic matrix metalloproteinase-9 (MMP9) and one of its ligands, CD44, involves cleavage of CD44 by the MMP9 catalytic domain, with the CD44–MMP9 interaction on the cell surface taking place through the MMP9 hemopexin domain (PEX). This interaction promotes cancer cell migration and invasiveness. In concert, MMP9-processed CD44 induces the expression of MMP9, which degrades ECM components and facilitates growth factor release and activation, cancer cell invasiveness, and metastasis. Since both MMP9 and CD44 contribute to cancer progression, we have developed a new strategy to fully block this neoplastic process by engineering a multi-specific inhibitor that simultaneously targets CD44 and both the catalytic and PEX domains of MMP9. Using a yeast surface display technology, we first obtained a high-affinity inhibitor for the MMP9 catalytic domain, which we termed C9, by modifying a natural non-specific MMP inhibitor, N-TIMP2. We then conjugated C9 via a flexible linker to PEX, thereby creating a multi-specific inhibitor (C9-PEX) that simultaneously targets the MMP9 catalytic and PEX domains and CD44. It is likely that, via its co-localization with CD44, C9-PEX may compete with MMP9 localization on the cell surface, thereby inhibiting MMP9 catalytic activity, reducing MMP9 cellular levels, interfering with MMP9 homodimerization, and reducing the activation of downstream MAPK/ERK pathway signaling. The developed platform could be extended to other oncogenic MMPs as well as to other important target proteins, thereby offering great promise for creating novel multi-specific therapeutics for cancer and other diseases.
Collapse
|
46
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
47
|
Li W, Ding Z, Wang D, Li C, Pan Y, Zhao Y, Zhao H, Lu T, Xu R, Zhang S, Yuan B, Zhao Y, Yin Y, Gao Y, Li J, Yan M. Ten-gene signature reveals the significance of clinical prognosis and immuno-correlation of osteosarcoma and study on novel skeleton inhibitors regarding MMP9. Cancer Cell Int 2021; 21:377. [PMID: 34261456 PMCID: PMC8281696 DOI: 10.1186/s12935-021-02041-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES This study aimed to identify novel targets in the carcinogenesis, therapy and prognosis of osteosarcoma from genomic level, together with screening ideal lead compounds with potential inhibition regarding MMP-9. METHODS Gene expression profiles from GSE12865, GSE14359, GSE33382, GSE36001 and GSE99671 were obtained respectively from GEO database. Differentially expressed genes were identified, and functional enrichment analysis, such as GO, KEGG, GSEA, PPI were performed to make a comprehensive understanding of the hub genes. Next, a series of high-precision computational techniques were conducted to screen potential lead compounds targeting MMP9, including virtual screening, ADME, toxicity prediction, and accurate docking analysis. RESULTS 10 genes, MMP9, CD74, SPP1, CXCL12, TYROBP, FCER1G, HCLS1, ARHGDIB, LAPTM5 and IGF1R were identified as hub genes in the initiation of osteosarcoma. Machine learning, multivariate Cox analysis, ssGSEA and survival analysis demonstrated that these genes had values in prognosis, immune-correlation and targeted treatment. Tow novel compounds, ZINC000072131515 and ZINC000004228235, were screened as potential inhibitor regarding MMP9, and they could bind to MMP9 with favorable interaction energy and high binding affinity. Meanwhile, they were precited to be efficient and safe drugs with low-ames mutagenicity, none weight evidence of carcinogenicity, as well as non-toxic with liver. CONCLUSIONS This study revealed the significance of 10-gene signature in the development of osteosarcoma. Besides, drug candidates identified in this study provided a solid basis on MMP9 inhibitors' development.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ziyi Ding
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dong Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chengfei Li
- School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yikai Pan
- School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China
| | - Yingjing Zhao
- Department of Intensive Care Unit, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Hongzhe Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Tianxing Lu
- Hou Zonglian Medical Experimental Class, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Xu
- Department of Endocrinology, Shanghai National Research Center for Endocrine and Metabolic Disease, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Disease, Ruijin Hospital. Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shilei Zhang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bin Yuan
- Department of Spine Surgery, Daxing Hospital, Xi'an, Shaanxi, China
| | - Yunlong Zhao
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Gao
- School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, Shaanxi, China.
| | - Jing Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Ming Yan
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
48
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem 2021; 223:113623. [PMID: 34157437 DOI: 10.1016/j.ejmech.2021.113623] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are collectively known as gelatinases whereas MMP-2 is gelatinase-A and MMP-9 is termed as gelatinase-B. Gelatinases and other matrix metalloproteinases (MMPs) have long been associated with solid tumor invasion, metastasis and angiogenesis. However, there is paucity of data available regarding the role of gelatinases in hematological malignancies. Recent studies have shown that gelatinases activities or functions are correlated with hematological malignancies. Strategies for designing more specific gelatinase inhibitors like catalytic (CAT) domain inhibitors and hemopexin (PEX) domain inhibitors as well as signaling pathway based or gelatinase expression inhibitors had been reported against hematologic malignant cells. Several substrate based non-selective to non-substrate based relatively selective synthetic matrix metalloproteinase inhibitors (MMPIs) had been developed. Few MMPIs had reached in clinical trials during the period of 1990s-2000s. Unfortunately the anti-tumor and anti-metastatic efficacies of these MMPIs were not justified with patients having several advanced stage solid tumor cancers in any substantial number of clinical trials. Till date not a single MMPI passed phase III clinical trials designed for advanced metastatic cancers due to adverse events as well as lack of ability to show uniformity in disease prolongation. With the best of our knowledge no clinical trial study has been reported with small molecule synthetic inhibitors against hematological malignancies. This review looks at the outcome of clinical trials of MMPIs for advanced stage solid tumors. This can therefore, act as a learning experience for future development of successful gelatinase inhibitors for the management of hematological malignancies.
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
49
|
Christina VS, Sundaram RL, Sivamurugan V, Kumar DT, Mohanapriya CD, Shailaja VL, Thyagarajan SP, Doss CGP, Gnanambal KME. Inhibition of MMP2-PEX by a novel ester of dihydroxy cinnamic and linoleic acid from the seagrass Cymodocea serrulata. Sci Rep 2021; 11:11451. [PMID: 34075089 PMCID: PMC8169913 DOI: 10.1038/s41598-021-90845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are pivotal for cancer cell migration and metastasis which are generally over-expressed in such cell types. Many drugs targeting MMPs do so by binding to the conserved catalytic domains and thus exhibit poor selectivity due to domain-similarities with other proteases. We report herein the binding of a novel compound [3-(E-3,4-dihydroxycinnamaoyloxyl)-2-hydroxypropyl 9Z, 12Z-octadeca-9, 12-dienoate; Mol. wt: 516.67 Da], (C1), isolated from a seagrass, Cymodocea serrulata to the unconserved hemopexin-like (PEX) domain of MMP2 (- 9.258 kcal/mol). MD simulations for 25 ns, suggest stable ligand-target binding. In addition, C1 killed an ovarian cancer cell line, PA1 at IC50: 5.8 μM (lesser than Doxorubicin: 8.6 µM) and formed micronuclei, apoptotic bodies and nucleoplasmic bridges whilst causing DNA laddering, S and G2/M phase dual arrests and MMP disturbance, suggesting intrinsic apoptosis. The molecule increased mRNA transcripts of BAX and BAD and down-regulated cell survival genes, Bcl-xL, Bcl-2, MMP2 and MMP9. The chemical and structural details of C1 were deduced through FT-IR, GC-MS, ESI-MS, 1H and 13C NMR [both 1D and 2D] spectra.
Collapse
Affiliation(s)
- V S Christina
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, SRI RAMACHANDRA Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu, 600 116, India
| | - R Lakshmi Sundaram
- Central Research Facility (CRF), SRI RAMACHANDRA Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu, 600 116, India
| | - V Sivamurugan
- PG & Research Department of Chemistry, Pachaiyappa's College, Chennai, Tamil Nadu, 600 030, India.
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, 600 078, India
| | - C D Mohanapriya
- Central Research Facility (CRF), SRI RAMACHANDRA Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu, 600 116, India
| | - V L Shailaja
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, SRI RAMACHANDRA Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu, 600 116, India
| | - S P Thyagarajan
- Avinashilingam Institute for Home Science and Higher Education for Women (Deemed University), Coimbatore, Tamil Nadu, 641 043, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - K Mary Elizabeth Gnanambal
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, SRI RAMACHANDRA Institute of Higher Education and Research (SRIHER), Deemed to be University (DU), Porur, Chennai, Tamil Nadu, 600 116, India.
| |
Collapse
|
50
|
Zhu Y, Liu M, Cao C, Qu S, Zheng J, Zhu Z, Chen Z, Wang Z, Zhu Z, Huang F, Duan JA. Dendrobium officinale flos increases neurotrophic factor expression in the hippocampus of chronic unpredictable mild stress-exposed mice and in astrocyte primary culture and potentiates NGF-induced neuronal differentiation in PC12 cells. Phytother Res 2021; 35:2665-2677. [PMID: 33438327 DOI: 10.1002/ptr.7013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023]
Abstract
Dendrobium officinale flos (DOF) is the flower of Dendrobium officinale Kimura et Migo, which is usually regarded as a by-product of Dendrobii Offcinalis Caulis. Based on its use as an alternative medicine, we evaluated the antidepressant-like effect of DOF extracts on chronic, unpredictable, mild stress-induced, depression-like behaviour in mice and tested the effects of DOF on the regulation of neurotrophic factors in mouse astrocyte primary cultures and PC12 cell lines. Oral treatment with DOF ethanol extract (DOF-E) could alleviate depression-like behaviours in stress-exposed mice, as evidenced by increased sucrose consumption and decreased immobile time in a forced swim test. In the hippocampus, DOF extracts increased the expression of NGF and BDNF, both at the transcriptional and protein levels. In astrocytes, DOF-E increased the expression of NGF and BDNF via a cAMP-dependent mechanism and regulated plasminogen and matrix metallopeptidase 9 (MMP-9), which are related to the metabolic regulation of neurotrophic factors. In PC12 cells, DOF-E induced the expression of neurofilaments and potentiated the induction of neurite outgrowth upon treatment with a low dose of NGF. Based on these findings, DOF might be used as a supplement for antidepressant therapy in patients with depression.
Collapse
Affiliation(s)
- Yue Zhu
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Mengqiu Liu
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Cheng Cao
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Suchen Qu
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Jiani Zheng
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Ziqiang Zhu
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Zhichun Chen
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Zhikang Wang
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| | - Zhenhua Zhu
- Soochow University Affiliated Guangji Hospital, Suzhou, China
| | - Fei Huang
- Department of Endocrinology, Suzhou Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou, China
| | - Jin-Ao Duan
- National and local union project research center of Chinese Medicinal Resources Industrialization and Innovative drug from TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, China
| |
Collapse
|