1
|
Jiang H, Xia Y, Zhang S, Zhang Z, Feng H, Zhang Q, Chen X, Xiao J, Yang S, Zeng M, Chen Z, Ouyang H, He X, Sun G, Wu J, Dong S, Ye W, Ma Z, Wang Y, Wang Y. The CAP superfamily protein PsCAP1 secreted by Phytophthora triggers immune responses in Nicotiana benthamiana through a leucine-rich repeat receptor-like protein. THE NEW PHYTOLOGIST 2023; 240:784-801. [PMID: 37615219 DOI: 10.1111/nph.19194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.
Collapse
Affiliation(s)
- Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
2
|
Lin YH, Xu MY, Hsu CC, Damei FA, Lee HC, Tsai WL, Hoang CV, Chiang YR, Ma LS. Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities. Nat Commun 2023; 14:5755. [PMID: 37716995 PMCID: PMC10505147 DOI: 10.1038/s41467-023-41459-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
The diversification of effector function, driven by a co-evolutionary arms race, enables pathogens to establish compatible interactions with hosts. Structurally conserved plant pathogenesis-related PR-1 and PR-1-like (PR-1L) proteins are involved in plant defense and fungal virulence, respectively. It is unclear how fungal PR-1L counters plant defense. Here, we show that Ustilago maydis UmPR-1La and yeast ScPRY1, with conserved phenolic resistance functions, are Ser/Thr-rich region mediated cell-surface localization proteins. However, UmPR-1La has gained specialized activity in sensing phenolics and eliciting hyphal-like formation to guide fungal growth in plants. Additionally, U. maydis hijacks maize cathepsin B-like 3 (CatB3) to release functional CAPE-like peptides by cleaving UmPR-1La's conserved CNYD motif, subverting plant CAPE-primed immunity and promoting fungal virulence. Surprisingly, CatB3 avoids cleavage of plant PR-1s, despite the presence of the same conserved CNYD motif. Our work highlights that UmPR-1La has acquired additional dual roles to suppress plant defense and sustain the infection process of fungal pathogens.
Collapse
Affiliation(s)
- Yu-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Meng-Yun Xu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | | | - Hui-Chun Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Wei-Lun Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Cuong V Hoang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
3
|
Sahu N, Indic B, Wong-Bajracharya J, Merényi Z, Ke HM, Ahrendt S, Monk TL, Kocsubé S, Drula E, Lipzen A, Bálint B, Henrissat B, Andreopoulos B, Martin FM, Bugge Harder C, Rigling D, Ford KL, Foster GD, Pangilinan J, Papanicolaou A, Barry K, LaButti K, Virágh M, Koriabine M, Yan M, Riley R, Champramary S, Plett KL, Grigoriev IV, Tsai IJ, Slot J, Sipos G, Plett J, Nagy LG. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat Microbiol 2023; 8:1668-1681. [PMID: 37550506 PMCID: PMC7615209 DOI: 10.1038/s41564-023-01448-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tori-Lee Monk
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 'Interactions Arbres/Microorganismes', Centre INRAE Grand Est - Nancy, Champenoux, France
| | - Christoffer Bugge Harder
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, København Ø, Denmark
- Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kathryn L Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Gary D Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Máté Virágh
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Maxim Koriabine
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simang Champramary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Jonathan Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - László G Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary.
| |
Collapse
|
4
|
Farias KS, Ferreira MM, Amaral GV, Zugaib M, Santos AS, Gomes FP, Rezende RP, Gramacho KP, Aguiar ERGR, Pirovani CP. BASIDIN as a New Protein Effector of the Phytopathogen Causing Witche's Broom Disease in Cocoa. Int J Mol Sci 2023; 24:11714. [PMID: 37511472 PMCID: PMC10380501 DOI: 10.3390/ijms241411714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The fungus Moniliophthora perniciosa secretes protein effectors that manipulate the physiology of the host plant, but few effectors of this fungus have had their functions confirmed. We performed functional characterization of a promising candidate effector of M. perniciosa. The inoculation of rBASIDIN at 4 µmol L-1 in the mesophyll of leaflets of Solanum lycopersicum caused symptoms of shriveling within 6 h without the presence of necrosis. However, when sprayed on the plant at a concentration of 11 µmol L-1, it caused wilting symptoms only 2 h after application, followed by necrosis and cell death at 48 h. rBASIDIN applied to Theobroma cacao leaves at the same concentration caused milder symptoms. rBASIDIN caused hydrogen peroxide production in leaf tissue, damaging the leaf membrane and negatively affecting the photosynthetic rate of Solanum lycopersicum plants. Phylogenetic analysis indicated that BASIDIN has orthologs in other phytopathogenic basidiomycetes. Analysis of the transcripts revealed that BASIDIN and its orthologs are expressed in different fungal species, suggesting that this protein is differentially regulated in these basidiomycetes. Therefore, the results of applying BASIDIN allow the inference that it is an effector of the fungus M. perniciosa, with a strong potential to interfere in the defense system of the host plant.
Collapse
Affiliation(s)
- Keilane Silva Farias
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Monaliza Macêdo Ferreira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Geiseane Veloso Amaral
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Maria Zugaib
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Ariana Silva Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Fábio Pinto Gomes
- Fisiologia Vegetal, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Rachel Passos Rezende
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Karina Peres Gramacho
- Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau-MAPA, Laboratório de Fitopatologia Molecular, km 22 Rodovia Ilhéus Itabuna, Ilhéus 45600-970, Bahia, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| |
Collapse
|
5
|
Han Z, Xiong D, Schneiter R, Tian C. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:651-668. [PMID: 36932700 DOI: 10.1111/mpp.13320] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The pathogenesis-related (PR) proteins of plants have originally been identified as proteins that are strongly induced upon biotic and abiotic stress. These proteins fall into 17 distinct classes (PR1-PR17). The mode of action of most of these PR proteins has been well characterized, except for PR1, which belongs to a widespread superfamily of proteins that share a common CAP domain. Proteins of this family are not only expressed in plants but also in humans and in many different pathogens, including phytopathogenic nematodes and fungi. These proteins are associated with a diverse range of physiological functions. However, their precise mode of action has remained elusive. The importance of these proteins in immune defence is illustrated by the fact that PR1 overexpression in plants results in increased resistance against pathogens. However, PR1-like CAP proteins are also produced by pathogens and deletion of these genes results in reduced virulence, suggesting that CAP proteins can exert both defensive and offensive functions. Recent progress has revealed that plant PR1 is proteolytically cleaved to release a C-terminal CAPE1 peptide, which is sufficient to activate an immune response. The release of this signalling peptide is blocked by pathogenic effectors to evade immune defence. Moreover, plant PR1 forms complexes with other PR family members, including PR5, also known as thaumatin, and PR14, a lipid transfer protein, to enhance the host's immune response. Here, we discuss possible functions of PR1 proteins and their interactors, particularly in light of the fact that these proteins can bind lipids, which have important immune signalling functions.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065684. [PMID: 36982760 PMCID: PMC10057015 DOI: 10.3390/ijms24065684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 03/19/2023] Open
Abstract
Significant scientific advances to elucidate the Moniliophthora perniciosa pathosystem have been achieved in recent years, but the molecular biology of this pathogen-host interaction is still a field with many unanswered questions. In order to present insights at the molecular level, we present the first systematic review on the theme. All told, 1118 studies were extracted from public databases. Of these, 109 were eligible for the review, based on the inclusion and exclusion criteria. The results indicated that understanding the transition from the biotrophic-necrotrophic phase of the fungus is crucial for control of the disease. Proteins with strong biotechnological potential or that can be targets for pathosystem intervention were identified, but studies regarding possible applications are still limited. The studies identified revealed important genes in the M. perniciosa-host interaction and efficient molecular markers in the search for genetic variability and sources of resistance, with Theobroma cacao being the most common host. An arsenal of effectors already identified and not explored in the pathosystem were highlighted. This systematic review contributes to the understanding of the pathosystem at the molecular level, offering new insights and proposing different paths for the development of new strategies to control witches’ broom disease.
Collapse
|
7
|
Vasconcelos AA, José J, Tokimatu PM, Camargo AP, Teixeira PJPL, Thomazella DPT, do Prado PFV, Fiorin GL, Costa JL, Figueira A, Carazzolle MF, Pereira GAG, Baroni RM. Adaptive evolution of Moniliophthora PR-1 proteins towards its pathogenic lifestyle. BMC Ecol Evol 2021; 21:84. [PMID: 33990179 PMCID: PMC8120714 DOI: 10.1186/s12862-021-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.
Collapse
Affiliation(s)
- Adrielle A Vasconcelos
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana José
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo M Tokimatu
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Antonio P Camargo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo J P L Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Daniela P T Thomazella
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paula F V do Prado
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gabriel L Fiorin
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcelo F Carazzolle
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gonçalo A G Pereira
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Renata M Baroni
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
8
|
Cavaco AR, Matos AR, Figueiredo A. Speaking the language of lipids: the cross-talk between plants and pathogens in defence and disease. Cell Mol Life Sci 2021; 78:4399-4415. [PMID: 33638652 PMCID: PMC11073031 DOI: 10.1007/s00018-021-03791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
Lipids and fatty acids play crucial roles in plant immunity, which have been highlighted over the past few decades. An increasing number of studies have shown that these molecules are pivotal in the interactions between plants and their diverse pathogens. The roles played by plant lipids fit in a wide spectrum ranging from the first physical barrier encountered by the pathogens, the cuticle, to the signalling pathways that trigger different immune responses and expression of defence-related genes, mediated by several lipid molecules. Moreover, lipids have been arising as candidate biomarkers of resistance or susceptibility to different pathogens. Studies on the apoplast and extracellular vesicles have been highlighting the possible role of lipids in the intercellular communication and the establishment of systemic acquired resistance during plant-pathogen interactions. From the pathogen perspective, lipid metabolism and specific lipid molecules play pivotal roles in the pathogen's life cycle completion, being crucial during recognition by the plant and evasion from the host immune system, therefore potentiating infection. Studies conducted in the last years have contributed to a better understanding of the language of lipids during the cross-talk between plants and pathogens. However, it is essential to continue exploring the knowledge brought up to light by transcriptomics and proteomics studies towards the elucidation of lipid signalling processes during defence and disease. In this review, we present an updated overview on lipids associated to plant-pathogen interactions, exploiting their roles from the two sides of this battle.
Collapse
Affiliation(s)
- Ana Rita Cavaco
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Matos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
9
|
El Atab O, Darwiche R, Truax NJ, Schneiter R, Hull KG, Romo D, Asojo OA. Necator americanus Ancylostoma Secreted Protein-2 ( Na-ASP-2) Binds an Ascaroside (ascr#3) in Its Fatty Acid Binding Site. Front Chem 2020; 8:608296. [PMID: 33392151 PMCID: PMC7773830 DOI: 10.3389/fchem.2020.608296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022] Open
Abstract
During their infective stages, hookworms release excretory-secretory (E-S) products, small molecules, and proteins to help evade and suppress the host's immune system. Small molecules found in E-S products of mammalian hookworms include nematode derived metabolites like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain. The most abundant proteins found in hookworm E-S products are members of the protein family known as Ancylostoma secreted protein (ASP). In this study, two ascarosides and their fatty acid moieties were synthesized and tested for in vitro binding to Na-ASP-2 using both a ligand competition assay and microscale thermophoresis. The fatty acid moieties of both ascarosides tested and ascr#3, an ascaroside found in rat hookworm E-S products, bind to Na-ASP-2's palmitate binding cavity. These molecules were confirmed to bind to the palmitate but not the sterol binding sites. An ascaroside, oscr#10, which is not found in hookworm E-S products, does not bind to Na-ASP-2. More studies are required to determine the structural basis of ascarosides binding by Na-ASP-2 and to understand the physiological significance of these observations.
Collapse
Affiliation(s)
- Ola El Atab
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Nathanyal J. Truax
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kenneth G. Hull
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Daniel Romo
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Oluwatoyin A. Asojo
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Cottier S, Darwiche R, Meyenhofer F, Debelyy MO, Schneiter R. The yeast cell wall protein Pry3 inhibits mating through highly conserved residues within the CAP domain. Biol Open 2020; 9:bio053470. [PMID: 32554483 PMCID: PMC7340583 DOI: 10.1242/bio.053470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 11/20/2022] Open
Abstract
Members of the CAP/SCP/TAPS superfamily have been implicated in many different physiological processes, including pathogen defense, sperm maturation and fertilization. The mode of action of this class of proteins, however, remains poorly understood. The genome of Saccharomyces cerevisiae encodes three CAP superfamily members, Pry1-3. We have previously shown that Pry1 function is required for the secretion of sterols and fatty acids. Here, we analyze the function of Pry3, a GPI-anchored cell wall protein. Overexpression of Pry3 results in strong reduction of mating efficiency, providing for a cell-based readout for CAP protein function. Mating inhibition is a conserved function of the CAP domain and depends on highly conserved surface exposed residues that form part of a putative catalytic metal-ion binding site. Pry3 displays polarized cell surface localization adjacent to bud scars, but is absent from mating projections. When overexpressed, however, the protein leaks onto mating projections, suggesting that mating inhibition is due to mislocalization of the protein. Trapping of the CAP domain within the cell wall through a GPI-anchored nanobody results in a dose-dependent inhibition of mating, suggesting that a membrane proximal CAP domain inhibits a key step in the mating reaction, which is possibly related to the function of CAP domain proteins in mammalian fertilization.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Rabih Darwiche
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Felix Meyenhofer
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mykhaylo O Debelyy
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Bantel Y, Darwiche R, Rupp S, Schneiter R, Sohn K. Localization and functional characterization of the pathogenesis-related proteins Rbe1p and Rbt4p in Candida albicans. PLoS One 2018; 13:e0201932. [PMID: 30080909 PMCID: PMC6078311 DOI: 10.1371/journal.pone.0201932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022] Open
Abstract
Members of the Cysteine-rich secretory protein, Antigen 5 and Pathogenesis-related 1 (CAP) protein superfamily are important virulence factors in fungi but remain poorly characterized on molecular level. Here, we investigate the cellular localization and molecular function of Rbe1p and Rbt4p, two CAP family members from the human pathogen Candida albicans. We unexpectedly found that Rbe1p localizes to budding sites of yeast cells in a disulfide bond-dependent manner. Furthermore, we show that Rbe1p and Rbt4p bind free cholesterol in vitro and export cholesteryl acetate in vivo. These findings suggest a previously undescribed role for Rbe1p in cell wall-associated processes and a possible connection between the virulence attributes of fungal CAP proteins and sterol binding.
Collapse
Affiliation(s)
- Yannick Bantel
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Rabih Darwiche
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steffen Rupp
- Department of Molecular Biotechnology, Fraunhofer IGB, Stuttgart, Germany
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kai Sohn
- Department of Molecular Biotechnology, Fraunhofer IGB, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
12
|
Bailey BA, Evans HC, Phillips‐Mora W, Ali SS, Meinhardt LW. Moniliophthora roreri, causal agent of cacao frosty pod rot. MOLECULAR PLANT PATHOLOGY 2018; 19:1580-1594. [PMID: 29194910 PMCID: PMC6638017 DOI: 10.1111/mpp.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Taxonomy: Moniliophthora roreri (Cif.) H.C. Evans et al. ; Phylum Basidiomycota; Class Agaricomycetes; Order Agaricales; Family Marasmiaceae; Genus Moniliophthora. Biology: Moniliophthora roreri attacks Theobroma and Herrania species causing frosty pod rot. Theobroma cacao (cacao) is the host of major economic concern. Moniliophthora roreri is a hemibiotroph with a long biotrophic phase (45-90 days). Spore masses, of apparent asexual origin, are produced on the pod surface after initiation of the necrotrophic phase. Spores are spread by wind, rain and human activity. Symptoms of the biotrophic phase can include necrotic flecks and, in some cases, pod malformation, but pods otherwise remain asymptomatic. Relationship to Moniliophthora perniciosa: Moniliophthora roreri and Moniliophthora perniciosa, causal agent of witches' broom disease of cacao, are closely related. Their genomes are similar, including many of the genes they carry which are considered to be important in the disease process. Moniliophthora perniciosa, also a hemibiotroph, has a typical basidiomycete lifestyle and morphology, forming clamp connections and producing mushrooms. Basidiospores infect meristematic tissues including flower cushions, stem tips and pods. Moniliophthora roreri does not form clamp connections or mushrooms and infects pods only. Both pathogens are limited to the Western Hemisphere and are a threat to cacao production around the world. Agronomic importance: Disease losses caused by frosty pod rot can reach 90% and result in field abandonment. Moniliophthora roreri remains in the invasive phase in the Western Hemisphere, not having reached Brazil, some islands within the Caribbean and a few specific regions within otherwise invaded countries. DISEASE MANAGEMENT The disease can be managed by a combination of cultural (for example, maintenance of tree height and removal of infected pods) and chemical methods. These methods benefit from regional application, but can be cost prohibitive. Breeding for disease resistance offers the greatest potential for frosty pod rot management and new tolerant materials are becoming available.
Collapse
Affiliation(s)
- Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| | | | - Wilbert Phillips‐Mora
- Tropical Agricultural Research and Higher Education Center (CATIE)Turrialba 7170Costa Rica
| | - Shahin S. Ali
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| |
Collapse
|
13
|
Darwiche R, El Atab O, Cottier S, Schneiter R. The function of yeastCAPfamily proteins in lipid export, mating, and pathogen defense. FEBS Lett 2017; 592:1304-1311. [DOI: 10.1002/1873-3468.12909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Rabih Darwiche
- Division of Biochemistry Department of Biology University of Fribourg Switzerland
| | - Ola El Atab
- Division of Biochemistry Department of Biology University of Fribourg Switzerland
| | - Stéphanie Cottier
- Division of Biochemistry Department of Biology University of Fribourg Switzerland
| | - Roger Schneiter
- Division of Biochemistry Department of Biology University of Fribourg Switzerland
| |
Collapse
|