1
|
Zhang Y, Hu B, Guan S, Li P, Guo Y, Xu P, Niu Y, Li Y, Feng Y, Du J, Xu J, Guan X, Gu J, Sun H, Huang M. Activation of pregnane X receptor sensitizes alcoholic steatohepatitis by transactivating fatty acid binding protein 4. Acta Pharm Sin B 2024; 14:4776-4788. [PMID: 39664417 PMCID: PMC11628830 DOI: 10.1016/j.apsb.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 12/13/2024] Open
Abstract
Alcoholic steatohepatitis (ASH) is a liver disease characterized by steatosis, inflammation, and necrosis of the liver tissue as a result of excessive alcohol consumption. Pregnane X receptor (PXR) is a xenobiotic nuclear receptor best known for its function in the transcriptional regulation of drug metabolism and disposition. Clinical reports suggested that the antibiotic rifampicin, a potent human PXR activator, is a contraindication in alcoholics, but the mechanism was unclear. In this study, we showed that the hepatic expression of fatty acid binding protein 4 (FABP4) was uniquely elevated in ASH patients and a mouse model of ASH. Pharmacological inhibiting FABP4 attenuated ASH in mice. Furthermore, treatment of mice with the mouse PXR agonist pregnenolon-16α-carbonitrile (PCN) induced the hepatic and circulating levels of FABP4 and exacerbated ASH in a PXR-dependent manner. Our mechanism study established FABP4 as a transcriptional target of PXR. Treatment with andrographolide, a natural compound and dual inhibitor of PXR and FABP4, alleviated mice from ASH. In summary, our results showed that the PXR-FABP4 gene regulatory axis plays an important role in the progression of ASH, which may have accounted for the contraindication of rifampicin in patients of alcoholic liver disease. Pharmacological inhibition of PXR and/or FABP4 may have its promise in the clinical management of ASH.
Collapse
Affiliation(s)
- Yiwen Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingfang Hu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxing Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pan Li
- Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yingjie Guo
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130015, China
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515031, China
| | - Yujin Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiewen Du
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun 130015, China
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Choi S, Ofosu-Boateng M, Kim S, Nnamani DO, Mah'moud M, Neequaye P, Gebreyesus LH, Twum E, Gonzalez FJ, Yue Cui J, Gyamfi MA. Molecular targets of PXR-dependent ethanol-induced hepatotoxicity in female mice. Biochem Pharmacol 2024; 228:116416. [PMID: 38986717 PMCID: PMC11410527 DOI: 10.1016/j.bcp.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor signaling potentiates ethanol (EtOH)-induced hepatotoxicity in male mice, however, how PXR signaling modulates EtOH-induced hepatotoxicity in female mice is unknown. Wild type (WT) and Pxr-null mice received 5 % EtOH-containing diets or paired-fed control diets for 8 weeks followed by assessment of liver injury, EtOH elimination rates, histology, and changes in gene and protein expression; microarray and bioinformatic analyses were also employed to identify PXR targets in chronic EtOH-induced hepatotoxicity. In WT females, EtOH ingestion significantly increased serum ethanol and alanine aminotransferase (ALT) levels, hepatic Pxr mRNA, constitutive androstane receptor activation, Cyp2b10 mRNA and protein, oxidative stress, endoplasmic stress (phospho-elF2α) and pro-apoptotic (Bax) protein expression. Unexpectedly, EtOH-fed female Pxr-null mice displayed increased EtOH elimination and elevated levels of hepatic acetaldehyde detoxifying aldehyde dehydrogenase 1a1 (Aldh1a1) mRNA and protein, EtOH-metabolizing alcohol dehydrogenase 1 (ADH1), and lipid suppressing microsomal triglyceride transport protein (MTP) protein, aldo-keto reductase 1b7 (Akr1b7) and Cyp2a5 mRNA, but suppressed CYP2B10 protein levels, with evidence of protection against chronic EtOH-induced oxidative stress and hepatotoxicity. While liver injury was not different between the two WT sexes, female sex may suppress EtOH-induced macrovesicular steatosis in the liver. Several genes and pathways important in retinol and steroid hormone biosynthesis, chemical carcinogenesis, and arachidonic acid metabolism were upregulated by EtOH in a PXR-dependent manner in both sexes. Together, these data establish that female Pxr-null mice are resistant to chronic EtOH-induced hepatotoxicity and unravel the PXR-dependent and -independent mechanisms that contribute to EtOH-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Daniel O Nnamani
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Mia Mah'moud
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Lidya H Gebreyesus
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Elizabeth Twum
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA.
| |
Collapse
|
3
|
Cheng X, Baki VB, Moran M, Liu B, Yu J, Zhao M, Li Q, Riethoven JJ, Gurumurth CB, Harris EN, Sun X. Liver matrin-3 protects mice against hepatic steatosis and stress response via constitutive androstane receptor. Mol Metab 2024; 86:101977. [PMID: 38936659 PMCID: PMC11267048 DOI: 10.1016/j.molmet.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise with the increasing obesity epidemic. Rezdiffra as an activator of a thyroid hormone receptor-beta is the only Food and Drug Administration approved therapy. As such, there is a critical need to improve our understanding of gene expression regulation and signaling transduction in MASLD to develop new therapies. Matrin-3 is a DNA- and RNA-binding protein involved in the pathogenesis of human diseases. Here we examined its previously uncharacterized role in limiting hepatic steatosis and stress response via the constitutive androstane receptor (CAR). METHODS Matrin-3 floxed and liver-specific knockout mice were fed either a chow diet or 60 kcal% high-fat diet (HFD) for up to 16 weeks. The mice were euthanized for different analysis including liver histology, lipid levels, and gene expression. Bulk RNA-seq, bulk ATAC-seq, and single-nucleus Multiome were used to examine changes of transcriptome and chromatin accessibility in the liver. Integrative bioinformatics analysis of our data and publicly available datasets and different biochemical assays were performed to identify underlying the molecular mechanisms mediating matrin-3's effects. Liver-tropic adeno-associated virus was used to restore the expression of CAR for lipid, acute phase genes, and histological analysis. RESULTS Matrin-3 expression is induced in the steatotic livers of mice. Liver-specific matrin-3 deletion exacerbated HFD-induced steatosis, acute phase response, and inflammation in the liver of female mice. The transcriptome and chromatin accessibility were re-programmed in the liver of these mice with signatures indicating that CAR signaling is dysregulated. Mechanistically, matrin-3 interacts with CAR mRNA, and matrin-3 deficiency promotes CAR mRNA degradation. Consequently, matrin-3 deletion impaired CAR signaling by reducing CAR expression. Matrin-3 levels positively correlate with CAR expression in human livers. Ces2a and Il1r1 were identified as new target genes of CAR. Interestingly, we found that CAR discords with the expression of its target genes including Cyp2b10 and Ces2a in response to HFD, indicating CAR signaling is dysregulated by HFD despite increased CAR expression. Dysregulated CAR signaling upon matrin-3 deficiency reduced Ces2a and de-repressed Il1r1 expression. CAR restoration partially abrogated the dysregulated gene expression, exacerbated hepatic steatosis, acute phase response, and inflammation in liver-specific matrin-3 knockout mice fed a HFD. CONCLUSIONS Our findings demonstrate that matrin-3 is a key upstream regulator maintaining CAR signaling upon metabolic stress, and the matrin-3-CAR axis limits hepatic steatosis and stress response signaling that may give insights for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Vijaya Bhaskar Baki
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska - Lincoln, 230 Filley Hall, Lincoln, NE 68583-0922, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | | | - Edward N Harris
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
4
|
Ofosu-Boateng M, Shaik F, Choi S, Ekuban FA, Gebreyesus LH, Twum E, Nnamani D, Yeyeodu ST, Yadak N, Collier DM, Gyamfi MA. High-fat diet induced obesity promotes inflammation, oxidative stress, and hepatotoxicity in female FVB/N mice. Biofactors 2024; 50:572-591. [PMID: 38183321 PMCID: PMC11178471 DOI: 10.1002/biof.2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/04/2023] [Indexed: 01/08/2024]
Abstract
Although obesity and subsequent liver injury are increasingly prevalent in women, female mouse models have generally shown resistance to high-fat diet (HFD)-induced obesity. We evaluated control and HFD-fed male and female FVB/N mice, a strain well-suited to transgenic analyses, for phenotypic, histological, and molecular markers related to control of glucose, lipids, and inflammation in serum, liver, and perigonadal white adipose tissues. Unlike many mouse models, HFD-fed FVB/N females gained more perigonadal and mesenteric fat mass and overall body weight than their male counterparts, with increased hepatic expression of lipogenic PPARγ target genes (Cd36, Fsp27, and Fsp27β), oxidative stress genes and protein (Nqo1 and CYP2E1), inflammatory gene (Mip-2), and the pro-fibrotic gene Pai-1, along with increases in malondialdehyde and serum ALT levels. Further, inherent to females (independently of HFD), hepatic antioxidant heme oxygenase-1 (HMOX1, HO-1) protein levels were reduced compared to their male counterparts. In contrast, males may have been relatively protected from HFD-induced oxidative stress and liver injury by elevated mRNA and protein levels of hepatic antioxidants BHMT and Gpx2, increased fatty acid oxidation genes in liver and adipocytes (Pparδ), despite disorganized and inflamed adipocytes. Thus, female FVB/N mice offer a valuable preclinical, genetically malleable model that recapitulates many of the features of diet-induced obesity and liver damage observed in human females.
Collapse
Affiliation(s)
- Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Fathima Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, 27707, NC
| | - Frederick A. Ekuban
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Lidya H. Gebreyesus
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Elizabeth Twum
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Daniel Nnamani
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Susan T. Yeyeodu
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, 27707, NC
- Charles River Discovery Services, Durham, NC, 27709
| | - Nour Yadak
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Maxwell A. Gyamfi
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, 27707, NC
| |
Collapse
|
5
|
Gebreyesus LH, Choi S, Neequaye P, Mahmoud M, Mahmoud M, Ofosu-Boateng M, Twum E, Nnamani DO, Wang L, Yadak N, Ghosh S, Gonzalez FJ, Gyamfi MA. Pregnane X receptor knockout mitigates weight gain and hepatic metabolic dysregulation in female C57BL/6 J mice on a long-term high-fat diet. Biomed Pharmacother 2024; 173:116341. [PMID: 38428309 PMCID: PMC10983615 DOI: 10.1016/j.biopha.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Obesity is a significant risk factor for several chronic diseases. However, pre-menopausal females are protected against high-fat diet (HFD)-induced obesity and its adverse effects. The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor, promotes short-term obesity-associated liver disease only in male mice but not in females. Therefore, the current study investigated the metabolic and pathophysiological effects of a long-term 52-week HFD in female wild-type (WT) and PXR-KO mice and characterized the PXR-dependent molecular pathways involved. After 52 weeks of HFD ingestion, the body and liver weights and several markers of hepatotoxicity were significantly higher in WT mice than in their PXR-KO counterparts. The HFD-induced liver injury in WT female mice was also associated with upregulation of the hepatic mRNA levels of peroxisome proliferator-activated receptor gamma (Pparg), its target genes, fat-specific protein 27 (Fsp27), and the liver-specific Fsp27b involved in lipid accumulation, apoptosis, and inflammation. Notably, PXR-KO mice displayed elevated hepatic Cyp2a5 (anti-obesity gene), aldo-keto reductase 1b7 (Akr1b7), glutathione-S-transferase M3 (Gstm3) (antioxidant gene), and AMP-activated protein kinase (AMPK) levels, contributing to protection against long-term HFD-induced obesity and inflammation. RNA sequencing analysis revealed a general blunting of the transcriptomic response to HFD in PXR-KO compared to WT mice. Pathway enrichment analysis demonstrated enrichment by HFD for several pathways, including oxidative stress and redox pathway, cholesterol biosynthesis, and glycolysis/gluconeogenesis in WT but not PXR-KO mice. In conclusion, this study provides new insights into the molecular mechanisms by which PXR deficiency protects against long-term HFD-induced severe obesity and its adverse effects in female mice.
Collapse
Affiliation(s)
- Lidya H Gebreyesus
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Mattia Mahmoud
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Mia Mahmoud
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Elizabeth Twum
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Daniel O Nnamani
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Lijin Wang
- Center for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore
| | - Nour Yadak
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sujoy Ghosh
- Center for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore; Bioinformatics and Computational Biology Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Maxwell A Gyamfi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
6
|
Ren W, Wang Z, Guo H, Gou Y, Dai J, Zhou X, Sheng N. GenX analogs exposure induced greater hepatotoxicity than GenX mainly via activation of PPARα pathway while caused hepatomegaly in the absence of PPARα in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123314. [PMID: 38218542 DOI: 10.1016/j.envpol.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Despite their use as substitutes for perfluorooctanoic acid, the potential toxicities of hexafluoropropylene oxide dimer acid (HFPO-DA, commercial name: GenX) and its analogs (PFDMOHxA, PFDMO2HpA, and PFDMO2OA) remain poorly understood. To assess the hepatotoxicity of these chemicals on females, each chemical was orally administered to female C57BL/6 mice at the dosage of 0.5 mg/kg/d for 28 d. The contribution of peroxisome proliferator-activated receptors (PPARα and γ) and other nuclear receptors involving in these toxic effects of GenX and its analogs were identified by employing two PPAR knockout mice (PPARα-/- and PPARγΔHep) in this study. Results showed that the hepatotoxicity of these chemicals increased in the order of GenX < PFDMOHxA < PFDMO2HpA < PFDMO2OA. The increases of relative liver weight and liver injury markers were significantly much lower in PPARα-/- mice than in PPARα+/+ mice after GenX analog exposure, while no significant differences were observed between PPARγΔHep and its corresponding wildtype groups (PPARγF/F mice), indicating that GenX analog induce hepatotoxicity mainly via PPARα instead of PPARγ. The PPARα-dependent complement pathways were inhibited in PFDMO2HpA and PFDMO2OA exposed PPARα+/+ mice, which might be responsible for the observed liver inflammation. In PPARα-/- mice, hepatomegaly and increased liver lipid content were observed in PFDMO2HpA and PFDMO2OA treated groups. The activated pregnane X receptor (PXR) and constitutive activated receptor (CAR) pathways in the liver of PPARα-/- mice, which were highlighted by bioinformatics analysis, provided a reasonable explanation for hepatomegaly in the absence of PPARα. Our results indicate that GenX analogs could induce more serious hepatotoxicity than GenX whether there is a PPARα receptor or not. These chemicals, especially PFDMO2HpA and PFDMO2OA, may not be appropriate PFOA alternatives.
Collapse
Affiliation(s)
- Wanlan Ren
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiru Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yong Gou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Harris PS, McGinnis CD, Michel CR, Marentette JO, Reisdorph R, Roede JR, Fritz KS. Click chemistry-based thiol redox proteomics reveals significant cysteine reduction induced by chronic ethanol consumption. Redox Biol 2023; 64:102792. [PMID: 37390786 PMCID: PMC10331594 DOI: 10.1016/j.redox.2023.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023] Open
Abstract
In the U.S., alcohol-associated liver disease (ALD) impacts millions of people and is a major healthcare burden. While the pathology of ALD is unmistakable, the molecular mechanisms underlying ethanol hepatotoxicity are not fully understood. Hepatic ethanol metabolism is intimately linked with alterations in extracellular and intracellular metabolic processes, specifically oxidation/reduction reactions. The xenobiotic detoxification of ethanol leads to significant disruptions in glycolysis, β-oxidation, and the TCA cycle, as well as oxidative stress. Perturbation of these regulatory networks impacts the redox status of critical regulatory protein thiols throughout the cell. Integrating these key concepts, our goal was to apply a cutting-edge approach toward understanding mechanisms of ethanol metabolism in disrupting hepatic thiol redox signaling. Utilizing a chronic murine model of ALD, we applied a cysteine targeted click chemistry enrichment coupled with quantitative nano HPLC-MS/MS to assess the thiol redox proteome. Our strategy reveals that ethanol metabolism largely reduces the cysteine proteome, with 593 cysteine residues significantly reduced and 8 significantly oxidized cysteines. Ingenuity Pathway Analysis demonstrates that ethanol metabolism reduces specific cysteines throughout ethanol metabolism (Adh1, Cat, Aldh2), antioxidant pathways (Prx1, Mgst1, Gsr), as well as many other biochemical pathways. Interestingly, a sequence motif analysis of reduced cysteines showed a correlation for hydrophilic, charged amino acids lysine or glutamic acid nearby. Further research is needed to determine how a reduced cysteine proteome impacts individual protein activity across these protein targets and pathways. Additionally, understanding how a complex array of cysteine-targeted post-translational modifications (e.g., S-NO, S-GSH, S-OH) are integrated to regulate redox signaling and control throughout the cell is key to the development of redox-centric therapeutic agents targeted to ameliorate the progression of ALD.
Collapse
Affiliation(s)
- Peter S Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Courtney D McGinnis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cole R Michel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - John O Marentette
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James R Roede
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
MicroRNA-483-5p Inhibits Hepatocellular Carcinoma Cell Proliferation, Cell Steatosis, and Fibrosis by Targeting PPARα and TIMP2. Cancers (Basel) 2023; 15:cancers15061715. [PMID: 36980601 PMCID: PMC10046356 DOI: 10.3390/cancers15061715] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind with the 3′ untranslated regions (UTRs) of genes to regulate expression. Downregulation of miR-483-5p (miR-483) is associated with the progression of hepatocellular carcinoma (HCC). However, the significant roles of miR-483 in nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver diseases (AFLD), and HCC remain elusive. In the current study, we investigated the biological significance of miR-483 in NAFLD, AFLD, and HCC in vitro and in vivo. The downregulation of miR-483 expression in HCC patients’ tumor samples was associated with Notch 3 upregulation. Overexpression of miR-483 in a human bipotent progenitor liver cell line HepaRG and HCC cells dysregulated Notch signaling, inhibited cell proliferation/migration, induced apoptosis, and increased sensitivity towards antineoplastic agents sorafenib/regorafenib. Interestingly, the inactivation of miR-483 upregulated cell steatosis and fibrosis signaling by modulation of lipogenic and fibrosis gene expression. Mechanistically, miR-483 targets PPARα and TIMP2 gene expression, which leads to the suppression of cell steatosis and fibrosis. The downregulation of miR-483 was observed in mice liver fed with a high-fat diet (HFD) or a standard Lieber-Decarli liquid diet containing 5% alcohol, leading to increased hepatic steatosis/fibrosis. Our data suggest that miR-483 inhibits cell steatosis and fibrogenic signaling and functions as a tumor suppressor in HCC. Therefore, miR-483 may be a novel therapeutic target for NAFLD/AFLD/HCC management in patients with fatty liver diseases and HCC.
Collapse
|
10
|
Mackowiak B, Xu M, Lin Y, Guan Y, Seo W, Ren R, Feng D, Jones JW, Wang H, Gao B. Hepatic CYP2B10 is highly induced by binge ethanol and contributes to acute-on-chronic alcohol-induced liver injury. Alcohol Clin Exp Res 2022; 46:2163-2176. [PMID: 36224745 PMCID: PMC9771974 DOI: 10.1111/acer.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/10/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The chronic-plus-binge model of ethanol consumption, where chronically (8-week) ethanol-fed mice are gavaged a single dose of ethanol (E8G1), is known to induce steatohepatitis in mice. However, how chronically ethanol-fed mice respond to multiple binges of ethanol remains unknown. METHODS We extended the E8G1 model to three gavages of ethanol (E8G3) spaced 24 h apart, sacrificed each group 9 h after the final gavage, analyzed liver injury, and examined gene expression changes using microarray analyses in each group to identify mechanisms contributing to liver responses to binge ethanol. RESULTS Surprisingly, E8G3 treatment induced lower levels of liver injury, steatosis, inflammation, and fibrosis as compared to mice after E8G1 treatment. Microarray analyses identified several pathways that may contribute to the reduced liver injury after E8G3 treatment compared to E8G1 treatment. The gene encoding cytochrome P450 2B10 (Cyp2b10) was one of the top upregulated genes in the E8G1 group and was further upregulated in the E8G3 group, but only moderately induced after chronic ethanol consumption, as confirmed by RT-qPCR and western blot analyses. Genetic disruption of Cyp2b10 worsened liver injury in E8G1 and E8G3 mice with higher blood ethanol levels compared to wild-type control mice, while in vitro experiments revealed that CYP2b10 did not directly promote ethanol metabolism. Metabolomic analyses revealed significant differences in hepatic metabolites from E8G1-treated Cyp2b10 knockout and WT mice, and these metabolic alterations may contribute to the reduced liver injury in Cyp2b10 knockout mice. CONCLUSION Hepatic Cyp2b10 expression is highly induced after ethanol binge, and such upregulation reduces acute-on-chronic ethanol-induced liver injury via the indirect modification of ethanol metabolism.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Transcriptome Analysis of Protection by Dendrobium Nobile Alkaloids (DNLA) against Chronic Alcoholic Liver Injury in Mice. Biomedicines 2022; 10:biomedicines10112800. [PMID: 36359319 PMCID: PMC9687597 DOI: 10.3390/biomedicines10112800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: To investigate the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) against chronic alcoholic liver injury. C57BL/6J mice were fed with the Lieber−DeCarli alcohol diet to induce chronic alcoholic liver injury. DNLA (20 mg/kg/day) was gavaged along with the alcohol diet for 28 days. Liver injury was evaluated by serum enzymes. Triglyceride levels, histopathology, and transcriptome changes were examined by RNA-Seq and qPCR. DNLA decreased serum triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were ameliorated by DNLA, as evidenced by H&E and Oil-red O staining. DNLA brought the alcohol-induced aberrant gene expression pattern towards normal. Alcohol induced 787 differentially expressed genes (padj < 0.01). DNLA induced 280 differentially expressed genes to a much less extent. Ingenuity pathway analysis showed that DNLA ameliorated alcohol-induced oxidative stress and xenobiotic metabolism disruption. qPCR verified that DNLA alleviated over-activation of Cyp2a4, Cyp2b10, and Abcc4; attenuated oxidative stress (Hmox1, Gstm3, Nupr1), reduced the expression of Nrf2 genes (Nqo1, Gclc, Vldlr); and rescued some metabolic genes (Insig1, Xbp1, Socs3, Slc10a2). In conclusion, DNLA was effective against alcohol-induced fatty liver disease, and the protection may be attributed to alleviated oxidative stress and restored metabolism homeostasis, probably through modulating nuclear receptor CAR-, PXR-, and Nrf2-mediated gene expression pathways.
Collapse
|
12
|
Lee J, Kim J, Shin Y, Park E, Lee J, Keum YS, Kim JH. Occupational exposure and risk assessment for agricultural workers of thiamethoxam in vineyards. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113988. [PMID: 36029578 DOI: 10.1016/j.ecoenv.2022.113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Dermal & inhalation exposure was examined and according to these results, risk assessment of agricultural workers to thiamethoxam was performed during pesticide mixing/loading and hand-held sprayer application (11 replicates, each of about 1000 L of spray suspension) in vineyards. For the whole body dosimetry (WBD), clothing (Outer and inner), gauze, and nitrile gloves were analyzed to determine dermal exposure using whole-body dosimetry exposure protocol. The inhalation exposure was measured using a glass fiber filter with an IOM sampler. Analytical method validation of exposure matrices was evaluated including the field recovery and breakthrough test. The dermal exposure amount during mixing/loading was 0.163 mg (0.0004% of the total mixed/loaded active ingredient [a.i.]), whereas there was no inhalation exposure. The gloves (0.154 mg, 94.5%) were the most exposed body parts followed by the chest and stomach (0.009 mg, 5.5%). During application, the dermal and inhalation exposure amounts were 32.3 mg (0.07% of the total applied a.i.) and 10.8 µg (2.4 × 10-6% of the total applied a.i), respectively. The shin (35.1%) had the highest exposure to pesticides, followed by the chest & stomach (15.6%) and pelvis (12.6%). In case of mixing/loading, the amounts of actual dermal exposure (ADE) and actual inhalation exposure (AIE) were 0.0 and 0.0 μg/day, while those of ADE and AIE were 4707.6 and 15.8 μg/day for application. In risk assessment of the two different scenarios, the risk index was much lower than 1 (mixing/loading:0.000, application:0.014), indicating that vineyard workers are at low risk of thiamethoxam exposure. To determine the validity of the risk assessment using WBD method, the urinary metabolite was analyzed. Comparison of biomonitoring data and WBD exposure data show a reliable correlation (r = 0.885, p = 0.0003), suggesting that these are suitable methods to estimate exposure.
Collapse
Affiliation(s)
- Jiho Lee
- Department of Crop Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - JiWoo Kim
- Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office, Seoul 06590, Republic of Korea
| | - Yongho Shin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Eunyoung Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghak Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Soo Keum
- Department of Crop Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Singh V, Huang E, Pathak V, Willard BB, Allende DS, Nagy LE. Phosphoproteomics identifies pathways underlying the role of receptor-interaction protein kinase 3 in alcohol-associated liver disease and uncovers apoptosis signal-regulating kinase 1 as a target. Hepatol Commun 2022; 6:2022-2041. [PMID: 35438255 PMCID: PMC9315126 DOI: 10.1002/hep4.1956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 01/21/2023] Open
Abstract
Receptor-interaction protein kinase 3 (RIP3), a critical determinant of the necroptotic pathway of programmed cell death, contributes to injury in murine models of alcohol-associated liver disease (ALD); however, the underlying mechanisms are unknown. We investigated the effect of chronic ethanol feeding on the hepatic phosphoproteome in C57BL/6 and RIP3-deficient (Rip3-/- ) mice, focusing on death receptor (DR) signaling pathways. C57BL/6 and Rip3-/- mice were fed an ethanol-containing liquid diet or pair-fed control diet. A label-free mass spectrometry-based approach identified differentially phosphorylated proteins that were mapped to pathways affected by ethanol and Rip3 genotype. Identified targets were validated in both the murine model of ALD and in liver tissue from patients with alcohol-associated hepatitis (AH) and healthy controls. Chronic ethanol dysregulated hepatic tumor necrosis factor-induced DR signaling pathways. Of particular importance, chronic ethanol feeding to C57BL/6 mice decreased the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) at serine (S)1036/S1040 (S1029/S1033 human), sites linked with the inhibition of ASK1 death-promoting activity. This decrease in phosphorylation of inhibitory sites was muted in Rip3-/- mice. Decreased phosphorylation at S1033 was also lower in liver of patients with severe AH compared to healthy controls, and phosphorylation at the ASK1 activation site (threonine [Thr]-838) was increased in patients with AH. The net impact of these changes in phosphorylation of ASK1 was associated with increased phosphorylation of p38, a downstream target of ASK1, in patients with AH and C57BL/6 but not Rip3-/- mice. Similarly, chronic ethanol feeding affected the c-Jun N-terminal kinase pathway in C57BL/6 but not Rip3-/- mice. Taken together, our data indicate that changes in inhibitory phosphorylation of ASK1 are an important target in ALD and suggest the involvement of noncanonical functions of Rip3 in ALD.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Inflammation and Immunity, Northern Ohio Alcohol Center, Center for Liver Disease ResearchCleveland ClinicLerner Research InstituteClevelandOhioUSA
| | - Emily Huang
- Department of Inflammation and Immunity, Northern Ohio Alcohol Center, Center for Liver Disease ResearchCleveland ClinicLerner Research InstituteClevelandOhioUSA
| | - Vai Pathak
- Department of Quantitative Health SciencesCleveland ClinicLerner Research InstituteClevelandOhioUSA
| | - Belinda B Willard
- Proteomics and Metabolomics CoreCleveland ClinicLerner Research InstituteClevelandOhioUSA
| | | | - Laura E Nagy
- Department of Inflammation and Immunity, Northern Ohio Alcohol Center, Center for Liver Disease ResearchCleveland ClinicLerner Research InstituteClevelandOhioUSA
| |
Collapse
|
14
|
RNA-Seq Analysis of Protection against Chronic Alcohol Liver Injury by Rosa roxburghii Fruit Juice (Cili) in Mice. Nutrients 2022; 14:nu14091974. [PMID: 35565941 PMCID: PMC9104053 DOI: 10.3390/nu14091974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to 5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR (Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall, Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-, PXR-and Nrf2-mediated pathways.
Collapse
|
15
|
Kim S, Choi S, Dutta M, Asubonteng JO, Polunas M, Goedken M, Gonzalez FJ, Cui JY, Gyamfi MA. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature. Biochem Pharmacol 2021; 193:114698. [PMID: 34303710 PMCID: PMC9135326 DOI: 10.1016/j.bcp.2021.114698] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease due to the current epidemics of obesity and diabetes. The pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor known for trans-activating liver genes involved in drug metabolism and transport, and more recently implicated in energy metabolism. The gut microbiota can modulate the host xenobiotic biotransformation and contribute to the development of obesity. While the male sex confers a higher risk for NAFLD than women before menopause, the mechanism remains unknown. We hypothesized that the presence of PXR promotes obesity by modifying the gut-liver axis in a sex-specific manner. Male and female C57BL/6 (wild-type/WT) and PXR-knockout (PXR-KO) mice were fed control or high-fat diet (HFD) for 16-weeks. Serum parameters, liver histopathology, transcriptomic profiling, 16S-rDNA sequencing, and bile acid (BA) metabolomics were performed. PXR enhanced HFD-induced weight gain, hepatic steatosis and inflammation especially in males, accompanied by PXR-dependent up-regulation in hepatic genes involved in microbial response, inflammation, oxidative stress, and cancer; PXR-dependent increase in intestinal Firmicutes/Bacteroides ratio (hallmark of obesity) and the pro-inflammatory Lactobacillus, as well as a decrease in the anti-obese Allobaculum and the anti-inflammatory Bifidobacterum, with a PXR-dependent reduction of beneficial BAs in liver. The resistance to NAFLD in females may be explained by PXR-dependent decrease in pro-inflammatory bacteria (Ruminococcus gnavus and Peptococcaceae). In conclusion, PXR exacerbates hepatic steatosis and inflammation accompanied by obesity- and inflammation-prone gut microbiome signature, suggesting that gut microbiome may contribute to PXR-mediated exacerbation of NAFLD.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jeffrey O Asubonteng
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Marianne Polunas
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Michael Goedken
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
16
|
Namachivayam A, Valsala Gopalakrishnan A. A review on molecular mechanism of alcoholic liver disease. Life Sci 2021; 274:119328. [PMID: 33711388 DOI: 10.1016/j.lfs.2021.119328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption leads to damage to the organs of the body. More importantly, the liver is majorly affected organ upon alcohol consumption for most of the people; it causes inflammation and affects various pathways involved in metabolism. If the person is with high response of inflammatory in conduct with alcohol leads to the liver damage, which involves the creating effects with major cycle leads to homeostasis. In this review, we summarize the molecular mechanisms of alcoholic liver disease, such as the important role of genes, risk factors, pathogenicity, and role of micro RNA, the role of inflammation in the liver, and alcoholic fibrosis in the liver. There is increased oxidative stress, change in the biochemical alterations, and reduction in the antioxidant enzymes. These changes in the mechanism lead to liver injury. Hepatocyte nuclear factor-4 is the major transcriptional factor for the regulation of some genes involved in the lipid metabolism and oxidation process; with the help of the agonist, we can attenuate the level of the gene in the site of hepatic tissues, which will prevent the homeostatic condition. This review shows a clear view of the various pathways involved in alcohol consumption, which helps in the prevention of ALD using an agonist.
Collapse
Affiliation(s)
- Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
17
|
Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166101. [PMID: 33600998 DOI: 10.1016/j.bbadis.2021.166101] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two nuclear receptors that are well-known for their roles in xenobiotic detoxification by regulating the expression of drug-metabolizing enzymes and transporters. In addition to metabolizing drugs and other xenobiotics, the same enzymes and transporters are also responsible for the production and elimination of numerous endogenous chemicals, or endobiotics. Moreover, both PXR and CAR are highly expressed in the liver. As such, it is conceivable that PXR and CAR have major potentials to affect the pathophysiology of the liver by regulating the homeostasis of endobiotics. In recent years, the physiological functions of PXR and CAR in the liver have been extensively studied. Emerging evidence has suggested the roles of PXR and CAR in energy metabolism, bile acid homeostasis, cell proliferation, to name a few. This review summarizes the recent progress in our understanding of the roles of PXR and CAR in liver physiology.
Collapse
Affiliation(s)
- Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory M Young
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
18
|
Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou ES, Konstantinidou P, Machera K, Milani ES, Peijnenburg A, Rahmani R, Rijkers D, Spyropoulou A, Stamou M, Stoopen G, Sturla SJ, Wollscheid B, Zucchini-Pascal N, Braeuning A, Lampen A. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food Chem Toxicol 2020; 139:111283. [DOI: 10.1016/j.fct.2020.111283] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
|
19
|
Niture S, Gyamfi MA, Lin M, Chimeh U, Dong X, Zheng W, Moore J, Kumar D. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death Dis 2020; 11:178. [PMID: 32152268 PMCID: PMC7062894 DOI: 10.1038/s41419-020-2369-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) expression has been linked to tumor progression in various cancer types, but the detailed mechanisms of TNFAIP8 are not fully elucidated. Here we define the role of TNFAIP8 in early events associated with development of hepatocellular carcinoma (HCC). Increased TNFAIP8 levels in HCC cells enhanced cell survival by blocking apoptosis, rendering HCC cells more resistant to the anticancer drugs, sorafenib and regorafenib. TNFAIP8 also induced autophagy and steatosis in liver cancer cells. Consistent with these observations, TNFAIP8 blocked AKT/mTOR signaling and showed direct interaction with ATG3-ATG7 proteins. TNFAIP8 also exhibited binding with fatty acids and modulated expression of lipid/fatty-acid metabolizing enzymes. Chronic feeding of mice with alcohol increased hepatic levels of TNFAIP8, autophagy, and steatosis but not in high-fat-fed obese mice. Similarly, higher TNFAIP8 expression was associated with steatotic livers of human patients with a history of alcohol use but not in steatotic patients with no history of alcohol use. Our data indicate a novel role of TNFAIP8 in modulation of drug resistance, autophagy, and hepatic steatosis, all key early events in HCC progression.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Minghui Lin
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
- Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Xialan Dong
- Department of Pharmaceutical Sciences, Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Weifan Zheng
- Department of Pharmaceutical Sciences, Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham, Durham, NC, 27707, USA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University Durham, Durham, NC, 27707, USA.
| |
Collapse
|
20
|
Abstract
The rising incidence of alcohol-related liver disease (ALD) demands making urgent progress in understanding the fundamental molecular basis of alcohol-related hepatocellular damage. One of the key early events accompanying chronic alcohol usage is the accumulation of lipid droplets (LDs) in the hepatocellular cytoplasm. LDs are far from inert sites of neutral lipid storage; rather, they represent key organelles that play vital roles in the metabolic state of the cell. In this review, we will examine the biology of these structures and outline recent efforts being made to understand the effects of alcohol exposure on the biogenesis, catabolism, and motility of LDs and how their dynamic nature is perturbed in the context of ALD.
Collapse
Affiliation(s)
- Ryan J. Schulze
- Department of Biochemistry and Molecular Biology and the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA,Corresponding author. Department of Biochemistry and Molecular Biology and the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA. (R.J. Schulze)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Niture S, Gyamfi MA, Kedir H, Arthur E, Ressom H, Deep G, Kumar D. Serotonin induced hepatic steatosis is associated with modulation of autophagy and notch signaling pathway. Cell Commun Signal 2018; 16:78. [PMID: 30409162 PMCID: PMC6225666 DOI: 10.1186/s12964-018-0282-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
Background Besides its neurotransmitter and vasoconstriction functions, serotonin is an important mediator of numerous biological processes in peripheral tissues including cell proliferation, steatosis, and fibrogenesis. Recent reports indicate that serotonin may promote tumor growth in liver cancer, however, the molecular mechanisms remain elusive. n this study, we investigated the role and molecular signaling mechanisms mediated by serotonin in liver cancer cell survival, drug resistance, and steatosis. Methods Effect of serotonin on modulation of cell survival/proliferation was determined by MTT/WST1 assay. Effect of serotonin on the regulation of autophagy biomarkers and lipid/fatty acid proteins expression, AKT/mTOR and Notch signaling was evaluated by immunoblotting. The role of serotonin in normal human hepatocytes and liver cancer cell steatosis was analyzed by Oil Red O staining. The mRNA expression levels of lipid/fatty acid proteins and serotonin receptors were validated by qRT-PCR. The important roles of autophagy, Notch signaling, serotonin receptors and serotonin re-uptake proteins on serotonin-mediated cell steatosis were investigated by using selective inhibitors or antagonists. The association of peripheral serotonin, autophagy, and hepatic steatosis was also investigated using chronic EtOH fed mouse model. Results Exposure of liver cancer cells to serotonin induced Notch signaling and autophagy, independent of AKT/mTOR pathway. Also, serotonin enhanced cancer cell proliferation/survival and drug resistance. Furthermore, serotonin treatment up-regulated the expression of lipogenic proteins and increased steatosis in liver cancer cells. Inhibition of autophagy or Notch signaling reduced serotonin-mediated cell steatosis. Treatment with serotonin receptor antagonists 5-HTr1B and 5-HTr2B reduced serotonin-mediated cell steatosis; in contrast, treatment with selective serotonin reuptake inhibitors (SSRIs) increased steatosis. In addition, mice fed with chronic EtOH resulted in increased serum serotonin levels which were associated with the induction of hepatic steatosis and autophagy. Conclusions Serotonin regulates liver cancer cell steatosis, cells survival, and may promote liver carcinogenesis by activation of Notch signaling and autophagy. Electronic supplementary material The online version of this article (10.1186/s12964-018-0282-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 1801 Fayetteville St, Durham, NC, 27707, USA
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 1801 Fayetteville St, Durham, NC, 27707, USA
| | - Habib Kedir
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 1801 Fayetteville St, Durham, NC, 27707, USA
| | - Elena Arthur
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 1801 Fayetteville St, Durham, NC, 27707, USA
| | - Habtom Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20008, USA
| | - Gagan Deep
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 1801 Fayetteville St, Durham, NC, 27707, USA. .,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA. .,Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20008, USA.
| |
Collapse
|
22
|
Choi S, Gyamfi AA, Neequaye P, Addo S, Gonzalez FJ, Gyamfi MA. Role of the pregnane X receptor in binge ethanol-induced steatosis and hepatotoxicity. J Pharmacol Exp Ther 2018; 365:165-178. [PMID: 29431616 DOI: 10.1124/jpet.117.244665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that defends against toxic agents. We have shown that PXR promotes chronic ethanol (EtOH)-induced steatosis. Therefore, we examined the role of PXR in binge EtOH-induced hepatotoxicity. Male wild type (WT) and Pxr-null mice were orally administered three binge doses of EtOH (4.5 g/kg, every 12 hours) and euthanized four hours after the final dose. Pxr-null mice displayed higher basal mRNA levels of hepatic lipogenic transcription factor sterol regulatory element binding protein 1c (Srebp-1c) and its target stearoyl-CoA desaturase 1 (Scd1) and the lipid peroxide detoxifying aldo-keto reductase 1b7 (Akr1b7) and higher protein levels of EtOH-metabolizing alcohol dehydrogenase 1 (ADH1). In both genotypes, binge EtOH-induced triglyceride accumulation was associated with inhibition of fatty acid β-oxidation and upregulation of Srebp-1c- regulated lipogenic genes and hepatic CYP2E1 protein. Unexpectedly, gene expression of Cyp2b10, a constitutive androstane receptor target gene, implicated in EtOH hepatotoxicity, was PXR-dependent upregulated by binge EtOH. Also, PXR-dependent was the binge EtOH-induced inhibition of hepatic Akr1b8 mRNA, and protein levels of aldehyde dehydrogenase (ALDH) 1A1 and anti-apoptotic Bcl-2, but increased pro-apoptotic Bax protein expression, leading to increases in residual EtOH concentration and the cellular oxidative stress marker, malondialdehyde. In contrast, Pxr-null mice displayed increased Akr1b7 gene and ADH1 protein expression and hypertriglyceridemia following binge EtOH exposure. Taken together, this study demonstrates that PXR ablation prevents EtOH induced upregulation of Cyp2b10 and that PXR potentiates binge EtOH-induced oxidative stress and inhibition of EtOH catabolism, but protects against alcoholic hyperlipidemia.
Collapse
|