1
|
Gremmel T, Frelinger AL, Michelson AD. Platelet Physiology. Semin Thromb Hemost 2024; 50:1173-1186. [PMID: 38653463 DOI: 10.1055/s-0044-1786387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Platelets are the smallest blood cells, numbering 150 to 350 × 109/L in healthy individuals. The ability of activated platelets to adhere to an injured vessel wall and form aggregates was first described in the 19th century. Besides their long-established roles in thrombosis and hemostasis, platelets are increasingly recognized as pivotal players in numerous other pathophysiological processes including inflammation and atherogenesis, antimicrobial host defense, and tumor growth and metastasis. Consequently, profound knowledge of platelet structure and function is becoming more important in research and in many fields of modern medicine. This review provides an overview of platelet physiology focusing particularly on the structure, granules, surface glycoproteins, and activation pathways of platelets.
Collapse
Affiliation(s)
- Thomas Gremmel
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Andrew L Frelinger
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D Michelson
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Yamamoto A, Nishimori H, Shirai T, Takano K, Komura A, Kambara Y, Fukumi T, Urata T, Asada N, Ennishi D, Fujii K, Fujii N, Matsuoka KI, Niiya K, Suzuki-Inoue K, Maeda Y. Recurrent Cerebral Hemorrhaging with Platelet Dysfunction Accompanied by Anti-glycoprotein VI Autoantibodies in a Patient with TAFRO Syndrome. Intern Med 2024; 63:1917-1922. [PMID: 38945933 PMCID: PMC11272510 DOI: 10.2169/internalmedicine.2799-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 07/02/2024] Open
Abstract
Thrombocytopenia, anasarca, fever, renal dysfunction, and organomegaly (TAFRO) syndrome is an inflammatory disorder with an unclear pathogenesis. We herein report a case of TAFRO syndrome in remission in a patient who experienced recurrent intracranial bleeding despite a normal platelet count and coagulation system. A further investigation suggested the presence of anti-glycoprotein VI (GPVI) autoantibodies in the plasma, which induced platelet dysfunction and bleeding tendency. No new bleeding or relapse of TAFRO syndrome occurred after immunosuppressive therapy was initiated. These findings may help elucidate the autoimmune pathogenesis of TAFRO syndrome.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, University of Yamanashi, Japan
| | - Katsuhiro Takano
- Division of Transfusion Medicine and Cell Therapy, University of Yamanashi, Japan
| | - Aya Komura
- Department of Hematology, Okayama City Hospital, Japan
| | - Yui Kambara
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Takuya Fukumi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Tomohiro Urata
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Keiko Fujii
- Division of Clinical Laboratory, Okayama University Hospital, Japan
| | - Nobuharu Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Japan
- Department of Blood Transfusion, Okayama University Hospital, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | | | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, University of Yamanashi, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| |
Collapse
|
3
|
Jooss NJ, Diender MG, Fernández DI, Huang J, Heubel-Moenen FCJ, van der Veer A, Kuijpers MJE, Poulter NS, Henskens YMC, Te Loo M, Heemskerk JWM. Restraining of glycoprotein VI- and integrin α2β1-dependent thrombus formation by platelet PECAM1. Cell Mol Life Sci 2024; 81:44. [PMID: 38236412 PMCID: PMC10796532 DOI: 10.1007/s00018-023-05058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The platelet receptors, glycoprotein VI (GPVI) and integrin α2β1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2β1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2β1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2β1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2β1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2β1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2β1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2β1 engagement.
Collapse
Affiliation(s)
- Natalie J Jooss
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Molecular Haematology Unit, University of Oxford, Headington, OX3 9DS, UK
| | - Marije G Diender
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
| | - Delia I Fernández
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jingnan Huang
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Floor C J Heubel-Moenen
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arian van der Veer
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
- Department of Pediatric Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, UK
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maroeska Te Loo
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Yang X, Leng M, Yang L, Peng Y, Wang J, Wang Q, Wu K, Zou J, Wan W, Li L, Ye Y, Meng Z. Effect of Evodiamine on Collagen-Induced Platelet Activation and Thrombosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4893859. [PMID: 35937403 PMCID: PMC9348926 DOI: 10.1155/2022/4893859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Evodia rutaecarpa has multiple pharmacological effects and is widely used in the prevention and treatment of migraine, diabetes, cardiovascular disease, cancer, and other chronic diseases; however, the pharmacological effects of its active compound evodiamine (Evo) have not been thoroughly investigated. The purpose of this study was to investigate the effects of Evo on antiplatelet activation and thrombosis. We discovered that Evo effectively inhibited collagen-induced platelet activation but had no effect on platelet aggregation caused by activators such as thrombin, ADP, and U46619. Second, we found that Evo effectively inhibited the release of platelet granules induced by collagen. Finally, evodiamine inhibits the transduction of the SFKs/Syk/Akt/PLCγ2 activation pathway in platelets. According to in vivo studies, Evo significantly prolonged the mesenteric thromboembolism induced by ferric chloride and had no discernible effect on the coagulation function of mice. In conclusion, the antiplatelet and thrombotic effects of Evo discovered in this study provide an experimental basis for the investigation of the pharmacological mechanisms of Evo and the development of antiplatelet drugs.
Collapse
Affiliation(s)
- Xiaona Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junhua Zou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
7
|
Pallini C, Pike JA, O'Shea C, Andrews RK, Gardiner EE, Watson SP, Poulter NS. Immobilized collagen prevents shedding and induces sustained GPVI clustering and signaling in platelets. Platelets 2021; 32:59-73. [PMID: 33455536 DOI: 10.1080/09537104.2020.1849607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Collagen, the most thrombogenic constituent of blood vessel walls, activates platelets through glycoprotein VI (GPVI). In suspension, following platelet activation by collagen, GPVI is cleaved by A Disintegrin And Metalloproteinase (ADAM)10 and ADAM17. In this study, we use single-molecule localization microscopy and a 2-level DBSCAN-based clustering tool to show that GPVI remains clustered along immobilized collagen fibers for at least 3 hours in the absence of significant shedding. Tyrosine phosphorylation of spleen tyrosine kinase (Syk) and Linker of Activated T cells (LAT), and elevation of intracellular Ca2+, are sustained over this period. Syk, but not Src kinase-dependent signaling is required to maintain clustering of the collagen integrin α2β1, whilst neither is required for GPVI. We propose that clustering of GPVI on immobilized collagen protects GPVI from shedding in order to maintain sustained Src and Syk-kinases dependent signaling, activation of integrin α2β1, and continued adhesion.
Collapse
Affiliation(s)
- Chiara Pallini
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Robert K Andrews
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University , Canberra, Australia
| | - Elizabeth E Gardiner
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University , Canberra, Australia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , Midlands, UK
| |
Collapse
|
8
|
Clark JC, Damaskinaki FN, Cheung YFH, Slater A, Watson SP. Structure-function relationship of the platelet glycoprotein VI (GPVI) receptor: does it matter if it is a dimer or monomer? Platelets 2021; 32:724-732. [PMID: 33634725 DOI: 10.1080/09537104.2021.1887469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022]
Abstract
GPVI is a critical signaling receptor responsible for collagen-induced platelet activation and a promising anti-thrombotic target in conditions such as coronary artery thrombosis, ischemic stroke, and atherothrombosis. This is due to the ability to block GPVI while having minimal effects on hemostasis, making it a more attractive target over current dual-antiplatelet therapy (DAPT) with acetyl salicylic acid and P2Y12 inhibitors where bleeding can be a problem. Our current understanding of how the structure of GPVI relates to function is inadequate and recent studies contradict each other. In this article, we summarize the structure-function relationships underlying the activation of GPVI by its major ligands, including collagen, fibrin(ogen), snake venom toxins and charged exogenous ligands such as diesel exhaust particles. We argue that contrary to popular belief dimerization of GPVI is not required for binding to collagen but serves to facilitate binding through increased avidity, and that GPVI is expressed as a mixture of monomers and dimers on resting platelets, with binding of multivalent ligands inducing higher order clustering.
Collapse
Affiliation(s)
- Joanne C Clark
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Yam Fung Hilaire Cheung
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Bioanalytics, Leibniz-Institut Für Analytische Wissenschaften - ISAS -e.v, Dortmund, Germany
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
9
|
Structural characterization of a novel GPVI-nanobody complex reveals a biologically active domain-swapped GPVI dimer. Blood 2021; 137:3443-3453. [PMID: 33512486 DOI: 10.1182/blood.2020009440] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Glycoprotein VI (GPVI) is the major signaling receptor for collagen on platelets. We have raised 54 nanobodies (Nb), grouped into 33 structural classes based on their complementary determining region 3 loops, against recombinant GPVI-Fc (dimeric GPVI) and have characterized their ability to bind recombinant GPVI, resting and activated platelets, and to inhibit platelet activation by collagen. Nbs from 6 different binding classes showed the strongest binding to recombinant GPVI-Fc, suggesting that there was not a single dominant class. The most potent 3, Nb2, 21, and 35, inhibited collagen-induced platelet aggregation with nanomolar half maximal inhibitory concentration (IC50) values and inhibited platelet aggregation under flow. The binding KD of the most potent Nb, Nb2, against recombinant monomeric and dimeric GPVI was 0.6 and 0.7 nM, respectively. The crystal structure of monomeric GPVI in complex with Nb2 revealed a binding epitope adjacent to the collagen-related peptide (CRP) binding groove within the D1 domain. In addition, a novel conformation of GPVI involving a domain swap between the D2 domains was observed. The domain swap is facilitated by the outward extension of the C-C' loop, which forms the domain swap hinge. The functional significance of this conformation was tested by truncating the hinge region so that the domain swap cannot occur. Nb2 was still able to displace collagen and CRP binding to the mutant, but signaling was abolished in a cell-based NFAT reporter assay. This demonstrates that the C-C' loop region is important for GPVI signaling but not ligand binding and suggests the domain-swapped structure may represent an active GPVI conformation.
Collapse
|
10
|
Oishi S, Tsukiji N, Otake S, Oishi N, Sasaki T, Shirai T, Yoshikawa Y, Takano K, Shinmori H, Inukai T, Kondo T, Suzuki-Inoue K. Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRγ. Blood Adv 2021; 5:2017-2026. [PMID: 33843987 PMCID: PMC8045506 DOI: 10.1182/bloodadvances.2020001698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
There is increasing evidence that platelets participate in multiple pathophysiological processes other than thrombosis and hemostasis, such as immunity, inflammation, embryonic development, and cancer progression. A recent study revealed that heme (hemin)-activated platelets induce macrophage extracellular traps (METs) and exacerbate rhabdomyolysis-induced acute kidney injury (RAKI); however, how hemin activates platelets remains unclear. Here, we report that both C-type lectin-like receptor-2 (CLEC-2) and glycoprotein VI (GPVI) are platelet hemin receptors and are involved in the exacerbation of RAKI. We investigated hemin-induced platelet aggregation in humans and mice, binding of hemin to CLEC-2 and GPVI, the RAKI-associated phenotype in a mouse model, and in vitro MET formation. Using western blotting and surface plasmon resonance, we showed that hemin activates human platelets by stimulating the phosphorylation of SYK and PLCγ2 and directly binding to both CLEC-2 and GPVI. Furthermore, hemin-induced murine platelet aggregation was partially reduced in CLEC-2-depleted and FcRγ-deficient (equivalent to GPVI-deficient) platelets and almost completely inhibited in CLEC-2-depleted FcRγ-deficient (double-knockout) platelets. In addition, hemin-induced murine platelet aggregation was inhibited by the CLEC-2 inhibitor cobalt hematoporphyrin or GPVI antibody (JAQ-1). Renal dysfunction, tubular injury, and MET formation were attenuated in double-knockout RAKI mice. Furthermore, in vitro MET formation assay showed that the downstream signaling pathway of CLEC-2 and GPVI is involved in MET formation. We propose that both CLEC-2 and GPVI in platelets play an important role in RAKI development.
Collapse
Affiliation(s)
- Saori Oishi
- Department of Clinical and Laboratory Medicine and
| | | | - Shimon Otake
- Department of Clinical and Laboratory Medicine and
| | - Naoki Oishi
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | | | | | | | | - Hideyuki Shinmori
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan; and
| | - Takeshi Inukai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | |
Collapse
|
11
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
13
|
Borst O, Gawaz M. Glycoprotein VI - novel target in antiplatelet medication. Pharmacol Ther 2021; 217:107630. [DOI: 10.1016/j.pharmthera.2020.107630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
|
14
|
De Kock L, Freson K. The (Patho)Biology of SRC Kinase in Platelets and Megakaryocytes. ACTA ACUST UNITED AC 2020; 56:medicina56120633. [PMID: 33255186 PMCID: PMC7759910 DOI: 10.3390/medicina56120633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Proto-oncogene tyrosine-protein kinase SRC (SRC), as other members of the SRC family kinases (SFK), plays an important role in regulating signal transduction by different cell surface receptors after changes in the cellular environment. Here, we reviewed the role of SRC in platelets and megakaryocytes (MK). In platelets, inactive closed SRC is coupled to the β subunit of integrin αIIbβ3 while upon fibrinogen binding during platelet activation, αIIbβ3-mediated outside-in signaling is initiated by activation of SRC. Active open SRC now further stimulates many downstream effectors via tyrosine phosphorylation of enzymes, adaptors, and especially cytoskeletal components. Functional platelet studies using SRC knockout mice or broad spectrum SFK inhibitors pointed out that SRC mediates their spreading on fibrinogen. On the other hand, an activating pathological SRC missense variant E527K in humans that causes bleeding inhibits collagen-induced platelet activation while stimulating platelet spreading. The role of SRC in megakaryopoiesis is much less studied. SRC knockout mice have a normal platelet count though studies with SFK inhibitors point out that SRC could interfere with MK polyploidization and proplatelet formation but these inhibitors are not specific. Patients with the SRC E527K variant have thrombocytopenia due to hyperactive SRC that inhibits proplatelet formation after increased spreading of MK on fibrinogen and enhanced formation of podosomes. Studies in humans have contributed significantly to our understanding of SRC signaling in platelets and MK.
Collapse
|
15
|
Ahmed MU, Kaneva V, Loyau S, Nechipurenko D, Receveur N, Le Bris M, Janus-Bell E, Didelot M, Rauch A, Susen S, Chakfé N, Lanza F, Gardiner EE, Andrews RK, Panteleev M, Gachet C, Jandrot-Perrus M, Mangin PH. Pharmacological Blockade of Glycoprotein VI Promotes Thrombus Disaggregation in the Absence of Thrombin. Arterioscler Thromb Vasc Biol 2020; 40:2127-2142. [PMID: 32698684 DOI: 10.1161/atvbaha.120.314301] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Atherothrombosis occurs upon rupture of an atherosclerotic plaque and leads to the formation of a mural thrombus. Computational fluid dynamics and numerical models indicated that the mechanical stress applied to a thrombus increases dramatically as a thrombus grows, and that strong inter-platelet interactions are essential to maintain its stability. We investigated whether GPVI (glycoprotein VI)-mediated platelet activation helps to maintain thrombus stability by using real-time video-microscopy. Approach and Results: We showed that GPVI blockade with 2 distinct Fab fragments promoted efficient disaggregation of human thrombi preformed on collagen or on human atherosclerotic plaque material in the absence of thrombin. ACT017-induced disaggregation was achieved under arterial blood flow conditions, and its effect increased with wall shear rate. GPVI regulated platelet activation within a growing thrombus as evidenced by the loss in thrombus contraction when GPVI was blocked, and the absence of the disaggregating effect of an anti-GPVI agent when the thrombi were fully activated with soluble agonists. The GPVI-dependent thrombus stabilizing effect was further supported by the fact that inhibition of any of the 4 key immunoreceptor tyrosine-based motif signalling molecules, src-kinases, Syk, PI3Kβ, or phospholipase C, resulted in kinetics of thrombus disaggregation similar to ACT017. The absence of ACT017-induced disaggregation of thrombi from 2 afibrinogenemic patients suggests that the role of GPVI requires interaction with fibrinogen. Finally, platelet disaggregation of fibrin-rich thrombi was also promoted by ACT017 in combination with r-tPA (recombinant tissue plasminogen activator). CONCLUSIONS This work identifies an unrecognized role for GPVI in maintaining thrombus stability and suggests that targeting GPVI could dissolve platelet aggregates with a poor fibrin content.
Collapse
Affiliation(s)
- Muhammad Usman Ahmed
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Valeria Kaneva
- Faculty of Physics, Moscow State University, Russia (V.K., D.N., M.P.).,Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Russia (V.K., D.N., M.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Russia (V.K., D.M., M.P.)
| | - Stéphane Loyau
- Université de Paris, INSERM, Hôpital Bichat, UMR-S1148, France (S.L., M.J.-P.)
| | - Dmitry Nechipurenko
- Faculty of Physics, Moscow State University, Russia (V.K., D.N., M.P.).,Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Russia (V.K., D.N., M.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Russia (V.K., D.M., M.P.)
| | - Nicolas Receveur
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Marion Le Bris
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Emily Janus-Bell
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Mélusine Didelot
- CHU Lille, Université de Lille, INSERM UMR-SU1011-EGID, Institut Pasteur de Lille, France (M.D., A.R., S.S.)
| | - Antoine Rauch
- CHU Lille, Université de Lille, INSERM UMR-SU1011-EGID, Institut Pasteur de Lille, France (M.D., A.R., S.S.)
| | - Sophie Susen
- CHU Lille, Université de Lille, INSERM UMR-SU1011-EGID, Institut Pasteur de Lille, France (M.D., A.R., S.S.)
| | - Nabil Chakfé
- Université de Strasbourg, Department of Vascular Surgery and Kidney Transplantation, France (N.C.)
| | - François Lanza
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Elizabeth E Gardiner
- The Australian National University, The John Curtin School of Medical Research, ACRF Department of Cancer Biology and Therapeutics, Canberra, Australia (E.E.G.)
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Australia (R.K.A.)
| | - Mikhail Panteleev
- Faculty of Physics, Moscow State University, Russia (V.K., D.N., M.P.).,Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Russia (V.K., D.N., M.P.).,Center for Theoretical Problems of Physicochemical Pharmacology, Russia (V.K., D.M., M.P.)
| | - Christian Gachet
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| | - Martine Jandrot-Perrus
- Université de Paris, INSERM, Hôpital Bichat, UMR-S1148, France (S.L., M.J.-P.).,Acticor Biotech, France (M.J.-P.)
| | - Pierre H Mangin
- From the Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France (M.U.A., N.R., M.L.B., E.J.-B., F.L., C.G., P.H.M.)
| |
Collapse
|
16
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
17
|
Thom CS, Jobaliya CD, Lorenz K, Maguire JA, Gagne A, Gadue P, French DL, Voight BF. Tropomyosin 1 genetically constrains in vitro hematopoiesis. BMC Biol 2020; 18:52. [PMID: 32408895 PMCID: PMC7227211 DOI: 10.1186/s12915-020-00783-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Identifying causal variants and genes from human genetic studies of hematopoietic traits is important to enumerate basic regulatory mechanisms underlying these traits, and could ultimately augment translational efforts to generate platelets and/or red blood cells in vitro. To identify putative causal genes from these data, we performed computational modeling using available genome-wide association datasets for platelet and red blood cell traits. RESULTS Our model identified a joint collection of genomic features enriched at established trait associations and plausible candidate variants. Additional studies associating variation at these loci with change in gene expression highlighted Tropomyosin 1 (TPM1) among our top-ranked candidate genes. CRISPR/Cas9-mediated TPM1 knockout in human induced pluripotent stem cells (iPSCs) enhanced hematopoietic progenitor development, increasing total megakaryocyte and erythroid cell yields. CONCLUSIONS Our findings may help explain human genetic associations and identify a novel genetic strategy to enhance in vitro hematopoiesis. A similar trait-specific gene prioritization strategy could be employed to help streamline functional validation experiments for virtually any human trait.
Collapse
Affiliation(s)
- Christopher Stephen Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Chintan D Jobaliya
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Lorenz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Gagne
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Franklin Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Jandrot-Perrus M, Hermans C, Mezzano D. Platelet glycoprotein VI genetic quantitative and qualitative defects. Platelets 2019; 30:708-713. [PMID: 31068042 DOI: 10.1080/09537104.2019.1610166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Platelet membrane glycoprotein VI (GPVI) is increasingly recognized as an important receptor for thrombus formation and growth. Numerous arguments have been published indicating that GPVI plays a major role in thrombosis without being essential for physiological hemostasis. In humans, GPVI deficiencies are rarely reported. These are most often deficiencies occurring in the context of autoimmunity and, more rarely, genetic deficits. The purpose of this review is to compile data on the quantitative and qualitative genetic abnormalities of GPVI.
Collapse
Affiliation(s)
- Martine Jandrot-Perrus
- a UMR_S1148, Laboratory for Vascular Translational Science , INSERM, University Paris Diderot , Paris , France
| | - Cedric Hermans
- b Haemostasis and Thrombosis Unit, Haemophilia Clinic, Division of Adult Haematology , St-Luc University Hospital , Brussels , Belgium
| | - Diego Mezzano
- c Department of Hematology-Oncology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
19
|
Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN. Platelet Integrin αIIbβ3: Mechanisms of Activation and Clustering; Involvement into the Formation of the Thrombus Heterogeneous Structure. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Basak I, Bhatlekar S, Manne B, Stoller M, Hugo S, Kong X, Ma L, Rondina MT, Weyrich AS, Edelstein LC, Bray PF. miR-15a-5p regulates expression of multiple proteins in the megakaryocyte GPVI signaling pathway. J Thromb Haemost 2019; 17:511-524. [PMID: 30632265 PMCID: PMC6397079 DOI: 10.1111/jth.14382] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Essentials The action of microRNAs (miRs) in human megakaryocyte signaling is largely unknown. Cord blood-derived human megakaryocytes (MKs) were used to test the function of candidate miRs. miR-15a-5p negatively regulated MK GPVI-mediated αIIbβ3 activation and α-granule release. miR-15a-5p acts as a potential "master-miR" regulating genes in the MK GPVI signaling pathway. SUMMARY: Background Megakaryocytes (MKs) invest their progeny platelets with proteins and RNAs. MicroRNAs (miRs), which inhibit mRNA translation into protein, are abundantly expressed in MKs and platelets. Although platelet miRs have been associated with platelet reactivity and disease, there is a paucity of information on the function of miRs in human MKs. Objective To identify MK miRs that regulate the GPVI signaling pathway in the MK-platelet lineage. Methods Candidate miRs associated with GPVI-mediated platelet aggregation were tested for functionality in cultured MKs derived from cord blood. Results An unbiased, transcriptome-wide screen in 154 healthy donors identified platelet miR-15a-5p as significantly negatively associated with CRP-induced platelet aggregation. Platelet agonist dose-response curves demonstrated activation of αIIbβ3 in suspensions of cord blood-derived cultured MKs. Overexpression and knockdown of miR-15a-5p in these MKs reduced and enhanced, respectively, CRP-induced αIIbβ3 activation but did not alter thrombin or ADP stimulation. FYN, SRGN, FCER1G, MYLK. and PRKCQ, genes involved in GPVI signaling, were identified as miR-15a-5p targets and were inhibited or de-repressed in MKs with miR-15a-5p overexpression or inhibition, respectively. Lentiviral overexpression of miR-15a-5p also inhibited GPVI-FcRγ-mediated phosphorylation of Syk and PLCγ2, GPVI downstream signaling molecules, but effects of miR-15a-5p on αIIbβ3 activation did not extend to other ITAM-signaling receptors (FcγRIIa and CLEC-2). Conclusion Cord blood-derived MKs are a useful human system for studying the functional effects of candidate platelet genes. miR-15a-5p is a potential "master-miR" for specifically regulating GPVI-mediated MK-platelet signaling. Targeting miR-15a-5p may have therapeutic potential in hemostasis and thrombosis.
Collapse
Affiliation(s)
- I. Basak
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - S. Bhatlekar
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - B.K. Manne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - M. Stoller
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - S. Hugo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - X. Kong
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - L. Ma
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - M. T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - A. S. Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
| | - L. C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107
| | - P. F. Bray
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; and Division of General Internal Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; and George E. Wahlen VAMC, Salt Lake City, UT, 84148
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
|
22
|
Slater A, Perrella G, Onselaer MB, Martin EM, Gauer JS, Xu RG, Heemskerk JWM, Ariëns RAS, Watson SP. Does fibrin(ogen) bind to monomeric or dimeric GPVI, or not at all? Platelets 2018; 30:281-289. [DOI: 10.1080/09537104.2018.1508649] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Marie-Blanche Onselaer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julia S Gauer
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Rui-Gang Xu
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Johan WM Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - Robert A S Ariëns
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Abstract
This overview article for the Comprehensive Physiology collection is focused on detailing platelets, how platelets respond to various stimuli, how platelets interact with their external biochemical environment, and the role of platelets in physiological and pathological processes. Specifically, we will discuss the four major functions of platelets: activation, adhesion, aggregation, and inflammation. We will extend this discussion to include various mechanisms that can induce these functional changes and a discussion of some of the salient receptors that are responsible for platelets interacting with their external environment. We will finish with a discussion of how platelets interact with their vascular environment, with a special focus on interactions with the extracellular matrix and endothelial cells, and finally how platelets can aid and possibly initiate the progression of various vascular diseases. Throughout this overview, we will highlight both the historical investigations into the role of platelets in health and disease as well as some of the more current work. Overall, the authors aim for the readers to gain an appreciation for the complexity of platelet functions and the multifaceted role of platelets in the vascular system. © 2017 American Physiological Society. Compr Physiol 8:1117-1156, 2018.
Collapse
Affiliation(s)
- David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
24
|
Molica F, Figueroa XF, Kwak BR, Isakson BE, Gibbins JM. Connexins and Pannexins in Vascular Function and Disease. Int J Mol Sci 2018; 19:ijms19061663. [PMID: 29874791 PMCID: PMC6032213 DOI: 10.3390/ijms19061663] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022] Open
Abstract
Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins that are critically involved in many aspects of vascular physiology and pathology. The permeation of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. This review provides an overview of current knowledge with respect to the pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic system and platelet function. The essential nature of these membrane proteins in vascular homeostasis is further emphasized by the pathologies that are linked to mutations and polymorphisms in Cx and Panx genes.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Xavier F Figueroa
- Departamento de Fisiología, Faculdad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8330025, Chile.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Jonathan M Gibbins
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Reading RG6 6AS, UK.
| |
Collapse
|
25
|
Mangin PH, Onselaer MB, Receveur N, Le Lay N, Hardy AT, Wilson C, Sanchez X, Loyau S, Dupuis A, Babar AK, Miller JL, Philippou H, Hughes CE, Herr AB, Ariëns RA, Mezzano D, Jandrot-Perrus M, Gachet C, Watson SP. Immobilized fibrinogen activates human platelets through glycoprotein VI. Haematologica 2018; 103:898-907. [PMID: 29472360 PMCID: PMC5927996 DOI: 10.3324/haematol.2017.182972] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/13/2018] [Indexed: 12/27/2022] Open
Abstract
Glycoprotein VI, a major platelet activation receptor for collagen and fibrin, is considered a particularly promising, safe antithrombotic target. In this study, we show that human glycoprotein VI signals upon platelet adhesion to fibrinogen. Full spreading of human platelets on fibrinogen was abolished in platelets from glycoprotein VI- deficient patients suggesting that fibrinogen activates platelets through glycoprotein VI. While mouse platelets failed to spread on fibrinogen, human-glycoprotein VI-transgenic mouse platelets showed full spreading and increased Ca2+ signaling through the tyrosine kinase Syk. Direct binding of fibrinogen to human glycoprotein VI was shown by surface plasmon resonance and by increased adhesion to fibrinogen of human glycoprotein VI-transfected RBL-2H3 cells relative to mock-transfected cells. Blockade of human glycoprotein VI with the Fab of the monoclonal antibody 9O12 impaired platelet aggregation on preformed platelet aggregates in flowing blood independent of collagen and fibrin exposure. These results demonstrate that human glycoprotein VI binds to immobilized fibrinogen and show that this contributes to platelet spreading and platelet aggregation under flow.
Collapse
Affiliation(s)
- Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Marie-Blanche Onselaer
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Nicolas Receveur
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Nicolas Le Lay
- Université de Paris Diderot, INSERM UMR_S1148, Hôpital Bichat, Paris, France
| | - Alexander T Hardy
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Clare Wilson
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Ximena Sanchez
- Laboratorio de Hemostasia, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Stéphane Loyau
- Université de Paris Diderot, INSERM UMR_S1148, Hôpital Bichat, Paris, France
| | - Arnaud Dupuis
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Amir K Babar
- Division of Immunobiology, Center for Systems Immunology & Division of Infectious Diseases, Cincinnati, OH, USA
| | - Jeanette Lc Miller
- Division of Immunobiology, Center for Systems Immunology & Division of Infectious Diseases, Cincinnati, OH, USA
| | - Helen Philippou
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Craig E Hughes
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK.,Institute for Cardiovascular and Metabolic Research, Harborne Building, University of Reading, UK
| | - Andrew B Herr
- Division of Immunobiology, Center for Systems Immunology & Division of Infectious Diseases, Cincinnati, OH, USA
| | - Robert As Ariëns
- Thrombosis and Tissue Repair Group, Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Diego Mezzano
- Laboratorio de Hemostasia, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Martine Jandrot-Perrus
- Université de Paris Diderot, INSERM UMR_S1148, Hôpital Bichat, Paris, France.,Acticor Biotech, Hôpital Bichat, INSERM, UMR-S 1148, Paris, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S 1255, FMTS, France
| | - Steve P Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, UK .,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| |
Collapse
|
26
|
Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148. Blood 2018; 131:1122-1144. [PMID: 29301754 DOI: 10.1182/blood-2017-02-768077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemi-ITAM-containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring.
Collapse
|
27
|
Waters L, Padula MP, Marks DC, Johnson L. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion 2017; 57:2845-2857. [PMID: 28905392 DOI: 10.1111/trf.14310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Room temperature-stored (20-24°C) platelets (PLTs) have a shelf life of 5 days, making it logistically challenging to supply remote medical centers with PLT products. Cryopreservation of PLTs in dimethyl sulfoxide (DMSO) and storage at -80°C enables an extended shelf life up to 2 years. Although cryopreserved PLTs have been widely characterized under resting conditions, their ability to undergo agonist-induced activation is yet to be fully explored. STUDY DESIGN AND METHODS Buffy coat PLTs were cryopreserved at -80°C with 5% to 6% DMSO and sampled before freezing and after thawing. PLTs were analyzed under resting conditions and after agonist stimulation with adenosine diphosphate, collagen, or thrombin receptor-activating peptide-6. The expression of activation markers, microparticle formation, and calcium mobilization were analyzed by flow cytometry. Soluble PLT proteins present in the PLT supernatant were examined by enzyme-linked immunosorbent assay. Protein phosphorylation was investigated with Western blotting. RESULTS After cryopreservation, PLTs displayed increased surface activation markers and higher basal calcium levels. Cryopreserved PLTs demonstrated diminished aggregation responses. Additionally, cryopreserved PLTs showed a limited ability to become activated (as measured by CD62P and phosphatidylserine exposure and cytokine release) after agonist stimulation. A reduction in the abundance and phosphorylation of key signaling proteins (Akt, Src, Lyn, ERK, and p38) was seen in cryopreserved PLTs. CONCLUSIONS Cryopreservation of PLTs induces dramatic changes to the basal PLT phenotype and renders them largely nonresponsive to agonist stimulation, likely due to the alterations in signal transduction. Therefore, further efforts are required to understand how cryopreserved PLTs achieve their hemostatic effect once transfused.
Collapse
Affiliation(s)
- Lauren Waters
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| |
Collapse
|
28
|
Poulter NS, Pollitt AY, Owen DM, Gardiner EE, Andrews RK, Shimizu H, Ishikawa D, Bihan D, Farndale RW, Moroi M, Watson SP, Jung SM. Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. J Thromb Haemost 2017; 15:549-564. [PMID: 28058806 PMCID: PMC5347898 DOI: 10.1111/jth.13613] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Essentials Dimeric high-affinity collagen receptor glycoprotein VI (GPVI) is present on resting platelets. Spatio-temporal organization of platelet GPVI-dimers was evaluated using advanced microscopy. Upon platelet adhesion to collagenous substrates, GPVI-dimers coalesce to form clusters. Clustering of GPVI-dimers may increase avidity and facilitate platelet activation SUMMARY: Background Platelet glycoprotein VI (GPVI) binding to subendothelial collagen exposed upon blood vessel injury initiates thrombus formation. Dimeric GPVI has high affinity for collagen, and occurs constitutively on resting platelets. Objective To identify higher-order oligomerization (clustering) of pre-existing GPVI dimers upon interaction with collagen as a mechanism to initiate GPVI-mediated signaling. Methods GPVI was located by use of fluorophore-conjugated GPVI dimer-specific Fab (antigen-binding fragment). The tested substrates include Horm collagen I fibers, soluble collagen III, GPVI-specific collagen peptides, and fibrinogen. GPVI dimer clusters on the platelet surface interacting with these substrates were visualized with complementary imaging techniques: total internal reflection fluorescence microscopy to monitor real-time interactions, and direct stochastic optical reconstruction microscopy (dSTORM), providing relative quantification of GPVI cluster size and density. Confocal microscopy was used to locate GPVI dimer clusters, glycoprotein Ib, integrin α2 β1 , and phosphotyrosine. Results Upon platelet adhesion to all collagenous substrates, GPVI dimers coalesced to form clusters; notably clusters formed along the fibers of Horm collagen. dSTORM revealed that GPVI density within clusters depended on the substrate, collagen III being the most effective. Clusters on fibrinogen-adhered platelets were much smaller and more numerous; whether these are pre-existing oligomers of GPVI dimers or fibrinogen-induced is not clear. Some GPVI dimer clusters colocalized with areas of phosphotyrosine, indicative of signaling activity. Integrin α2 β1 was localized to collagen fibers close to GPVI dimer clusters. GPVI clustering depends on a dynamic actin cytoskeleton. Conclusions Platelet adhesion to collagen induces GPVI dimer clustering. GPVI clustering increases both avidity for collagen and the proximity of GPVI-associated signaling molecules, which may be crucial for the initiation and persistence of signaling.
Collapse
Affiliation(s)
- N. S. Poulter
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre for Membrane Proteins and Receptors (COMPARE)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - A. Y. Pollitt
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Present address: Institute for Cardiovascular and Metabolic ResearchSchool of Biological SciencesUniversity of ReadingReadingRG6 6ASUK
| | - D. M. Owen
- Department of Physics and Randall Division of Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - E. E. Gardiner
- Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - R. K. Andrews
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| | - H. Shimizu
- Research DepartmentChemo‐Sero‐Therapeutic Research InstituteKaketsukenKumamotoJapan
| | - D. Ishikawa
- Research DepartmentChemo‐Sero‐Therapeutic Research InstituteKaketsukenKumamotoJapan
| | - D. Bihan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - R. W. Farndale
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - M. Moroi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - S. P. Watson
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre for Membrane Proteins and Receptors (COMPARE)College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - S. M. Jung
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
29
|
Škereňová M, Sokol J, Biringer K, Ivanková J, Staško J, Kubisz P, Lasabová Z. GP6 Haplotype of Missense Variants is Associated with Sticky Platelet Syndrome Manifested by Fetal Loss. Clin Appl Thromb Hemost 2017; 24:63-69. [PMID: 28041267 DOI: 10.1177/1076029616685428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Disequilibrium of hemostasis is central to the pathogenesis of all thromboses, and platelets are essential for primary hemostasis. The platelet membrane glycoprotein receptor is involved in the clot formation in blood; therefore, the changes in related genes could impair platelet aggregation in patients with sticky platelet syndrome (SPS). Patients with SPS who experienced fetal loss were shown to harbor a risk haplotype at GP6 locus. The aim of the study was to examine the genetic linkage of this selected risk haplotype with single nucleotide variations (SNVs) in the coding sequence of the GP6 gene in order to identify possible functional SNVs in association with SPS and fetal loss. A total of 37 patients with SPS manifested fetal loss, and 42 healthy controls were enrolled in the study. The SPS was diagnosed with platelet aggregometry. The SNVs were determined by dideoxy sequencing and high-resolution melting analysis. The missense variations were detected in patients with risk haplotype only. The association analysis showed association of the minor alleles with the SPS manifested by fetal loss as follows-rs1671152 (odds ratio [OR]: 4.667, 95% confidence interval [CI]: 1.462-14.89, P = .006), rs2304167 (OR: 5.085, 95% CI: 1.605-16.10, P = .003), and rs1654416 (OR: 5.085, 95% CI: 1.605-16.10, P = .003). Using the Expectation-Maximization (EM) algorithm, the estimated minor haplotype with predicted protein residue PEAN was significantly associated with the given phenotype (OR: 4.746, 95% CI: 1.486-15.15, P = .005). We have shown that haplotype PEAN associated with SPS and manifested by fetal loss and suggest that the mechanism involved in the action of GPVI has significant effect on GPVI-mediated signal transduction through Syk-phosphorylation.
Collapse
Affiliation(s)
- Mária Škereňová
- 1 Department of Clinical Biochemistry, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Sokol
- 2 Department of Hematology and Blood Transfusion, National Center of Hemostasis and Thrombosis, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia
| | - Kamil Biringer
- 3 Department of Gynecology and Obstetrics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia
| | - Jela Ivanková
- 2 Department of Hematology and Blood Transfusion, National Center of Hemostasis and Thrombosis, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia
| | - Ján Staško
- 2 Department of Hematology and Blood Transfusion, National Center of Hemostasis and Thrombosis, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia.,4 Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Division Molecular Medicine, Martin, Slovakia
| | - Peter Kubisz
- 2 Department of Hematology and Blood Transfusion, National Center of Hemostasis and Thrombosis, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia.,4 Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Division Molecular Medicine, Martin, Slovakia
| | - Zora Lasabová
- 5 Department of Molecular Biology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia.,6 Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Division Oncology, Martin, Slovakia
| |
Collapse
|
30
|
Liu G, Xie W, He AD, Da XW, Liang ML, Yao GQ, Xiang JZ, Gao CJ, Ming ZY. Antiplatelet activity of chrysin via inhibiting platelet αIIbβ3-mediated signaling pathway. Mol Nutr Food Res 2016; 60:1984-93. [PMID: 27006308 DOI: 10.1002/mnfr.201500801] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 01/06/2023]
Abstract
SCOPE Propolis is thought to help prevent thrombotic and related cardiovascular diseases in humans. Chrysin, a bioflavonoids compound found in high levels in propolis and in honey, has been reported to possess antiplatelet activity. However, the mechanism by which it inhibits platelet function is unclear. METHODS AND RESULTS The effects of chrysin on agonist-activated platelet-aggregation, granule-secretion, and integrin αIIbβ3 activation were examined. Its effects on the phosphorylation of Akt, GSK3β, MAPKs, and several proteins of the glycoprotein VI (GPVI) signaling pathway were also studied on collaged-activated platelets. In addition, human platelet spreading on immobilized fibrinogen was also tested. We found that chrysin dose dependently inhibited platelet aggregation and granule secretion induced by collagen, as well as platelet aggregation induced by ADP, thrombin, and U46619. Chrysin also markedly reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen. Biochemical analysis revealed that chrysin inhibited collagen-induced activation of Syk, PLCγ2, PKC, as well as the phosphorylation of Akt and ERK1/2. Additionally, chrysin attenuated phosphorylation of molecules such as FcγRIIa, FAK, Akt, and GSK3β in platelet spreading on immobilized fibrinogen. CONCLUSIONS Our findings indicate that chrysin suppresses not only integrin αIIbβ3-mediated "inside-out" signaling, but also the "outside-in" signal transmission. This implies that chrysin may represent a potential candidate for an antiplatelet agent.
Collapse
Affiliation(s)
- Gang Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Department of Nutrition and Food Hygiene, Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Wen Xie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ao-Di He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xing-Wen Da
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ming-Lu Liang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Guang-Qiang Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ji-Zhou Xiang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Cun-Ji Gao
- Department of Nutrition and Food Hygiene, Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
31
|
The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochem J 2015; 469:199-210. [DOI: 10.1042/bj20150048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Abstract
We address the mechanism for Src family kinases activation downstream of G-protein-coupled receptors (GPCRs) in thrombin-stimulated blood platelets and we describe a novel interplay between Pyk2 and the Src kinases Fyn and Lyn in the regulation of Ca2+-dependent protein-tyrosine phosphorylation.
Collapse
|
32
|
Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function. Sci Rep 2015; 5:11142. [PMID: 26059557 PMCID: PMC4461919 DOI: 10.1038/srep11142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
Flavonoids exert both anti-oxidant and anti-platelet activities in vitro and in vivo. Pentamethylquercetin (PMQ), a polymethoxylated flavone derivative, has been screened for anti-carcinogenic and cardioprotective effects. However, it is unclear whether PMQ has anti-thrombotic effects. In the present study, PMQ (20 mg/kg) significantly inhibited thrombus formation in the collagen- epinephrine- induced acute pulmonary thrombosis mouse model and the ferric chloride-induced carotid injury model. To explore the mechanism, we evaluated the effects of PMQ on platelet function. We found that PMQ inhibited platelet aggregation and granule secretion induced by low dose agonists, including ADP, collagen, thrombin and U46619. Biochemical analysis revealed that PMQ inhibited collagen-, thrombin- and U46619-induced activation of Syk, PLCγ2, Akt, GSK3β and Erk1/2. Therefore, we provide the first report to show that PMQ possesses anti-thrombotic activity in vivo and inhibited platelet function in vitro, suggesting that PMQ may represent a potential therapeutic candidate for the prevention or treatment of thrombotic disorders.
Collapse
|
33
|
Jiang P, Loyau S, Tchitchinadze M, Ropers J, Jondeau G, Jandrot-Perrus M. Inhibition of Glycoprotein VI Clustering by Collagen as a Mechanism of Inhibiting Collagen-Induced Platelet Responses: The Example of Losartan. PLoS One 2015; 10:e0128744. [PMID: 26052700 PMCID: PMC4460036 DOI: 10.1371/journal.pone.0128744] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/30/2015] [Indexed: 11/30/2022] Open
Abstract
Exposure of platelets to collagen triggers the formation of a platelet clot. Pharmacological agents capable of inhibiting platelet activation by collagen are thus of potential therapeutic interest. Thrombus formation is initiated by the interaction of the GPIb-V-IX complex with collagen-bound vWF, while GPVI interaction with collagen triggers platelet activation that is reinforced by ADP and thromboxane A2. Losartan is an angiotensin II (Ang II) type I receptor (AT1R) antagonist proposed to have an antiplatelet activity via the inhibition of both the thromboxane A2 (TXA2) receptor (TP) and the glycoprotein VI (GPVI). Here, we characterized in vitro the effects of losartan at different doses on platelet responses: losartan inhibited platelet aggregation and secretion induced by 1 μg.mL-1 and 10 μg.mL-1 of collagen with an IC50 of ~ 6 μM. Losartan inhibited platelet responses induced by the GPVI specific collagen related peptide but not by the α2β1 specific peptide. However, losartan did not inhibit the binding of recombinant GPVI to collagen, which is not in favor of a simple competition. Indeed, the clustering of GPVI observed in flow cytometry and using the Duolink methodology, was inhibited by losartan. The impact of a therapeutic dose of losartan (100 mg/day) on platelet responses was analyzed ex vivo in a double blind study. No statistically significant differences were observed between losartan-treated (n=25) and non-treated (n=30) patients in terms of collagen and U46619-induced platelet activation. These data indicate that in treated patients, losartan does not achieve a measurable antiplatelet effect but provide the proof of concept that inhibiting collagen-induced GPVI clustering is of pharmacological interest to obtain an antithrombotic efficacy.
Collapse
Affiliation(s)
- Peng Jiang
- Inserm, UMR_S1148, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR_S1148, Paris, France
| | | | - Maria Tchitchinadze
- APHP- CNMR Syndrome de Marfan et apparentés, Service de Cardiologie, Hôpital Bichat, Paris, France
| | - Jacques Ropers
- Unité de Recherche Clinique, Hôpital Ambroise Paré—UFR Médecine Paris-Ile-de-France-Ouest, Université Versailles St-Quentin, Boulogne, France
| | - Guillaume Jondeau
- Inserm, UMR_S1148, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR_S1148, Paris, France
- APHP- CNMR Syndrome de Marfan et apparentés, Service de Cardiologie, Hôpital Bichat, Paris, France
| | - Martine Jandrot-Perrus
- Inserm, UMR_S1148, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR_S1148, Paris, France
- * E-mail:
| |
Collapse
|
34
|
Carrim N, Walsh TG, Consonni A, Torti M, Berndt MC, Metharom P. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation. PLoS One 2014; 9:e113679. [PMID: 25415317 PMCID: PMC4240642 DOI: 10.1371/journal.pone.0113679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
Background We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI. Aims To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway. Methods and Results Human and mouse washed platelets (from WT or Pyk2 KO mice) were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively) and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P) surface expression) and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk), PI3-K and Bruton's tyrosine kinase (Btk) and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation. Conclusion Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.
Collapse
Affiliation(s)
- Naadiya Carrim
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony G. Walsh
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alessandra Consonni
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michael C. Berndt
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Pat Metharom
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
- * E-mail:
| |
Collapse
|
35
|
Manne BK, Badolia R, Dangelmaier CA, Kunapuli SP. C-type lectin like receptor 2 (CLEC-2) signals independently of lipid raft microdomains in platelets. Biochem Pharmacol 2014; 93:163-70. [PMID: 25462818 DOI: 10.1016/j.bcp.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
C-type lectin like receptor 2 (CLEC-2) has been reported to activate platelets through a lipid raft-dependent manner. Secreted ADP potentiates CLEC-2-mediated platelet aggregation. We have investigated whether the decrease in CLEC-2-mediated platelet aggregation, previously reported in platelets with disrupted rafts, is a result of the loss of agonist potentiation by ADP. We disrupted platelet lipid rafts with methyl-β-cyclodextrin (MβCD) and measured signaling events downstream of CLEC-2 activation. Lipid raft disruption decreases platelet aggregation induced by CLEC-2 agonists. The inhibition of platelet aggregation by the disruption of lipid rafts was rescued by the exogenous addition of epinephrine but not 2-methylthioadenosine diphosphate (2MeSADP), which suggests that lipid raft disruption effects P2Y12-mediated Gi activation but not Gz. Phosphorylation of Syk (Y525/526) and PLCγ2 (Y759), were not affected by raft disruption in CLEC-2 agonist-stimulated platelets. Furthermore, tyrosine phosphorylation of the CLEC-2 hemi-ITAM was not effected when MβCD disrupts lipid rafts. Lipid rafts do not directly contribute to CLEC-2 receptor activation in platelets. The effects of disruption of lipid rafts in in vitro assays can be attributed to inhibition of ADP feedback that potentiates CLEC-2 signaling.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Rachit Badolia
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Carol A Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA; Sol Sherry Thrombosis Research Center and Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
36
|
SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice. Blood 2014; 125:185-94. [PMID: 25301707 DOI: 10.1182/blood-2014-06-580597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke.
Collapse
|
37
|
Li W, Gigante A, Perez-Perez MJ, Yue H, Hirano M, McIntyre TM, Silverstein RL. Thymidine phosphorylase participates in platelet signaling and promotes thrombosis. Circ Res 2014; 115:997-1006. [PMID: 25287063 DOI: 10.1161/circresaha.115.304591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes mellitus. OBJECTIVE To test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. METHODS AND RESULTS By using a ferric chloride (FeCl3)-induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp(-/-) and Tymp(+/-) mice compared with wild-type mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP-deficient mice. Collagen-, collagen-related peptide-, adenosine diphosphate-, or thrombin-induced platelet aggregation were significantly attenuated in Tymp(+/-) and Tymp(-/-) platelets, and in wild type or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain-binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn, and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp(+/-) mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased platelet-endothelial cell adhesion molecule 1 tyrosine phosphorylation and diminished collagen-related peptide- or collagen-induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl3-induced carotid artery thrombosis without affecting hemostasis. CONCLUSIONS TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel antiplatelet and antithrombosis therapy.
Collapse
Affiliation(s)
- Wei Li
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Alba Gigante
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Maria-Jesus Perez-Perez
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Hong Yue
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Michio Hirano
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Thomas M McIntyre
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| | - Roy L Silverstein
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, The Cleveland Clinic, OH (W.L., T.M.M.); Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (W.L., T.M.M.); Instituto de Quimica Medica, Consejo Superior De Investigaciones Cientificas (IQM-CSIC), Madrid, Spain (A.G.,M.-J.P.-P.); Department of Biological Sciences, Case Western Reserve University, Cleveland, OH (H.Y.); Department of Neurology, Columbia University Medical Center, New York, NY (M.H.); and Department of Medicine, Medical College of Wisconsin and Blood Research Institute, Blood Center of Wisconsin, Milwaukee (R.L.S.)
| |
Collapse
|
38
|
Janse van Rensburg WJ, Badenhorst PN, Roodt JP. The Cape Chacma baboon is not suitable for evaluating human targeted anti-GPVI agents. Platelets 2014; 26:552-7. [DOI: 10.3109/09537104.2014.952224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
40
|
Fälker K, Klarström-Engström K, Bengtsson T, Lindahl TL, Grenegård M. The Toll-like receptor 2/1 (TLR2/1) complex initiates human platelet activation via the src/Syk/LAT/PLCγ2 signalling cascade. Cell Signal 2014; 26:279-86. [DOI: 10.1016/j.cellsig.2013.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022]
|
41
|
Lu WJ, Wu MP, Lin KH, Lin YC, Chou HC, Sheu JR. Hinokitiol is a novel glycoprotein VI antagonist on human platelets. Platelets 2014; 25:595-602. [PMID: 24433214 DOI: 10.3109/09537104.2013.863856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hinokitiol (4-isopropyl-tropolone) is a bioactive compound with various pharmacological activities that is found in the wood of cupressaceous plants. Platelet activation plays an important role in thrombogenesis. In our previous study, hinokitiol specifically inhibited collagen-induced platelet aggregation ex vivo and prolonged thrombogenesis in vivo. The glycoprotein (GP) VI and integrin α2β1 are major collagen receptors that mediate platelet adhesion and aggregation. In our current study, we investigated which of these collagen receptors is involved in the hinokitiol-mediated inhibition of platelet activation. Treatment with 2-100 µM hinokitiol caused a dose-dependent right, parallel shift in the collagen concentration-response curve (0.5-10 µg/ml), with no change in the maximal responses. Furthermore, hinokitiol inhibited platelet aggregation and relative [Ca(2+)]i mobilization stimulated by convulxin, an agonist of GP VI, but not by aggretin, an agonist of integrin α2β1, indicating that hinokitiol mediates the inhibition of platelet activation through GP VI, rather than through integrin α2β1. Hinokitiol also specifically inhibited the convulxin-mediated activation of protein kinase C, phospholipase Cγ2, Akt, mitogen-activated protein kinases, and Lyn. Hinokitiol markedly diminished the co-immunoprecipitation of GP VI-bound Lyn after convulxin stimulation. In conclusion, hinokitiol, an antagonist of collagen GP VI may represent a novel antiplatelet drug for the prevention of thrombi associated with coronary and cerebral artery diseases.
Collapse
Affiliation(s)
- Wan-Jung Lu
- Department of Pharmacology and Graduate Institute of Medical Sciences, Taipei Medical University , Taipei , Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Gardiner EE, Andrews RK. Structure and function of platelet receptors initiating blood clotting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:263-75. [PMID: 25480646 DOI: 10.1007/978-1-4939-2095-2_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
At the clinical level, recent studies reveal the link between coagulation and other pathophysiological processes, including platelet activation, inflammation, cancer, the immune response, and/or infectious diseases. These links are likely to underpin the coagulopathy associated with risk factors for venous thromboembolic (VTE) and deep vein thrombosis (DVT). At the molecular level, the interactions between platelet-specific receptors and coagulation factors could help explain coagulopathy associated with aberrant platelet function, as well as revealing new approaches targeting platelet receptors in diagnosis or treatment of VTE or DVT. Glycoprotein (GP)Ibα, the major ligand-binding subunit of the platelet GPIb-IX-V complex, that binds the adhesive ligand, von Willebrand factor (VWF), is co-associated with the platelet-specific collagen receptor, GPVI. The GPIb-IX-V/GPVI adheso-signaling complex not only initiates platelet activation and aggregation (thrombus formation) in response to vascular injury or disease but GPIbα also regulates coagulation through a specific interaction with thrombin and other coagulation factors. Here, we discuss the structure and function of key platelet receptors involved in thrombus formation and coagulation in health and disease, with a particular focus on platelet GPIbα.
Collapse
Affiliation(s)
- Elizabeth E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
43
|
Buitrago L, Bhavanasi D, Dangelmaier C, Manne BK, Badolia R, Borgognone A, Tsygankov AY, McKenzie SE, Kunapuli SP. Tyrosine phosphorylation on spleen tyrosine kinase (Syk) is differentially regulated in human and murine platelets by protein kinase C isoforms. J Biol Chem 2013; 288:29160-9. [PMID: 23960082 DOI: 10.1074/jbc.m113.464107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets.
Collapse
|
44
|
Ozaki Y, Suzuki-Inoue K, Inoue O. Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. J Thromb Haemost 2013; 11 Suppl 1:330-9. [PMID: 23809136 DOI: 10.1111/jth.12235] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While very different in structure, GPVI - the major collagen receptor on platelet membranes, the GPIb-IX-V complex - the receptor for von Willebrand factor, and CLEC-2, a novel platelet activation receptor for podoplanin, share several common features in terms of function and platelet activation signal transduction pathways. All employ Src family kinases (SFK), Syk, and other signaling molecules involving tyrosine phosphorylation, similar to those of immunoreceptors for T and B cells. There appear to be overlapping functional roles for these glycoproteins, and in some cases, they can compensate for each other, suggesting a degree of redundancy. New ligands for these receptors are being identified, which broadens their functional relevancy. This is particularly true for CLEC-2, whose functions beyond hemostasis are being explored. The common mode of signaling, clustering, and localization to glycosphingolipid-enriched microdomains (GEMs) suggest that GEMs are central to signaling function by ligand-dependent association of these receptors, SFK, Syk, phosphotyrosine phosphatases, and other signaling molecules.
Collapse
Affiliation(s)
- Y Ozaki
- Department of Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | |
Collapse
|
45
|
Jin JW, Inoue O, Suzuki-Inoue K, Nishikawa G, Kawakami Y, Hisamoto M, Okuda T, Ozaki Y. Grape Seed Extracts Inhibit Platelet Aggregation by Inhibiting Protein Tyrosine Phosphatase. Clin Appl Thromb Hemost 2013; 20:278-84. [DOI: 10.1177/1076029613481103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Platelets play an important role in various thrombotic diseases, including myocardial infarction. Because red wine consumption is inversely associated with death due to ischemic heart diseases, the effects of grape components on platelet function have been extensively investigated. Grape seed extracts (GSEs) reportedly inhibit platelet aggregation; however, the underlying mechanism has not been elucidated. We discovered that GSEs inhibit platelet aggregation induced by collagen and thrombin-receptor agonist peptide and increase basal levels of tyrosine phosphorylation, which was also observed in the presence of a protein tyrosine phosphatase (PTP) inhibitor. An in vitro phosphatase assay indicated that GSE dose dependently inhibited PTP-1B and Src homology 2 domain-containing phosphatase-1 activity, which positively regulates platelet aggregation. We propose that GSEs inhibit platelet aggregation by inhibiting tyrosine phosphatase activity. Moreover, we showed that GSE ingestion inhibited platelet aggregation in mice without enhancing tail bleeding, implying that GSE supplementation might be beneficial to prevention of thrombotic diseases.
Collapse
Affiliation(s)
- Joseph Wuxun Jin
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- St. Michael's Hospital, Toronto, Ontario, Canada
| | - Osamu Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Go Nishikawa
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Unites States Naval Hospital Okinawa, Okinawa, Japan
| | - Yoshinori Kawakami
- The First Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Susono City Hall, Shizuoka, Japan
| | - Masashi Hisamoto
- The First Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tohru Okuda
- Laboratory of Biofunctional Science, The Institute of Enology and Viticulture, University of Yamanashi, Yamanashi, Japan
| | - Yukio Ozaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
46
|
Chang Y, Huang SKH, Lu WJ, Chung CL, Chen WL, Lu SH, Lin KH, Sheu JR. Brazilin isolated from Caesalpinia sappan L. acts as a novel collagen receptor agonist in human platelets. J Biomed Sci 2013; 20:4. [PMID: 23350663 PMCID: PMC3564834 DOI: 10.1186/1423-0127-20-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/22/2013] [Indexed: 02/07/2023] Open
Abstract
Background Brazilin, isolated from the heartwood of Caesalpinia sappan L., has been shown to possess multiple pharmacological properties. Methods In this study, platelet aggregation, flow cytometry, immunoblotting analysis, and electron spin resonance (ESR) spectrometry were used to investigate the effects of brazilin on platelet activation ex vivo. Moreover, fluorescein sodium-induced platelet thrombi of mesenteric microvessels was also used in in vivo study. Results We demonstrated that relatively low concentrations of brazilin (1 to 10 μM) potentiated platelet aggregation induced by collagen (0.1 μg/ml) in washed human platelets. Higher concentrations of brazilin (20 to 50 μM) directly triggered platelet aggregation. Brazilin-mediated platelet aggregation was slightly inhibited by ATP (an antagonist of ADP). It was not inhibited by yohimbine (an antagonist of epinephrine), by SCH79797 (an antagonist of thrombin protease-activated receptor [PAR] 1), or by tcY-NH2 (an antagonist of PAR 4). Brazilin did not significantly affect FITC-triflavin binding to the integrin αIIbβ3 in platelet suspensions. Pretreatment of the platelets with caffeic acid phenethyl ester (an antagonist of collagen receptors) or JAQ1 and Sam.G4 monoclonal antibodies raised against collagen receptor glycoprotein VI and integrin α2β1, respectively, abolished platelet aggregation stimulated by collagen or brazilin. The immunoblotting analysis showed that brazilin stimulated the phosphorylation of phospholipase C (PLC)γ2 and Lyn, which were significantly attenuated in the presence of JAQ1 and Sam.G4. In addition, brazilin did not significantly trigger hydroxyl radical formation in ESR analysis. An in vivo mouse study showed that brazilin treatment (2 and 4 mg/kg) significantly shortened the occlusion time for platelet plug formation in mesenteric venules. Conclusion To the best of our knowledge, this study provides the first evidence that brazilin acts a novel collagen receptor agonist. Brazilin is a plant-based natural product, may offer therapeutic potential as intended anti-thrombotic agents for targeting of collagen receptors or to be used a useful tool for the study of detailed mechanisms in collagen receptors-mediated platelet activation.
Collapse
Affiliation(s)
- Yi Chang
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, 95 Wen-Chang Rd, Taipei 11101, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zahid M, Mangin P, Loyau S, Hechler B, Billiald P, Gachet C, Jandrot-Perrus M. The future of glycoprotein VI as an antithrombotic target. J Thromb Haemost 2012; 10:2418-27. [PMID: 23020554 DOI: 10.1111/jth.12009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The treatment of acute coronary syndromes has been considerably improved in recent years with the introduction of highly efficient antiplatelet drugs. However, there are still significant limitations: the recurrence of adverse vascular events remains a problem, and the improvement in efficacy is counterbalanced by an increased risk of bleeding, which is of particular importance in patients at risk of stroke. One of the most attractive targets for the development of new molecules with potential antithrombotic activity is platelet glycoprotein (GP)VI, because its blockade appears to ideally combine efficacy and safety. This review summarizes current knowledge on GPVI regarding its structure, its function, and its role in physiologic hemostasis and thrombosis. Strategies for inhibiting GPVI are presented, and evidence of the antithrombotic efficacy and safety of GPVI antagonists is provided.
Collapse
Affiliation(s)
- M Zahid
- Inserm, UMRS_698, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Xiang B, Zhang G, Stefanini L, Bergmeier W, Gartner TK, Whiteheart SW, Li Z. The Src family kinases and protein kinase C synergize to mediate Gq-dependent platelet activation. J Biol Chem 2012; 287:41277-87. [PMID: 23066026 DOI: 10.1074/jbc.m112.393124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Src family kinases (SFKs) play essential roles in collagen- and von Willebrand factor (VWF)-mediated platelet activation. However, the roles of SFKs in G protein-coupled receptor-mediated platelet activation and the molecular mechanisms whereby SFKs are activated by G protein-coupled receptor stimulation are not fully understood. Here we show that the thrombin receptor protease-activated receptor 4 agonist peptide AYPGKF elicited SFK phosphorylation in P2Y(12) deficient platelets but stimulated minimal SFK phosphorylation in platelets lacking G(q). We have previously shown that thrombin-induced SFK phosphorylation was inhibited by the calcium chelator 5,5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (dimethyl-BAPTA). The calcium ionophore A23187 induced SFK phosphorylation in both wild-type and G(q) deficient platelets. Together, these results indicate that SFK phosphorylation in response to thrombin receptor stimulation is downstream from G(q)/Ca(2+) signaling. Moreover, A23187-induced thromboxane A(2) synthesis, platelet aggregation, and secretion were inhibited by preincubation of platelets with a selective SFK inhibitor, PP2. AYPGKF-induced thromboxane A(2) production in wild-type and P2Y(12) deficient platelets was abolished by PP2, and AYPGKF-mediated P-selectin expression, integrin α(IIb)β(3) activation, and aggregation of P2Y(12) deficient platelets were partially inhibited by the PKC inhibitor Ro-31-8220, PP2, dimethyl-BAPTA, or LY294002, but were abolished by Ro-31-8220 plus PP2, dimethyl-BAPTA, or LY294002. These data indicate that Ca(2+)/SFKs/PI3K and PKC represent two alternative signaling pathways mediating G(q)-dependent platelet activation.
Collapse
Affiliation(s)
- Binggang Xiang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gupta S, Braun A, Morowski M, Premsler T, Bender M, Nagy Z, Sickmann A, Hermanns HM, Bösl M, Nieswandt B. CLP36 is a negative regulator of glycoprotein VI signaling in platelets. Circ Res 2012; 111:1410-20. [PMID: 22955732 DOI: 10.1161/circresaha.112.264754] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE At sites of vascular injury, exposed subendothelial collagens not only trigger sudden platelet adhesion and aggregation, thereby initiating normal hemostasis, but also can lead to acute ischemic diseases, such as myocardial infarction or stroke. The glycoprotein (GP) VI/Fc receptor γ-chain complex is a central regulator of these processes because it mediates platelet activation on collagens through a series of tyrosine phosphorylation events downstream of the Fc receptor γ-chain-associated immunoreceptor tyrosine-based activation motif. GPVI signaling has to be tightly regulated to prevent uncontrolled intravascular platelet activation, but the underlying mechanisms are not fully understood. OBJECTIVE We studied the role of PDZ and LIM domain family member CLP36 in platelet physiology in vitro and in vivo. METHODS AND RESULTS We report that CLP36 acts as a major inhibitor of GPVI immunoreceptor tyrosine-based activation motif signaling in platelets. Platelets from mice either expressing a low amount of a truncated form of CLP36 lacking the LIM domain (Clp36(ΔLIM)) or lacking the whole protein (Clp36(-/-)) displayed profound hyperactivation in response to GPVI agonists, whereas other signaling pathways were unaffected. This was associated with hyperphosphorylation of signaling proteins and enhanced Ca(2+) mobilization, granule secretion, and integrin activation downstream of GPVI. The lack of functional CLP36 translated into accelerated thrombus formation and enhanced procoagulant activity, assembling a prothrombotic phenotype in vivo. CONCLUSIONS These data reveal an inhibitory function of CLP36 in GPVI immunoreceptor tyrosine-based activation motif signaling and establish it as a key regulator of arterial thrombosis.
Collapse
Affiliation(s)
- Shuchi Gupta
- Vascular Medicine, Rudolf Virchow Center, University of Würzburg, Josef-Schneider-St 2, D15, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Séverin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, Senis YA, Watson SP. Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost 2012; 10:1631-45. [PMID: 22694307 PMCID: PMC4280098 DOI: 10.1111/j.1538-7836.2012.04814.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Src family kinases (SFKs) play a critical role in initiating and propagating signals in platelets. The aims of this study were to quantitate SFK members present in platelets and to analyze their contribution to platelet regulation using glycoprotein VI (GPVI) and intregrin αIIbβ3, and in vivo. METHODS AND RESULTS Mouse platelets express four SFKs, Fgr, Fyn, Lyn and Src, with Lyn expressed at a considerably higher level than the others. Using mutant mouse models, we demonstrate that platelet activation by collagen-related peptide (CRP) is delayed and then potentiated in the absence of Lyn, but only marginally reduced in the absence of Fyn or Fgr, and unaltered in the absence of Src. Compound deletions of Lyn/Src or Fyn/Lyn, but not of Fyn/Src or Fgr/Lyn, exhibit a greater delay in activation relative to Lyn-deficient platelets. Fibrinogen-adherent platelets show reduced spreading in the absence of Src, potentiation in the absence of Lyn, but no change in the absence of Fyn or Fgr. In mice double-deficient in Lyn/Src or Fgr/Lyn, the inhibitory role of Lyn on spreading on fibrinogen is lost. Lyn is the major SFK-mediating platelet aggregation on collagen at arterial shear and its absence leads to a reduction in thrombus size in a laser injury model. CONCLUSION These results demonstrate that SFKs share individual and overlapping roles in regulating platelet activation, with Lyn having a dual role in regulating GPVI signaling and an inhibitory role downstream of αIIbβ3, which requires prior signaling through Src.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|