1
|
Risi CM, Belknap B, White HD, Dryden K, Pinto JR, Chase PB, Galkin VE. High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state. PNAS NEXUS 2023; 2:pgac298. [PMID: 36712934 PMCID: PMC9832952 DOI: 10.1093/pnasnexus/pgac298] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Cardiac contraction depends on molecular interactions among sarcomeric proteins coordinated by the rising and falling intracellular Ca2+ levels. Cardiac thin filament (cTF) consists of two strands composed of actin, tropomyosin (Tm), and equally spaced troponin (Tn) complexes forming regulatory units. Tn binds Ca2+ to move Tm strand away from myosin-binding sites on actin to enable actomyosin cross-bridges required for force generation. The Tn complex has three subunits-Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. Tm strand is comprised of adjacent Tm molecules that overlap "head-to-tail" along the actin filament. The N-terminus of TnT (e.g., TnT1) binds to the Tm overlap region to form the cTF junction region-the region that connects adjacent regulatory units and confers to cTF internal cooperativity. Numerous studies have predicted interactions among actin, Tm, and TnT1 within the junction region, although a direct structural description of the cTF junction region awaited completion. Here, we report a 3.8 Å resolution cryo-EM structure of the native cTF junction region at relaxing (pCa 8) Ca2+ conditions. We provide novel insights into the "head-to-tail" interactions between adjacent Tm molecules and interactions between the Tm junction with F-actin. We demonstrate how TnT1 stabilizes the Tm overlap region via its interactions with the Tm C- and N-termini and actin. Our data show that TnT1 works as a joint that anchors the Tm overlap region to actin, which stabilizes the relaxed state of the cTF. Our structure provides insight into the molecular basis of cardiac diseases caused by missense mutations in TnT1.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
2
|
Nefedova VV, Kopylova GV, Shchepkin DV, Kochurova AM, Kechko OI, Borzova VA, Ryabkova NS, Katrukha IA, Mitkevich VA, Bershitsky SY, Levitsky DI, Matyushenko AM. Impact of Troponin in Cardiomyopathy Development Caused by Mutations in Tropomyosin. Int J Mol Sci 2022; 23:ijms232415723. [PMID: 36555368 PMCID: PMC9779223 DOI: 10.3390/ijms232415723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Tropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R. However, isothermal titration calorimetry (ITC) indicated that TnT1 binds Tpm WT and all Tpm mutants similarly. By using ITC, we measured the direct KD of the Tpm overlap region, N-end, and C-end binding to TnT1. The ITC data revealed that the Tpm C-end binds to TnT1 independently from the N-end, while N-end does not bind. Therefore, we suppose that Tpm M8R binds to TnT1 without forming the overlap junction. We also demonstrated the possible role of Tn isoform composition in the cardiomyopathy development caused by M8R mutation. TnT1 dose-dependently reduced the velocity of F-actin-Tpm filaments containing Tpm WT, Tpm A277V, and Tpm M281T mutants in an in vitro motility assay. All mutations impaired the calcium regulation of the actin-myosin interaction. The M281T and I284V mutations increased the calcium sensitivity, while the K15N and A277V mutations reduced it. The Tpm M8R, M281T, and I284V mutations under-inhibited the velocity at low calcium concentrations. Our results demonstrate that Tpm mutations likely implement their pathogenic effects through Tpm interaction with Tn, cardiac myosin, or other protein partners.
Collapse
Affiliation(s)
- Victoria V. Nefedova
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence:
| | - Galina V. Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Olga I. Kechko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Vera A. Borzova
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia
| | - Dmitrii I. Levitsky
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | |
Collapse
|
3
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Sequeira V, Wang L, Wijnker PJ, Kim K, Pinto JR, dos Remedios C, Redwood C, Knollmann BC, van der Velden J. Low expression of the K280N TNNT2 mutation is sufficient to increase basal myofilament activation in human hypertrophy cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100007. [PMID: 37159677 PMCID: PMC10160007 DOI: 10.1016/j.jmccpl.2022.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 05/11/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder with patients typically showing heterozygous inheritance of a pathogenic variant in a gene encoding a contractile protein. Here, we study the contractile effects of a rare homozygous mutation using explanted tissue and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to gain insight into how the balance between mutant and WT protein expression affects cardiomyocyte function. Methods Force measurements were performed in cardiomyocytes isolated from a HCM patient carrying a homozygous troponin T mutation (cTnT-K280N) and healthy donors. To discriminate between mutation-mediated and phosphorylation-related effects on Ca2+-sensitivity, cardiomyocytes were treated with alkaline phosphatase (AP) or protein kinase A (PKA). Troponin exchange experiments characterized the relation between mutant levels and myofilament function. To define mutation-mediated effects on Ca2+-dynamics we used CRISPR/Cas9 to generate hiPSC-CMs harbouring heterozygous and homozygous TnT-K280N mutations. Ca2+-transient and cell shortening experiments compared these lines against isogenic controls. Results Myofilament Ca2+-sensitivity was higher in homozygous cTnT-K280N cardiomyocytes and was not corrected by AP- and PKA-treatment. In cTnT-K280N cells exchanged with cTnT-WT, a low level (14%) of cTnT-K280N mutation elevated Ca2+-sensitivity. Similarly, exchange of donor cells with 45 ± 2% cTnT-K280N increased Ca2+-sensitivity and was not corrected by PKA. cTnT-K280N hiPSC-CMs show elevated diastolic Ca2+ and increases in cell shortening. Impaired cardiomyocyte relaxation was only evident in homozygous cTnT-K280N hiPSC-CMs. Conclusions The cTnT-K280N mutation increases myofilament Ca2+-sensitivity, elevates diastolic Ca2+, enhances contractility and impairs cellular relaxation. A low level (14%) of the cTnT-K280N sensitizes myofilaments to Ca2+, a universal finding of human HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
- Comprehensive Heart Failure Center (CHFC) University Clinic Würzburg, Würzburg, Germany
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Paul J.M. Wijnker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Kyungsoo Kim
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Cris dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, The University of Sydney, Sydney, Australia
| | | | - Bjorn C. Knollmann
- Division of Clinical Pharmacology, Vanderbilt School of Medicine, Nashville, United States
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Rynkiewicz MJ, Pavadai E, Lehman W. Modeling Human Cardiac Thin Filament Structures. Front Physiol 2022; 13:932333. [PMID: 35812320 PMCID: PMC9257132 DOI: 10.3389/fphys.2022.932333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.
Collapse
|
6
|
Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol 2021; 153:211992. [PMID: 33856419 PMCID: PMC8054178 DOI: 10.1085/jgp.202012787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Jeanne M Nerbonne
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Tobacman LS, Cammarato A. Cardiomyopathic troponin mutations predominantly occur at its interface with actin and tropomyosin. J Gen Physiol 2021; 153:e202012815. [PMID: 33492345 PMCID: PMC7836260 DOI: 10.1085/jgp.202012815] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023] Open
Abstract
Reversible Ca2+ binding to troponin is the primary on-off switch of the contractile apparatus of striated muscles, including the heart. Dominant missense mutations in human cardiac troponin genes are among the causes of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy. Structural understanding of troponin action has recently advanced considerably via electron microscopy and molecular dynamics studies of the thin filament. As a result, it is now possible to examine cardiomyopathy-inducing troponin mutations in thin-filament structural context, and from that to seek new insight into pathogenesis and into the troponin regulatory mechanism. We compiled from consortium reports a representative set of troponin mutation sites whose pathogenicity was determined using standardized clinical genetics criteria. Another set of sites, apparently tolerant of amino acid substitutions, was compiled from the gnomAD v2 database. Pathogenic substitutions occurred predominantly in the areas of troponin that contact actin or tropomyosin, including, but not limited to, two regions of newly proposed structure and long-known implication in cardiomyopathy: the C-terminal third of troponin I and a part of the troponin T N terminus. The pathogenic mutations were located in troponin regions that prevent contraction under low Ca2+ concentration conditions. These regions contribute to Ca2+-regulated steric hindrance of myosin by the combined effects of troponin and tropomyosin. Loss-of-function mutations within these parts of troponin result in loss of inhibition, consistent with the hypercontractile phenotype characteristic of HCM. Notably, pathogenic mutations are absent in our dataset from the Ca2+-binding, activation-producing troponin C (TnC) N-lobe, which controls contraction by a multi-faceted mechanism. Apparently benign mutations are also diminished in the TnC N-lobe, suggesting mutations are poorly tolerated in that critical domain.
Collapse
Affiliation(s)
- Larry S. Tobacman
- Departments of Medicine and of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Anthony Cammarato
- Departments of Medicine and of Physiology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
8
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
Tobacman LS. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle. Biophys J 2021; 120:1-9. [PMID: 33221250 PMCID: PMC7820733 DOI: 10.1016/j.bpj.2020.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Recently, our understanding of the structural basis of troponin-tropomyosin's Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin's binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.
Collapse
Affiliation(s)
- Larry S Tobacman
- Departments of Medicine and of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Racca AW, Rynkiewicz MJ, LaFave N, Ghosh A, Lehman W, Moore JR. M8R tropomyosin mutation disrupts actin binding and filament regulation: The beginning affects the middle and end. J Biol Chem 2020; 295:17128-17137. [PMID: 33020181 PMCID: PMC7863880 DOI: 10.1074/jbc.ra120.014713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/28/2020] [Indexed: 11/06/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin-tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin's reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T's N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin-tropomyosin binding and weaker tropomyosin-actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin-thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.
Collapse
Affiliation(s)
- Alice Ward Racca
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas LaFave
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Anita Ghosh
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, USA.
| |
Collapse
|
11
|
Madan A, Viswanathan MC, Woulfe KC, Schmidt W, Sidor A, Liu T, Nguyen TH, Trinh B, Wilson C, Madathil S, Vogler G, O'Rourke B, Biesiadecki BJ, Tobacman LS, Cammarato A. TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction. Proc Natl Acad Sci U S A 2020; 117:18822-18831. [PMID: 32690703 PMCID: PMC7414051 DOI: 10.1073/pnas.2001692117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Muscle contraction is regulated by the movement of end-to-end-linked troponin-tropomyosin complexes over the thin filament surface, which uncovers or blocks myosin binding sites along F-actin. The N-terminal half of troponin T (TnT), TNT1, independently promotes tropomyosin-based, steric inhibition of acto-myosin associations, in vitro. Recent structural models additionally suggest TNT1 may restrain the uniform, regulatory translocation of tropomyosin. Therefore, TnT potentially contributes to striated muscle relaxation; however, the in vivo functional relevance and molecular basis of this noncanonical role remain unclear. Impaired relaxation is a hallmark of hypertrophic and restrictive cardiomyopathies (HCM and RCM). Investigating the effects of cardiomyopathy-causing mutations could help clarify TNT1's enigmatic inhibitory property. We tested the hypothesis that coupling of TNT1 with tropomyosin's end-to-end overlap region helps anchor tropomyosin to an inhibitory position on F-actin, where it deters myosin binding at rest, and that, correspondingly, cross-bridge cycling is defectively suppressed under diastolic/low Ca2+ conditions in the presence of HCM/RCM lesions. The impact of TNT1 mutations on Drosophila cardiac performance, rat myofibrillar and cardiomyocyte properties, and human TNT1's propensity to inhibit myosin-driven, F-actin-tropomyosin motility were evaluated. Our data collectively demonstrate that removing conserved, charged residues in TNT1's tropomyosin-binding domain impairs TnT's contribution to inhibitory tropomyosin positioning and relaxation. Thus, TNT1 may modulate acto-myosin activity by optimizing F-actin-tropomyosin interfacial contacts and by binding to actin, which restrict tropomyosin's movement to activating configurations. HCM/RCM mutations, therefore, highlight TNT1's essential role in contractile regulation by diminishing its tropomyosin-anchoring effects, potentially serving as the initial trigger of pathology in our animal models and humans.
Collapse
Affiliation(s)
- Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Kathleen C Woulfe
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045
| | - William Schmidt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Agnes Sidor
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Ting Liu
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Tran H Nguyen
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Bosco Trinh
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Cortney Wilson
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045
| | - Sineej Madathil
- Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Brian O'Rourke
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Larry S Tobacman
- Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205;
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
12
|
Pavadai E, Rynkiewicz MJ, Ghosh A, Lehman W. Docking Troponin T onto the Tropomyosin Overlapping Domain of Thin Filaments. Biophys J 2019; 118:325-336. [PMID: 31864661 DOI: 10.1016/j.bpj.2019.11.3393] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
Complete description of thin filament conformational transitions accompanying muscle regulation requires ready access to atomic structures of actin-bound tropomyosin-troponin. To date, several molecular-docking protocols have been employed to identify troponin interactions on actin-tropomyosin because high-resolution experimentally determined structures of filament-associated troponin are not available. However, previously published all-atom models of the thin filament show chain separation and corruption of components during our molecular dynamics simulations of the models, implying artifactual subunit organization, possibly due to incorporation of unorthodox tropomyosin-TnT crystal structures and complex FRET measurements during model construction. For example, the recent Williams et al. (2016) atomistic model of the thin filament displays a paucity of salt bridges and hydrophobic complementarity between the TnT tail (TnT1) and tropomyosin, which is difficult to reconcile with the high, 20 nM Kd binding of TnT onto tropomyosin. Indeed, our molecular dynamics simulations show the TnT1 component in their model partially dissociates from tropomyosin in under 100 ns, whereas actin-tropomyosin and TnT1 models themselves remain intact. We therefore revisited computational work aiming to improve TnT1-thin filament models by employing unbiased docking methodologies, which test billions of trial rotations and translations of TnT1 over three-dimensional grids covering end-to-end bonded tropomyosin alone or tropomyosin on F-actin. We limited conformational searches to the association of well-characterized TnT1 helical domains and either isolated tropomyosin or actin-tropomyosin yet avoided docking TnT domains that lack known or predicted structure. The docking programs PIPER and ClusPro were used, followed by interaction energy optimization and extensive molecular dynamics. TnT1 docked to either side of isolated tropomyosin but uniquely onto one location of actin-bound tropomyosin. The antiparallel interaction with tropomyosin contained abundant salt bridges and intimately integrated hydrophobic networks joining TnT1 and the tropomyosin N-/C-terminal overlapping domain. The TnT1-tropomyosin linkage yields well-defined molecular crevices. Interaction energy measurements strongly favor this TnT1-tropomyosin design over previously proposed models.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Anita Ghosh
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
13
|
Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil 2019; 41:39-53. [PMID: 31270709 PMCID: PMC7109180 DOI: 10.1007/s10974-019-09532-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Tropomyosin is the major regulator of the thin filament. In striated muscle its function is to bind troponin complex and control the access of myosin heads to actin in a Ca2+-dependent manner. It also participates in the maintenance of thin filament length by regulation of tropomodulin and leiomodin, the pointed end-binding proteins. Because the size of the overlap between actin and myosin filaments affects the number of myosin heads which interact with actin, the filament length is one of the determinants of force development. Numerous point mutations in genes encoding tropomyosin lead to single amino acid substitutions along the entire length of the coiled coil that are associated with various types of cardiomyopathy and skeletal muscle disease. Specific regions of tropomyosin interact with different binding partners; therefore, the mutations affect diverse tropomyosin functions. In this review, results of studies on mutations in the genes TPM1 and TPM3, encoding Tpm1.1 and Tpm3.12, are described. The paper is particularly focused on mutation-dependent alterations in the mechanisms of actin-myosin interactions and dynamics of the thin filament at the pointed end.
Collapse
|
14
|
Schmidt W, Cammarato A. The actin 'A-triad's' role in contractile regulation in health and disease. J Physiol 2019; 598:2897-2908. [PMID: 30770548 DOI: 10.1113/jp276741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ -dependent modulation of myosin cross-bridge binding to F-actin by the thin filament troponin (Tn)-tropomyosin (Tm) complex. In the absence of Ca2+ , Tn binds to actin and constrains Tm to an azimuthal location where it sterically occludes myosin binding sites along the thin filament surface. This limits force production and promotes muscle relaxation. In addition to Tn-actin interactions, inhibitory Tm positioning requires associations between other thin filament constituents. For example, the actin 'A-triad', composed of residues K326, K328 and R147, forms numerous, highly favourable electrostatic contacts with Tm that are critical for establishing its inhibitory azimuthal binding position. Here, we review recent findings, including the identification and interrogation of modifications within and proximal to the A-triad that are associated with disease and/or altered muscle behaviour, which highlight the surface feature's role in F-actin-Tm interactions and contractile regulation.
Collapse
Affiliation(s)
- William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| |
Collapse
|
15
|
Dieseldorff Jones KM, Koh Y, Weller RS, Turna RS, Ahmad F, Huke S, Knollmann BC, Pinto JR, Hwang HS. Pathogenic troponin T mutants with opposing effects on myofilament Ca 2+ sensitivity attenuate cardiomyopathy phenotypes in mice. Arch Biochem Biophys 2018; 661:125-131. [PMID: 30445044 DOI: 10.1016/j.abb.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
Mutations in cardiac troponin T (TnT) associated with hypertrophic cardiomyopathy generally lead to an increase in the Ca2+ sensitivity of contraction and susceptibility to arrhythmias. In contrast, TnT mutations linked to dilated cardiomyopathy decrease the Ca2+ sensitivity of contraction. Here we tested the hypothesis that two TnT disease mutations with opposite effects on myofilament Ca2+ sensitivity can attenuate each other's phenotype. We crossed transgenic mice expressing the HCM TnT-I79N mutation (I79N) with a DCM knock-in mouse model carrying the heterozygous TnT-R141W mutation (HET). The results of the Ca2+ sensitivity in skinned cardiac muscle preparations ranked from highest to lowest were as follow: I79N > I79N/HET > NTg > HET. Echocardiographic measurements revealed an improvement in hemodynamic parameters in I79N/HET compared to I79N and normalization of left ventricular dimensions and volumes compared to both I79N and HET. Ex vivo testing showed that the I79N/HET mouse hearts had reduced arrhythmia susceptibility compared to I79N mice. These results suggest that two disease mutations in TnT that have opposite effects on the myofilament Ca2+ sensitivity can paradoxically ameliorate each other's disease phenotype. Normalizing myofilament Ca2+ sensitivity may be a promising new treatment approach for a variety of diseases.
Collapse
Affiliation(s)
| | - Yeojung Koh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Rebecca S Weller
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rajdeep S Turna
- Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Ferhaan Ahmad
- Department of Internal Medicine University of Iowa, Iowa City, IA, USA
| | - Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
16
|
Kong BW, Hudson N, Seo D, Lee S, Khatri B, Lassiter K, Cook D, Piekarski A, Dridi S, Anthony N, Bottje W. RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line. BMC Genomics 2017; 18:82. [PMID: 28086790 PMCID: PMC5237145 DOI: 10.1186/s12864-016-3471-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023] Open
Abstract
Background Modern broiler chickens exhibit very rapid growth and high feed efficiency compared to unselected chicken breeds. The improved production efficiency in modern broiler chickens was achieved by the intensive genetic selection for meat production. This study was designed to investigate the genetic alterations accumulated in modern broiler breeder lines during selective breeding conducted over several decades. Methods To identify genes important in determining muscle growth and feed efficiency in broilers, RNA sequencing (RNAseq) was conducted with breast muscle in modern pedigree male (PeM) broilers (n = 6 per group), and with an unselected foundation broiler line (Barred Plymouth Rock; BPR). The RNAseq analysis was carried out using Ilumina Hiseq (2 x 100 bp paired end read) and raw reads were assembled with the galgal4 reference chicken genome. With normalized RPM values, genes showing >10 average read counts were chosen and genes showing <0.05 p-value and >1.3 fold change were considered as differentially expressed (DE) between PeM and BPR. DE genes were subjected to Ingenuity Pathway Analysis (IPA) for bioinformatic functional interpretation. Results The results indicate that 2,464 DE genes were identified in the comparison between PeM and BPR. Interestingly, the expression of genes encoding mitochondrial proteins in chicken are significantly biased towards the BPR group, suggesting a lowered mitochondrial content in PeM chicken muscles compared to BPR chicken. This result is inconsistent with more slow muscle fibers bearing a lower mitochondrial content in the PeM. The molecular, cellular and physiological functions of DE genes in the comparison between PeM and BPR include organismal injury, carbohydrate metabolism, cell growth/proliferation, and skeletal muscle system development, indicating that cellular mechanisms in modern broiler lines are tightly associated with rapid growth and differential muscle fiber contents compared to the unselected BPR line. Particularly, PDGF (platelet derived growth factor) signaling and NFE2L2 (nuclear factor, erythroid 2-like 2; also known as NRF2) mediated oxidative stress response pathways appear to be activated in modern broiler compared to the foundational BPR line. Upstream and network analyses revealed that the MSTN (myostatin) –FST (follistatin) interactions and inhibition of AR (androgen receptor) were predicted to be effective regulatory factors for DE genes in modern broiler line. PRKAG3 (protein kinase, AMP-activated, gamma 3 non-catalytic subunit) and LIPE (lipase E) are predicted as core regulatory factors for myogenic development, nutrient and lipid metabolism. Conclusion The highly upregulated genes in PeM may represent phenotypes of subclinical myopathy commonly observed in the commercial broiler breast tissue, that can lead to muscle hardening, named as woody breast. By investigating global gene expression in a highly selected pedigree broiler line and a foundational breed (Barred Plymouth Rock), the results provide insight into cellular mechanisms that regulate muscle growth, fiber composition and feed efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3471-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas Hudson
- School of Agriculture and Food Science, University of Queensland, Gatton, Australia
| | - Dongwon Seo
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Seok Lee
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Devin Cook
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Alissa Piekarski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| |
Collapse
|
17
|
Gollapudi SK, Chandra M. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain. Front Physiol 2016; 7:443. [PMID: 27757084 PMCID: PMC5047882 DOI: 10.3389/fphys.2016.00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant-such as myofilament Ca2+ sensitivity-is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| |
Collapse
|
18
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Broughton KM, Li J, Sarmah E, Warren CM, Lin YH, Henze MP, Sanchez-Freire V, Solaro RJ, Russell B. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 2016; 311:H107-17. [PMID: 27199119 DOI: 10.1152/ajpheart.00162.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
We have investigated cardiac myocytes derived from human-induced pluripotent stem cells (iPSC-CMs) from two normal control and two family members expressing a mutant cardiac troponin T (cTnT-R173W) linked to dilated cardiomyopathy (DCM). cTnT is a regulatory protein of the sarcomeric thin filament. The loss of this basic charge, which is strategically located to control tension, has consequences leading to progressive DCM. iPSC-CMs serve as a valuable platform for understanding clinically relevant mutations in sarcomeric proteins; however, there are important questions to be addressed with regard to myocyte adaptation that we model here by plating iPSC-CMs on softer substrates (100 kPa) to create a more physiologic environment during recovery and maturation of iPSC-CMs after thawing from cryopreservation. During the first week of culture of the iPSC-CMs, we have determined structural and functional characteristics as well as actin assembly dynamics. Shortening, actin content, and actin assembly dynamics were depressed in CMs from the severely affected mutant at 1 wk of culture, but by 2 wk differences were less apparent. Sarcomeric troponin and myosin isoform composition were fetal/neonatal. Furthermore, the troponin complex, reconstituted with wild-type cTnT or recombinant cTnT-R173W, depressed the entry of cross-bridges into the force-generating state, which can be reversed by the myosin activator omecamtiv mecarbil. Therapeutic doses of this drug increased both contractility and the content of F-actin in the mutant iPSC-CMs. Collectively, our data suggest the use of a myosin activation reagent to restore function within patient-specific iPSC-CMs may aid in understanding and treating this familial DCM.
Collapse
Affiliation(s)
- K M Broughton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - J Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Sarmah
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - C M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Y-H Lin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - M P Henze
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - V Sanchez-Freire
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - R J Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - B Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
20
|
Abstract
By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| |
Collapse
|
21
|
Gollapudi SK, Chandra M. The effect of cardiomyopathy mutation (R97L) in mouse cardiac troponin T on the muscle length-mediated recruitment of crossbridges is modified divergently by α- and β-myosin heavy chain. Arch Biochem Biophys 2016; 601:105-12. [PMID: 26792537 DOI: 10.1016/j.abb.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 01/19/2023]
Abstract
Hypertrophic cardiomyopathy mutations in cardiac troponin T (TnT) lead to sudden cardiac death. Augmented myofilament Ca(2+) sensitivity is a common feature in TnT mutants, but such observations fail to provide a rational explanation for severe cardiac phenotypes. To better understand the mutation-induced effect on the cardiac phenotype, it is imperative to determine the effects on dynamic contractile features such as the muscle length (ML)-mediated activation against α- and β-myosin heavy chain (MHC) isoforms. α- and β-MHC are not only differentially expressed in rodent and human hearts, but they also modify ML-mediated activation differently. Mouse analog of human TnTR94L (TnTR97L) or wild-type TnT was reconstituted into de-membranated muscle fibers from normal (α-MHC) and transgenic (β-MHC) mouse hearts. TnTR97L augmented myofilament Ca(2+) sensitivity by a similar amount in α- and β-MHC fibers. However, TnTR97L augmented the negative impact of strained crossbridges on other crossbridges (γ) by 22% in α-MHC fibers, but attenuated γ by 21% in β-MHC fibers. TnTR97L decreased the magnitude of ML-mediated recruitment of crossbridges (ER) by 37% in α-MHC fibers, but increased ER by 35% in β-MHC fibers. We provide a mechanistic basis for the TnTR97L-induced effects in α- and β-MHC fibers and discuss the relevance to human hearts.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA.
| |
Collapse
|
22
|
ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 2015; 112:E7003-12. [PMID: 26621701 DOI: 10.1073/pnas.1513843112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diastolic dysfunction is general to all idiopathic dilated (IDCM) and hypertrophic cardiomyopathy (HCM) patients. Relaxation deficits may result from increased actin-myosin formation during diastole due to altered tropomyosin position, which blocks myosin binding to actin in the absence of Ca(2+). We investigated whether ADP-stimulated force development (without Ca(2+)) can be used to reveal changes in actin-myosin blockade in human cardiomyopathy cardiomyocytes. Cardiac samples from HCM patients, harboring thick-filament (MYH7mut, MYBPC3mut) and thin-filament (TNNT2mut, TNNI3mut) mutations, and IDCM were compared with sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Myofilament ADP sensitivity was higher in IDCM and HCM compared with donors, whereas it was lower for MYBPC3. Increased ADP sensitivity in IDCM, HCMsmn, and MYH7mut was caused by low phosphorylation of myofilament proteins, as it was normalized to donors by protein kinase A (PKA) treatment. Troponin exchange experiments in a TNNT2mut sample corrected the abnormal actin-myosin blockade. In MYBPC3trunc samples, ADP sensitivity highly correlated with cardiac myosin-binding protein-C (cMyBP-C) protein level. Incubation of cardiomyocytes with cMyBP-C antibody against the actin-binding N-terminal region reduced ADP sensitivity, indicative of cMyBP-C's role in actin-myosin regulation. In the presence of Ca(2+), ADP increased myofilament force development and sarcomere stiffness. Enhanced sarcomere stiffness in sarcomere mutation-positive HCM samples was irrespective of the phosphorylation background. In conclusion, ADP-stimulated contraction can be used as a tool to study how protein phosphorylation and mutant proteins alter accessibility of myosin binding on actin. In the presence of Ca(2+), pathologic [ADP] and low PKA-phosphorylation, high actin-myosin formation could contribute to the impaired myocardial relaxation observed in cardiomyopathies.
Collapse
|
23
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
24
|
Chandra V, Gollapudi SK, Chandra M. Rat cardiac troponin T mutation (F72L)-mediated impact on thin filament cooperativity is divergently modulated by α- and β-myosin heavy chain isoforms. Am J Physiol Heart Circ Physiol 2015; 309:H1260-70. [PMID: 26342069 DOI: 10.1152/ajpheart.00519.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022]
Abstract
The primary causal link between disparate effects of human hypertrophic cardiomyopathy (HCM)-related mutations in troponin T (TnT) and α- and β-myosin heavy chain (MHC) isoforms on cardiac contractile phenotype remains poorly understood. Given the divergent impact of α- and β-MHC on the NH2-terminal extension (44-73 residues) of TnT, we tested if the effects of the HCM-linked mutation (TnTF70L) were differentially altered by α- and β-MHC. We hypothesized that the emergence of divergent thin filament cooperativity would lead to contrasting effects of TnTF70L on contractile function in the presence of α- and β-MHC. The rat TnT analog of the human F70L mutation (TnTF72L) or the wild-type rat TnT (TnTWT) was reconstituted into demembranated muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rat hearts to measure steady-state and dynamic contractile function. TnTF72L-mediated effects on tension, myofilament Ca(2+) sensitivity, myofilament cooperativity, rate constants of cross-bridge (XB) recruitment dynamics, and force redevelopment were divergently modulated by α- and β-MHC. TnTF72L increased the rate of XB distortion dynamics by 49% in α-MHC fibers but had no effect in β-MHC fibers; these observations suggest that TnTF72L augmented XB detachment kinetics in α-MHC, but not β-MHC, fibers. TnTF72L increased the negative impact of strained XBs on the force-bearing XBs by 39% in α-MHC fibers but had no effect in β-MHC fibers. Therefore, TnTF72L leads to contractile changes that are linked to dilated cardiomyopathy in the presence of α-MHC. On the other hand, TnTF72L leads to contractile changes that are linked to HCM in the presence of β-MHC.
Collapse
Affiliation(s)
- Vikram Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
25
|
Gollapudi SK, Tardiff JC, Chandra M. The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by α- and β-myosin heavy chain isoforms. Am J Physiol Heart Circ Physiol 2015; 308:H884-93. [PMID: 25681424 DOI: 10.1152/ajpheart.00528.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a mouse TnT analog (TnTR144W) of the human DCM R141W mutation. TnTR144W did not alter maximal tension but attenuated myofilament Ca(2+) sensitivity (pCa50) to a similar extent in α- and β-MHC fibers. TnTR144W attenuated the speed of cross-bridge (XB) distortion dynamics (c) by 24% and the speed of XB recruitment dynamics (b) by 17% in α-MHC fibers; however, both b and c remained unaltered in β-MHC fibers. Likewise, TnTR144W attenuated the rates of XB detachment (g) and tension redevelopment (ktr) only in α-MHC fibers. TnTR144W also decreased the impact of strained XBs on the recruitment of new XBs (γ) by 30% only in α-MHC fibers. Because c, b, g, ktr, and γ are strongly influenced by thin filament-based cooperative mechanisms, we conclude that the TnTR144W- and β-MHC-mediated changes in the thin filament interact to produce a less severe functional phenotype, compared with that brought about by TnTR144W and α-MHC. These observations provide a basis for lower mortality rates of humans (β-MHC) harboring the TnTR141W mutant compared with transgenic mouse studies. Our findings strongly suggest that some caution is necessary when extrapolating data from transgenic mouse studies to human hearts.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| | - Jil C Tardiff
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| |
Collapse
|
26
|
Parvatiyar MS, Pinto JR. Pathogenesis associated with a restrictive cardiomyopathy mutant in cardiac troponin T is due to reduced protein stability and greatly increased myofilament Ca2+ sensitivity. Biochim Biophys Acta Gen Subj 2014; 1850:365-72. [PMID: 25450489 DOI: 10.1016/j.bbagen.2014.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Dilated and hypertrophic cardiomyopathy mutations in troponin can blunt effects of protein kinase A (PKA) phosphorylation of cardiac troponin I (cTnI), decreasing myofilament Ca2+-sensitivity; however this effect has never been tested for restrictive cardiomyopathy (RCM) mutants. This study explores whether an RCM cardiac troponin T mutant (cTnT-ΔE96) interferes with convergent PKA regulation and if TnT instability contributes to greatly enhanced Ca2+-sensitivity in skinned fibers. METHODS Force of contraction in skinned cardiac porcine fiber and spectroscopic studies were performed. RESULTS A decrease of -0.26 and -0.25 pCa units in Ca2+-sensitivity of contraction after PKA incubation was observed for skinned fibers incorporated with WT or cTnT-ΔE96, respectively. To further assess whether cTnT-ΔE96 interferes solely with transmission of cTnI phosphorylation effects, skinned fibers were reconstituted with PKA pseudo-phosphorylated cTnI (cTnI-SS/DD.cTnC). Fibers displaced with cTnT-WT, reconstituted with cTnI-SS/DD.cTnC decreased Ca2+-sensitivity of force (pCa50=5.61) compared to control cTnI-WT.cTnC (pCa50=5.75), similarly affecting cTnT-ΔE96 (pCa50=6.03) compared to control \cTnI-WT.cTnC (pCa50=6.14). Fluorescence studies measuring cTnC(IAANS) Ca2+-affinity changes due to cTnT-ΔE96 indicated that higher complexity (thin filament) better recapitulates skinned fiber Ca2+ sensitive changes. Circular dichroism revealed reduced α-helicity and earlier thermal unfolding for cTnT-ΔE96 compared to WT. CONCLUSIONS Although ineffective in decreasing myofilament Ca2+-sensitivity to normal levels, cTnT-ΔE96 does not interfere with PKA cTnI phosphorylation mediated effects; 2) cTnT-ΔE96 requires actin to increase cTnC Ca2+-affinity; and 3) deletion of E96 reduces cTnT stability, likely disrupting crucial thin filament interactions. GENERAL SIGNIFICANCE The pathological effect of cTnT-ΔE96 is largely manifested by dramatic myofilament Ca2+-sensitization which still persists even after PKA phosphorylation mediated Ca2+-desensitization.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
27
|
Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS One 2014; 9:e109066. [PMID: 25268244 PMCID: PMC4182639 DOI: 10.1371/journal.pone.0109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022] Open
Abstract
Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and invivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While invitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, invivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced invitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness invitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function invivo. These results clearly point out that invitro alterations are muscle-dependent and do not necessarily translate into similar changes invivo.
Collapse
|
28
|
Viswanathan MC, Kaushik G, Engler AJ, Lehman W, Cammarato A. A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function. Circ Res 2013; 114:e6-17. [PMID: 24221941 DOI: 10.1161/circresaha.114.302028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Regulation of striated muscle contraction is achieved by Ca2+ -dependent steric modulation of myosin cross-bridge cycling on actin by the thin filament troponin-tropomyosin complex. Alterations in the complex can induce contractile dysregulation and disease. For example, mutations between or near residues 112 to 136 of cardiac troponin-T, the crucial TnT1 (N-terminal domain of troponin-T)-tropomyosin-binding region, cause cardiomyopathy. The Drosophila upheld(101) Glu/Lys amino acid substitution lies C-terminally adjacent to this phylogenetically conserved sequence. OBJECTIVE Using a highly integrative approach, we sought to determine the molecular trigger of upheld(101) myofibrillar degeneration, to evaluate contractile performance in the mutant cardiomyocytes, and to examine the effects of the mutation on the entire Drosophila heart to elucidate regulatory roles for conserved TnT1 regions and provide possible mechanistic insight into cardiac dysfunction. METHODS AND RESULTS Live video imaging of Drosophila cardiac tubes revealed that the troponin-T mutation prolongs systole and restricts diastolic dimensions of the heart, because of increased numbers of actively cycling myosin cross-bridges. Elevated resting myocardial stiffness, consistent with upheld(101) diastolic dysfunction, was confirmed by an atomic force microscopy-based nanoindentation approach. Direct visualization of mutant thin filaments via electron microscopy and 3-dimensional reconstruction resolved destabilized tropomyosin positioning and aberrantly exposed myosin-binding sites under low Ca2+ conditions. CONCLUSIONS As a result of troponin-tropomyosin dysinhibition, upheld(101) hearts exhibited cardiac dysfunction and remodeling comparable to that observed during human restrictive cardiomyopathy. Thus, reversal of charged residues about the conserved tropomyosin-binding region of TnT1 may perturb critical intermolecular associations required for proper steric regulation, which likely elicits myopathy in our Drosophila model.
Collapse
Affiliation(s)
- Meera Cozhimuttam Viswanathan
- From the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.C.V., A.C.); Department of Bioengineering, University of California, San Diego, La Jolla, CA (G.K., A.J.E.); and Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA (W.L.)
| | | | | | | | | |
Collapse
|
29
|
Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:700-22. [PMID: 23860255 DOI: 10.1016/j.bbamem.2013.07.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank-Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Louise L A M Nijenkamp
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jessica A Regan
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Physiology, Molecular Cardiovascular Research Program, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, The Netherlands.
| |
Collapse
|
30
|
Mamidi R, Michael JJ, Muthuchamy M, Chandra M. Interplay between the overlapping ends of tropomyosin and the N terminus of cardiac troponin T affects tropomyosin states on actin. FASEB J 2013; 27:3848-59. [PMID: 23748972 DOI: 10.1096/fj.13-232363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The functional significance of the molecular swivel at the head-to-tail overlapping ends of contiguous tropomyosin (Tm) dimers in striated muscle is unknown. Contractile measurements were made in muscle fibers from transgenic (TG) mouse hearts that expressed a mutant α-Tm (Tm(H276N)). We also reconstituted mouse cardiac troponin T (McTnT) N-terminal deletion mutants, McTnT(1-44Δ) and McTnT(45-74Δ), into muscle fibers from Tm(H276N). For controls, we used the wild-type (WT) McTnT because altered effects could be correlated with the mutant forms of McTnT. Tm(H276N) slowed crossbridge (XB) detachment rate (g) by 19%. McTnT(1-44Δ) attenuated Ca(2+)-activated maximal tension against Tm(WT) (36%) and Tm(H276N) (38%), but sped g only against Tm(H276N) by 35%. The rate of tension redevelopment decreased (17%) only in McTnT(1-44Δ) + Tm(H276N) fibers. McTnT(45-74Δ) attenuated tension (19%) and myofilament Ca(2+) sensitivity (pCa50=5.93 vs. 6.00 in the control fibers) against Tm(H276N), but not against Tm(WT) background. Thus, altered XB cycling kinetics decreased the fraction of strongly bound XBs in McTnT(1-44Δ) + Tm(H276N) fibers, whereas diminished thin-filament cooperativity attenuated tension in McTnT(45-74Δ) + Tm(H276N) fibers. In summary, our study is the first to show that the interplay between the N terminus of cTnT and the overlapping ends of contiguous Tm effectuates different states of Tm on the actin filament.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
31
|
Sequeira V, Wijnker PJM, Nijenkamp LLAM, Kuster DWD, Najafi A, Witjas-Paalberends ER, Regan JA, Boontje N, Ten Cate FJ, Germans T, Carrier L, Sadayappan S, van Slegtenhorst MA, Zaremba R, Foster DB, Murphy AM, Poggesi C, Dos Remedios C, Stienen GJM, Ho CY, Michels M, van der Velden J. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 2013; 112:1491-505. [PMID: 23508784 DOI: 10.1161/circresaha.111.300436] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. OBJECTIVE To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. METHODS AND RESULTS Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. CONCLUSIONS High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The tropomyosin binding region of cardiac troponin T modulates crossbridge recruitment dynamics in rat cardiac muscle fibers. J Mol Biol 2013; 425:1565-81. [PMID: 23357173 DOI: 10.1016/j.jmb.2013.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/22/2022]
Abstract
The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2- and RcT1-RfsT2-reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to the force response of small-amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a 40% decrease in tension and a 44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge (XB) recruitment (E0) decreased by ~33% and the speed of XB recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates XB recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of the CR to modulate XB recruitment dynamics; (3) the T2 region is important for tuning the Ca(2+) regulation of cardiac thin filaments. The combined effects of CR-tropomyosin interactions and the modulating effect of the N-terminal end of cTnT on CR-tropomyosin interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates.
Collapse
|
33
|
Mamidi R, Mallampalli SL, Wieczorek DF, Chandra M. Identification of two new regions in the N-terminus of cardiac troponin T that have divergent effects on cardiac contractile function. J Physiol 2012. [PMID: 23207592 DOI: 10.1113/jphysiol.2012.243394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract Cardiac troponin T (cTnT) has a highly acidic extended N-terminus, the physiological role of which remains poorly understood. To decipher the physiological role of this unique region, we deleted specific regions within the N-terminus of mouse cTnT (McTnT) to create McTnT1-44 and McTnT45-74 proteins. Contractile function and dynamic force-length measurements were made after reconstituting the McTnT deletion proteins into detergent-skinned cardiac papillary fibres harvested from non-transgenic mice that expressed α-tropomyosin (Tm). To further understand how the functional effects of the N-terminus of cTnT are modulated by Tm isoforms, McTnT deletion proteins were reconstituted into detergent-skinned cardiac papillary fibres harvested from transgenic mice that expressed both α- and β-Tm. McTnT1-44, but not McTnT45-74, attenuated maximal activation of the thin filament. Myofilament Ca(2+) sensitivity, as measured by pCa50 (-log of [Ca(2+)]free required for half-maximal activation), decreased in McTnT1-44 (α-Tm) fibres. The desensitizing effect of McTnT1-44 on pCa50 was ablated in β-Tm fibres. McTnT45-74 enhanced pCa50 in both α- and β-Tm fibres, with β-Tm having a bigger effect. The Hill coefficient of tension development was significantly attenuated by McTnT45-74, suggesting an effect on thin-filament cooperativity. The rate of cross-bridge (XB) detachment and the strained XB-mediated impact on other XBs were augmented by McTnT1-44 in β-Tm fibres. The magnitude of the length-mediated recruitment of XBs was attenuated by McTnT1-44 in β-Tm fibres. Our data demonstrate that the 1-44 region of McTnT is essential for maximal activation, whereas the cardiac-specific 45-74 region of McTnT is essential for augmenting cooperativity. Moreover, our data show that α- and β-Tm isoforms have divergent effects on McTnT deletion mutant's ability to modulate cardiac thin-filament activation and Ca(2+) sensitivity. Our results not only provide the first explicit evidence for the existence of two distinct functional regions within the N-terminus of cTnT, but also offer mechanistic insights into the divergent physiological roles of these regions in mediating cardiac contractile activation.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA-99164, USA.
| | | | | | | |
Collapse
|
34
|
Gollapudi S, Mamidi R, Mallampalli S, Chandra M. The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. Biophys J 2012; 103:940-8. [PMID: 23009843 PMCID: PMC3433604 DOI: 10.1016/j.bpj.2012.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 11/21/2022] Open
Abstract
Cardiac troponin T (cTnT) is a key component of contractile regulatory proteins. cTnT is characterized by a ∼32 amino acid N-terminal extension (NTE), the function of which remains unknown. To understand its function, we generated a transgenic (TG) mouse line that expressed a recombinant chimeric cTnT in which the NTE of mouse cTnT was removed by replacing its 1-73 residues with the corresponding 1-41 residues of mouse fast skeletal TnT. Detergent-skinned papillary muscle fibers from non-TG (NTG) and TG mouse hearts were used to measure tension, ATPase activity, Ca(2+) sensitivity (pCa(50)) of tension, rate of tension redevelopment, dynamic muscle fiber stiffness, and maximal fiber shortening velocity at sarcomere lengths (SLs) of 1.9 and 2.3 μm. Ca(2+) sensitivity increased significantly in TG fibers at both short SL (pCa(50) of 5.96 vs. 5.62 in NTG fibers) and long SL (pCa(50) of 6.10 vs. 5.76 in NTG fibers). Maximal cross-bridge turnover and detachment kinetics were unaltered in TG fibers. Our data suggest that the NTE constrains cardiac thin filament activation such that the transition of the thin filament from the blocked to the closed state becomes less responsive to Ca(2+). Our finding has implications regarding the effect of tissue- and disease-related changes in cTnT isoforms on cardiac muscle function.
Collapse
Affiliation(s)
| | | | | | - Murali Chandra
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington
| |
Collapse
|
35
|
He H, Hoyer K, Tao H, Rice R, Jimenez J, Tardiff JC, Ingwall JS. Myosin-driven rescue of contractile reserve and energetics in mouse hearts bearing familial hypertrophic cardiomyopathy-associated mutant troponin T is mutation-specific. J Physiol 2012; 590:5371-88. [PMID: 22907055 DOI: 10.1113/jphysiol.2012.234252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The thin filament protein troponin T (TnT) is a regulator of sarcomere function. Whole heart energetics and contractile reserve are compromised in transgenic mice bearing missense mutations at R92 within the tropomyosin-binding domain of cTnT, despite being distal to the ATP hydrolysis domain of myosin. These mutations are associated with familial hypertrophic cardiomyopathy (FHC). Here we test the hypothesis that genetically replacing murine αα-MyHC with murine ββ-MyHC in hearts bearing the R92Q cTnT mutation, a particularly lethal FHC-associated mutation, leads to sufficiently large perturbations in sarcomere function to rescue whole heart energetics and decrease the cost of contraction. By comparing R92Q cTnT and R92L cTnT mutant hearts, we also test whether any rescue is mutation-specific. We defined the energetic state of the isolated perfused heart using (31)P-NMR spectroscopy while simultaneously measuring contractile performance at four work states. We found that the cost of increasing contraction in intact mouse hearts with R92Q cTnT depends on the type of myosin present in the thick filament. We also found that the salutary effect of this manoeuvre is mutation-specific, demonstrating the major regulatory role of cTnT on sarcomere function at the whole heart level.
Collapse
Affiliation(s)
- Huamei He
- NMR Laboratory for Physiological Chemistry, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Manning EP, Guinto PJ, Tardiff JC. Correlation of molecular and functional effects of mutations in cardiac troponin T linked to familial hypertrophic cardiomyopathy: an integrative in silico/in vitro approach. J Biol Chem 2012; 287:14515-23. [PMID: 22334656 DOI: 10.1074/jbc.m111.257436] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nearly 70% of all of the known cTnT mutations that cause familial hypertrophic cardiomyopathy fall within the TNT1 region that is critical to cTn-Tm binding. The high resolution structure of this domain has not been determined, and this lack of information has hindered structure-function analysis. In the current study, a coupled computational experimental approach was employed to correlate changes in cTnT dynamics to basic function using the regulated in vitro motility assay (R-IVM). An in silico approach to calculate forces in terms of a bending coordinate was used to precisely identify decreases in bending forces at residues 105 and 106 within the proposed cTnT "hinge" region. Significant functional changes were observed in multiple functional properties, including a decrease in the cooperativity of calcium activation, the calcium sensitivity of sliding speed, and maximum sliding speed. Correlation of the computational and experimental findings revealed an association between TNT1 flexibility and the cooperativity of thin filament calcium activation where an increase in flexibility led to a decrease in cooperativity. Further analysis of the primary sequence of the TNT1 region revealed a unique pattern of conserved charged TNT1 residues altered by the R92W and R92L mutations and may represent the underlying "structure" modulating this central functional domain. These data provide a framework for further integrated in silico/in vitro approaches that may be extended into a high-throughput predictive screen to overcome the current structural limitations in linking molecular phenotype to genotype in thin filament cardiomyopathies.
Collapse
Affiliation(s)
- Edward P Manning
- Department of Physiology and Biophysics, Albert Einstein College of Medicine Bronx, Bronx, New York 10461, USA
| | | | | |
Collapse
|
37
|
Guinto PJ, Manning EP, Schwartz SD, Tardiff JC. Computational Characterization of Mutations in Cardiac Troponin T Known to Cause Familial Hypertrophic Cardiomyopathy. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011; 6:413. [PMID: 26500385 DOI: 10.1142/s0219633607003271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiac Troponin T (cTnT) is a central modulator of thin filament regulation of myofilament activation. The lack of structural data for the TNT1 tail domain, a proposed α-helical region, makes the functional implications of the FHC mutations difficult to determine. Studies have suggested that flexibility of TNT1 is important in normal protein-protein interactions within the thin filament. Our groups have previously shown through Molecular Dynamics (MD) simulations that some FHC mutations, Arg92Leu(R92L) and Arg92Trp(R92W), result in increased flexibility at a critical hinge region 12 residues distant from the mutation. To explain this distant effect and its implications for FHC mutations, we characterized the dynamics of wild type and mutational segments of cTnT using MD. Our data shows an opening of the helix between residues 105-110 in mutants. Consequently, the dihedral angles of these residues correspond to non-α-helical regions on Ramachandran plots. We hypothesize the removal of a charged residue decreases electrostatic repulsion between the point mutation and surrounding residues resulting in local helical compaction. Constrained ends of the helix and localized compaction results in expansion within the nearest non-polar helical turn from the mutation site, residues 105-109.
Collapse
Affiliation(s)
- Pia J Guinto
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Edward P Manning
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Steven D Schwartz
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Jil C Tardiff
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| |
Collapse
|
38
|
Zhang J, Zhang H, Ayaz-Guner S, Chen YC, Dong X, Xu Q, Ge Y. Phosphorylation, but not alternative splicing or proteolytic degradation, is conserved in human and mouse cardiac troponin T. Biochemistry 2011; 50:6081-92. [PMID: 21639091 DOI: 10.1021/bi2006256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiac troponin T (cTnT), the tropomyosin binding subunit of the troponin complex, plays a pivotal regulatory role in the Ca(2+)-mediated interaction between actin thin filament and myosin thick filament. The post-translational modifications (PTMs) and alternative splicing of cTnT may represent important regulatory mechanisms of cardiac contractility. However, a complete characterization of PTMs and alternatively spliced isoforms in cTnT present in vivo is lacking. Top-down protein mass spectrometry (MS) analyzes whole proteins, thus providing a global view of all types of modifications, including PTMs and sequence variants, simultaneously in one spectrum without a priori knowledge. In this study, we applied an integrated immunoaffinity chromatography and top-down MS approach to comprehensively characterize PTMs and alternatively spliced isoforms of cTnT purified from healthy human and wild-type mouse heart tissue. High-resolution Fourier transform MS revealed that human cTnT (hcTnT) and mouse cTnT (mcTnT) have similar phosphorylation patterns, whereas higher molecular heterogeneity was observed for mcTnT than hcTnT. Further MS/MS fragmentation of monophosphorylated hcTnT and mcTnT by electron capture dissociation and collisionally activated dissociation unambiguously identified Ser1 as the conserved in vivo phosphorylation site. In contrast, we identified a single spliced isoform for hcTnT but three alternatively spliced isoforms for mcTnT. Moreover, we observed distinct proteolytic degradation products for hcTnT and mcTnT. This study also demonstrates the advantage of top-down MS/MS with complementary fragmentation techniques for the identification of modification sites in the highly acidic N-terminal region of cTnT.
Collapse
Affiliation(s)
- Jiang Zhang
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Sixteen years ago, mutations in cardiac troponin (Tn)T and α-tropomyosin were linked to familial hypertrophic cardiomyopathy, thus transforming the disorder from a disease of the β-myosin heavy chain to a disease of the cardiac sarcomere. From the outset, studies suggested that mutations in the regulatory thin filament caused a complex, heterogeneous pattern of ventricular remodeling with wide variations in clinical expression. To date, the clinical heterogeneity is well matched by an extensive array of nearly 100 independent mutations in all components of the cardiac thin filament. Significant advances in our understanding of the biophysics of myofilament activation, coupled to the emerging evidence that thin filament linked cardiomyopathies are progressive, suggests that a renewed focus on the most proximal events in both the molecular and clinical pathogenesis of the disease will be necessary to achieve the central goal of using genotype information to manage affected patients. In this review, we examine the existing biophysical and clinical evidence in support of a more proximal definition of thin filament cardiomyopathies. In addition, new high-resolution, integrated approaches are presented to help define the way forward as the field works toward developing a more robust link between genotype and phenotype in this complex disorder.
Collapse
Affiliation(s)
- Jil C Tardiff
- Department of Physiology and Biophysics, Department of Internal Medicine, Division of Adult Cardiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
40
|
Solaro RJ, Kobayashi T. Protein phosphorylation and signal transduction in cardiac thin filaments. J Biol Chem 2011; 286:9935-40. [PMID: 21257760 DOI: 10.1074/jbc.r110.197731] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
41
|
Parvatiyar MS, Pinto JR, Liang J, Potter JD. Predicting cardiomyopathic phenotypes by altering Ca2+ affinity of cardiac troponin C. J Biol Chem 2010; 285:27785-97. [PMID: 20566645 DOI: 10.1074/jbc.m110.112326] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca(2+) sensitivity of contraction. Mutations in the Ca(2+) sensor, troponin C (TnC), were generated to increase/decrease the Ca(2+) sensitivity of cardiac skinned fibers to create the characteristic effects of DCM, HCM, and RCM. We also used a reconstituted assay to determine the mutation effects on ATPase activation and inhibition. One mutant (A23Q) was found with HCM-like properties (increased Ca(2+) sensitivity of force and normal levels of ATPase inhibition). Three mutants (S37G, V44Q, and L48Q) were identified with RCM-like properties (a large increase in Ca(2+) sensitivity, partial loss of ATPase inhibition, and increased basal force). Two mutations were identified (E40A and I61Q) with DCM properties (decreased Ca(2+) sensitivity, maximal force recovery, and activation of the ATPase at high [Ca(2+)]). Steady-state fluorescence was utilized to assess Ca(2+) affinity in isolated cardiac (c)TnCs containing F27W and did not necessarily mirror the fiber Ca(2+) sensitivity. Circular dichroism of mutant cTnCs revealed a trend where increased alpha-helical content correlated with increased Ca(2+) sensitivity in skinned fibers and vice versa. The main findings from this study were as follows: 1) cTnC mutants demonstrated distinct functional phenotypes reminiscent of bona fide HCM, RCM, and DCM mutations; 2) a region in cTnC associated with increased Ca(2+) sensitivity in skinned fibers was identified; and 3) the F27W reporter mutation affected Ca(2+) sensitivity, maximal force, and ATPase activation of some mutants.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
42
|
Cardiac troponin mutations and restrictive cardiomyopathy. J Biomed Biotechnol 2010; 2010:350706. [PMID: 20617149 PMCID: PMC2896668 DOI: 10.1155/2010/350706] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Mutations in sarcomeric proteins have recently been established as heritable causes of Restrictive Cardiomyopathy (RCM). RCM is clinically characterized as a defect in cardiac diastolic function, such as, impaired ventricular relaxation, reduced diastolic volume and increased end-diastolic pressure. To date, mutations have been identified in the cardiac genes for desmin, α-actin, troponin I and troponin T. Functional studies in skinned muscle fibers reconstituted with troponin mutants have established phenotypes consistent with the clinical findings which include an increase in myofilament Ca2+ sensitivity and basal force. Moreover, when RCM mutants are incorporated into reconstituted myofilaments, the ability to inhibit the ATPase activity is reduced. A majority of the mutations cluster in specific regions of cardiac troponin and appear to be mutational “hot spots”. This paper highlights the functional and clinical characteristics of RCM linked mutations within the troponin complex.
Collapse
|
43
|
Palpant NJ, Houang EM, Delport W, Hastings KEM, Onufriev AV, Sham YY, Metzger JM. Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations. Physiol Genomics 2010; 42:287-99. [PMID: 20423961 DOI: 10.1152/physiolgenomics.00033.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In cardiac muscle, the troponin (cTn) complex is a key regulator of myofilament calcium sensitivity because it serves as a molecular switch required for translating myocyte calcium fluxes into sarcomeric contraction and relaxation. Studies of several species suggest that ectotherm chordates have myofilaments with heightened calcium responsiveness. However, genetic polymorphisms in cTn that cause increased myofilament sensitivity to activating calcium in mammals result in cardiac disease including arrhythmias, diastolic dysfunction, and increased susceptibility to sudden cardiac death. We hypothesized that specific residue modifications in the regulatory arm of troponin I (TnI) were critical in mediating the observed decrease in myofilament calcium sensitivity within the mammalian taxa. We performed large-scale phylogenetic analysis, atomic resolution molecular dynamics simulations and modeling, and computational alanine scanning. This study provides evidence that a His to Ala substitution within mammalian cardiac TnI (cTnI) reduced the thermodynamic potential at the interface between cTnI and cardiac TnC (cTnC) in the calcium-saturated state by disrupting a strong intermolecular electrostatic interaction. This key residue modification reduced myofilament calcium sensitivity by making cTnI molecularly untethered from cTnC. To meet the requirements for refined mammalian adult cardiac performance, we propose that compensatory evolutionary pressures favored mutations that enhanced the relaxation properties of cTn by decreasing its sensitivity to activating calcium.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Integrative Biology and Physiology, University of Minnesota Academic Health Center, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Zot HG, Hasbun JE, Van Minh N. Striated muscle regulation of isometric tension by multiple equilibria. PLoS One 2009; 4:e8052. [PMID: 19997610 PMCID: PMC2784068 DOI: 10.1371/journal.pone.0008052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/28/2009] [Indexed: 11/30/2022] Open
Abstract
Cooperative activation of striated muscle by calcium is based on the movement of tropomyosin described by the steric blocking theory of muscle contraction. Presently, the Hill model stands alone in reproducing both myosin binding data and a sigmoidal-shaped curve characteristic of calcium activation (Hill TL (1983) Two elementary models for the regulation of skeletal muscle contraction by calcium. Biophys J 44: 383–396.). However, the free myosin is assumed to be fixed by the muscle lattice and the cooperative mechanism is based on calcium-dependent interactions between nearest neighbor tropomyosin subunits, which has yet to be validated. As a result, no comprehensive model has been shown capable of fitting actual tension data from striated muscle. We show how variable free myosin is a selective advantage for activating the muscle and describe a mechanism by which a conformational change in tropomyosin propagates free myosin given constant total myosin. This mechanism requires actin, tropomyosin, and filamentous myosin but is independent of troponin. Hence, it will work equally well with striated, smooth and non-muscle contractile systems. Results of simulations with and without data are consistent with a strand of tropomyosin composed of ∼20 subunits being moved by the concerted action of 3–5 myosin heads, which compares favorably with the predicted length of tropomyosin in the overlap region of thick and thin filaments. We demonstrate that our model fits both equilibrium myosin binding data and steady-state calcium-dependent tension data and show how both the steepness of the response and the sensitivity to calcium can be regulated by the actin-troponin interaction. The model simulates non-cooperative calcium binding both in the presence and absence of strong binding myosin as has been observed. Thus, a comprehensive model based on three well-described interactions with actin, namely, actin-troponin, actin-tropomyosin, and actin-myosin can explain the cooperative calcium activation of striated muscle.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, Georgia, United States of America.
| | | | | |
Collapse
|
45
|
Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 2009; 48:882-92. [PMID: 19914256 DOI: 10.1016/j.yjmcc.2009.10.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/19/2009] [Accepted: 10/30/2009] [Indexed: 12/25/2022]
Abstract
Troponin (Tn) is a critical regulator of muscle contraction in cardiac muscle. Mutations in Tn subunits are associated with hypertrophic, dilated and restrictive cardiomyopathies. Improved diagnosis of cardiomyopathies as well as intensive investigation of new mouse cardiomyopathy models has significantly enhanced this field of research. Recent investigations have showed that the physiological effects of Tn mutations associated with hypertrophic, dilated and restrictive cardiomyopathies are different. Impaired relaxation is a universal finding of most transgenic models of HCM, predicted directly from the significant changes in Ca(2+) sensitivity of force production. Mutations associated with HCM and RCM show increased Ca(2+) sensitivity of force production while mutations associated with DCM demonstrate decreased Ca(2+) sensitivity of force production. This review spotlights recent advances in our understanding on the role of Tn mutations on ATPase activity, maximal force development and heart function as well as the correlation between the locations of these Tn mutations within the thin filament and myofilament function.
Collapse
Affiliation(s)
- Ruth H Willott
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sumandea MP, Vahebi S, Sumandea CA, Garcia-Cazarin ML, Staidle J, Homsher E. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Biochemistry 2009; 48:7722-31. [PMID: 19586048 DOI: 10.1021/bi900516n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac troponin T (cTnT) is a phosphoprotein that modulates cardiac muscle contraction through its extensive and diverse interactions with neighboring thin filament proteins. Its N-terminal half is the "glue" that anchors the troponin complex to tropomyosin-actin. Until now, studies aimed at investigating the role of the N-terminal tail region have not considered the effects of phosphorylation. To understand better the regulatory role of the N-terminal tail region of phosphorylated cTnT, we investigated the functional effects of N-terminal deletion (amino acids 1-91) and phosphorylation on Ca(2+) dependence of myofilament isometric force production, isometric ATPase rate, and thin filament sliding speed. Chemomechanical profiles were assessed in detergent permeabilized fiber preparations where the native troponin (cTn) was exchanged with recombinant cTn engineered to contain modified cTnT (truncated, phosphorylated) in the presence of wild-type cTnI and cTnC. Removal of the cTnT N-terminal amino acids 1-91 (cTnT-del) enhances myofilament responsiveness to nonsaturating Ca(2+) levels (the physiological range in cardiac myocytes). However, at saturating Ca(2+) levels, there is a reduction in isometric tension and ATPase rate. On one hand, phosphorylation of cTnT-del attenuates the sensitizing effect induced by truncation of the N-terminal tail, "resetting" myofilament Ca(2+) responsiveness back to control levels. On the other hand, it impairs isometric tension development and ATPase rate. Interestingly, phosphorylation of cTnT (cTnT-P) differentially regulates tension cost (an index of cross-bridge cycling rate): increased by cTn-del-P and decreased by intact cTn-wt-P. Like the isometric fiber data, sliding speed of thin filaments regulated by cTn-del is more sensitive to Ca(2+) compared with cTn-wt. Phosphorylation of cTnT (whether cTnT-del or -wt) depresses sliding speed and is associated with Ca(2+) desensitization of thin filament sliding speed.
Collapse
Affiliation(s)
- Marius P Sumandea
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Guinto PJ, Haim TE, Dowell-Martino CC, Sibinga N, Tardiff JC. Temporal and mutation-specific alterations in Ca2+ homeostasis differentially determine the progression of cTnT-related cardiomyopathies in murine models. Am J Physiol Heart Circ Physiol 2009; 297:H614-26. [PMID: 19502551 DOI: 10.1152/ajpheart.01143.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Naturally occurring mutations in cardiac troponin T (cTnT) result in a clinical subset of familial hypertrophic cardiomyopathy. To determine the mechanistic links between thin-filament mutations and cardiovascular phenotypes, we have generated and characterized several transgenic mouse models carrying cTnT mutations. We address two central questions regarding the previously observed changes in myocellular mechanics and Ca(2+) homeostasis: 1) are they characteristic of all severe cTnT mutations, and 2) are they primary (early) or secondary (late) components of the myocellular response? Adult left ventricular myocytes were isolated from 2- and 6-mo-old transgenic mice carrying missense mutations at residue 92, flanking the TNT1 NH(2)-terminal tail domain. Results from R92L and R92W myocytes showed mutation-specific alterations in contraction and relaxation indexes at 2 mo with improvements by 6 mo. Alterations in Ca(2+) kinetics remained consistent with mechanical data in which R92L and R92W exhibited severe diastolic impairments at the early time point that improved with increasing age. A normal regulation of Ca(2+) kinetics in the context of an altered baseline cTnI phosphorylation suggested a pathogenic mechanism at the myofilament level taking precedence for R92L. The quantitation of Ca(2+)-handling proteins in R92W mice revealed a synergistic compensatory mechanism involving an increased Ser16 and Thr17 phosphorylation of phospholamban, contributing to the temporal onset of improved cellular mechanics and Ca(2+) homeostasis. Therefore, independent cTnT mutations in the TNT1 domain result in primary mutation-specific effects and a differential temporal onset of altered myocellular mechanics, Ca(2+) kinetics, and Ca(2+) homeostasis, complex mechanisms which may contribute to the clinical variability in cTnT-related familial hypertrophic cardiomyopathy mutations.
Collapse
Affiliation(s)
- Pia J Guinto
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
48
|
Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R. Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 2009; 388:673-81. [PMID: 19341744 DOI: 10.1016/j.jmb.2009.03.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 11/19/2022]
Abstract
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca(2+) on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca(2+) and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca(2+) allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca(2+)-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca(2+), troponin operates as an inhibitor, while in activated muscles at high Ca(2+), it acts as a promoter to initiate contraction.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology and Biophysics, Boston University, School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
49
|
Goonasekara CL, Heeley DH. Effect of Removing the Amino-Terminal Hexapeptide of Tropomyosin on the Properties of the Thin Filament. Biochemistry 2009; 48:3538-44. [DOI: 10.1021/bi802004j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David H. Heeley
- Department of Biochemistry, Memorial University, St. John’s, Newfoundland, Canada A1B 3X9
| |
Collapse
|
50
|
Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. J Mol Med (Berl) 2009; 87:411-22. [PMID: 19189074 DOI: 10.1007/s00109-008-0436-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/18/2008] [Accepted: 12/10/2008] [Indexed: 12/13/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is associated with cardiac hypertrophy, diastolic dysfunction, and sudden death. Recently, it has been suggested that inefficient energy utilization could be a common molecular pathway of HCM-related mutations. We have previously generated transgenic Sprague-Dawley rats overexpressing a truncated cardiac troponin T (DEL-TNT) molecule, displaying typical features of HCM such as diastolic dysfunction and an increased susceptibility to ventricular arrhythmias. We now studied these rats using 31P magnetic resonance spectroscopy (MRS). MRS demonstrated that cardiac energy metabolism was markedly impaired, as indicated by a decreased phosphocreatine to ATP ratio (-31%, p < 0.05). In addition, we assessed contractility of isolated cardiomyocytes. While DEL-TNT and control cardiomyocytes showed no difference under baseline conditions, DEL-TNT cardiomyocytes selectively exhibited a decrease in fractional shortening by 28% after 1 h in glucose-deprived medium (p < 0.05). Moreover, significant decreases in contraction velocity and relaxation velocity were observed. To identify the underlying molecular pathways, we performed transcriptional profiling using real-time PCR. DEL-TNT hearts exhibited induction of several genes critical for cardiac energy supply, including CD36, CPT-1/-2, and PGC-1alpha. Finally, DEL-TNT rats and controls were studied by radiotelemetry after being stressed by isoproterenol, revealing a significantly increased frequency of arrhythmias in transgenic animals. In summary, we demonstrate profound energetic alterations in DEL-TNT hearts, supporting the notion that inefficient cellular ATP utilization contributes to the pathogenesis of HCM.
Collapse
|