1
|
Huber RJ, Kim WD. Trafficking of adhesion and aggregation-modulating proteins during the early stages of Dictyostelium development. Cell Signal 2024; 121:111292. [PMID: 38986731 DOI: 10.1016/j.cellsig.2024.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The social amoeba Dictyostelium discoideum has been studied for close to a century to better understand conserved cellular and developmental processes. The life cycle of this model eukaryote is composed of a unicellular growth phase and a multicellular developmental phase that is induced by starvation. When starved, individual cells undergo chemotactic aggregation to form multicellular mounds that develop into slugs. Terminal differentiation of cells within slugs forms fruiting bodies, each composed of a stalk that supports a mass of viable spores that germinate and restart the life cycle when nutrients become available. Calcium-dependent cell adhesion protein A (CadA) and countin (CtnA) are two proteins that regulate adhesion and aggregation, respectively, during the early stages of D. discoideum development. While the functions of these proteins have been well-studied, the mechanisms regulating their trafficking are not fully understood. In this study, we reveal pathways and cellular components that regulate the intracellular and extracellular amounts of CadA and CtnA during aggregation. During growth and starvation, CtnA localizes to cytoplasmic vesicles and punctae. We show that CtnA is glycosylated and this post-translational modification is required for its secretion. Upon autophagy induction, a signal peptide for secretion facilitates the release of CtnA from cells via a pathway involving the μ subunit of the AP3 complex (Apm3) and the WASP and SCAR homolog, WshA. Additionally, CtnA secretion is negatively regulated by the D. discoideum orthologs of the human non-selective cation channel mucolipin-1 (Mcln) and sorting receptor sortilin (Sort1). As for CadA, it localizes to the cell periphery in growth-phase and starved cells. The intracellular and extracellular amounts of CadA are modulated by autophagy genes (atg1, atg9), Apm3, WshA, and Mcln. We integrate these data with previously published findings to generate a comprehensive model summarizing the trafficking of CadA and CtnA in D. discoideum. Overall, this study enhances our understanding of protein trafficking during D. discoideum aggregation, and more broadly, provides insight into the multiple pathways that regulate protein trafficking and secretion in all eukaryotes.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
2
|
Gomer RH. The Use of Diffusion Calculations and Monte Carlo Simulations to Understand the Behavior of Cells in Dictyostelium Communities. Comput Struct Biotechnol J 2019; 17:684-688. [PMID: 31303972 PMCID: PMC6603294 DOI: 10.1016/j.csbj.2019.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 11/01/2022] Open
Abstract
Microbial communities are the simplest possible model of multicellular tissues, allowing studies of cell-cell interactions to be done with as few extraneous factors as possible. For instance, the eukaryotic microbe Dictyostelium discoideum proliferates as single cells, and when starved, the cells aggregate together and form structures of ~20,000 cells. The cells use a variety of signals to direct their movement, inform each other of their local cell density and whether they are starving, and organize themselves into groups of ~20,000 cells. Mathematical models and computational approaches have been a key check on, and guide of, the experimental work. In this minireview, I will discuss diffusion calculations and Monte Carlo simulations that were used for Dictyostelium studies that offer general paradigms for several aspects of cell-cell communication. For instance, computational work showed that diffusible secreted cell-density sensing (quorum) factors can diffuse away so quickly from a single cell that the local concentration will not build up to incorrectly cause the cell to sense that it is in the presence of a high density of other cells secreting that signal. In another example, computation correctly predicted a mechanism that allows a group of cells to break up into subgroups. These are thus some examples of the power and necessity of computational work in biology.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
3
|
Dhakshinamoorthy R, Bitzhenner M, Cosson P, Soldati T, Leippe M. The Saposin-Like Protein AplD Displays Pore-Forming Activity and Participates in Defense Against Bacterial Infection During a Multicellular Stage of Dictyostelium discoideum. Front Cell Infect Microbiol 2018; 8:73. [PMID: 29662839 PMCID: PMC5890168 DOI: 10.3389/fcimb.2018.00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 11/15/2022] Open
Abstract
Due to their archaic life style and microbivor behavior, amoebae may represent a source of antimicrobial peptides and proteins. The amoebic protozoon Dictyostelium discoideum has been a model organism in cell biology for decades and has recently also been used for research on host-pathogen interactions and the evolution of innate immunity. In the genome of D. discoideum, genes can be identified that potentially allow the synthesis of a variety of antimicrobial proteins. However, at the protein level only very few antimicrobial proteins have been characterized that may interact directly with bacteria and help in fighting infection of D. discoideum with potential pathogens. Here, we focus on a large group of gene products that structurally belong to the saposin-like protein (SAPLIP) family and which members we named provisionally Apls (amoebapore-like peptides) according to their similarity to a comprehensively studied antimicrobial and cytotoxic pore-forming protein of the protozoan parasite Entamoeba histolytica. We focused on AplD because it is the only Apl gene that is reported to be primarily transcribed further during the multicellular stages such as the mobile slug stage. Upon knock-out (KO) of the gene, aplD− slugs became highly vulnerable to virulent Klebsiella pneumoniae. AplD− slugs harbored bacterial clumps in their interior and were unable to slough off the pathogen in their slime sheath. Re-expression of AplD in aplD− slugs rescued the susceptibility toward K. pneumoniae. The purified recombinant protein rAplD formed pores in liposomes and was also capable of permeabilizing the membrane of live Bacillus megaterium. We propose that the multifarious Apl family of D. discoideum comprises antimicrobial effector polypeptides that are instrumental to interact with bacteria and their phospholipid membranes. The variety of its members would allow a complementary and synergistic action against a variety of microbes, which the amoeba encounters in its environment.
Collapse
Affiliation(s)
| | - Moritz Bitzhenner
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| |
Collapse
|
4
|
Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cell Signal 2017; 35:61-72. [DOI: 10.1016/j.cellsig.2017.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/12/2017] [Accepted: 03/27/2017] [Indexed: 12/30/2022]
|
5
|
Tang Y, Gomer RH. CnrN regulates Dictyostelium group size using a counting factor-independent mechanism. Commun Integr Biol 2012; 1:185-7. [PMID: 19704889 DOI: 10.4161/cib.1.2.7255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 11/19/2022] Open
Abstract
One of the simplest examples of a complex behavior is the aggregation of solitary Dictyostelium discoideum amoebae to form a 20,000-cell fruiting body. A field of starving amoebae first breaks up into territories. In each territory, the cells form a spider-like pattern of streams of cells. As part of a negative feedback loop, counting factor (CF), a secreted protein complex whose concentration increases with the size of the stream, prevents over-sized fruiting bodies from being formed by increasing cell motility and decreasing cell-cell adhesion, which causes the breakup of excessively large streams. Cells lacking the phosphatase CnrN (cnrN(-) cells) form small aggregation territories and few streams.1 In this report, we present computer simulations that suggest that in the absence of stream formation, CF should be unable to affect group size. As predicted, cnrN(-) group size is insensitive to the addition or depletion of CF. Together, the data indicate that CnrN regulates group size by regulating both the break-up of a field of cells into aggregation territories and stream formation during development, and that CnrN-mediated and CF-mediated group size regulation use different mechanisms.
Collapse
Affiliation(s)
- Yitai Tang
- Department of Biochemistry and Cell Biology; Rice University; Houston, Texas USA
| | | |
Collapse
|
6
|
Abstract
The social amoeba Dictyostelium discoideum is one of the leading model systems used to study how cells count themselves to determine the number and/or density of cells. In this review, we describe work on three different cell-density sensing systems used by Dictyostelium. The first involves a negative feedback loop in which two secreted signals inhibit cell proliferation during the growth phase. As the cell density increases, the concentrations of the secreted factors concomitantly increase, allowing the cells to sense their density. The two signals act as message authenticators for each other, and the existence of two different signals that require each other for activity may explain why previous efforts to identify autocrine proliferation-inhibiting signals in higher eukaryotes have generally failed. The second system involves a signal made by growing cells that is secreted only when they starve. This then allows cells to sense the density of just the starving cells, and is an example of a mechanism that allows cells in a tissue to sense the density of one specific cell type. The third cell density counting system involves cells in aggregation streams secreting a signal that limits the size of fruiting bodies. Computer simulations predicted, and experiments then showed, that the factor increases random cell motility and decreases cell-cell adhesion to cause streams to break up if there are too many cells in the stream. Together, studies on Dictyostelium cell density counting systems will help elucidate how higher eukaryotes regulate the size and composition of tissues.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, ILSB MS 3474, Texas A&M University, College Station, Texas 77843-3474, USA.
| | | | | |
Collapse
|
7
|
McCann CP, Kriebel PW, Parent CA, Losert W. Cell speed, persistence and information transmission during signal relay and collective migration. J Cell Sci 2010; 123:1724-31. [PMID: 20427323 DOI: 10.1242/jcs.060137] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Collective migration is a key feature of the social amoebae Dictyostelium discoideum, where the binding of chemoattractants leads to the production and secretion of additional chemoattractant and the relay of the signal to neighboring cells. This then guides cells to migrate collectively in a head-to-tail fashion. We used mutants that were defective in signal relay to elucidate which quantitative metrics of cell migration are most strongly affected by signal relay and collective motion. We show that neither signal relay nor collective motion markedly impact the speed of cell migration. Cells maintained a preferred overall direction of motion for several minutes with similar persistence, regardless of whether or not they were attracted to moving neighbors, moving collectively in contact with their neighbors, or simply following a fixed exogenous signal. We quantitatively establish that signal relay not only increases the number of cells that respond to a chemotactic signal, but most remarkably, also transmits information about the location of the source accurately over large distances, independently of the strength of the exogenous signal. We envision that signal relay has a similar key role in the migration of a variety of chemotaxing mammalian cells that can relay chemoattractant signals.
Collapse
Affiliation(s)
- Colin P McCann
- Department of Physics, University of Maryland College Park, College Park, MD 20742-4111, USA
| | | | | | | |
Collapse
|
8
|
Choe JM, Bakthavatsalam D, Phillips JE, Gomer RH. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation. BMC BIOCHEMISTRY 2009; 10:4. [PMID: 19187549 PMCID: PMC2644720 DOI: 10.1186/1471-2091-10-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/02/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the binding requires the presence of CfaD, we examined the binding and effect on proliferation of recombinant AprA. RESULTS We find that the extracellular accumulation of AprA increases with cell density and reaches a concentration of 0.3 microg/ml near a stationary cell density. When added to wild-type or aprA- cells, recombinant AprA (rAprA) significantly slows proliferation at 0.1 microg/ml and higher concentrations. From 4 to 64 microg/ml, the effect of rAprA is at a plateau, slowing but not stopping proliferation. The proliferation-inhibiting activity of rAprA is roughly the same as that of native AprA in conditioned growth medium. Proliferating aprA- cells show saturable binding of rAprA to 92,000 +/- 11,000 cell-surface receptors with a KD of 0.03 +/- 0.02 microg/ml. There appears to be one class of binding site, and no apparent cooperativity. Native AprA inhibits the binding of rAprA to aprA- cells with a Ki of 0.03 mug/ml, suggesting that the binding kinetics of rAprA are similar to those of native AprA. The proliferation of cells lacking CrlA, a cAMP receptor-like protein, or cells lacking CfaD are not affected by rAprA. Surprisingly, both cell types still bind rAprA. CONCLUSION Together, the data suggest that AprA functions as an autocrine proliferation-inhibiting factor by binding to cell surface receptors. Although AprA requires CfaD for activity, it does not require CfaD to bind to cells, suggesting the possibility that cells have an AprA receptor and a CfaD receptor, and activation of both receptors is required to slow proliferation. We previously found that crlA- cells are sensitive to CfaD. Combined with the results presented here, this suggests that CrlA is not the AprA or CfaD receptor, and may be the receptor for an unknown third factor that is required for AprA and CfaD activity.
Collapse
Affiliation(s)
- Jonathan M Choe
- Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, TX 77005-1892, USA
| | | | - Jonathan E Phillips
- Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, TX 77005-1892, USA
| | - Richard H Gomer
- Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, TX 77005-1892, USA
| |
Collapse
|
9
|
Jang W, Gomer RH. Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface 2008; 5 Suppl 1:S49-58. [PMID: 18426773 DOI: 10.1098/rsif.2008.0067.focus] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known about how the sizes of specific organs and tissues are regulated. To try to understand these mechanisms, we have been using a combination of modelling and experiments to study the simple system Dictyostelium discoideum, which forms approximately 20000 cell groups. We found that cells secrete a factor, and as the number of cells increases, the concentration of the factor increases. Diffusion calculations indicated that this lets cells sense the local cell density. Computer simulations predicted, and experiments then showed, that this factor decreases cell-cell adhesion and increases random cell motility. In a group, adhesion forces keep cells together, while random motility forces cause cells to pull apart and separate from each other. As the group size increases above a threshold, the factor concentration goes above a threshold and the cells switch from an adhered state to a separated state. This causes excessively large groups to break apart and/or dissipate, creating an upper limit to group size. In this review, we focus on how computer simulations made testable predictions that led the way to understanding the size regulation mechanism mediated by this factor.
Collapse
Affiliation(s)
- Wonhee Jang
- Department of Life Science, Dongguk University, Chung-Gu, Seoul, Korea.
| | | |
Collapse
|
10
|
Involvement of Sib proteins in the regulation of cellular adhesion in Dictyostelium discoideum. EUKARYOTIC CELL 2008; 7:1600-5. [PMID: 18676957 DOI: 10.1128/ec.00155-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechanism underlying this regulation, we analyzed the expression of recently identified Dictyostelium adhesion molecules (Sib proteins) that present features also found in mammalian integrins. sibA and sibC are both expressed in vegetative Dictyostelium cells, but the expression of sibC is repressed strongly in conditions where cellular adhesion decreases. Analysis of sibA and sibC mutant cells further suggests that variations in the expression levels of sibC account largely for changes in cellular adhesion in response to environmental cues.
Collapse
|
11
|
A protein with similarity to PTEN regulates aggregation territory size by decreasing cyclic AMP pulse size during Dictyostelium discoideum development. EUKARYOTIC CELL 2008; 7:1758-70. [PMID: 18676953 DOI: 10.1128/ec.00210-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An interesting but largely unanswered biological question is how eukaryotic organisms regulate the size of multicellular tissues. During development, a lawn of Dictyostelium cells breaks up into territories, and within the territories the cells aggregate in dendritic streams to form groups of approximately 20,000 cells. Using random insertional mutagenesis to search for genes involved in group size regulation, we found that an insertion in the cnrN gene affects group size. Cells lacking CnrN (cnrN(-)) form abnormally small groups, which can be rescued by the expression of exogenous CnrN. Relayed pulses of extracellular cyclic AMP (cAMP) direct cells to aggregate by chemotaxis to form aggregation territories and streams. cnrN(-) cells overaccumulate cAMP during development and form small territories. Decreasing the cAMP pulse size by treating cnrN(-) cells with cAMP phosphodiesterase or starving cnrN(-) cells at a low density rescues the small-territory phenotype. The predicted CnrN sequence has similarity to phosphatase and tensin homolog (PTEN), which in Dictyostelium inhibits cAMP-stimulated phosphatidylinositol 3-kinase signaling pathways. CnrN inhibits cAMP-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation, Akt activation, actin polymerization, and cAMP production. Our results suggest that CnrN is a protein with some similarities to PTEN and that it regulates cAMP signal transduction to regulate territory size.
Collapse
|
12
|
Gao T, Roisin-Bouffay C, Hatton RD, Tang L, Brock DA, DeShazo T, Olson L, Hong WP, Jang W, Canseco E, Bakthavatsalam D, Gomer RH. A cell number-counting factor regulates levels of a novel protein, SslA, as part of a group size regulation mechanism in Dictyostelium. EUKARYOTIC CELL 2007; 6:1538-51. [PMID: 17660362 PMCID: PMC2043358 DOI: 10.1128/ec.00169-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developing Dictyostelium cells form aggregation streams that break into groups of approximately 2 x 10(4) cells. The breakup and subsequent group size are regulated by a secreted multisubunit counting factor (CF). To elucidate how CF regulates group size, we isolated second-site suppressors of smlA(-), a transformant that forms small groups due to oversecretion of CF. smlA(-) sslA1(CR11) cells form roughly wild-type-size groups due to an insertion in the beginning of the coding region of sslA1, one of two highly similar genes encoding a novel protein. The insertion increases levels of SslA. In wild-type cells, the sslA1(CR11) mutation forms abnormally large groups. Reducing SslA levels by antisense causes the formation of smaller groups. The sslA(CR11) mutation does not affect the extracellular accumulation of CF activity or the CF components countin and CF50, suggesting that SslA does not regulate CF secretion. However, CF represses levels of SslA. Wild-type cells starved in the presence of smlA(-) cells, recombinant countin, or recombinant CF50 form smaller groups, whereas sslA1(CR11) cells appear to be insensitive to the presence of smlA(-) cells, countin, or CF50, suggesting that the sslA1(CR11) insertion affects CF signal transduction. We previously found that CF reduces intracellular glucose levels. sslA(CR11) does not significantly affect glucose levels, while glucose increases SslA levels. Together, the data suggest that SslA is a novel protein involved in part of a signal transduction pathway regulating group size.
Collapse
Affiliation(s)
- Tong Gao
- Howard Hughes Medical Institute, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brock DA, van Egmond WN, Shamoo Y, Hatton RD, Gomer RH. A 60-kilodalton protein component of the counting factor complex regulates group size in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:1532-8. [PMID: 16963635 PMCID: PMC1563584 DOI: 10.1128/ec.00169-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large groups, and high levels of CF result in small groups. We previously found three components of CF (D. A. Brock and R. H. Gomer, Genes Dev. 13:1960-1969, 1999; D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, R. Ammann, and R. H. Gomer, Development 129:3657-3668, 2002; and D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, W. Jang, R. Ammann, and R. H. Gomer, Eukaryot. Cell 2:788-797, 2003). We describe here a fourth component, CF60. CF60 has similarity to acid phosphatases, although it has very little, if any, acid phosphatase activity. CF60 is secreted by starving cells and is lost from the 450-kDa CF when a different CF component, CF50, is absent. Although we were unable to obtain cells lacking CF60, decreasing CF60 levels by antisense resulted in large groups, and overexpressing CF60 resulted in small groups. When added to wild-type cells, conditioned starvation medium from CF60 overexpressor cells as well as recombinant CF60 caused the formation of small groups. The ability of recombinant CF60 to decrease group size did not require the presence of the CF component CF45-1 or countin but did require the presence of CF50. Recombinant CF60 does not have acid phosphatase activity, indicating that the CF60 bioactivity is not due to a phosphatase activity. Together, the data suggest that CF60 is a component of CF, and thus this secreted signal has four different protein components.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, 6100 S. Main Street, Houston, Texas 77005-1892, USA
| | | | | | | | | |
Collapse
|
14
|
Jang W, Gomer RH. A protein in crude cytosol regulates glucose-6-phosphatase activity in crude microsomes to regulate group size in Dictyostelium. J Biol Chem 2006; 281:16377-83. [PMID: 16606621 PMCID: PMC4486306 DOI: 10.1074/jbc.m509995200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). The CF signal transduction pathway involves CF-repressing internal glucose levels by increasing the K(m) of glucose-6-phosphatase. Little is known about how this enzyme is regulated. Glucose-6-phosphatase is associated with microsomes in both Dictyostelium and mammals. We find that the activity of glucose-6-phosphatase in crude microsomes from cells with high, normal, or low CF activity had a negative correlation with the amount of CF present in these cell lines. In crude cytosols (supernatants from ultracentrifugation of cell lysates), the glucose-6-phosphatase activity had a positive correlation with CF accumulation. The crude cytosols were further fractionated into a fraction containing molecules greater than 10 kDa (S>10K) and molecules less than 10 KDa (S<10K). S>10K from wild-type cells strongly repressed the activity of glucose-6-phosphatase in wild-type microsomes, whereas S>10K from countin(-) cells (cells with low CF activity) significantly increased the activity of glucose-6-phosphatase in wild-type microsomes by decreasing K(m). The regulatory activities in the wild-type and countin(-) S>10Ks are heat-labile and protease-sensitive, suggesting that they are proteins. S<10K from both wild-type and countin(-) cells did not significantly change glucose-6-phosphatase activity. Together, the data suggest that, as a part of a pathway modulating multicellular group size, CF regulates one or more proteins greater than 10 KDa in crude cytosol that affect microsome-associated glucose-6-phosphatase activity.
Collapse
Affiliation(s)
- Wonhee Jang
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
15
|
Dallon J, Jang W, Gomer RH. Mathematically modelling the effects of counting factor in Dictyostelium discoideum. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2006; 23:45-62. [PMID: 16371424 PMCID: PMC4469269 DOI: 10.1093/imammb/dqi016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Size regulation is a crucial feature in many biological systems, with misregulation leading to dysplasia or hyperplasia. The recent discovery of counting factor (CF) in Dictyostelium discoideum will lead to a greater understanding of how the system regulates the size of a group of cells. In this paper we mathematically model the known effects of CF using two different models: a cellular automata model and a discrete continuum hybrid model. With the use of these models we are able to understand how modulation of adhesion and motile forces by CF can facilitate stream breakup. In addition, the modelling suggests a new possible mechanism for stream breakup involving the frequency of cell reorientation.
Collapse
Affiliation(s)
- John Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602-6539, USA.
| | | | | |
Collapse
|
16
|
Abstract
A fundamental property of multicellular organisms is signal relay, the process by which information is transmitted from one cell to another. The integration of external information, such as nutritional status or developmental cues, is critical to the function of organisms. In addition, the spatial organizations of multicellular organisms require intricate signal relay mechanisms. Signal relay is remarkably exhibited during the life cycle of the social amoebae Dictyostelium discoideum, a eukaryote that retains a simple way of life, yet it has greatly contributed to our knowledge of the mechanisms cells use to communicate and integrate information. This chapter focuses on the molecules and mechanisms that Dictyostelium employs during its life cycle to relay temporal and spatial cues that are required for survival.
Collapse
Affiliation(s)
- Dana C Mahadeo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Jang W, Gomer RH. Exposure of cells to a cell number-counting factor decreases the activity of glucose-6-phosphatase to decrease intracellular glucose levels in Dictyostelium discoideum. EUKARYOTIC CELL 2005; 4:72-81. [PMID: 15643062 PMCID: PMC544156 DOI: 10.1128/ec.4.1.72-81.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of Dictyostelium discoideum is a model for tissue size regulation, as these cells form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). CF signal transduction involves decreasing intracellular CF glucose levels. A component of CF, countin, has the bioactivity of the entire CF complex, and an 8-min exposure of cells to recombinant countin decreases intracellular glucose levels. To understand how CF regulates intracellular glucose, we examined the effect of CF on enzymes involved in glucose metabolism. Exposure of cells to CF has little effect on amylase or glycogen phosphorylase, enzymes involved in glucose production from glycogen. Glucokinase activity (the first specific step of glycolysis) is inhibited by high levels of CF but is not affected by an 8-min exposure to countin. The second enzyme specific for glycolysis, phosphofructokinase, is not regulated by CF. There are two corresponding enzymes in the gluconeogenesis pathway, fructose-1,6-bisphosphatase and glucose-6-phosphatase. The first is not regulated by CF or countin, whereas glucose-6-phosphatase is regulated by both CF and an 8-min exposure to countin. The countin-induced changes in the Km and Vmax of glucose-6-phosphatase cause a decrease in glucose production that can account for the countin-induced decrease in intracellular glucose levels. It thus appears that part of the CF signal transduction pathway involves inhibiting the activity of glucose-6-phosphatase, decreasing intracellular glucose levels and affecting the levels of other metabolites, to regulate group size.
Collapse
Affiliation(s)
- Wonhee Jang
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA
| | | |
Collapse
|
18
|
Gao T, Knecht D, Tang L, Hatton RD, Gomer RH. A cell number counting factor regulates Akt/protein kinase B to regulate Dictyostelium discoideum group size. EUKARYOTIC CELL 2005; 3:1176-84. [PMID: 15470246 PMCID: PMC522607 DOI: 10.1128/ec.3.5.1176-1184.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of approximately 20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin- cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB.
Collapse
Affiliation(s)
- Tong Gao
- Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main St., Houston, TX 77005-1892, USA
| | | | | | | | | |
Collapse
|
19
|
Powell RR, Temesvari LA. Involvement of a Rab8-like protein of Dictyostelium discoideum, Sas1, in the formation of membrane extensions, secretion and adhesion during development. MICROBIOLOGY-SGM 2004; 150:2513-2525. [PMID: 15289548 DOI: 10.1099/mic.0.27073-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Establishment of cell-cell adhesions, regulation of actin, and secretion are critical during development. Rab8-like GTPases have been shown to modulate these cellular events, suggesting an involvement in developmental processes. To further elucidate the function of Rab8-like GTPases in a developmental context, a Rab8-related protein (Sas1) of Dictyostelium discoideum was examined, the expression of which increases at the onset of development. Dictyostelium cell lines expressing inactive (N128I mutant) and constitutively active (Q74L mutant) Sas1 as green fluorescent protein (GFP)-Sas1 chimeras were generated. Cells expressing Sas1Q74L displayed numerous actin-rich membrane protrusions, increased secretion, and were unable to complete development. In particular, these cells demonstrated a reduction in adhesion as well as in the levels of a cell adhesion molecule, gp24 (DdCAD-1). In contrast, cells expressing Sas1N128I exhibited increased cell-cell adhesion and increased levels of gp24. Counting factor is a multisubunit signalling complex that is secreted in early development and controls aggregate size by negatively regulating the levels of cell adhesion molecules, including gp24. Interestingly, the Sas1Q74L mutant demonstrated increased levels of extracellular countin, a subunit of counting factor, suggesting that Sas1 may regulate trafficking of counting factor components. Together, the data suggest that Sas1 may be a key regulator of actin, adhesion and secretion during development.
Collapse
Affiliation(s)
- Rhonda R Powell
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Lesly A Temesvari
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
20
|
Gomer R, Gao T, Tang Y, Knecht D, Titus MA. Cell motility mediates tissue size regulation in Dictyostelium. J Muscle Res Cell Motil 2003; 23:809-15. [PMID: 12952079 DOI: 10.1023/a:1024487930787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little is known about how organisms regulate the size of multicellular structures. This review condenses some of the observations about how Dictyostelium regulates the size of fruiting bodies. Very large fruiting bodies tend to fall over, and one of the ways Dictyostelium cells prevent this is by breaking up the aggregation streams when there is an excessive number of cells in the stream. Developing cells simultaneously secrete and sense counting factor (CF), a 450 kDa complex of proteins. Diffusion calculations showed that as the number of cells in a stream or group increases, the local concentration of CF will increase, allowing the cells to sense the number of cells in the stream or group. Computer simulations predicted that a high level of CF could trigger stream breakup by decreasing cell-cell adhesion and/or increasing cell motility, effectively causing the stream to dissipate and begin to fall apart. The prediction that adhesion and motility affect group size is supported by observations that decreasing adhesion by adding antibodies that bind to adhesion protein causes the formation of smaller groups, while increasing adhesion by overexpressing adhesion proteins, or decreasing motility with drugs that disrupt actin function both cause the formation of larger groups. CF both decreases adhesion and increases motility. CF increases motility in part by increasing actin polymerization and myosin phosphorylation, and decreasing myosin polymerization. New observations using a fusion of a green fluorescent protein to a protein fragment that binds polymerized actin show that in live cells CF does not affect the distribution of polymerized actin. CF increases the levels of ABP-120, an actin-bundling protein, and new observations indicate that very low levels of CF cause an increase in levels of myoB, an unconventional myosin. Our current understanding of group size regulation in Dictyostelium is thus that motility plays a key role, and that to regulate group size cells regulate the expression of at least two proteins, as well as regulating the polymerization of both actin and myosin.
Collapse
Affiliation(s)
- Richard Gomer
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA.
| | | | | | | | | |
Collapse
|
21
|
Brock DA, Ehrenman K, Ammann R, Tang Y, Gomer RH. Two components of a secreted cell number-counting factor bind to cells and have opposing effects on cAMP signal transduction in Dictyostelium. J Biol Chem 2003; 278:52262-72. [PMID: 14557265 DOI: 10.1074/jbc.m309101200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A secreted 450-kDa complex of proteins called counting factor (CF) is part of a negative feedback loop that regulates the size of the groups formed by developing Dictyostelium cells. Two components of CF are countin and CF50. Both recombinant countin and recombinant CF50 decrease group size in Dictyostelium. countin- cells have a decreased cAMP-stimulated cAMP pulse, whereas recombinant countin potentiates the cAMP pulse. We find that CF50 cells have an increased cAMP pulse, whereas recombinant CF50 decreases the cAMP pulse, suggesting that countin and CF50 have opposite effects on cAMP signal transduction. In addition, countin and CF50 have opposite effects on cAMP-stimulated Erk2 activation. However, like recombinant countin, recombinant CF50 increases cell motility. We previously found that cells bind recombinant countin with a Hill coefficient of approximately 2, a KH of 60 pm, and approximately 53 sites/cell. We find here that cells also bind 125I-recombinant CF50, with a Hill coefficient of approximately 2, a KH of approximately 15 ng/ml (490 pm), and approximately 56 sites/cell. Countin and CF50 require each other's presence to affect group size, but the presence of countin is not necessary for CF50 to bind to cells, and CF50 is not necessary for countin to bind to cells. Our working hypothesis is that a signal transduction pathway activated by countin binding to cells modulates a signal transduction pathway activated by CF50 binding to cells and vice versa and that these two pathways can be distinguished by their effects on cAMP signal transduction.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | |
Collapse
|
22
|
Ehrenman K, Yang G, Hong WP, Gao T, Jang W, Brock DA, Hatton RD, Shoemaker JD, Gomer RH. Disruption of aldehyde reductase increases group size in dictyostelium. J Biol Chem 2003; 279:837-47. [PMID: 14551196 DOI: 10.1074/jbc.m310539200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developing Dictyostelium cells form structures containing approximately 20,000 cells. The size regulation mechanism involves a secreted counting factor (CF) repressing cytosolic glucose levels. Glucose or a glucose metabolite affects cell-cell adhesion and motility; these in turn affect whether a group stays together, loses cells, or even breaks up. NADPH-coupled aldehyde reductase reduces a wide variety of aldehydes to the corresponding alcohols, including converting glucose to sorbitol. The levels of this enzyme previously appeared to be regulated by CF. We find that disrupting alrA, the gene encoding aldehyde reductase, results in the loss of alrA mRNA and AlrA protein and a decrease in the ability of cell lysates to reduce both glyceraldehyde and glucose in an NADPH-coupled reaction. Counterintuitively, alrA- cells grow normally and have decreased glucose levels compared with parental cells. The alrA- cells form long unbroken streams and huge groups. Expression of AlrA in alrA- cells causes cells to form normal fruiting bodies, indicating that AlrA affects group size. alrA- cells have normal adhesion but a reduced motility, and computer simulations suggest that this could indeed result in the formation of large groups. alrA- cells secrete low levels of countin and CF50, two components of CF, and this could partially account for why alrA- cells form large groups. alrA- cells are responsive to CF and are partially responsive to recombinant countin and CF50, suggesting that disrupting alrA inhibits but does not completely block the CF signal transduction pathway. Gas chromatography/mass spectroscopy indicates that the concentrations of several metabolites are altered in alrA- cells, suggesting that the Dictyostelium aldehyde reductase affects several metabolic pathways in addition to converting glucose to sorbitol. Together, our data suggest that disrupting alrA affects CF secretion, causes many effects on cellular metabolism, and has a major effect on group size.
Collapse
Affiliation(s)
- Karen Ehrenman
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brock DA, Hatton RD, Giurgiutiu DV, Scott B, Jang W, Ammann R, Gomer RH. CF45-1, a secreted protein which participates in Dictyostelium group size regulation. EUKARYOTIC CELL 2003; 2:788-97. [PMID: 12912898 PMCID: PMC178340 DOI: 10.1128/ec.2.4.788-797.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developing Dictyostelium cells aggregate to form fruiting bodies containing typically 2 x 10(4) cells. To prevent the formation of an excessively large fruiting body, streams of aggregating cells break up into groups if there are too many cells. The breakup is regulated by a secreted complex of polypeptides called counting factor (CF). Countin and CF50 are two of the components of CF. Disrupting the expression of either of these proteins results in cells secreting very little detectable CF activity, and as a result, aggregation streams remain intact and form large fruiting bodies, which invariably collapse. We find that disrupting the gene encoding a third protein present in crude CF, CF45-1, also results in the formation of large groups when cells are grown with bacteria on agar plates and then starve. However, unlike countin(-) and cf50(-) cells, cf45-1(-) cells sometimes form smaller groups than wild-type cells when the cells are starved on filter pads. The predicted amino acid sequence of CF45-1 has some similarity to that of lysozyme, but recombinant CF45-1 has no detectable lysozyme activity. In the exudates from starved cells, CF45-1 is present in a approximately 450-kDa fraction that also contains countin and CF50, suggesting that it is part of a complex. Recombinant CF45-1 decreases group size in colonies of cf45-1(-) cells with a 50% effective concentration (EC(50)) of approximately 8 ng/ml and in colonies of wild-type and cf50(-) cells with an EC(50) of approximately 40 ng/ml. Like countin(-) and cf50(-) cells, cf45-1(-) cells have high levels of cytosolic glucose, high cell-cell adhesion, and low cell motility. Together, the data suggest that CF45-1 participates in group size regulation in Dictyostelium.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Jang W, Chiem B, Gomer RH. A secreted cell number counting factor represses intracellular glucose levels to regulate group size in dictyostelium. J Biol Chem 2002; 277:39202-8. [PMID: 12161440 DOI: 10.1074/jbc.m205635200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developing Dictyostelium cells form evenly sized groups of approximately 2 x 10(4) cells. A secreted 450-kDa protein complex called counting factor (CF) regulates group size by repressing cell-cell adhesion and myosin polymerization and by increasing cAMP-stimulated cAMP production, actin polymerization, and cell motility. We find that CF regulates group size in part by repressing internal glucose levels. Transformants lacking bioactive CF and wild-type cells with extracellular CF depleted by antibodies have high glucose levels, whereas transformants oversecreting CF have low glucose levels. A component of CF, countin, affects group size in a manner similar to CF, and a 1-min exposure of cells to countin decreases glucose levels. Adding 1 mm exogenous glucose negates the effect of high levels of extracellular CF on group size and mimics the effect of depleting CF on glucose levels, cell-cell adhesion, cAMP pulse size, actin polymerization, myosin assembly, and motility. These results suggest that glucose is a downstream component in part of the CF signaling pathway and may be relevant to the observed role of the insulin pathway in tissue size regulation in higher eukaryotes.
Collapse
Affiliation(s)
- Wonhee Jang
- Howard Hughes Medical Institute and the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | |
Collapse
|