1
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
2
|
Akyer SP, Karagur ER, Ata MT, Toprak EK, Donmez AC, Donmez BO. Verbascoside Inhibits/Repairs the Damage of LPS-Induced Inflammation by Regulating Apoptosis, Oxidative Stress, and Bone Remodeling. Curr Issues Mol Biol 2023; 45:8755-8766. [PMID: 37998727 PMCID: PMC10670241 DOI: 10.3390/cimb45110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Osteocytes play an important role as regulators of both osteoclasts and osteoblasts, and some proteins that are secreted from them play a role in bone remodeling and modeling. LPS affects bone structure because it is an inflammatory factor, despite verbascoside's potential for bone preservation and healing. Osteocytes may also be involved in the control of the bone's response to immunological changes in inflammatory situations. MLO-Y4 cells were cultured in either supplemented -MEM alone with a low serum to inhibit cell growth or media with LPS (10 ng/mL) and/or verbascoside (50 g/mL) to show the LPS effect. In our research, LPS treatment increased RANKL levels while decreasing OPG and RUNX2 expression. Treatment with verbascoside reduced RANKL expression. In our work, verbascoside increased the expression of OPG and RUNX2. In MLO-Y4 cells exposed to verbascoside, SOD, CAT, and GSH activities as well as the expression levels of bone mineralization proteins like PHEX, RUNX2, and OPG were all elevated.
Collapse
Affiliation(s)
- Sahika Pinar Akyer
- Department of Anatomy, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Ege Rıza Karagur
- Department of Medical Genetics, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Melek Tunc Ata
- Department of Physiology, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey; (M.T.A.); (E.K.T.)
| | - Emine Kilic Toprak
- Department of Physiology, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey; (M.T.A.); (E.K.T.)
| | - Aysegul Cort Donmez
- Department of Medical Biochemistry, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Baris Ozgur Donmez
- Department of Anatomy, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| |
Collapse
|
3
|
Janssen JN, Kalev-Altman R, Shalit T, Sela-Donenfeld D, Monsonego-Ornan E. Differential gene expression in the calvarial and cortical bone of juvenile female mice. Front Endocrinol (Lausanne) 2023; 14:1127536. [PMID: 37378024 PMCID: PMC10291685 DOI: 10.3389/fendo.2023.1127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.
Collapse
Affiliation(s)
- Jerome Nicolas Janssen
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Kalev-Altman
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Shalit
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Ozturk S, Cuneyit I, Altuntas F, Karagur ER, Donmez AC, Ocak M, Unal M, Sarikanat M, Donmez BO. Resveratrol prevents ovariectomy-induced bone quality deterioration by improving the microarchitectural and biophysicochemical properties of bone. J Bone Miner Metab 2023:10.1007/s00774-023-01416-z. [PMID: 37031330 DOI: 10.1007/s00774-023-01416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/01/2023] [Indexed: 04/10/2023]
Abstract
INTRODUCTION Osteoporosis is a major health problem that is very common worldwide and is characterized by both low bone density and deterioration in bone quality. New treatment options without side effects have become an active area of research in recent years. This study was designed to investigate the preventive effects of resveratrol on bone quality deterioration caused by ovariectomy. MATERIALS AND METHODS Sixty rats were randomly divided into five groups (12 animals per group): Control, Sham-operated (SHAM), ovariectomized (OVX), OVX + Resveratrol-40 mg/kg/day (OVX + Res40), OVX + Resveratrol-80 mg/kg/day (OVX + Res80). Resveratrol was administered by oral gavage (40 and 80 mg/kg/day) for ten weeks. Micro-CT measurements, biomechanical testing, Raman spectroscopy analysis, and RT-PCR analysis were performed. ALP, OCN, TAS, and TOS levels were also measured from blood serum. RESULTS Bone strength, bone volume/total volume, trabecular volume, and trabecular thickness were higher in the OVX + RES-80 group than in the OVX group. Resveratrol increased osteogenic differentiation, as the expression of osteogenic markers ALP, Col1A1, Runx2, OPG, OCN increased in both OVX + RES-80 and OVX + RES-40 groups compared to the OVX group. 80 mg/kg/day resveratrol administration decreased the levels of ALP, OCN and TOS in ovariectomized rats. Raman spectroscopy findings showed a preventive effect of resveratrol administration against ovariectomy-induced deterioration in biophysiochemical properties of bone tissue. CONCLUSION This study revealed that administration of different doses of 80 mg/kg/day and 40 mg/kg/day of resveratrol had protective effects on bone quality deterioration caused by ovariectomy.
Collapse
Affiliation(s)
- Sevval Ozturk
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Ibrahim Cuneyit
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Fatih Altuntas
- School of Medicine, Department of Physiology, Pamukkale University, 20070, Denizli, Turkey
| | - Ege Riza Karagur
- School of Medicine, Department of Medical Genetics, Pamukkale University, 20070, Denizli, Turkey
| | - Aysegul Cort Donmez
- School of Medicine, Department of Medical Biochemistry, Pamukkale University, 20070, Denizli, Turkey
| | - Mert Ocak
- School of Dentistry, Department of Anatomy, Ankara University, 06650, Ankara, Turkey
| | - Mustafa Unal
- School of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
- Faculty of Engineering, Department of Bioengineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Mehmet Sarikanat
- Faculty of Engineering, Department of Mechanical Engineering, Ege University, 35040, Izmir, Turkey
| | - Baris Ozgur Donmez
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey.
| |
Collapse
|
5
|
Kalmari A, Heydari M, Hosseinzadeh Colagar A, Arash V. In Silico Analysis of Collagens Missense SNPs and Human Abnormalities. Biochem Genet 2022; 60:1630-1656. [PMID: 35066702 DOI: 10.1007/s10528-021-10172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Collagens are the most abundant proteins in the extra cellular matrix/ECM of human tissues that are encoded by different genes. There are single nucleotide polymorphisms/SNPs which are considered as the most useful biomarkers for some disease diagnosis or prognosis. The aim of this study is screening and identifying the functional missense SNPs of human ECM-collagens and investigating their correlation with human abnormalities. All of the missense SNPs were retrieved from the NCBI SNP database and screened for a global frequency of more than 0.1. Seventy missense SNPs that met the screening criteria were characterized for functional and stability impact using six and three protein analysis tools, respectively. Next, HOPE and geneMANIA analysis tools were used to show the effect of SNPs on three-dimensional structure (3D) and physical interaction of proteins. Results showed that 13 missense SNPs (rs2070739, rs28381984, rs13424243, rs1800517, rs73868680, rs12488457, rs1353613, rs59021909, rs9830253, rs2228547, rs3753841, rs2855430, and rs970547), which are in nine different collagen genes, affect the structure and function of different collagen proteins. Among these polymorphisms, COL4A3-rs13424243 and COL6A6-rs59021909 were predicted as the most effective ones. On the other hand, designed mutated and native 3D of rs13424243 variant illustrated that it can disturb the protein motifs. Also, geneMANIA predicted that COL4A3 and COL6A6 are interacting with some proteins including: DDR1, COL6A1, COL11A2 and so on. Based on our findings, ECM-collagens functional SNPs are important and may be considered as a risk factor or molecular marker for human disorders in the future studies.
Collapse
Affiliation(s)
- Amin Kalmari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, 47416-95447, Babolsar, Mazandaran, Iran
| | - Mohammadkazem Heydari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, 47416-95447, Babolsar, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, 47416-95447, Babolsar, Mazandaran, Iran.
| | - Valiollah Arash
- Department of Orthodontics, Dental School, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
7
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
8
|
Sekaran S, Vimalraj S, Thangavelu L. The Physiological and Pathological Role of Tissue Nonspecific Alkaline Phosphatase beyond Mineralization. Biomolecules 2021; 11:1564. [PMID: 34827562 PMCID: PMC8615537 DOI: 10.3390/biom11111564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme responsible for skeletal tissue mineralization. It is involved in the dephosphorylation of various physiological substrates, and has vital physiological functions, including extra-skeletal functions, such as neuronal development, detoxification of lipopolysaccharide (LPS), an anti-inflammatory role, bile pH regulation, and the maintenance of the blood brain barrier (BBB). TNAP is also implicated in ectopic pathological calcification of soft tissues, especially the vasculature. Although it is the crucial enzyme in mineralization of skeletal and dental tissues, it is a logical clinical target to attenuate vascular calcification. Various tools and studies have been developed to inhibit its activity to arrest soft tissue mineralization. However, we should not neglect its other physiological functions prior to therapies targeting TNAP. Therefore, a better understanding into the mechanisms mediated by TNAP is needed for minimizing off targeted effects and aid in the betterment of various pathological scenarios. In this review, we have discussed the mechanism of mineralization and functions of TNAP beyond its primary role of hard tissue mineralization.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
10
|
FAM20C Overview: Classic and Novel Targets, Pathogenic Variants and Raine Syndrome Phenotypes. Int J Mol Sci 2021; 22:ijms22158039. [PMID: 34360805 PMCID: PMC8348777 DOI: 10.3390/ijms22158039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
FAM20C is a gene coding for a protein kinase that targets S-X-E/pS motifs on different phosphoproteins belonging to diverse tissues. Pathogenic variants of FAM20C are responsible for Raine syndrome (RS), initially described as a lethal and congenital osteosclerotic dysplasia characterized by generalized atherosclerosis with periosteal bone formation, characteristic facial dysmorphisms and intracerebral calcifications. The aim of this review is to give an overview of targets and variants of FAM20C as well as RS aspects. We performed a wide phenotypic review focusing on clinical aspects and differences between all lethal (LRS) and non-lethal (NLRS) reported cases, besides the FAM20C pathogenic variant description for each. As new targets of FAM20C kinase have been identified, we reviewed FAM20C targets and their functions in bone and other tissues, with emphasis on novel targets not previously considered. We found the classic lethal and milder non-lethal phenotypes. The milder phenotype is defined by a large spectrum ranging from osteonecrosis to osteosclerosis with additional congenital defects or intellectual disability in some cases. We discuss our current understanding of FAM20C deficiency, its mechanism in RS through classic FAM20C targets in bone tissue and its potential biological relevance through novel targets in non-bone tissues.
Collapse
|
11
|
Le Roy N, Stapane L, Gautron J, Hincke MT. Evolution of the Avian Eggshell Biomineralization Protein Toolkit - New Insights From Multi-Omics. Front Genet 2021; 12:672433. [PMID: 34046059 PMCID: PMC8144736 DOI: 10.3389/fgene.2021.672433] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The avian eggshell is a remarkable biomineral, which is essential for avian reproduction; its properties permit embryonic development in the desiccating terrestrial environment, and moreover, are critically important to preserve unfertilized egg quality for human consumption. This calcium carbonate (CaCO3) bioceramic is made of 95% calcite and 3.5% organic matrix; it protects the egg contents against microbial penetration and mechanical damage, allows gaseous exchange, and provides calcium for development of the embryonic skeleton. In vertebrates, eggshell occurs in the Sauropsida and in a lesser extent in Mammalia taxa; avian eggshell calcification is one of the fastest known CaCO3 biomineralization processes, and results in a material with excellent mechanical properties. Thus, its study has triggered a strong interest from the researcher community. The investigation of eggshell biomineralization in birds over the past decades has led to detailed characterization of its protein and mineral constituents. Recently, our understanding of this process has been significantly improved using high-throughput technologies (i.e., proteomics, transcriptomics, genomics, and bioinformatics). Presently, more or less complete eggshell proteomes are available for nine birds, and therefore, key proteins that comprise the eggshell biomineralization toolkit are beginning to be identified. In this article, we review current knowledge on organic matrix components from calcified eggshell. We use these data to analyze the evolution of selected matrix proteins and underline their role in the biological toolkit required for eggshell calcification in avian species. Amongst the panel of eggshell-associated proteins, key functional domains are present such as calcium-binding, vesicle-binding and protein-binding. These technical advances, combined with progress in mineral ultrastructure analyses, have opened the way for new hypotheses of mineral nucleation and crystal growth in formation of the avian eggshell, including transfer of amorphous CaCO3 in vesicles from uterine cells to the eggshell mineralization site. The enrichment of multi-omics datasets for bird species is critical to understand the evolutionary context for development of CaCO3 biomineralization in metazoans, leading to the acquisition of the robust eggshell in birds (and formerly dinosaurs).
Collapse
Affiliation(s)
| | | | | | - Maxwell T Hincke
- Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Minamizaki T, Sakurai K, Hayashi I, Toshishige M, Yoshioka H, Kozai K, Yoshiko Y. Active sites of human MEPE-ASARM regulating bone matrix mineralization. Mol Cell Endocrinol 2020; 517:110931. [PMID: 32712387 DOI: 10.1016/j.mce.2020.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
The proteolytic fragment ASARM (acidic serine- and aspartate-rich motif) of MEPE (matrix extracellular phosphoglycoprotein) (MEPE-ASARM) may act as an endogenous anti-mineralization factor involved in X-linked hypophosphatemic rickets/osteomalacia (XLH). We synthesized MEPE-ASARM peptides and relevant peptide fragments with or without phosphorylated Ser residues (pSer) to determine the active site(s) of MEPE-ASARM in a rat calvaria cell culture model. None of the synthetic peptides elicited changes in cell death, proliferation or differentiation, but the peptide (pASARM) with three pSer residues inhibited mineralization without causing changes in gene expression of osteoblast markers tested. The anti-mineralization effect was maintained in peptides in which any one of three pSer residues was deleted. Polyclonal antibodies recognizing pASARM but not ASARM abolished the pASARM effect. Deletion of six N-terminal residues but leaving the recognition sites for PHEX (phosphate regulating endopeptidase homolog, X-linked), a membrane endopeptidase responsible for XLH, intact and two C-terminal amino acid residues did not alter the anti-mineralization activity of pASARM. Our results strengthen understanding of the active sites of MEPE-pASARM and allowed us to identify a shorter more stable sequence with fewer pSer residues still exhibiting hypomineralization activity, reducing peptide synthesis cost and increasing reliability for exploring biological and potential therapeutic effects.
Collapse
Affiliation(s)
- Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kaoru Sakurai
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ikue Hayashi
- Research Facility, Hiroshima University School of Dentistry, Hiroshima, Japan
| | - Masaaki Toshishige
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirotaka Yoshioka
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
13
|
Surakka I, Fritsche LG, Zhou W, Backman J, Kosmicki JA, Lu H, Brumpton B, Nielsen JB, Gabrielsen ME, Skogholt AH, Wolford B, Graham SE, Chen YE, Lee S, Kang HM, Langhammer A, Forsmo S, Åsvold BO, Styrkarsdottir U, Holm H, Gudbjartsson D, Stefansson K, Baras A, Abecasis GR, Hveem K, Willer CJ. MEPE loss-of-function variant associates with decreased bone mineral density and increased fracture risk. Nat Commun 2020; 11:4093. [PMID: 33097703 PMCID: PMC7585430 DOI: 10.1038/s41467-020-17315-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/26/2020] [Indexed: 01/28/2023] Open
Abstract
A major challenge in genetic association studies is that most associated variants fall in the non-coding part of the human genome. We searched for variants associated with bone mineral density (BMD) after enriching the discovery cohort for loss-of-function (LoF) mutations by sequencing a subset of the Nord-Trøndelag Health Study, followed by imputation in the remaining sample (N = 19,705), and identified ten known BMD loci. However, one previously unreported variant, LoF mutation in MEPE, p.(Lys70IlefsTer26, minor allele frequency [MAF] = 0.8%), was associated with decreased ultradistal forearm BMD (P-value = 2.1 × 10−18), and increased osteoporosis (P-value = 4.2 × 10−5) and fracture risk (P-value = 1.6 × 10−5). The MEPE LoF association with BMD and fractures was further evaluated in 279,435 UK (MAF = 0.05%, heel bone estimated BMD P-value = 1.2 × 10−16, any fracture P-value = 0.05) and 375,984 Icelandic samples (MAF = 0.03%, arm BMD P-value = 0.12, forearm fracture P-value = 0.005). Screening for the MEPE LoF mutations before adulthood could potentially prevent osteoporosis and fractures due to the lifelong effect on BMD observed in the study. A key implication for precision medicine is that high-impact functional variants missing from the publicly available cosmopolitan panels could be clinically more relevant than polygenic risk scores. Bone mineral density (BMD) is associated with fracture risk and many genetic loci with small effect sizes have been discovered by genome-wide association studies (GWAS). Here, the authors discover a large-effect rare loss-of-function genetic variant for BMD in the MEPE gene in the Norwegian HUNT study which replicates in the UK Biobank.
Collapse
Affiliation(s)
- Ida Surakka
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Lars G Fritsche
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.,Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Joshua Backman
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Jack A Kosmicki
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Haocheng Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.,MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.,Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, 7030, Trondheim, Norway
| | - Jonas B Nielsen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Brooke Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Sarah E Graham
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Seunggeun Lee
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway
| | - Siri Forsmo
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway
| | - Bjørn O Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.,HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway.,Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, 7030, Trondheim, Norway
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Sturlugata 8, 101, Reykjavik, Iceland
| | - Daniel Gudbjartsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland
| | - Aris Baras
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | | | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA.,Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway. .,HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway.
| | - Cristen J Willer
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA. .,Department of Computational Medicine and Bioinformatics, University of Michigan, Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA. .,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway. .,Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, Gonzaga-Jauregui C, Khalid S, Ye B, Banerjee N, Li AH, O'Dushlaine C, Marcketta A, Staples J, Schurmann C, Hawes A, Maxwell E, Barnard L, Lopez A, Penn J, Habegger L, Blumenfeld AL, Bai X, O'Keeffe S, Yadav A, Praveen K, Jones M, Salerno WJ, Chung WK, Surakka I, Willer CJ, Hveem K, Leader JB, Carey DJ, Ledbetter DH, Cardon L, Yancopoulos GD, Economides A, Coppola G, Shuldiner AR, Balasubramanian S, Cantor M, Nelson MR, Whittaker J, Reid JG, Marchini J, Overton JD, Scott RA, Abecasis GR, Yerges-Armstrong L, Baras A. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 2020; 586:749-756. [PMID: 33087929 PMCID: PMC7759458 DOI: 10.1038/s41586-020-2853-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
Collapse
Affiliation(s)
| | | | | | - Joshua D Hoffman
- GlaxoSmithKline, Collegeville, PA, USA.,Foresite Labs, Cambridge, MA, USA
| | - Daren Liu
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Claudia Schurmann
- Regeneron Genetics Center, Tarrytown, NY, USA.,Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany.,Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | - John Penn
- Regeneron Genetics Center, Tarrytown, NY, USA.,DNANexus, Mountain View, CA, USA
| | | | | | | | | | | | | | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Kristian Hveem
- Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | - Matthew R Nelson
- GlaxoSmithKline, Collegeville, PA, USA.,Deerfield, New York, NY, USA
| | | | | | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA.
| |
Collapse
|
15
|
Eltan M, Alavanda C, Yavas Abali Z, Ergenekon P, Yalındag Ozturk N, Sakar M, Dagcinar A, Kirkgoz T, Kaygusuz SB, Gokdemir Y, Elcioglu HN, Guran T, Bereket A, Ata P, Turan S. A Rare Cause of Hypophosphatemia: Raine Syndrome Changing Clinical Features with Age. Calcif Tissue Int 2020; 107:96-103. [PMID: 32337609 PMCID: PMC7222149 DOI: 10.1007/s00223-020-00694-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022]
Abstract
Raine Syndrome (RS) is caused by biallelic loss-of-function mutations in FAM20C gene and characterized by hypophosphatemia, typical facial and skeletal features. Subperiosteal bone formation and generalized osteosclerosis are the most common radiological findings. Here we present a new case with RS. A 9-month-old male patient on a home-type ventilator was referred for hypophosphatemia. He was born with a weight of 3800 g to non-consanguineous parents. Prenatal ultrasound had demonstrated nasal bone agenesis. A large anterior fontanel, frontal bossing, exophthalmos, hypoplastic nose, high arched palate, low set ears, triangular mouth, and corneal opacification were detected on physical examination. Serial skeletal X-rays revealed diffuse osteosclerosis at birth which was gradually decreased by the age of 5 months with subperiosteal undermineralized bone formation and medullary space of long bone could be distinguishable with bone-within-a-bone appearance. At 9 months of age, hand X-ray revealed cupping of the ulna with loose radial bone margin with minimal fraying and osteopenia. Cranial computed tomography scan showed bilateral periventricular calcification and hydrocephalus in progress. The clinical, laboratory, and radiological examinations were consistent with RS. Molecular analyses revealed a compound heterozygous mutation in FAM20C gene (a known pathogenic mutation, c.1645C > T, p.Arg549Trp; and a novel c.863 + 5 G > C variant). The patient died due to respiratory failure at 17 months of age. This case allowed us to demonstrate natural progression of skeletal features in RS. Furthermore, we have described a novel FAM20C variant causing RS. Previous literature on RS is also reviewed.
Collapse
Affiliation(s)
- Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Zehra Yavas Abali
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Pinar Ergenekon
- Department of Pediatric Chest Disease, Marmara University School of Medicine, Istanbul, Turkey
| | - Nilufer Yalındag Ozturk
- Department of Pediatric Intensive Care Unit, Marmara University School of Medicine, Istanbul, Turkey
| | - Mustafa Sakar
- Department of Pediatric Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Adnan Dagcinar
- Department of Pediatric Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Tarik Kirkgoz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Gokdemir
- Department of Pediatric Chest Disease, Marmara University School of Medicine, Istanbul, Turkey
| | - Huriye Nursel Elcioglu
- Department of Pediatric Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
16
|
Christensen B, Schytte GN, Scavenius C, Enghild JJ, McKee MD, Sørensen ES. FAM20C-Mediated Phosphorylation of MEPE and Its Acidic Serine- and Aspartate-Rich Motif. JBMR Plus 2020; 4:e10378. [PMID: 32803110 PMCID: PMC7422707 DOI: 10.1002/jbm4.10378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023] Open
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is expressed in bone and teeth where it has multiple functions. The C-terminus of MEPE contains a mineral-binding, acidic serine- and aspartate-rich motif (ASARM) that is also present in other noncollagenous proteins of mineralized tissues. MEPE-derived ASARM peptides function in phosphate homeostasis and direct inhibition of bone mineralization in a phosphorylation-dependent manner. MEPE is phosphorylated by family with sequence similarity 20, member C (FAM20C), which is the main kinase phosphorylating secreted phosphoprotein. Although the functional importance of protein phosphorylation status in mineralization processes has now been well-established for secreted bone and tooth proteins (particularly for osteopontin), the phosphorylation pattern of MEPE has not been previously determined. Here we provide evidence for a very high phosphorylation level of this protein, reporting on the localization of 31 phosphoresidues in human MEPE after coexpression with FAM20C in HEK293T cells. This includes the finding that all serine residues located in the canonical target sequence of FAM20C (Ser-x-Glu) were phosphorylated, thus establishing the major target sites for this kinase. We also show that MEPE has numerous other phosphorylation sites, these not being positioned in the canonical phosphorylation sequence. Of note, and underscoring a possible important function in mineralization biology, all nine serine residues in the ASARM were phosphorylated, even though only two of these were positioned in the Ser-x-Glu sequence. The presence of many phosphorylated amino acids in MEPE, and particularly their high density in the ASARM motif, provides an important basis for the understanding of structural and functional interdependencies in mineralization and phosphate homeostasis. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Brian Christensen
- Department of Molecular Biology and Genetics Aarhus University Aarhus Denmark
| | - Gitte N Schytte
- Department of Molecular Biology and Genetics Aarhus University Aarhus Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics Aarhus University Aarhus Denmark.,Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics Aarhus University Aarhus Denmark.,Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark
| | - Marc D McKee
- Faculty of Dentistry and Department of Anatomy and Cell Biology McGill University Montreal Quebec Canada
| | - Esben S Sørensen
- Department of Molecular Biology and Genetics Aarhus University Aarhus Denmark.,Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark
| |
Collapse
|
17
|
Ozsen A, Furman A, Guran T, Bereket A, Turan S. Fibroblast Growth Factor-23 and Matrix Extracellular Phosphoglycoprotein Levels in Healthy Children and, Pregnant and Puerperal Women. Horm Res Paediatr 2020; 92:302-310. [PMID: 32187608 DOI: 10.1159/000506477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Fibroblast growth factor (FGF-23) and matrix extracellular phosphoglycoprotein (MEPE) are bone-related factors and their role in physiologic conditions and in different life stages are unknown. We aimed to evaluate age- and pregnancy-related changes in MEPE and FGF-23 levels and their correlations with calcium (Ca)-phosphate (PO4) metabolism. METHODS The study population included 96 healthy children (50 females) and 31 women (11 healthy, 10 pregnant, and 10 lactating). Intact FGF-23 (iFGF-23), MEPE, ferritin, parathyroid hormone (PTH), 25-OH vitamin D, alkaline phosphatase (ALP), IGF-I, IGFBP-3 and, Ca, PO4 and creatine (Cre) in serum (S) and urine (U) samples were determined. The renal phosphate threshold (TmPO4/GFR) and z-scores for the parameters that show age-related changes were calculated. RESULTS Serum iFGF-23 concentrations showed nonsignificant changes with age; however, MEPE decreased with age, reaching the lowest levels after 7 years. Additionally, higher serum MEPE concentrations were observed during pregnancy. Other than ALP, all other examined parameters demonstrated age-related changes. ALP, BUN, S-Cre, and U-Ca/Cre showed puerperal and pregnancy related changes together with MEPE. iFGF-23 was positively correlated with S-PO4 and TmPO4/GFR. MEPE was positively correlated with S-Ca, S-PO4 and TmPO4/GFR and negatively correlated with PTH, IGF-1, and IGFBP-3. CONCLUSION Not iFGF-23 but MEPE showed age-dependent changes and was affected by pregnancy. Although, MEPE and iFGF-23 did not correlate with each other, they seem to affect serum and urinary phosphate in the same direction. Additionally, we found evidence that ferritin and growth factors might have a role in serum calcium and phosphate regulation.
Collapse
Affiliation(s)
- Ahu Ozsen
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Andrzej Furman
- Institute of Environmental Sciences, Bogazici University, Istanbul, Turkey
| | - Tulay Guran
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey,
| |
Collapse
|
18
|
Abstract
Purpose of review Chronic kidney disease (CKD) is a condition associated with bone disease and fibroblast growth factor 23 (FGF23) excess that contributes to cardiovascular mortality. Dentin matrix protein 1 (DMP1) is an established regulator of bone mineralization and FGF23 production in osteocytes. To date, DMP1 function has mainly been studied in the context of hereditary hypophosphatemic rickets diseases. This review describes the role of DMP1 as a potential strong candidate to prevent bone disorders, FGF23 elevation and associated cardiac outcomes in CKD. Recent findings Patients and mice with CKD show impaired osteocyte maturation and impaired regulation of DMP1 and FGF23 in bone. New data suggest that impaired DMP1 production contributes to CKD-associated bone and mineral metabolism disorders and we show that DMP1 repletion improves osteocyte alterations, bone mineralization and partially prevents FGF23 elevation. As a result, mice with CKD show attenuated left ventricular hypertrophy and improved survival. Summary There is an urgent need for new therapeutic strategies to improve bone quality and to lower FGF23 levels in CKD. By preventing osteocyte apoptosis and inhibiting Fgf23 transcription, DMP1 supplementation may represent an ideal approach to improve CKD-associated bone and cardiac outcomes.
Collapse
|
19
|
Blank M, Sims NA. Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown. Curr Osteoporos Rep 2019; 17:270-280. [PMID: 31401710 DOI: 10.1007/s11914-019-00524-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We outline the diverse processes contributing to bone mineralization and bone matrix maturation by describing two mouse models with bone strength defects caused by restricted deletion of the receptor tyrosine kinase ligand EphrinB2. RECENT FINDINGS Stage-specific EphrinB2 deletion differs in its effects on skeletal strength. Early-stage deletion in osteoblasts leads to osteoblast apoptosis, delayed initiation of mineralization, and increased bone flexibility. Deletion later in the lineage targeted to osteocytes leads to a brittle bone phenotype and increased osteocyte autophagy. In these latter mice, although mineralization is initiated normally, all processes involved in matrix maturation, including mineral accrual, carbonate substitution, and collagen compaction, progress more rapidly. Osteoblasts and osteocytes control the many processes involved in bone mineralization; defining the contributing signaling activities may lead to new ways to understand and treat human skeletal fragilities.
Collapse
Affiliation(s)
- Martha Blank
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia.
| |
Collapse
|
20
|
Li F, Cain JD, Tombran-Tink J, Niyibizi C. Pigment epithelium-derived factor (PEDF) reduced expression and synthesis of SOST/sclerostin in bone explant cultures: implication of PEDF-osteocyte gene regulation in vivo. J Bone Miner Metab 2019; 37:773-779. [PMID: 30607618 DOI: 10.1007/s00774-018-0982-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Mutations in Serpinf1 gene which encodes pigment epithelium-derived factor (PEDF) lead to osteogenesis imperfecta type VI whose hallmark is defective matrix mineralization. We reported previously that PEDF reduced expression and synthesis of Sost/Sclerostin as well as other osteocytes genes encoding proteins that regulate matrix mineralization [1]. To determine whether PEDF had an effect on osteocyte gene expression in bone, we used bone explant cultures. First, osteocytes were isolated from surgical waste of bone fragments obtained from patients undergoing elective foot surgeries under approved IRB protocol by Penn State College of Medicine IRB committee. Primary osteocytes treated with PEDF reduced expression and synthesis of Sost/Sclerostin and matrix phosphoglycoprotein (MEPE) as well as dentin matrix protein (DMP-1). On the whole, PEDF reduced osteocyte protein synthesis by 50% and by 75% on mRNA levels. For bone explants, following collagenase digestion, bone fragments were incubated in alpha-MEM supplemented with 250 ng/ml of PEDF or BSA. After 7 days of incubation in a medium supplemented with PEDF, analysis of mRNA by PCR and protein by western blotting of encoded osteocyte proteins showed reduced Sclerostin synthesis by 39% and MEPE by 27% when compared to fragments incubated in medium supplemented with BSA. mRNA expression levels of osteocytes in bone fragments treated with PEDF were reduced by 50% for both SOST and MEPE when compared to BSA-treated bone fragments. Taken together, the data indicate that PEDF has an effect on osteocyte gene expression in bone and encourage further studies to examine effect of PEDF on bone formation indices in animal models and its effect on osteocyte gene expression in vivo following PEDF administration.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jarrett D Cain
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Joyce Tombran-Tink
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christopher Niyibizi
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
21
|
Bouleftour W, Juignet L, Verdière L, Machuca-Gayet I, Thomas M, Laroche N, Vanden-Bossche A, Farlay D, Thomas C, Gineyts E, Concordet JP, Renaud JB, Aubert D, Teixeira M, Peyruchaud O, Vico L, Lafage-Proust MH, Follet H, Malaval L. Deletion of OPN in BSP knockout mice does not correct bone hypomineralization but results in high bone turnover. Bone 2019; 120:411-422. [PMID: 30529011 DOI: 10.1016/j.bone.2018.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022]
Abstract
The two SIBLING (Small Integrin Binding Ligand N-linked Glycoproteins), bone sialoprotein (BSP) and osteopontin (OPN) are expressed in osteoblasts and osteoclasts. In mature BSP knockout (KO, -/-) mice, both bone formation and resorption as well as mineralization are impaired. OPN-/- mice display impaired resorption, and OPN is described as an inhibitor of mineralization. However, OPN is overexpressed in BSP-/- mice, complicating the understanding of their phenotype. We have generated and characterized mice with a double KO (DKO) of OPN and BSP, to try and unravel their respective contributions. Despite the absence of OPN, DKO bones are still hypomineralized. The SIBLING, matrix extracellular phosphoglycoprotein with ASARM motif (MEPE) is highly overexpressed in both BSP-/- and DKO and may impair mineralization through liberation of its ASARM (Acidic Serine-Aspartate Rich MEPE associated) peptides. DKO mice also display evidence of active formation of trabecular, secondary bone as well as primary bone in the marrow-ablation repair model. A higher number of osteoclasts form in DKO marrow cultures, with higher resorption activity, and DKO long bones display a localized and conspicuous cortical macroporosity. High bone formation and resorption parameters, and high cortical porosity in DKO mice suggest an active bone modeling/remodeling, in the absence of two key regulators of bone cell performance. This first double KO of SIBLING proteins thus results in a singular, non-trivial phenotype leading to reconsider the interpretation of each single KO, concerning in particular matrix mineralization and the regulation of bone cell activity.
Collapse
Affiliation(s)
- W Bouleftour
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - L Juignet
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - L Verdière
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | | | - M Thomas
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - N Laroche
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - A Vanden-Bossche
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - D Farlay
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - C Thomas
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - E Gineyts
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - J P Concordet
- Inserm U1154/Cnrs UMR7196/Muséum National d'Histoire Naturelle, F75231 Paris, France
| | - J B Renaud
- Inserm U1154/Cnrs UMR7196/Muséum National d'Histoire Naturelle, F75231 Paris, France
| | - D Aubert
- AniRa PBES, Gerland, F69007 Lyon Sud, France
| | - M Teixeira
- AniRa PBES, Gerland, F69007 Lyon Sud, France
| | - O Peyruchaud
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - L Vico
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - M H Lafage-Proust
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - H Follet
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - L Malaval
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France.
| |
Collapse
|
22
|
Abstract
Bone tissue is comprised of a collagen-rich matrix containing non-collagenous organic compounds, strengthened by mineral crystals. Bone strength reflects the amount and structure of bone, as well as its quality. These qualities are determined and maintained by osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells) on the surface of the bone and osteocytes embedded within the bone matrix. Bone development and growth also involves cartilage cells (chondrocytes). These cells do not act in isolation, but function in a coordinated manner, including co-ordination within each lineage, between the cells of bone, and between these cells and other cell types within the bone microenvironment. This chapter will briefly outline the cells of bone, their major functions, and some communication pathways responsible for controlling bone development and remodeling.
Collapse
Affiliation(s)
- Niloufar Ansari
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
23
|
da Rosa WLO, Piva E, da Silva AF. Disclosing the physiology of pulp tissue for vital pulp therapy. Int Endod J 2018; 51:829-846. [DOI: 10.1111/iej.12906] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- W. L. O. da Rosa
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - E. Piva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - A. F. da Silva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| |
Collapse
|
24
|
Gutiérrez-Gil B, Esteban-Blanco C, Wiener P, Chitneedi PK, Suarez-Vega A, Arranz JJ. High-resolution analysis of selection sweeps identified between fine-wool Merino and coarse-wool Churra sheep breeds. Genet Sel Evol 2017; 49:81. [PMID: 29115919 PMCID: PMC5674817 DOI: 10.1186/s12711-017-0354-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND With the aim of identifying selection signals in three Merino sheep lines that are highly specialized for fine wool production (Australian Industry Merino, Australian Merino and Australian Poll Merino) and considering that these lines have been subjected to selection not only for wool traits but also for growth and carcass traits and parasite resistance, we contrasted the OvineSNP50 BeadChip (50 K-chip) pooled genotypes of these Merino lines with the genotypes of a coarse-wool breed, phylogenetically related breed, Spanish Churra dairy sheep. Genome re-sequencing datasets of the two breeds were analyzed to further explore the genetic variation of the regions initially identified as putative selection signals. RESULTS Based on the 50 K-chip genotypes, we used the overlapping selection signals (SS) identified by four selection sweep mapping analyses (that detect genetic differentiation, reduced heterozygosity and patterns of haplotype diversity) to define 18 convergence candidate regions (CCR), five associated with positive selection in Australian Merino and the remainder indicating positive selection in Churra. Subsequent analysis of whole-genome sequences from 15 Churra and 13 Merino samples identified 142,400 genetic variants (139,745 bi-allelic SNPs and 2655 indels) within the 18 defined CCR. Annotation of 1291 variants that were significantly associated with breed identity between Churra and Merino samples identified 257 intragenic variants that caused 296 functional annotation variants, 275 of which were located across 31 coding genes. Among these, four synonymous and four missense variants (NPR2_His847Arg, NCAPG_Ser585Phe, LCORL_Asp1214Glu and LCORL_Ile1441Leu) were included. CONCLUSIONS Here, we report the mapping and genetic variation of 18 selection signatures that were identified between Australian Merino and Spanish Churra sheep breeds, which were validated by an additional contrast between Spanish Merino and Churra genotypes. Analysis of whole-genome sequencing datasets allowed us to identify divergent variants that may be viewed as candidates involved in the phenotypic differences for wool, growth and meat production/quality traits between the breeds analyzed. The four missense variants located in the NPR2, NCAPG and LCORL genes may be related to selection sweep regions previously identified and various QTL reported in sheep in relation to growth traits and carcass composition.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
- Fundación Centro Supercomputación de Castilla y León, Campus de Vegazana, León, 24071 Spain
| | - Pamela Wiener
- Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Praveen Krishna Chitneedi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Aroa Suarez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Juan-Jose Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| |
Collapse
|
25
|
Liu C, Zhang H, Jani P, Wang X, Lu Y, Li N, Xiao J, Qin C. FAM20C regulates osteoblast behaviors and intracellular signaling pathways in a cell-autonomous manner. J Cell Physiol 2017; 233:3476-3486. [PMID: 28926103 DOI: 10.1002/jcp.26200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Recent studies indicate that Family with sequence similarity 20 member C (FAM20C) catalyzes the phosphorylation of secreted proteins, and participates in a variety of biological processes, including cell proliferation, migration, mineralization, and phosphate homeostasis. To explore the local influences of FAM20C on osteoblast, Fam20c-deficient osteoblasts were generated by treating the immortalized Fam20cf/f osteoblasts with CMV-Cre-IRES-EGFP lentivirus. Compared with the normal Fam20cf/f osteoblasts, the expression of Bone sialoprotein (Bsp), Osteocalcin (Ocn), Fibroblast growth factor 23 (Fgf23), and transcription factors that promote osteoblast maturation were up-regulated in the Fam20c-deficient osteoblasts. In contrast, the expression of Dental matrix protein 1 (Dmp1), Dentin sialophosphoprotein (Dspp), Osteopontin (Opn), type I Collagen a 1 (Col1a1), and Alkine phosphatase (Alp) were down-regulated in the Fam20c-deficient cells. These alterations disclosed the primary regulation of Fam20c on gene expression. The Fam20c-deficient osteoblasts showed a remarkable reduction in the ability of forming mineralized nodules. However, supplements of extracellular matrix proteins extracted from the normal bone failed to rescue the reduced mineralization, suggesting that FAM20C may affect the biomineralization by the means more than local phosphorylation of extracellular matrix proteins and systemic phosphorus homeostasis. Moreover, although Fam20c deficiency had little impact on cell proliferation, it significantly reduced cell migration and lowered the levels of p-Smad1/5/8, p-Erk and p-p38, suggesting that the kinase activity of FAM20C might be essential to cell mobility and the activity of BMP ligands. In summary, these findings provide evidences that FAM20C may regulate osteoblast maturation, migration, mineralization, and BMP signaling pathways in a cell-autonomous manner.
Collapse
Affiliation(s)
- Chao Liu
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Priyam Jani
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Nan Li
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Xiao
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| |
Collapse
|
26
|
Betulinic acid, natural pentacyclic triterpenoid prevents arsenic-induced nephrotoxicity in male Wistar rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Abstract
When normal physiologic functions go awry, disorders and disease occur. This is universal; even for the osteocyte, a cell embedded within the mineralized matrix of bone. It was once thought that this cell was simply a placeholder in bone. Within the last decade, the number of studies of osteocytes has increased dramatically, leading to the discovery of novel functions of these cells. With the discovery of novel physiologic functions came the discoveries of how these cells can also be responsible for not only bone diseases and disorders, but also those of the kidney, heart, and potentially muscle.
Collapse
Affiliation(s)
- Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, VanNuys Medical Science Building, MS 5055, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, VanNuys Medical Science Building, MS 5035, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, 1120 West Michigan Street, Suite 600, Indianapolis, IN 46202, USA.
| |
Collapse
|
28
|
Abstract
Osteocytes are differentiated osteoblasts that become surrounded by matrix during the process of bone formation. Acquisition of the osteocyte phenotype is achieved by profound changes in gene expression that facilitate adaptation to the changing cellular environment and constitute the molecular signature of osteocytes. During osteocytogenesis, the expression of genes that are characteristic of the osteoblast are altered and the expression of genes and/or proteins that impart dendritic cellular morphology, regulate matrix mineralization and control the function of cells at the bone surface are ordely modulated. The discovery of mutations in human osteocytic genes has contributed, in a large part, to our understanding of the role of osteocytes in bone homeostasis. Osteocytes are targets of the mechanical force imposed on the skeleton and have a critical role in integrating mechanosensory pathways with the action of hormones, which thereby leads to the orchestrated response of bone to environmental cues. Current, therapeutic approaches harness this accumulating knowledge by targeting osteocytic signalling pathways and messengers to improve skeletal health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
29
|
Murshid SA. The role of osteocytes during experimental orthodontic tooth movement: A review. Arch Oral Biol 2016; 73:25-33. [PMID: 27653146 DOI: 10.1016/j.archoralbio.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To explore the types of orthodontic force-induced mechanical stimuli that regulate osteocyte function. DESIGN In orthodontics, a tooth can be moved through the alveolar bone when an appropriate orthodontic force is applied. These mechanical loads stimulate cells within the bone tissue around the tooth. These cellular responses lead to bone resorption on the side of the tooth where the pressure has been applied and bone deposition on the side of the tooth experiencing tension. Recently, osteocytes were identified to function as mechano-sensory cells in bone tissue that direct bone resorption and bone formation. Based on recent literature, the proposed function of osteocytes during orthodontic tooth movement is explored with better understanding. RESULTS Several stimuli regulating osteocyte function have been highlighted, and their potential roles in events initiating osteocyte sensing of orthodontic force have been explored in detail. The most popular hypotheses for osteocyte response include stress-induced bone matrix deformation/microcrack formation and fluid-flow shear stress. CONCLUSIONS Understanding osteocyte function under mechanical stress may have profound implications in future orthodontic treatments.
Collapse
Affiliation(s)
- Sakhr A Murshid
- Department of Pedodontics, Orthodontics and Preventive Dentistry, Faculty of Dentistry, Thamar University, Thamar City, Yemen.
| |
Collapse
|
30
|
van der Meijden K, van Essen HW, Bloemers FW, Schulten EAJM, Lips P, Bravenboer N. Regulation of CYP27B1 mRNA Expression in Primary Human Osteoblasts. Calcif Tissue Int 2016; 99:164-73. [PMID: 27016371 PMCID: PMC4932130 DOI: 10.1007/s00223-016-0131-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The enzyme 1α-hydroxylase (gene CYP27B1) catalyzes the synthesis of 1,25(OH)2D in both renal and bone cells. While renal 1α-hydroxylase is tightly regulated by hormones and 1,25(OH)2D itself, the regulation of 1α-hydroxylase in bone cells is poorly understood. The aim of this study was to investigate in a primary human osteoblast culture whether parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), calcitonin, calcium, phosphate, or MEPE affect mRNA levels of CYP27B1. Our results show that primary human osteoblasts in the presence of high calcium concentrations increase their CYP27B1 mRNA levels by 1.3-fold. CYP27B1 mRNA levels were not affected by PTH1-34, rhFGF23, calcitonin, phosphate, and rhMEPE. Our results suggest that the regulation of bone 1α-hydroxylase is different from renal 1α-hydroxylase. High calcium concentrations in bone may result in an increased local synthesis of 1,25(OH)2D leading to an enhanced matrix mineralization. In this way, the local synthesis of 1,25(OH)2D may contribute to the stimulatory effect of calcium on matrix mineralization.
Collapse
Affiliation(s)
- K van der Meijden
- Department of Internal Medicine/Endocrinology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
| | - H W van Essen
- Department of Clinical Chemistry, VU University Medical Center, Research Institute MOVE, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - F W Bloemers
- Department of Trauma Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - E A J M Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - P Lips
- Department of Internal Medicine/Endocrinology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
| | - N Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, Research Institute MOVE, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Chen X, Guo J, Cai T, Zhang F, Pan S, Zhang L, Wang S, Zhou F, Diao Y, Zhao Y, Chen Z, Liu X, Chen Z, Liu Z, Sun Y, Du J. Targeted next-generation sequencing reveals multiple deleterious variants in OPLL-associated genes. Sci Rep 2016; 6:26962. [PMID: 27246988 PMCID: PMC4887887 DOI: 10.1038/srep26962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/10/2016] [Indexed: 01/12/2023] Open
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL), which is characterized by ectopic bone formation in the spinal ligaments, can cause spinal-cord compression. To date, at least 11 susceptibility genes have been genetically linked to OPLL. In order to identify potential deleterious alleles in these OPLL-associated genes, we designed a capture array encompassing all coding regions of the target genes for next-generation sequencing (NGS) in a cohort of 55 unrelated patients with OPLL. By bioinformatics analyses, we successfully identified three novel and five extremely rare variants (MAF < 0.005). These variants were predicted to be deleterious by commonly used various algorithms, thereby resulting in missense mutations in four OPLL-associated genes (i.e., COL6A1, COL11A2, FGFR1, and BMP2). Furthermore, potential effects of the patient with p.Q89E of BMP2 were confirmed by a markedly increased BMP2 level in peripheral blood samples. Notably, seven of the variants were found to be associated with the patients with continuous subtype changes by cervical spinal radiological analyses. Taken together, our findings revealed for the first time that deleterious coding variants of the four OPLL-associated genes are potentially pathogenic in the patients with OPLL.
Collapse
Affiliation(s)
- Xin Chen
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Jun Guo
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung &Blood Vessel Disease, Beijing, China
| | - Tao Cai
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung &Blood Vessel Disease, Beijing, China
| | - Fengshan Zhang
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Shengfa Pan
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Li Zhang
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Shaobo Wang
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Feifei Zhou
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Yinze Diao
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Yanbin Zhao
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Zhen Chen
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Xiaoguang Liu
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Yu Sun
- Orthopaedic Department, Institute of Spinal Surgery, Peking University Third Hospital, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung &Blood Vessel Disease, Beijing, China
| |
Collapse
|
32
|
Gullard A, Gluhak-Heinrich J, Papagerakis S, Sohn P, Unterbrink A, Chen S, MacDougall M. MEPE Localization in the Craniofacial Complex and Function in Tooth Dentin Formation. J Histochem Cytochem 2016; 64:224-36. [PMID: 26927967 DOI: 10.1369/0022155416635569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 01/05/2023] Open
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues. Mepe RNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis of Mepe null mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However, Mepe(-/-) molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression of Enam, Bsp, Dmp1, Dspp, and Opnby RT-PCR. In vitro Mepe overexpression in odontoblasts led to significant reductions in Dspp reporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix.
Collapse
Affiliation(s)
- Angela Gullard
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM),Pathology Graduate Program, University of Alabama at Birmingham, Birmingham, Alabama (AG)
| | - Jelica Gluhak-Heinrich
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX (JGH)
| | - Silvana Papagerakis
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, Michigan (SP)
| | - Philip Sohn
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| | - Aaron Unterbrink
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (AU)
| | - Shuo Chen
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (SC)
| | - Mary MacDougall
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| |
Collapse
|
33
|
Boskey AL, Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol 2016; 52-54:43-59. [PMID: 26807759 DOI: 10.1016/j.matbio.2016.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/21/2023]
Abstract
In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | | |
Collapse
|
34
|
Bouleftour W, Juignet L, Bouet G, Granito RN, Vanden-Bossche A, Laroche N, Aubin JE, Lafage-Proust MH, Vico L, Malaval L. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics. Matrix Biol 2016; 52-54:60-77. [PMID: 26763578 DOI: 10.1016/j.matbio.2015.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laura Juignet
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Guenaelle Bouet
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, UK
| | | | - Arnaud Vanden-Bossche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Norbert Laroche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marie-Hélène Lafage-Proust
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laurence Vico
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Luc Malaval
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France.
| |
Collapse
|
35
|
Mafi Golchin M, Heidari L, Ghaderian SMH, Akhavan-Niaki H. Osteoporosis: A Silent Disease with Complex Genetic Contribution. J Genet Genomics 2016; 43:49-61. [PMID: 26924688 DOI: 10.1016/j.jgg.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
Osteoporosis is the most common multifactorial metabolic bone disorder worldwide with a strong genetic component. In this review, the evidence for a genetic contribution to osteoporosis and related phenotypes is summarized alongside with methods used to identify osteoporosis susceptibility genes. The key biological pathways involved in the skeleton and bone development are discussed with a particular focus on master genes clustered in these pathways and their mode of action. Furthermore, the most studied single nucleotide polymorphisms (SNPs) analyzed for their importance as genetic markers of the disease are presented. New data generated by next-generation sequencing in conjunction with extensive meta-analyses should contribute to a better understanding of the genetic basis of osteoporosis and related phenotype variability. These data could be ultimately used for identifying at-risk patients for disease prevention by both controlling environmental factors and providing possible therapeutic targets.
Collapse
Affiliation(s)
- Maryam Mafi Golchin
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Laleh Heidari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Seyyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran.
| |
Collapse
|
36
|
Zhang X, Wang P, Wang Y. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:53-56. [PMID: 26553637 PMCID: PMC4869895 DOI: 10.1016/j.lssr.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.
Collapse
Affiliation(s)
- Xiangming Zhang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Ping Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Vrahnas C, Sims NA. EphrinB2 Signalling in Osteoblast Differentiation, Bone Formation and Endochondral Ossification. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0024-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Zelenchuk LV, Hedge AM, Rowe PSN. Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif. Bone 2015; 79:131-42. [PMID: 26051469 PMCID: PMC4501877 DOI: 10.1016/j.bone.2015.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 11/28/2022]
Abstract
CONTEXT Mice with null mutations in matrix extracellular phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE overexpression induces opposite effects. Also, genome wide association studies show that MEPE plays a major role in bone mass. We hypothesized that the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. DESIGN To test our theory we overexpressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse overexpresses ASARM-peptides and is defective for the PHEX gene. RESULTS The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested that abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. CONCLUSIONS The C-terminal ASARM-motif plays a major role in regulating bone-mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide are chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also affects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments.
Collapse
Affiliation(s)
- Lesya V Zelenchuk
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Anne-Marie Hedge
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Peter S N Rowe
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
39
|
Fujikawa K, Yokohama-Tamaki T, Morita T, Baba O, Qin C, Shibata S. An in situ hybridization study of perlecan, DMP1, and MEPE in developing condylar cartilage of the fetal mouse mandible and limb bud cartilage. Eur J Histochem 2015; 59:2553. [PMID: 26428891 PMCID: PMC4598603 DOI: 10.4081/ejh.2015.2553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/23/2022] Open
Abstract
The main purpose of this in situ hybridization study was to investigate mRNA expression of three bone/cartilage matrix components (perlecan, DMP1, and MEPE) in developing primary (tibial) and secondary (condylar) cartilage. Perlecan mRNA expression was first detected in newly formed chondrocytes in tibial cartilage at E13.0, but this expression decreased in hypertrophic chondrocytes at E14.0. In contrast, at E15.0, perlecan mRNA was first detected in the newly formed chondrocytes of condylar cartilage; these chondrocytes had characteristics of hypertrophic chondrocytes, which confirmed the previous observation that progenitor cells of developing secondary cartilage rapidly differentiate into hypertrophic chondrocytes. DMP1 mRNA was detected in many chondrocytes within the lower hypertrophic cell zone in tibial cartilage at E14.0. In contrast, DMP1 mRNA expression was only transiently detected in a few chondrocytes of condylar cartilage at E15.0. Thus, DMP1 may be less important in the developing condylar cartilage than in the tibial cartilage. Another purpose of this study was to test the hypothesis that MEPE may be a useful marker molecule for cartilage. MEPE mRNA was not detected in any chondrocytes in either tibial or condylar cartilage; however, MEPE immunoreactivity was detected throughout the cartilage matrix. Western immunoblot analysis demonstrated that MEPE antibody recognized two bands, one of 67 kDa and another of 59 kDa, in cartilage-derived samples. Thus MEPE protein may gradually accumulate in the cartilage, even though mRNA expression levels were below the limits of detection of in situ hybridization. Ultimately, we could not designate MEPE as a marker molecule for cartilage, and would modify our original hypothesis.
Collapse
|
40
|
Foster BL, Ao M, Willoughby C, Soenjaya Y, Holm E, Lukashova L, Tran AB, Wimer HF, Zerfas PM, Nociti FH, Kantovitz KR, Quan BD, Sone ED, Goldberg HA, Somerman MJ. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 2015; 78:150-64. [PMID: 25963390 PMCID: PMC4466207 DOI: 10.1016/j.bone.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/02/2015] [Indexed: 01/15/2023]
Abstract
Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp(-/-) mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp(-/-) molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors.
Collapse
Affiliation(s)
- B L Foster
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - C Willoughby
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - Y Soenjaya
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - E Holm
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - L Lukashova
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - P M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health (NIH), 9000 Rockville Pike, 112 Building 28A, MSC 5230, Bethesda, MD 20892, USA.
| | - F H Nociti
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - K R Kantovitz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Pediatric Dentistry, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - B D Quan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada.
| | - E D Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | - H A Goldberg
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Morgan S, Poundarik AA, Vashishth D. Do Non-collagenous Proteins Affect Skeletal Mechanical Properties? Calcif Tissue Int 2015; 97:281-91. [PMID: 26048282 PMCID: PMC4527887 DOI: 10.1007/s00223-015-0016-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/19/2015] [Indexed: 01/14/2023]
Abstract
The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption, and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases, and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone's structural and material hierarchy, and identify three principal pathways by which they determine bone's mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone's structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load-bearing structural proteins.
Collapse
Affiliation(s)
| | | | - Deepak Vashishth
- Address correspondence to: Deepak Vashishth, PhD, Director of Center for Biotechnology & Interdisciplinary Studies Rm 2213, Professor of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180, USA, Phone: 518-276-2296,
| |
Collapse
|
42
|
Guo YC, Yuan Q. Fibroblast growth factor 23 and bone mineralisation. Int J Oral Sci 2015; 7:8-13. [PMID: 25655009 PMCID: PMC4817534 DOI: 10.1038/ijos.2015.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquired rachitic diseases and has been further characterised in animal models. Recent studies have revealed that the levels of FGF23 increase significantly at the very early stages of chronic kidney disease (CKD) and may play a critical role in mineral ion disorders and bone metabolism in these patients. Our recent publications have also shown that FGF23 and its cofactor, Klotho, may play an independent role in directly regulating bone mineralisation instead of producing a systematic effect. In this review, we will discuss the new role of FGF23 in bone mineralisation and the pathophysiology of CKD-related bone disorders.
Collapse
Affiliation(s)
- Yu-Chen Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Zelenchuk LV, Hedge AM, Rowe PSN. SPR4-peptide alters bone metabolism of normal and HYP mice. Bone 2015; 72:23-33. [PMID: 25460577 PMCID: PMC4342984 DOI: 10.1016/j.bone.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 11/13/2022]
Abstract
CONTEXT ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5β3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. DESIGN Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. RESULTS Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active β-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active β-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. CONCLUSIONS SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active β-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic.
Collapse
Affiliation(s)
- Lesya V Zelenchuk
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Anne-Marie Hedge
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Peter S N Rowe
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
44
|
The impairment of osteogenesis in bone sialoprotein (BSP) knockout calvaria cell cultures is cell density dependent. PLoS One 2015; 10:e0117402. [PMID: 25710686 PMCID: PMC4339579 DOI: 10.1371/journal.pone.0117402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022] Open
Abstract
Bone sialoprotein (BSP) belongs to the "small integrin-binding ligand N-linked glycoprotein" (SIBLING) family, whose members interact with bone cells and bone mineral. BSP is strongly expressed in bone and we previously showed that BSP knockout (BSP-/-) mice have a higher bone mass than wild type (BSP+/+) littermates, with lower bone remodelling. Because baseline bone formation activity is constitutively lower in BSP-/- mice, we studied the impact of the absence of BSP on in vitro osteogenesis in mouse calvaria cell (MCC) cultures. MCC BSP-/- cultures exhibit fewer fibroblast (CFU-F), preosteoblast (CFU-ALP) and osteoblast colonies (bone nodules) than wild type, indicative of a lower number of osteoprogenitors. No mineralized colonies were observed in BSP-/- cultures, along with little/no expression of either osteogenic markers or SIBLING proteins MEPE or DMP1. Osteopontin (OPN) is the only SIBLING expressed in standard density BSP-/- culture, at higher levels than in wild type in early culture times. At higher plating density, the effects of the absence of BSP were partly rescued, with resumed expression of osteoblast markers and cognate SIBLING proteins, and mineralization of the mutant cultures. OPN expression and amount are further increased in high density BSP-/- cultures, while PHEX and CatB expression are differentiatlly regulated in a manner that may favor mineralization. Altogether, we found that BSP regulates mouse calvaria osteoblast cell clonogenicity, differentiation and activity in vitro in a cell density dependent manner, consistent with the effective skeletogenesis but the low levels of bone formation observed in vivo. The BSP knockout bone microenvironment may alter the proliferation/cell fate of early osteoprogenitors.
Collapse
|
45
|
Bone structure and function. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
46
|
Takeyari S, Yamamoto T, Kinoshita Y, Fukumoto S, Glorieux FH, Michigami T, Hasegawa K, Kitaoka T, Kubota T, Imanishi Y, Shimotsuji T, Ozono K. Hypophosphatemic osteomalacia and bone sclerosis caused by a novel homozygous mutation of the FAM20C gene in an elderly man with a mild variant of Raine syndrome. Bone 2014; 67:56-62. [PMID: 24982027 DOI: 10.1016/j.bone.2014.06.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hypophosphatemia and increased serum fibroblast growth factor 23 (FGF23) levels have been reported in young brothers with compound heterozygous mutations for the FAM20C gene; however, rickets was not observed in these cases. We report an adult case of Raine syndrome accompanying hypophosphatemic osteomalacia with a homozygous FAM20C mutation (R408W) associated with increased periosteal bone formation in the long bones and an increase in bone mineral density in the femoral neck. CASE The patient, a 61-year-old man, was born from a cousin-to-cousin marriage. A short stature and severe dental demineralization were reported at an elementary school age. Hypophosphatemia was noted inadvertently at 27years old, at which time he started to take an active vitamin D metabolite (alphacalcidol) and phosphate. He also manifested ossification of the posterior longitudinal ligament. On bone biopsy performed at the age of 41years, we found severe osteomalacia surrounding osteocytes, which appeared to be an advanced form of periosteocytic hypomineralized lesions compared to those reported in patients with X-linked hypophosphatemic rickets. Laboratory data at 61years of age revealed markedly increased serum intact-FGF23 levels, which were likely to be the cause of hypophosphatemia and the decreased level of 1,25(OH)2D. We recently identified a homozygous FAM20C mutation, which was R408W, in this patient. When expressed in HEK293 cells, the R408W mutant protein exhibited impaired kinase activity and secretion. DISCUSSION Our findings suggest that certain homozygous FAM20C mutations can cause FGF23-related hypophosphatemic osteomalacia and indicate the multiple roles of FAM20C in bone.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Minoh City Hospital, Osaka 562-8562, Japan
| | - Takehisa Yamamoto
- Department of Pediatrics, Minoh City Hospital, Osaka 562-8562, Japan.
| | - Yuka Kinoshita
- Division of Nephrology and Endocrinology, Department of Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Seiji Fukumoto
- Division of Nephrology and Endocrinology, Department of Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Francis H Glorieux
- Genetics Unit, Shriners Hospitals for Children, Montreal H3G 1A6, Canada
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1011, Japan
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama 700-8558, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuo Imanishi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | | | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Abstract
Bone fragility is a major health concern, as the increased risk of bone fractures has devastating outcomes in terms of mortality, decreased autonomy, and healthcare costs. Efforts made to address this problem have considerably increased our knowledge about the mechanisms that regulate bone formation and resorption. In particular, we now have a much better understanding of the cellular events that are triggered when bones are mechanically stimulated and how these events can lead to improvements in bone mass. Despite these findings at the molecular level, most exercise intervention studies reveal either no effects or only minor benefits of exercise programs in improving bone mineral density (BMD) in osteoporotic patients. Nevertheless, and despite that BMD is the gold standard for diagnosing osteoporosis, this measure is only able to provide insights regarding the quantity of bone tissue. In this article, we review the complex structure of bone tissue and highlight the concept that its mechanical strength stems from the interaction of several different features. We revisited the available data showing that bone mineralization degree, hydroxyapatite crystal size and heterogeneity, collagen properties, osteocyte density, trabecular and cortical microarchitecture, as well as whole bone geometry, are determinants of bone strength and that each one of these properties may independently contribute to the increased or decreased risk of fracture, even without meaningful changes in aBMD. Based on these findings, we emphasize that while osteoporosis (almost) always causes bone fragility, bone fragility is not always caused just by osteoporosis, as other important variables also play a major role in this etiology. Furthermore, the results of several studies showing compelling data that physical exercise has the potential to improve bone quality and to decrease fracture risk by influencing each one of these determinants are also reviewed. These findings have meaningful clinical repercussions as they emphasize the fact that, even without leading to improvements in BMD, exercise interventions in patients with osteoporosis may be beneficial by improving other determinants of bone strength.
Collapse
|
48
|
Wagner CA, Rubio-Aliaga I, Biber J, Hernando N. Genetic diseases of renal phosphate handling. Nephrol Dial Transplant 2014; 29:iv45-iv54. [DOI: 10.1093/ndt/gfu217] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
49
|
Abstract
Osteoporosis is a chronic disease of the osseous system characterized by decreased bone strength and increased fracture risk. It is due to an imbalance in the dynamic ongoing processes of bone formation and bone resorption. Currently available osteoporosis therapies like bisphosphonates, selective estrogen receptor modulators (SERMs), and denosumab are anti-resorptive agents. Parathyroid hormone analogs like teriparatide are the only anabolic agents currently approved for osteoporosis treatment. The side-effects and limited efficacy of the presently available therapies has encouraged extensive research into the pathophysiology of the disease and newer drug targets for its treatment. The novel anti-resorptive agents being developed are newer SERMs, osteoprotegerin, c-src (cellular-sarcoma) kinase inhibitors, αVβ3 integrin antagonists, cathepsin K inhibitors, chloride channel inhibitors, and nitrates. Upcoming anabolic agents include calcilytics, antibodies against sclerostin and Dickkopf-1, statins, matrix extracellular phosphoglycoprotein fragments activin inhibitiors, and endo-cannabinoid agonists. Many of these new drugs are still in development. This article provides an insight into the emerging drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Garima Bhutani
- Department of Pharmacology, Pt. B.D. Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Mahesh Chander Gupta
- Department of Pharmacology, Pt. B.D. Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
50
|
Takano-Yamamoto T. Osteocyte function under compressive mechanical force. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2013.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|