1
|
Schaefer Z, Iradukunda J, Lumngwena EN, Basso KB, Blackburn JM, Parker IK. Multilevel Proteomics Reveals Epigenetic Signatures in BCG-Mediated Macrophage Activation. Mol Cell Proteomics 2024; 23:100851. [PMID: 39366656 DOI: 10.1016/j.mcpro.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
The bacillus Calmette-Guérin BCG vaccine (Mycobacterium bovis) is primarily used to prevent tuberculosis (TB) infections but has wide-ranging immunogenic effects. One of its most notable properties is its ability to induce trained immunity, a memory-like response in innate immune cells such as macrophages. Through targeted analyses of well-established histone marks, prior research has shown that these changes are generated through epigenetic modification. Mass spectrometry-based proteomic approaches provide a way to globally profile various aspects of the proteome, providing data to further identify unexplored mechanisms of BCG-mediated immunomodulation. Here we use multi-level proteomics (total, histone, and phospho to identify networks and potential mechanisms that mediate BCG-induced immunomodulation in macrophages. Histone-focused proteomics and total proteomics were performed at the University of Cape Town (data available via ProteomeXchange with identifier PXD051187), while phosphoproteomics data was retrieved from the ProteomeXchange Repository (identifier PXD013171). We identify several epigenetic mechanisms that may drive BCG-induced training phenotypes. Evidence across the proteomics and histone-focused proteomics data set pair 6 epigenetic effectors (NuA4, NuRD, NSL, Sin3A, SIRT2, SIRT6) and their substrates.
Collapse
Affiliation(s)
- Zoe Schaefer
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - John Iradukunda
- Division of Chemical & Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Evelyn N Lumngwena
- School of Clinical Medicine, University of The Witwatersrand, Johannesburg, South Africa; Center for the Study of Emerging and Re-emerging Infections (CREMER), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaounde, Cameroon
| | - Kari B Basso
- Mass Spectrometry Research and Education Center, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Ivana K Parker
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
2
|
Jiang N, Li YB, Jin JY, Guo JY, Ding QR, Meng D, Zhi XL. Structural and functional insights into the epigenetic regulator MRG15. Acta Pharmacol Sin 2024; 45:879-889. [PMID: 38191914 PMCID: PMC11053006 DOI: 10.1038/s41401-023-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
MORF4-related gene on chromosome 15 (MRG15), a chromatin remodeller, is evolutionally conserved and ubiquitously expressed in mammalian tissues and cells. MRG15 plays vital regulatory roles in DNA damage repair, cell proliferation and division, cellular senescence and apoptosis by regulating both gene activation and gene repression via associations with specific histone acetyltransferase and histone deacetylase complexes. Recently, MRG15 has also been shown to rhythmically regulate hepatic lipid metabolism and suppress carcinoma progression. The unique N-terminal chromodomain and C-terminal MRG domain in MRG15 synergistically regulate its interaction with different cofactors, affecting its functions in various cell types. Thus, how MRG15 elaborately regulates target gene expression and performs diverse functions in different cellular contexts is worth investigating. In this review, we provide an in-depth discussion of how MRG15 controls multiple physiological and pathological processes.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yong-Bo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia-Yu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie-Yu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiu-Rong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Al-Harthi S, Li H, Winkler A, Szczepski K, Deng J, Grembecka J, Cierpicki T, Jaremko Ł. MRG15 activates histone methyltransferase activity of ASH1L by recruiting it to the nucleosomes. Structure 2023; 31:1200-1207.e5. [PMID: 37527654 DOI: 10.1016/j.str.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
ASH1L is a histone methyltransferase that regulates gene expression through methylation of histone H3 on lysine K36. While the catalytic SET domain of ASH1L has low intrinsic activity, several studies found that it can be vastly enhanced by the interaction with MRG15 protein and proposed allosteric mechanism of releasing its autoinhibited conformation. Here, we found that full-length MRG15, but not the MRG domain alone, can enhance the activity of the ASH1L SET domain. In addition, we showed that catalytic activity of MRG15-ASH1L depends on nucleosome binding mediated by MRG15 chromodomain. We found that in solution MRG15 binds to ASH1L, but has no impact on the conformation of the SET domain autoinhibitory loop or the S-adenosylmethionine cofactor binding site. Moreover, MRG15 binding did not impair the potency of small molecule inhibitors of ASH1L. These findings suggest that MRG15 functions as an adapter that enhances ASH1L catalytic activity by recruiting nucleosome substrate.
Collapse
Affiliation(s)
- Samah Al-Harthi
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hao Li
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jing Deng
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| | - Łukasz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Bioscience Program, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Zhang Y, Dalamaga M, Liu J. Targeting MRG15 for the treatment of nonalcoholic steatohepatitis. Metabol Open 2022; 16:100217. [DOI: 10.1016/j.metop.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
|
5
|
Redington J, Deveryshetty J, Kanikkannan L, Miller I, Korolev S. Structural Insight into the Mechanism of PALB2 Interaction with MRG15. Genes (Basel) 2021; 12:genes12122002. [PMID: 34946951 PMCID: PMC8701324 DOI: 10.3390/genes12122002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein partner and localizer of BRCA2 (PALB2) orchestrates the interactions between breast cancer susceptibility proteins 1 and 2 (BRCA1, -2) that are critical for genome stability, homologous recombination (HR) and DNA repair. PALB2 mutations predispose patients to a spectrum of cancers, including breast and ovarian cancers. PALB2 localizes HR machinery to chromatin and links it with transcription through multiple DNA and protein interactions. This includes its interaction with MRG15 (Morf-related gene on chromosome 15), which is part of many transcription complexes, including the HAT-associated and the HDAC-associated complexes. This interaction is critical for PALB2 localization in actively transcribed genes, where transcription/replication conflicts lead to frequent replication stress and DNA breaks. We solved the crystal structure of the MRG15 MRG domain bound to the PALB2 peptide and investigated the effect of several PALB2 mutations, including patient-derived variants. PALB2 interacts with an extended surface of the MRG that is known to interact with other proteins. This, together with a nanomolar affinity, suggests that the binding of MRG15 partners, including PALB2, to this region is mutually exclusive. Breast cancer-related mutations of PALB2 cause only minor attenuation of the binding affinity. New data reveal the mechanism of PALB2-MRG15 binding, advancing our understanding of PALB2 function in chromosome maintenance and tumorigenesis.
Collapse
|
6
|
Porras-Yakushi TR, Reitsma JM, Sweredoski MJ, Deshaies RJ, Hess S. In-depth proteomic analysis of proteasome inhibitors bortezomib, carfilzomib and MG132 reveals that mortality factor 4-like 1 (MORF4L1) protein ubiquitylation is negatively impacted. J Proteomics 2021; 241:104197. [PMID: 33848640 DOI: 10.1016/j.jprot.2021.104197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Proteasome inhibitors are an important class of chemotherapeutic drugs. In this study, we performed a large-scale ubiquitylome analysis of the three proteasome inhibitors MG132, bortezomib and carfilzomib. Although carfilzomib is currently being used for the treatment of multiple myeloma, it has not yet been subjected to a global ubiquitylome analysis. In this study, we identified more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. We introduced stringent criteria to determine the correct ubiquitylation site ratios and used five biological replicates to achieve increased statistical power. With the vast amount of data acquired, we made proteome-wide comparisons between the proteasome inhibitors and indicate candidate proteins that will benefit from further study. We find that in addition to the expected increase in ubiquitylation in the majority of proteins, unexpectedly a select few are specifically and significantly decreased in ubiquitylation at specific sites after treatment with proteasome inhibitors. We chose to follow-up on Mortality factor 4-like 1 (MORF4L1), which was significantly decreased in ubiquitylation at lysine 187 and lysine 104 upon proteasome inhibition, but increased in protein abundance by approximately two-fold. We demonstrate that the endogenous protein level of MORF4L1 is highly regulated by the ubiquitin proteasome system. SIGNIFICANCE: This study provides a highly curated dataset of more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. For the proper quantification of ubiquitylation sites, we introduced a higher standard by quantifying only those ubiquitylation sites that are not flanked by neighboring ubiquitylation, thereby avoiding the report of incorrect ratios. The sites identified will serve to identify important targets of the ubiquitin proteasome system and aid to better understand the repertoire of proteins that are affected by inhibiting the proteasome with MG132, bortezomib, and carfilzomib. In addition, we investigated the unusual observation that ubiquitylation of the tumor suppressor Mortality factor 4-like (MORF4L1) protein decreases rather than increases upon proteasome inhibition, which may contribute to an additional anti-tumor effect of bortezomib and carfilzomib.
Collapse
Affiliation(s)
- Tanya R Porras-Yakushi
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Guo Z, Li Z, Liu Y, An Z, Peng M, Shen WH, Dong A, Yu Y. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. THE NEW PHYTOLOGIST 2020; 227:1453-1466. [PMID: 32315442 DOI: 10.1111/nph.16616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 05/26/2023]
Abstract
Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.
Collapse
Affiliation(s)
- Zhihao Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zepeng Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
8
|
Wei Y, Tian C, Zhao Y, Liu X, Liu F, Li S, Chen Y, Qiu Y, Feng Z, Chen L, Zhou T, Ren X, Feng C, Liu Y, Yu W, Ying H, Ding Q. MRG15 orchestrates rhythmic epigenomic remodelling and controls hepatic lipid metabolism. Nat Metab 2020; 2:447-460. [PMID: 32694659 DOI: 10.1038/s42255-020-0203-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
The rhythmic regulation of transcriptional processes is intimately linked to lipid homeostasis, to anticipate daily changes in energy access. The Rev-erbα-HDAC3 complex was previously discovered to execute the rhythmic repression of lipid genes; however, the epigenetic switch that turns on these genes is less clear. Here, we show that genomic recruitment of MRG15, which is encoded by the mortality factor on chromosome 4 (MORF4)-related gene on chromosome 15, displays a significant diurnal rhythm and activates lipid genes in the mouse liver. RNA polymerase II (Pol II) recruitment and histone acetylation correspond to MRG15 binding, and the rhythm is impaired upon MRG15 depletion, establishing MRG15 as a key modulator in global rhythmic transcriptional regulation. MRG15 interacts with the nuclear receptor LRH-1, rather than with known core clock proteins, and is recruited to genomic loci near lipid genes via LRH-1. Blocking of MRG15 by CRISPR targeting or by the FDA-approved drug argatroban, which is an antagonist to MRG15, attenuates liver steatosis. This work highlights MRG15 as a targetable master regulator in the rhythmic regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cheng Tian
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhuanghui Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaoguang Ren
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chengwu Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
9
|
Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol 2019; 10:1810. [PMID: 31440236 PMCID: PMC6692789 DOI: 10.3389/fimmu.2019.01810] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Keloids are considered as benign fibroproliferative skin tumors growing beyond the site of the original dermal injury. Although traditionally viewed as a form of skin scarring, keloids display many cancer-like characteristics such as progressive uncontrolled growth, lack of spontaneous regression and extremely high rates of recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to the excessive overproduction of collagen which never metastasize. Within the remit of keloid pathobiology, there is increasing evidence for the various interplay of neoplastic-promoting and suppressing factors, which may explain its aggressive clinical behavior. Amongst the most compelling parallels between keloids and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and epithelial-to-mesenchymal transition amongst other disease biological (genotypic and phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties of keloids and highlights areas for future study.
Collapse
Affiliation(s)
- Silvian Tan
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Nonhlanhla Khumalo
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Sang Y, Zhang R, Sun L, Chen KK, Li SW, Xiong L, Peng Y, Zeng L, Huang G. MORF4L1 suppresses cell proliferation, migration and invasion by increasing p21 and E-cadherin expression in nasopharyngeal carcinoma. Oncol Lett 2018; 17:294-302. [PMID: 30655767 PMCID: PMC6313188 DOI: 10.3892/ol.2018.9588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mortality factor 4-like 1 (MORF4L1) is a member of a subgroup of histone acetyltransferases and belongs to the mortality factor on chromosome 4 (MORF4) class of proteins. However, the role of MORF4L1 in cancers is largely unknown. Using reverse transcription-quantitative polymerase chain reaction and published datasets, the present study demonstrated that the expression of MORF4L1 is decreased in several cancers, including nasopharyngeal carcinoma (NPC). Additionally, the methylation rate of the promoter of MORF4L1 was identified to be significantly higher in tumour cells than in normal cells. The ectopic expression of MORF4L1 was also revealed to inhibit cell proliferation, colony formation, migration and invasion in NPC, whereas the knockdown of MORF4L1 promoted cell proliferation, colony formation, migration and invasion. Mechanistically, the present study demonstrated that MORF4L1 functions as a tumour suppressor by increasing p21 and E-cadherin levels. These findings may be useful novel targets for treating patients with NPC.
Collapse
Affiliation(s)
- Yi Sang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Longhua Sun
- Respiratory Department, Nanchang Hospital of Integrative Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330008, P.R. China
| | - Kaddie Kwok Chen
- College of Arts and Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Si-Wei Li
- Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Longxin Xiong
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yongjian Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lei Zeng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Guofu Huang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
11
|
Sokpor G, Castro-Hernandez R, Rosenbusch J, Staiger JF, Tuoc T. ATP-Dependent Chromatin Remodeling During Cortical Neurogenesis. Front Neurosci 2018; 12:226. [PMID: 29686607 PMCID: PMC5900035 DOI: 10.3389/fnins.2018.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly. ATP-dependent chromatin remodeling complexes regulate gene expression through utilization of energy from ATP hydrolysis to reorganize chromatin structure. These chromatin remodeling complexes are characteristically multimeric, with some capable of adopting functionally distinct conformations via subunit reconstitution to perform specific roles in major aspects of cortical neurogenesis. In this review, we highlight the functions of such chromatin remodelers during cortical development. We also bring together various proposed mechanisms by which ATP-dependent chromatin remodelers function individually or in concert, to specifically modulate vital steps in cortical neurogenesis.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Ricardo Castro-Hernandez
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| |
Collapse
|
12
|
Zou C, Li J, Xiong S, Chen Y, Wu Q, Li X, Weathington NM, Han S, Snavely C, Chen BB, Mallampalli RK. Mortality factor 4 like 1 protein mediates epithelial cell death in a mouse model of pneumonia. Sci Transl Med 2016; 7:311ra171. [PMID: 26511508 DOI: 10.1126/scitranslmed.aac7793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unchecked epithelial cell death is fundamental to the pathogenesis of pneumonia. The recognition of unique signaling pathways that preserve epithelial cell viability may present new opportunities for interventional strategies. We describe that mortality factor 4 like 1 (Morf4l1), a protein involved in chromatin remodeling, is constitutively expressed at low levels in the lung because of its continuous degradation mediated by an orphan ubiquitin E3 ligase subunit, Fbxl18. Expression of Morf4l1 increases in humans with pneumonia and is up-regulated in lung epithelia after exposure to Pseudomonas aeruginosa or lipopolysaccharide. In a mouse model of pneumonia induced by P. aeruginosa, Morf4l1 is stabilized by acetylation that protects it from Fbxl18-mediated degradation. After P. aeruginosa infection of mice, overexpression of Morf4l1 resulted in lung epithelial cell death, whereas its depletion restored cell viability. Using in silico modeling and drug-target interaction studies, we identified that the U.S. Food and Drug Administration-approved thrombin inhibitor argatroban is a Morf4l1 antagonist. Argatroban inhibited Morf4l1-dependent histone acetylation, reduced its cytotoxicity, and improved survival of mice with experimental lung injury at doses that had no anticoagulant activity. These studies uncover a previously unrecognized biological mechanism whereby pathogens subvert cell viability by extending the life span of a cytotoxic host protein. Morf4l1 may be a potential molecular target for non-antibiotic pharmacotherapy during severe pulmonary infection.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Jin Li
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sheng Xiong
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yan Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Qin Wu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiuying Li
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nathaniel M Weathington
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA. Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - SeungHye Han
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Courtney Snavely
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA. Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA. Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
13
|
Structural studies on MRG701 chromodomain reveal a novel dimerization interface of MRG proteins in green plants. Protein Cell 2016; 7:792-803. [PMID: 27638467 PMCID: PMC5084153 DOI: 10.1007/s13238-016-0310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/26/2016] [Indexed: 12/03/2022] Open
Abstract
MRG proteins are conserved during evolution in fungi, flies, mammals and plants, and they can exhibit diversified functions. The animal MRGs were found to form various complexes to activate gene expression. Plant MRG1/2 and MRG702 were reported to be involved in the regulation of flowering time via binding to H3K36me3-marked flowering genes. Herein, we determined the crystal structure of MRG701 chromodomain (MRG701CD). MRG701CD forms a novel dimerization fold both in crystal and in solution. Moreover, we found that the dimerization of MRG chromodomains is conserved in green plants. Our findings may provide new insights into the mechanism of MRGs in regulation of gene expression in green plants.
Collapse
|
14
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
15
|
Structural Basis for Multi-specificity of MRG Domains. Structure 2015; 23:1049-57. [PMID: 25960410 DOI: 10.1016/j.str.2015.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 11/24/2022]
Abstract
Chromatin-binding proteins play vital roles in the assembly and recruitment of multi-subunit complexes harboring effector proteins to specific genomic loci. MRG15, a chromodomain-containing chromatin-binding protein, recruits diverse chromatin-associated complexes that regulate gene transcription, DNA repair, and RNA splicing. Previous studies with Pf1, another chromatin-binding subunit of the Sin3S/Rpd3S histone deacetylase complex, defined the sequence and structural requirements for interactions with the MRG15 MRG domain, a common target of diverse subunits in the aforementioned complexes. We now show that MRGBP, a member of the Tip60/NuA4 histone acetyltransferase complex, engages the same two surfaces of the MRG domain as Pf1. High-affinity interactions occur via a bipartite structural motif including an FxLP sequence motif. MRGBP shares little sequence and structural similarity with Pf1, yet targets similar pockets on the surface of the MRG domain, mimicking Pf1 in its interactions. Our studies shed light onto how MRG domains have evolved to bind diverse targets.
Collapse
|
16
|
Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D. Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 2015; 142:291-302. [PMID: 25564623 DOI: 10.1242/dev.115147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line.
Collapse
Affiliation(s)
- Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Lindsay Leahul
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Brendan Bakos
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Katie Jasper
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
17
|
Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2. G3-GENES GENOMES GENETICS 2015; 5:803-17. [PMID: 25758823 PMCID: PMC4426367 DOI: 10.1534/g3.115.016634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15). Like Cap-H2, Mrg15 is required for interphase chromosome compaction and homolog pairing. However, the mechanism by which Mrg15 and Cap-H2 cooperate to maintain interphase chromatin organization remains unclear. Here, we show that Cap-H2 localizes to interband regions on polytene chromosomes and co-localizes with Mrg15 at regions of active transcription across the genome. We show that co-localization of Cap-H2 on polytene chromosomes is partially dependent on Mrg15. We have identified a binding motif within Cap-H2 that is essential for its interaction with Mrg15, and have found that mutation of this motif results in loss of localization of Cap-H2 on polytene chromosomes and results in partial suppression of Cap-H2-mediated compaction and homolog unpairing. Our data are consistent with a model in which Mrg15 acts as a loading factor to facilitate Cap-H2 binding to chromatin and mediate changes in chromatin organization.
Collapse
|
18
|
Chen Z, Ye X, Tang N, Shen S, Li Z, Niu X, Lu S, Xu L. The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer. Br J Pharmacol 2015; 171:3196-211. [PMID: 24571482 DOI: 10.1111/bph.12661] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The histone acetyltransferase MOF is a member of the MYST family. In mammals, MOF plays critical roles by acetylating histone H4 at K16 and non-histone substrates such as p53. Here we have investigated the role of MOF in human lung cancer and possible new substrates of hMOF. EXPERIMENTAL APPROACH Samples of human non-small cell lung cancer (NSCLC) were used to correlate MOF with clinicopathological parameters and NF-E2-related factor 2 (Nrf2) downstream genes. 293T-cells were used to study interactions between MOF and Nrf2, and acetylation of Nrf2 by MOF. Mouse embryonic fibroblast and A549 cells were utilized to assess involvement of MOF in antioxidative and anti-drug responses. A549 cells were used to analysis the role of MOF in anti-drug response in vitro and in vivo. KEY RESULTS hMOF was overexpressed in human NSCLC tissues and was associated with large tumour size, advanced disease stage and metastasis, and with poor prognosis. hMOF levels were positively correlated with Nrf2-downstream genes. MOF/hMOF physically interacted with and acetylated Nrf2 at Lys(588) . MOF-mediated acetylation increased nuclear retention of Nrf2 and transcription of its downstream genes. Importantly, MOF/hMOF was essential for anti-oxidative and anti-drug responses in vitro and regulated tumour growth and drug resistance in vivo in an Nrf2-dependent manner. CONCLUSION AND IMPLICATIONS hMOF was overexpressed in human NSCLC and was a predictor of poor survival. hMOF-mediated Nrf2 acetylation and nuclear retention are essential for anti-oxidative and anti-drug responses. hMOF may provide a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Regulation of arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genet 2014; 10:e1004617. [PMID: 25211338 PMCID: PMC4161306 DOI: 10.1371/journal.pgen.1004617] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Day-length is important for regulating the transition to reproductive development (flowering) in plants. In the model plant Arabidopsis thaliana, the transcription factor CONSTANS (CO) promotes expression of the florigen FLOWERING LOCUS T (FT), constituting a key flowering pathway under long-day photoperiods. Recent studies have revealed that FT expression is regulated by changes of histone modification marks of the FT chromatin, but the epigenetic regulators that directly interact with the CO protein have not been identified. Here, we show that the Arabidopsis Morf Related Gene (MRG) group proteins MRG1 and MRG2 act as H3K4me3/H3K36me3 readers and physically interact with CO to activate FT expression. In vitro binding analyses indicated that the chromodomains of MRG1 and MRG2 preferentially bind H3K4me3/H3K36me3 peptides. The mrg1 mrg2 double mutant exhibits reduced mRNA levels of FT, but not of CO, and shows a late-flowering phenotype under the long-day but not short-day photoperiod growth conditions. MRG2 associates with the chromatin of FT promoter in a way dependent of both CO and H3K4me3/H3K36me3. Vice versa, loss of MRG1 and MRG2 also impairs CO binding at the FT promoter. Crystal structure analyses of MRG2 bound with H3K4me3/H3K36me3 peptides together with mutagenesis analysis in planta further demonstrated that MRG2 function relies on its H3K4me3/H3K36me3-binding activity. Collectively, our results unravel a novel chromatin regulatory mechanism, linking functions of MRG1 and MRG2 proteins, H3K4/H3K36 methylations, and CO in FT activation in the photoperiodic regulation of flowering time in plants. The photoperiodic flowering in Arabidopsis requires the key regulator CO and its target gene FT. However, how CO regulates FT expression in the context of chromatin remains largely obscure. In this work, we present Arabidopsis MRG1/2 as novel chromatin effectors directly involved in the CO-FT photoperiodic flowering. Firstly, MRG1/2 proteins are identified as recognition factors of H3K4 and H3K36 methylation via their chromodomains. The mrg1 mrg2 double mutant shows a late-flowering phenotype only under long-day conditions through down-regulation of FT but not of CO. MRG2 can directly target in vivo the FT promoter chromatin in a H3K4me3/H3K36me3-level dependent manner. More importantly, MRG2 and CO physically interact and enhance each other's binding to the FT promoter in planta. Determination of co-crystal structures of MRG2 with H3K4me3/H3K36me3 peptides and mutagenesis of a key amino acid residue involved in structural interaction demonstrate that MRG2 reader activity is essential for in planta function. Taken together, our findings uncover a novel mechanism of FT activation in flowering promotion and provide a striking example of mutual interplay between a transcription factor and a histone methylation reader in transcription regulation.
Collapse
|
20
|
Xu Y, Gan ES, Zhou J, Wee WY, Zhang X, Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res 2014; 42:10960-74. [PMID: 25183522 PMCID: PMC4176166 DOI: 10.1093/nar/gku781] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trimethylation of lysine 36 of histone H3 (H3K36me3) is found to be associated with various transcription events. In Arabidopsis, the H3K36me3 level peaks in the first half of coding regions, which is in contrast to the 3'-end enrichment in animals. The MRG15 family proteins function as 'reader' proteins by binding to H3K36me3 to control alternative splicing or prevent spurious intragenic transcription in animals. Here, we demonstrate that two closely related Arabidopsis homologues (MRG1 and MRG2) are localised to the euchromatin and redundantly ensure the increased transcriptional levels of two flowering time genes with opposing functions, FLOWERING LOCUS C and FLOWERING LOCUS T (FT). MRG2 directly binds to the FT locus and elevates the expression in an H3K36me3-dependent manner. MRG1/2 binds to H3K36me3 with their chromodomain and interact with the histone H4-specific acetyltransferases (HAM1 and HAM2) to achieve a high expression level through active histone acetylation at the promoter and 5' regions of target loci. Together, this study presents a mechanistic link between H3K36me3 and histone H4 acetylation. Our data also indicate that the biological functions of MRG1/2 have diversified from their animal homologues during evolution, yet they still maintain their conserved H3K36me3-binding molecular function.
Collapse
Affiliation(s)
- Yifeng Xu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Eng-Seng Gan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Jie Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Wan-Yi Wee
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA 30602-7271, USA
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
21
|
Abstract
PALB2 [partner and localizer of BRCA2 (breast cancer early-onset 2)] [corrected] has emerged as a key player in the maintenance of genome integrity. Biallelic mutations in PALB2 cause FA (Fanconi's anaemia) subtype FA-N, a devastating inherited disorder marked by developmental abnormalities, bone marrow failure and childhood cancer susceptibility, whereas monoallelic mutations predispose to breast, ovarian and pancreatic cancer. The tumour suppressor role of PALB2 has been intimately linked to its ability to promote HR (homologous recombination)-mediated repair of DNA double-strand breaks. Because PALB2 lies at the crossroads between FA, HR and cancer susceptibility, understanding its function has become the primary focus of several studies. The present review discusses a current synthesis of the contribution of PALB2 to these pathways. We also provide a molecular description of FA- or cancer-associated PALB2 mutations.
Collapse
|
22
|
Chen Y, Li J, Dunn S, Xiong S, Chen W, Zhao Y, Chen BB, Mallampalli RK, Zou C. Histone deacetylase 2 (HDAC2) protein-dependent deacetylation of mortality factor 4-like 1 (MORF4L1) protein enhances its homodimerization. J Biol Chem 2014; 289:7092-7098. [PMID: 24451372 DOI: 10.1074/jbc.m113.527507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone acetyltransferase mortality factor 4-like 1 (MORF4L1) is a relatively new histone acetyltransferase component that exists as a homodimer to exert its epigenetic function. The mechanism of MORF4L1 self-assembly is unknown. Here we report that Lys-148 deacetylation is indispensable for facilitating MORF4L1 self-assembly into a homodimeric unit. Among a stretch of ∼10 amino acids in the NH2 terminus between the chromodomain and MORF4-related gene (MRG) domain within MORF4L1, Lys-148 is normally acetylated. Substitution of Lys-148 with arginine augments MORF4L1 self-assembly. However, acetylation mimics of MORF4L1, including K148L and K148Q, abolished its self-assembly of the histone acetyltransferase component. HDAC2, a deacetylase, interacts with and keeps MORF4L1 in a deacetylation status at Lys(148) that triggers MORF4L1 self-assembly. Knockdown of HDAC2 reduces MORF4L1 self-assembly. HDAC2-dependent deacetylation of MORF4L1 enhances MORF4L1 homodimerization, thus facilitating the functionality of complex formation to repress cell proliferation.
Collapse
Affiliation(s)
- Yan Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan 410011, China.
| | - Jin Li
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Sarah Dunn
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Sheng Xiong
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Wei Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
23
|
Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 2013; 92:237-46. [PMID: 24189169 DOI: 10.1016/j.ejcb.2013.09.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022] Open
Abstract
Sin3, a large acidic protein, shares structural similarity with the helix-loop-helix dimerization domain of proteins of the Myc family of transcription factors. Sin3/HDAC corepressor complex functions in transcriptional regulation of several genes and is therefore implicated in the regulation of key biological processes. Knockdown studies have confirmed the role of Sin3 in cellular proliferation, differentiation, apoptosis and cell cycle regulation, emphasizing Sin3 as an essential regulator of critical cellular events in normal and pathological processes. The present review covers the diverse functions of this master transcriptional regulator as well as illustrates the redundant and distinct functions of its two mammalian isoforms.
Collapse
Affiliation(s)
- Rama Kadamb
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | | | | | | | | |
Collapse
|
24
|
Abstract
In preparation for meiotic chromosome segregation, homologous chromosomes need to pair, synapse (i.e., assemble the synaptonemal complex, SC), and then recombine to generate a physical linkage (i.e., chiasma) between them. In many organisms meiotic pairing capacity distributed along the entire chromosome length supports presynaptic alignment. In contrast, the prevailing model for C. elegans proposes that presynaptic homologous pairing is performed solely by a master pairing-site, the pairing center (PC). In this model, the remaining chromosomal regions (the non-PC regions) are not actively involved in presynaptic pairing, and the SC assembling from the PC aligns the homologous chromosomes along non-PC regions and holds them together. Our recent work, however, demonstrates that C. elegans chromosomes establish presynaptic alignment along the entire chromosome length, suggesting that the non-PC regions are also actively involved in the presynaptic pairing process. Furthermore, we have also discovered that the chromodomain protein MRG-1 facilitates this presynaptic non-PC pairing. The phenotype of the mrg-1 mutant indicates that the PC and the non-PC collaborate in successful pairing and synapsis. Therefore, homologous pairing mechanisms in C. elegans possibly share more similarity with those in other organisms than previously thought. Here, we elaborate on these observations and discuss a hypothetical model for presynaptic pairing in C. elegans based on our novel findings.
Collapse
Affiliation(s)
- Kentaro Nabeshima
- Department of Cell and Developmental Biology; University of Michigan Medical School; Ann Arbor, MI USA
| |
Collapse
|
25
|
Alternative splicing of the chromodomain protein Morf4l1 pre-mRNA has implications on cell differentiation in the developing chicken retina. J Mol Neurosci 2013; 51:615-28. [PMID: 23733253 DOI: 10.1007/s12031-013-0034-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
The proliferation, cell cycle exit and differentiation of progenitor cells are controlled by several different factors. The chromodomain protein mortality factor 4-like 1 (Morf4l1) has been ascribed a role in both proliferation and differentiation. Little attention has been given to the existence of alternative splice variants of the Morf4l1 mRNA, which encode two Morf41l isoforms: a short isoform (S-Morf4l1) with an intact chromodomain and a long isoform (L-Morf4l1) with an insertion in or in the vicinity of the chromodomain. The aim of this study was to investigate if this alternative splicing has a function during development. We analysed the temporal and spatial distribution of the two mRNAs and over-expressed both isoforms in the developing retina. The results showed that the S-Morf4l1 mRNA is developmentally regulated. Over-expression of S-Morf4l1 using a retrovirus vector produced a clear phenotype with an increase of early-born neurons: retinal ganglion cells, horizontal cells and cone photoreceptor cells. Over-expression of L-Morf4l1 did not produce any distinguishable phenotype. The over-expression of S-Morf4l1 but not L-Morf4l1 also increased apoptosis in the infected regions. Our results suggest that the two Morf4l1 isoforms have different functions during retinogenesis and that Morf4l1 functions are fine-tuned by developmentally regulated alternative splicing. The data also suggest that Morf4l1 contributes to the regulation of cell genesis in the retina.
Collapse
|
26
|
EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 2012; 48:572-86. [PMID: 23063525 DOI: 10.1016/j.molcel.2012.09.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/14/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
Ubiquitination plays a major role in protein degradation. Although phosphorylation-dependent ubiquitination is well known for the regulation of protein stability, methylation-dependent ubiquitination machinery has not been characterized. Here, we provide evidence that methylation-dependent ubiquitination is carried out by damage-specific DNA binding protein 1 (DDB1)/cullin4 (CUL4) E3 ubiquitin ligase complex and a DDB1-CUL4-associated factor 1 (DCAF1) adaptor, which recognizes monomethylated substrates. Molecular modeling and binding affinity studies reveal that the putative chromo domain of DCAF1 directly recognizes monomethylated substrates, whereas critical binding pocket mutations of the DCAF1 chromo domain ablated the binding from the monomethylated substrates. Further, we discovered that enhancer of zeste homolog 2 (EZH2) methyltransferase has distinct substrate specificities for histone H3K27 and nonhistones exemplified by an orphan nuclear receptor, RORα. We propose that EZH2-DCAF1/DDB1/CUL4 represents a previously unrecognized methylation-dependent ubiquitination machinery specifically recognizing "methyl degron"; through this, nonhistone protein stability can be dynamically regulated in a methylation-dependent manner.
Collapse
|
27
|
David G. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers. Cancer Biol Ther 2012; 13:992-1000. [PMID: 22825329 DOI: 10.4161/cbt.21116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes.
Collapse
Affiliation(s)
- Gregory David
- Department of Pharmacology and NYU Cancer Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
29
|
SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol Cell Biol 2012; 32:2823-36. [PMID: 22586264 DOI: 10.1128/mcb.00496-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SIRT1 is a NAD(+)-dependent histone H4K16 deacetylase that controls several different normal physiologic and disease processes. Like most histone deacetylases, SIRT1 also deacetylates nonhistone proteins. Here, we show that two members of the MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60) acetyltransferase family, hMOF and TIP60, are SIRT1 substrates. SIRT1 deacetylation of the enzymatic domains of hMOF and TIP60 inhibits their acetyltransferase activity and promotes ubiquitination-dependent degradation of these proteins. Importantly, immediately following DNA damage, the binding of SIRT1 to hMOF and TIP60 is transiently interrupted, with corresponding hMOF/TIP60 hyperacetylation. Lysine-to-arginine mutations in SIRT1-targeted lysines on hMOF and TIP60 repress DNA double-strand break repair and inhibit the ability of hMOF/TIP60 to induce apoptosis in response to DNA double-strand break. Together, these findings uncover novel pathways in which SIRT1 dynamically interacts with and regulates hMOF and TIP60 through deacetylation and provide additional mechanistic insights by which SIRT1 regulates DNA damage response.
Collapse
|
30
|
Xie T, Graveline R, Kumar GS, Zhang Y, Krishnan A, David G, Radhakrishnan I. Structural basis for molecular interactions involving MRG domains: implications in chromatin biology. Structure 2012; 20:151-60. [PMID: 22244764 DOI: 10.1016/j.str.2011.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/12/2011] [Accepted: 10/15/2011] [Indexed: 11/30/2022]
Abstract
MRG15 is a member of the mortality family of transcription factors that targets a wide variety of multiprotein complexes involved in transcription regulation, DNA repair, and alternative splicing to chromatin. The structure of the apo-MRG15 MRG domain implicated in interactions with diverse proteins has been described, but not in complex with any of its targets. Here, we structurally and functionally characterize the interaction between MRG15 and Pf1, two constitutively associated subunits of the histone deacetylase-associated Rpd3S/Sin3S corepressor complex. The MRG domain adopts a structure reminiscent of the apo state, whereas the Pf1 MRG-binding domain engages two discrete hydrophobic surfaces on the MRG domain via a bipartite motif comprising an α-helix and a segment in an extended conformation, both of which are critical for high-affinity interactions. Multiple MRG15 interactors share an FxLP motif in the extended segment, but equivalent sequence/helical motifs are not readily evident, implying potential diversity in MRG-recognition mechanisms.
Collapse
Affiliation(s)
- Tao Xie
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Hnilicová J, Staněk D. Where splicing joins chromatin. Nucleus 2012; 2:182-8. [PMID: 21818411 DOI: 10.4161/nucl.2.3.15876] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022] Open
Abstract
There are numerous data suggesting that two key steps in gene expression-transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and methylation and potential mechanisms of their role in splicing. It seems that whereas histone acetylation acts mainly by alterating the transcription rate, histone methylation can also influence splicing directly by recruiting various splicing components.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
32
|
Larance M, Kirkwood KJ, Xirodimas DP, Lundberg E, Uhlen M, Lamond AI. Characterization of MRFAP1 turnover and interactions downstream of the NEDD8 pathway. Mol Cell Proteomics 2011; 11:M111.014407. [PMID: 22038470 PMCID: PMC3316733 DOI: 10.1074/mcp.m111.014407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The NEDD8-Cullin E3 ligase pathway plays an important role in protein homeostasis, in particular the degradation of cell cycle regulators and transcriptional control networks. To characterize NEDD8-cullin target proteins, we performed a quantitative proteomic analysis of cells treated with MLN4924, a small molecule inhibitor of the NEDD8 conjugation pathway. MRFAP1 and its interaction partner, MORF4L1, were among the most up-regulated proteins after NEDD8 inhibition in multiple human cell lines. We show that MRFAP1 has a fast turnover rate in the absence of MLN4924 and is degraded via the ubiquitin-proteasome system. The increased abundance of MRFAP1 after MLN4924 treatment results from a decreased rate of degradation. Characterization of the binding partners of both MRFAP1 and MORF4L1 revealed a complex protein-protein interaction network. MRFAP1 bound to a number of E3 ubiquitin ligases, including CUL4B, but not to components of the NuA4 complex, including MRGBP, which bound to MORF4L1. These data indicate that MRFAP1 may regulate the ability of MORF4L1 to interact with chromatin-modifying enzymes by binding to MORF4L1 in a mutually exclusive manner with MRGBP. Analysis of MRFAP1 expression in human tissues by immunostaining with a MRFAP1-specific antibody revealed that it was detectable in only a small number of tissues, in particular testis and brain. Strikingly, analysis of the seminiferous tubules of the testis showed the highest nuclear staining in the spermatogonia and much weaker staining in the spermatocytes and spermatids. MRGBP was inversely correlated with MRFAP1 expression in these cell types, consistent with an exchange of MORF4L1 interaction partners as cells progress through meiosis in the testis. These data highlight an important new arm of the NEDD8-cullin pathway.
Collapse
Affiliation(s)
- Mark Larance
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M, Ferguson DO, Yu X. Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 2011; 18:761-8. [PMID: 21706008 PMCID: PMC3130800 DOI: 10.1038/nsmb.2078] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 04/20/2011] [Indexed: 12/29/2022]
Abstract
Protein ubiquitination is a critical component of the DNA damage response. To study the mechanism of the DNA damage-induced ubiquitination pathway, we analyzed the impact of the loss of two E3 ubiquitin ligases, RNF8 and Chfr. Interestingly, DNA damage-induced ATM activation is suppressed in RNF8 and Chfr double-deficient (DKO) cells, and DKO mice develop thymic lymphomas that are nearly diploid but harbor clonal chromosome translocations. Moreover, DKO mice and cells are hypersensitive to ionizing radiation. We show evidence that RNF8 and Chfr synergistically regulate histone ubiquitination to control histone H4K16 acetylation through MRG15-dependent acetyltransferase complexes. Through these complexes, RNF8 and CHFR affect chromatin relaxation and modulate ATM activation and DNA damage response pathways. Collectively, our findings demonstrate that two chromatin remodeling factors, RNF8 and Chfr, function together to activate ATM and maintain genomic stability in vivo.
Collapse
Affiliation(s)
- Jiaxue Wu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ma T, Keller JA, Yu X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai) 2011; 43:339-45. [PMID: 21444325 DOI: 10.1093/abbs/gmr016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone ubiquitination regulates the chromatin structure that is important for many biological processes. Recently, ubiquitination of histones was observed during the DNA damage response (DDR), and this modification is controlled by really interesting new gene (RING) domain E3 ligase, RNF8. Together with the E2 conjugating enzyme UBC13, RNF8 catalyzes ubiquitination of the histones H2A and H2AX during the DDR, thus facilitating downstream recruitment of DDR factors, such as p53 binding protein 1 (53BP1) and breast cancer type 1 susceptibility protein (BRCA1), to the damage site. Accordingly, the RNF8 knockout mice display phenotypes associated with failed DDR, including hypersensitivity to ionizing radiation, V(D)J recombination deficiency, and a predisposition to cancer. In addition to the DDR phenotypes, RNF8 knockout mice fail to generate mature sperm during spermatogenesis, resulting in male sterility. The RNF8 knockout mice also have a drastic reduction in histone ubiquitination in the testes. These findings indicate that the role of histone ubiquitination during chromatin remodeling in two different biological events could be linked by an RNF8-dependent mechanism. Here, we review the molecular mechanism of RNF8-dependent histone ubiquitination both in DDR and spermatogenesis.
Collapse
Affiliation(s)
- Teng Ma
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | |
Collapse
|
35
|
Chen M, Pereira-Smith OM, Tominaga K. Loss of the chromatin regulator MRG15 limits neural stem/progenitor cell proliferation via increased expression of the p21 Cdk inhibitor. Stem Cell Res 2011; 7:75-88. [PMID: 21621175 DOI: 10.1016/j.scr.2011.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/24/2011] [Accepted: 04/15/2011] [Indexed: 01/01/2023] Open
Abstract
Chromatin regulation is crucial for many biological processes such as transcriptional regulation, DNA replication, and DNA damage repair. We have found that it is also important for neural stem/progenitor cell (NSC) function and neurogenesis. Here, we demonstrate that expression of the cyclin-dependent kinase inhibitor p21 is specifically up-regulated in Mrg15 deficient NSCs. Knockdown of p21 expression by p21 shRNA results in restoration of cell proliferation. This indicates that p21 is directly involved in the growth defects observed in Mrg15 deficient NSCs. Activated p53 accumulates in Mrg15 deficient NSCs and this most likely accounts for the up-regulation of p21 expression in the cells. We observed decreased p53 and p21 levels and a concomitant increase in the percentage of BrdU positive cells in Mrg15 null cultures following expression of p53 shRNA. DNA damage foci, as indicated by immunostaining for γH2AX and 53BP1, are detectable in a sub-population of Mrg15 deficient NSC cultures under normal growing conditions and the majority of p21-positive cells are also positive for 53BP1 foci. Furthermore, Mrg15 deficient NSCs exhibit severe defects in DNA damage response following ionizing radiation. Our observations highlight the importance of chromatin regulation and DNA damage response in NSC function and maintenance.
Collapse
Affiliation(s)
- Meizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | |
Collapse
|
36
|
Martrat G, Maxwell CM, Tominaga E, Porta-de-la-Riva M, Bonifaci N, Gómez-Baldó L, Bogliolo M, Lázaro C, Blanco I, Brunet J, Aguilar H, Fernández-Rodríguez J, Seal S, Renwick A, Rahman N, Kühl J, Neveling K, Schindler D, Ramírez MJ, Castellà M, Hernández G, Easton DF, Peock S, Cook M, Oliver CT, Frost D, Platte R, Evans DG, Lalloo F, Eeles R, Izatt L, Chu C, Davidson R, Ong KR, Cook J, Douglas F, Hodgson S, Brewer C, Morrison PJ, Porteous M, Peterlongo P, Manoukian S, Peissel B, Zaffaroni D, Roversi G, Barile M, Viel A, Pasini B, Ottini L, Putignano AL, Savarese A, Bernard L, Radice P, Healey S, Spurdle A, Chen X, Beesley J, Rookus MA, Verhoef S, Tilanus-Linthorst MA, Vreeswijk MP, Asperen CJ, Bodmer D, Ausems MGEM, van Os TA, Blok MJ, Meijers-Heijboer HEJ, Hogervorst FBL, Goldgar DE, Buys S, John EM, Miron A, Southey M, Daly MB, Harbst K, Borg A, Rantala J, Barbany-Bustinza G, Ehrencrona H, Stenmark-Askmalm M, Kaufman B, Laitman Y, Milgrom R, Friedman E, Domchek SM, Nathanson KL, Rebbeck TR, Johannsson OT, Couch FJ, Wang X, Fredericksen Z, Cuadras D, Moreno V, Pientka FK, Depping R, Caldés T, Osorio A, Benítez J, Bueren J, Heikkinen T, Nevanlinna H, Hamann U, Torres D, Caligo MA, Godwin AK, Imyanitov EN, Janavicius R, Sinilnikova OM, Stoppa-Lyonnet D, Mazoyer S, Verny-Pierre C, Castera L, de Pauw A, Bignon YJ, Uhrhammer N, Peyrat JP, Vennin P, Ferrer SF, Collonge-Rame MA, Mortemousque I, McGuffog L, Chenevix-Trench G, Pereira-Smith OM, Antoniou AC, Cerón J, Tominaga K, Surrallés J, Pujana MA. Exploring the link between MORF4L1 and risk of breast cancer. Breast Cancer Res 2011; 13:R40. [PMID: 21466675 PMCID: PMC3219203 DOI: 10.1186/bcr2862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 02/17/2011] [Accepted: 04/05/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Griselda Martrat
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), Gran Via 199, L'Hospitalet del Llobregat 08908, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumar GS, Xie T, Zhang Y, Radhakrishnan I. Solution structure of the mSin3A PAH2-Pf1 SID1 complex: a Mad1/Mxd1-like interaction disrupted by MRG15 in the Rpd3S/Sin3S complex. J Mol Biol 2011; 408:987-1000. [PMID: 21440557 DOI: 10.1016/j.jmb.2011.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Histone deacetylation constitutes an important mechanism for silencing genes. The histone-deacetylase-associated mammalian Rpd3S/Sin3S corepressor complex plays key roles in repressing aberrant gene transcription from cryptic transcription initiation sites and in mitigating RNA polymerase II progression in intragenic regions of actively transcribed genes. The Sin3 corepressor functions as a molecular adaptor linking histone deacetylases on the one hand, with the chromatin targeting subunits Pf1 and MRG15 on the other. Pf1 also functions as an adaptor by interacting with MRG15 and engaging in multivalent interactions with Sin3 targeting among other domains the two N-terminal paired amphipathic helix (PAH) domains that serve as sites of interaction with sequence-specific DNA-binding transcription factors. Here, we structurally and functionally evaluate the interaction between the PAH2 domain of mSin3A and the Sin3 interaction domain 1 (SID1) motif of Pf1 and find the structural aspects to be reminiscent of the interaction between the Mad1/Mxd1 transcription factor and Sin3. Pf1 residues within a highly conserved sequence motif immediately C-terminal to SID1 appear not to be important for the interaction with Sin3 PAH2. Unexpectedly, the MRG15 subunit competes, rather than collaborates, with Sin3 for the Pf1 segment encompassing the two conserved motifs, implying competition between two subunits for another subunit of the same chromatin-modifying complex.
Collapse
Affiliation(s)
- Ganesan Senthil Kumar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
38
|
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 2011; 50:1966-80. [PMID: 21288002 DOI: 10.1021/bi101885m] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as methylated histone lysine binders and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1677, New York, New York 10065, United States
| | | |
Collapse
|
39
|
Peña AN, Tominaga K, Pereira-Smith OM. MRG15 activates the cdc2 promoter via histone acetylation in human cells. Exp Cell Res 2011; 317:1534-40. [PMID: 21324423 DOI: 10.1016/j.yexcr.2011.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 02/04/2023]
Abstract
Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.
Collapse
Affiliation(s)
- AndreAna N Peña
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX, USA.
| | | | | |
Collapse
|
40
|
MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 2010; 30:5335-47. [PMID: 20837706 DOI: 10.1128/mcb.00350-10] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MOF (MYST1) is the major enzyme to catalyze acetylation of histone H4 lysine 16 (K16) and is highly conserved through evolution. Using a conditional knockout mouse model and the derived mouse embryonic fibroblast cell lines, we showed that loss of Mof led to a global reduction of H4 K16 acetylation, severe G(2)/M cell cycle arrest, massive chromosome aberration, and defects in ionizing radiation-induced DNA damage repair. We further showed that although early DNA damage sensing and signaling by ATM were normal in Mof-null cells, the recruitment of repair mediator protein Mdc1 and its downstream signaling proteins 53bp1 and Brca1 to DNA damage foci was completely abolished. Mechanistic studies suggested that Mof-mediated H4 K16 acetylation and an intact acidic pocket on H2A.X were essential for the recruitment of Mdc1. Removal of Mof and its associated proteins phenocopied a charge-neutralizing mutant of H2A.X. Given the well-characterized H4-H2A trans interactions in regulating higher-order chromatin structure, our study revealed a novel chromatin-based mechanism that regulates the DNA damage repair process.
Collapse
|
41
|
Zhang H, Li Y, Yang J, Tominaga K, Pereira-Smith OM, Tower J. Conditional inactivation of MRG15 gene function limits survival during larval and adult stages of Drosophila melanogaster. Exp Gerontol 2010; 45:825-33. [PMID: 20600782 DOI: 10.1016/j.exger.2010.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/30/2010] [Accepted: 06/04/2010] [Indexed: 11/24/2022]
Abstract
The mammalian MRG15 gene encodes a chromodomain protein predicted to bind to chromatin via methylated histone tails. Human MORF4 encodes a related but truncated protein that is capable of promoting cellular senescence in a subset of human tumor cell lines. Drosophila contains a single homolog of human MRG15, called DmMRG15. Null mutation of MRG15 is embryonic-lethal in mice and Drosophila, making the study of MRG15 requirements in adults difficult. In these studies the DmMRG15 gene was over-expressed in Drosophila, during developmental stages and in adults, using a doxycycline-regulated system (Tet-on). In addition an inverted-repeated construct was designed to inactivate DmMRG15 via the RNAi pathway, and RNAi constructs were expressed using both the Tet-on system and Geneswitch system. The DmMRG15 protein was readily expressed in adult flies in a doxycycline-dependent manner. A truncated form of DmMRG15 (called DmMT1) was designed to mimic the structure of human MORF4, and expression of this mutant protein or the inverted-repeat constructs inhibited fertility in females. Conditional expression of the DmMRG15 inverted-repeat constructs during larval development or in adults caused reductions in survival. These experiments indicate that Drosophila DmMRG15 gene function is required for female fertility, larval survival and adult life span, and provide reagents that should be useful for further dissecting the role of DmMRG15 in cell proliferation and aging.
Collapse
Affiliation(s)
- Hongjun Zhang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chen M, Tominaga K, Pereira-Smith OM. Emerging role of the MORF/MRG gene family in various biological processes, including aging. Ann N Y Acad Sci 2010; 1197:134-41. [PMID: 20536842 PMCID: PMC2918256 DOI: 10.1111/j.1749-6632.2010.05197.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cellular senescence is the dominant phenotype over immortality. In our studies to identify senescence-related genes, we cloned Morf4, which induced senescence in a subset of tumor cells. Morf4 is a member of a family of seven genes, and Morf-related genes (Mrg) on chromosomes 15 (Mrg15) and X (MrgX) are also expressed. In contrast to MORF4, MRG15 and MRGX are positive regulators of cell division. All three proteins interact with histone deacetylases and acetyltransferases, suggesting that they function in regulation of chromatin dynamics. Mrg15 knockout mice are embryonic lethal, and mouse embryonic fibroblasts derived from Mrg15 null embryos proliferate poorly, enter senescence rapidly, and have impaired DNA repair compared to the wild type. Mrg15 null embryonic neural stem and progenitor cells also have a decreased capacity for proliferation and differentiation. Further studies are needed to determine the function of this gene family in various biological processes, including neural stem and progenitor cell aging.
Collapse
Affiliation(s)
- Meizhen Chen
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
43
|
Huichalaf C, Sakai K, Jin B, Jones K, Wang GL, Schoser B, Schneider-Gold C, Sarkar P, Pereira-Smith OM, Timchenko N, Timchenko L. Expansion of CUG RNA repeats causes stress and inhibition of translation in myotonic dystrophy 1 (DM1) cells. FASEB J 2010; 24:3706-19. [PMID: 20479119 DOI: 10.1096/fj.09-151159] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of this study was to investigate the role of the mutant CUGn RNA in the induction of stress in type 1 myotonic dystrophy (DM1) cells and in the stress-mediated inhibition of protein translation in DM1. To achieve our goals, we performed HPLC-based purification of stress granules (SGs), immunoanalysis of SGs with stress markers TIA-1, CUGBP1, and ph-eIF2, site-specific mutagenesis, and examinations of RNA-protein and protein-protein interactions in myoblasts from control and DM1 patients. The cause-and-effect relationships were addressed in stable cells expressing mutant CUG repeats. We found that the mutant CUGn RNA induces formation of SGs through the increase of the double-stranded RNA-dependent protein kinase (PKR) and following inactivation of eIF2α, one of the substrates of PKR. We show that SGs trap mRNA coding for the DNA repair and remodeling factor MRG15 (MORF4L1), translation of which is regulated by CUGBP1. As the result of the trapping, the levels of MRG15 are reduced in DM1 cells and in CUG-expressing cells. These data show that CUG repeats cause stress in DM1 through the PKR-ph-eIF2α pathway inhibiting translation of certain mRNAs, such as MRG15 mRNA. The repression of protein translation by stress might contribute to the progressive muscle loss in DM1.
Collapse
Affiliation(s)
- Claudia Huichalaf
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li X, Wu L, Corsa CAS, Kunkel S, Dou Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 2009; 36:290-301. [PMID: 19854137 DOI: 10.1016/j.molcel.2009.07.031] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/18/2009] [Accepted: 07/31/2009] [Indexed: 02/04/2023]
Abstract
In mammals, MYST family histone acetyltransferase MOF plays important roles in transcription activation by acetylating histone H4 on K16, a prevalent mark associated with chromatin decondensation, and transcription factor p53 on K120, which is important for activation of proapoptotic genes. However, little is known about MOF regulation in higher eukaryotes. Here, we report that the acetyltransferase activity of MOF is tightly regulated in two different but evolutionarily conserved complexes, MSL and MOF-MSL1v1. Importantly, we demonstrate that while the two MOF complexes have indistinguishable activity on histone H4 K16, they differ dramatically in acetylating nonhistone substrate p53. We further demonstrate that MOF-MSL1v1 is specifically required for optimal transcription activation of p53 target genes both in vitro and in vivo. Our results support a model that these two MOF complexes regulate distinct stages of transcription activation in cooperation with other histone modifying activities.
Collapse
Affiliation(s)
- Xiangzhi Li
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
45
|
Tominaga K, Tominaga E, Ausserlechner MJ, Pereira-Smith OM. The cell senescence inducing gene product MORF4 is regulated by degradation via the ubiquitin/proteasome pathway. Exp Cell Res 2009; 316:92-102. [PMID: 19769966 DOI: 10.1016/j.yexcr.2009.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/07/2009] [Accepted: 09/15/2009] [Indexed: 12/22/2022]
Abstract
After undergoing several rounds of divisions normal human fibroblasts enter a terminally non-dividing state referred to as cellular or replicative senescence. We cloned MORF4 (mortality factor on human chromosome 4), as a cellular senescence inducing gene that caused immortal cells assigned to complementation group B for indefinite division to stop dividing. To facilitate analyses of this gene, which is toxic to cells at low levels, we obtained stable clones of HeLa cells expressing a tetracycline-induced MORF4 construct that could be induced by doxycycline in a dose-dependent manner. MORF4 induction resulted in reduced colony formation after 14 days of culture, as previously observed. We determined that MORF4 protein was unstable and that addition of the proteasome inhibitor MG132 resulted in the accumulation of the protein. Following removal of MG132 the protein was rapidly degraded. Subcellular fractionation following MG132 treatment demonstrated that the protein accumulates primarily in the cytoplasm with some amounts present in the nucleus. It is therefore possible that MORF4 protein, which escapes degradation in the cytoplasm, is transported to the nucleus where it is functional. The results suggest that levels of MORF4 in cells must be tightly controlled and one mechanism involves stability of the protein.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Sam and Ann Barshop Institute for Longevity and Aging Studies UTHSCSA, STCBM, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
46
|
Chen M, Takano-Maruyama M, Pereira-Smith OM, Gaufo GO, Tominaga K. MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cells. J Neurosci Res 2009; 87:1522-31. [PMID: 19115414 DOI: 10.1002/jnr.21976] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurogenesis during development depends on the coordinated regulation of self-renewal and differentiation of neural precursor cells (NPCs). Chromatin regulation is a key step in self-renewal activity and fate decision of NPCs. However, the molecular mechanism or mechanisms of this regulation is not fully understood. Here, we demonstrate for the first time that MRG15, a chromatin regulator, is important for proliferation and neural fate decision of NPCs. Neuroepithelia from Mrg15-deficient embryonic brain are much thinner than those from control, and apoptotic cells increase in this region. We isolated NPCs from Mrg15-deficient and wild-type embryonic whole brains and produced neurospheres to measure the self-renewal and differentiation abilities of these cells in vitro. Neurospheres culture from Mrg15-deficient embryo grew less efficiently than those from wild type. Measurement of proliferation by means of BrdU (bromodeoxyuridine) incorporation revealed that Mrg15-deficient NPCs have reduced proliferation ability and apoptotic cells do not increase during in vitro culture. The reduced proliferation of Mrg15-deficient NPCs most likely accounts for the thinner neuroepithelia in Mrg15-deficient embryonic brain. Moreover, we also demonstrate Mrg15-deficient NPCs are defective in differentiation into neurons in vitro. Our results demonstrate that MRG15 has more than one function in neurogenesis and defines a novel role for this chromatin regulator that integrates proliferation and cell-fate determination in neurogenesis during development.
Collapse
Affiliation(s)
- Meizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | |
Collapse
|
47
|
Doheny JG, Mottus R, Grigliatti TA. Telomeric position effect--a third silencing mechanism in eukaryotes. PLoS One 2008; 3:e3864. [PMID: 19057646 PMCID: PMC2587703 DOI: 10.1371/journal.pone.0003864] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/20/2008] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic chromosomes terminate in telomeres, complex nucleoprotein structures that are required for chromosome integrity that are implicated in cellular senescence and cancer. The chromatin at the telomere is unique with characteristics of both heterochromatin and euchromatin. The end of the chromosome is capped by a structure that protects the end and is required for maintaining proper chromosome length. Immediately proximal to the cap are the telomere associated satellite-like (TAS) sequences. Genes inserted into the TAS sequences are silenced indicating the chromatin environment is incompatible with transcription. This silencing phenomenon is called telomeric position effect (TPE). Two other silencing mechanisms have been identified in eukaryotes, suppressors position effect variegation [Su(var)s, greater than 30 members] and Polycomb group proteins (PcG, approximately 15 members). We tested a large number of each group for their ability to suppress TPE [Su(TPE)]. Our results showed that only three Su(var)s and only one PcG member are involved in TPE, suggesting silencing in the TAS sequences occurs via a novel silencing mechanism. Since, prior to this study, only five genes have been identified that are Su(TPE)s, we conducted a candidate screen for Su(TPE) in Drosophila by testing point mutations in, and deficiencies for, proteins involved in chromatin metabolism. Screening with point mutations identified seven new Su(TPE)s and the deficiencies identified 19 regions of the Drosophila genome that harbor suppressor mutations. Chromatin immunoprecipitation experiments on a subset of the new Su(TPE)s confirm they act directly on the gene inserted into the telomere. Since the Su(TPE)s do not overlap significantly with either PcGs or Su(var)s, and the candidates were selected because they are involved generally in chromatin metabolism and act at a wide variety of sites within the genome, we propose that the Su(TPE) represent a third, widely used, silencing mechanism in the eukaryotic genome.
Collapse
Affiliation(s)
- J. Greg Doheny
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Randy Mottus
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas A. Grigliatti
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Garcia SN, Pereira-Smith O. MRGing Chromatin Dynamics and Cellular Senescence. Cell Biochem Biophys 2008; 50:133-41. [DOI: 10.1007/s12013-008-9006-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 12/15/2007] [Indexed: 11/28/2022]
|
49
|
Garcia SN, Kirtane BM, Podlutsky AJ, Pereira-Smith OM, Tominaga K. Mrg15 null and heterozygous mouse embryonic fibroblasts exhibit DNA-repair defects post exposure to gamma ionizing radiation. FEBS Lett 2007; 581:5275-81. [PMID: 17961556 DOI: 10.1016/j.febslet.2007.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/08/2007] [Accepted: 10/11/2007] [Indexed: 01/01/2023]
Abstract
MORF4-related gene on chromosome 15 (MRG15) is a core component of the NuA4/Tip60 histone acetyltransferase complex that modifies chromatin structure. We here demonstrate that Mrg15 null and heterozygous mouse embryonic fibroblasts exhibit an impaired DNA-damage response post gamma irradiation, when compared to wild-type cells. Defects in DNA-repair and cell growth, and delayed recruitment of repair proteins to sites of damage were observed. Formation of phosphorylated H2AX and 53BP1 foci was delayed in Mrg15 mutant versus wild-type cells following irradiation. These data implicate a novel role for MRG15 in DNA-damage repair in mammalian cells.
Collapse
Affiliation(s)
- Sandra N Garcia
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15535 Lambda Drive, STCBM #3.100, San Antonio, TX 78245, USA
| | | | | | | | | |
Collapse
|
50
|
Holbert MA, Sikorski T, Carten J, Snowflack D, Hodawadekar S, Marmorstein R. The human monocytic leukemia zinc finger histone acetyltransferase domain contains DNA-binding activity implicated in chromatin targeting. J Biol Chem 2007; 282:36603-13. [PMID: 17925393 DOI: 10.1074/jbc.m705812200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human monocytic leukemia zinc finger (MOZ) protein is an essential transcriptional coactivator and histone acetyltransferase (HAT) that plays a primary role in the differentiation of erythroid and myeloid cells and is required to maintain hematopoietic stem cells. Chromosomal translocations involving the HAT-encoded region are also associated with acute myeloid leukemia. Here we present the x-ray crystal structure of the MOZ HAT domain and related biochemical studies. We find that the HAT domain contains a central region that is structurally and functionally conserved with the yeast MYST HAT protein Esa1, but contains more divergent N- and C-terminal regions harboring a TFIIIA-type zinc finger and helix-turn-helix DNA-binding motifs. Solution DNA-binding and acetyltransferase activity assays, in concert with mutagenesis, confirm that the MOZ HAT domain binds strongly to DNA through the zinc finger and helix-turn-helix motifs and that DNA binding and catalysis are not mutually exclusive. Consistent with the DNA-binding properties of MOZ, we also show that MOZ is able to acetylate nucleosomes and free histones equally well, whereas other HATs prefer free histones. Our results reveal, for the first time, that enzymatic and DNA-targeting activities can be contained within the same chromatin regulatory domain.
Collapse
Affiliation(s)
- Marc A Holbert
- The Wistar Institute and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-0381, USA
| | | | | | | | | | | |
Collapse
|