1
|
Ramires Júnior OV, Silveira JS, Gusso D, Krupp Prauchner GR, Ferrary Deniz B, Almeida WD, Pereira LO, Wyse AT. Homocysteine decreases VEGF, EGF, and TrkB levels and increases CCL5/RANTES in the hippocampus: Neuroprotective effects of rivastigmine and ibuprofen. Chem Biol Interact 2024; 403:111260. [PMID: 39357784 DOI: 10.1016/j.cbi.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Homocysteine (Hcy) is produced through methionine transmethylation. Elevated Hcy levels are termed Hyperhomocysteinemia (HHcy) and represent a risk factor for neurodegenerative conditions such as Alzheimer's disease. This study aimed to explore the impact of mild HHcy and the neuroprotective effects of ibuprofen and rivastigmine via immunohistochemical analysis of glial markers (Iba-1 and GFAP). Additionally, we assessed levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), chemokine ligand 5 (CCL5/RANTES), CX3C chemokine ligand 1 (CX3CL1), and the NGF/p75NTR/tropomyosin kinase B (TrkB) pathway in the hippocampus of adult rats. Mild chronic HHcy was induced chemically in Wistar rats by subcutaneous administration of Hcy (4 mg/kg body weight) twice daily for 30 days. Rivastigmine (0.5 mg/kg) and ibuprofen (40 mg/kg) were administered intraperitoneally once daily. Results revealed elevated levels of CCL5/RANTES and reduced levels of VEGF, EGF, and TrkB in the hippocampus of HHcy-exposed rats. Rivastigmine mitigated the neurotoxic effects of HHcy by increasing TrkB and VEGF levels. Conversely, ibuprofen attenuated CCL5/RANTES levels against the neurotoxicity of HHcy, significantly reducing this chemokine's levels. HHcy-induced neurochemical impairment in the hippocampus may jeopardize neurogenesis, synapse formation, axonal transport, and inflammatory balance, leading to neurodegeneration. Treatments with rivastigmine and ibuprofen alleviated some of these detrimental effects. Reversing HHcy-induced damage through these compounds could serve as a potential neuroprotective strategy against brain damage.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Fisiologia e Farmacologia, Instiruto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wellington de Almeida
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Dasgupta S, Pandya MA, Zanin JP, Liu T, Sun Q, Li H, Friedman WJ. ProNGF elicits retrograde axonal degeneration of basal forebrain neurons through p75 NTR and induction of amyloid precursor protein. Sci Signal 2024; 17:eadn2616. [PMID: 39316663 PMCID: PMC11487763 DOI: 10.1126/scisignal.adn2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple regions in the brain to regulate cognitive functions. Degeneration of BFCNs is seen with aging, after brain injury, and in neurodegenerative disorders. An increase in the amount of the immature proform of nerve growth factor (proNGF) in the cerebral cortex results in retrograde degeneration of BFCNs through activation of proNGF receptor p75NTR. Here, we investigated the signaling cascades initiated at the axon terminal that mediate proNGF-induced retrograde degeneration. We found that local axonal protein synthesis and retrograde transport mediated proNGF-induced degeneration initiated from the axon terminal. Analysis of the nascent axonal proteome revealed that proNGF stimulation of axonal terminals triggered the synthesis of numerous proteins within the axon, and pathway analysis showed that amyloid precursor protein (APP) was a key upstream regulator in cultured BFCNs and in mice. Our findings reveal a functional role for APP in mediating BFCN axonal degeneration and cell death induced by proNGF.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan P. Zanin
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Tong Liu
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Qian Sun
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hong Li
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Dasgupta S, Montroull LE, Pandya MA, Zanin JP, Wang W, Wu Z, Friedman WJ. Cortical Brain Injury Causes Retrograde Degeneration of Afferent Basal Forebrain Cholinergic Neurons via the p75NTR. eNeuro 2023; 10:ENEURO.0067-23.2023. [PMID: 37558465 PMCID: PMC10467018 DOI: 10.1523/eneuro.0067-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023] Open
Abstract
Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Laura E Montroull
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Mansi A Pandya
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Juan P Zanin
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Wei Wang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Zhuhao Wu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
4
|
Demuth H, Hosseini S, Düsedeau HP, Dunay IR, Korte M, Zagrebelsky M. Deletion of p75 NTR rescues the synaptic but not the inflammatory status in the brain of a mouse model for Alzheimer's disease. Front Mol Neurosci 2023; 16:1163087. [PMID: 37213691 PMCID: PMC10198655 DOI: 10.3389/fnmol.2023.1163087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD), is characterized by a gradual cognitive decline associated with the accumulation of Amyloid beta (Aβ)-oligomers, progressive neuronal degeneration and chronic neuroinflammation. Among the receptors shown to bind and possibly transduce the toxic effects of Aβ-oligomers is the p75 neurotrophin receptor (p75NTR). Interestingly, p75NTR mediates several crucial processes in the nervous system, including neuronal survival and apoptosis, maintenance of the neuronal architecture, and plasticity. Furthermore, p75NTR is also expressed in microglia, the resident immune cells of the brain, where it is markedly increased under pathological conditions. These observations indicate p75NTR as a potential candidate for mediating Aβ-induced toxic effects at the interface between the nervous and the immune system, thereby potentially participating in the crosstalk between these two systems. Methods Here we used APP/PS1 transgenic mice (APP/PS1tg) and compared the Aβ-induced alterations in neuronal function, chronic inflammation as well as their cognitive consequences between 10 months old APP/PS1tg and APP/PS1tg x p75NTRexonIV knockout mice. Results Electrophysiological recordings show that a loss of p75NTR rescues the impairment in long-term potentiation at the Schaffer collaterals in the hippocampus of APP/PS1tg mice. Interestingly, however loss of p75NTR does not influence the severity of neuroinflammation, microglia activation or the decline in spatial learning and memory processes observed in APP/PS1tg mice. Conclusion Together these results indicate that while a deletion of p75NTR rescues the synaptic defect and the impairment in synaptic plasticity, it does not affect the progression of the neuroinflammation and the cognitive decline in a mouse model for AD.
Collapse
Affiliation(s)
- Hendrik Demuth
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Shirin Hosseini
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Henning Peter Düsedeau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von- Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von- Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- *Correspondence: Marta Zagrebelsky,
| |
Collapse
|
5
|
Xiong LL, Chen L, Deng IB, Zhou XF, Wang TH. P75 neurotrophin receptor as a therapeutic target for drug development to treat neurological diseases. Eur J Neurosci 2022; 56:5299-5318. [PMID: 36017737 DOI: 10.1111/ejn.15810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
The interaction of neurotrophins with their receptors is involved in the pathogenesis and progression of various neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and acute and chronic cerebral damage. The p75 neurotrophin receptor (p75NTR) plays a pivotal role in the development of neurological dysfunctions as a result of its high expression, abnormal processing and signalling. Therefore, p75NTR represents as a vital therapeutic target for the treatment of neurodegeneration, neuropsychiatric disorders and cerebrovascular insufficiency. This review summarizes the current research progress on the p75NTR signalling in neurological deficits. We also summarize the present therapeutic approaches by genetically and pharmacologically targeting p75NTR for the attenuation of pathological changes. Based on the evolving knowledge, the role of p75NTR in the regulation of tau hyperphosphorylation, Aβ metabolism, the degeneration of motor neurons and dopaminergic neurons has been discussed. Its position as a biomarker to evaluate the severity of diseases and as a druggable target for drug development has also been elucidated. Several prototype small molecule compounds were introduced to be crucial in neuronal survival and functional recovery via targeting p75NTR. These small molecule compounds represent desirable agents in attenuating neurodegeneration and cell death as they abolish activation-induced neurotoxicity of neurotrophins via modulating p75NTR signalling. More comprehensive and in-depth investigations on p75NTR-based drug development are required to shed light on effective treatment of numerous neurological disorders.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.,Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Isaac Bul Deng
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Chen C, Yu Q, Huang Y, Shen XQ, Ding ZZ, Chen GW, Yan J, Gu QG, Mao X. Research on the function of the Cend1 regulatory mechanism on p75NTR signaling in spinal cord injury. Neuropeptides 2022; 95:102264. [PMID: 35728483 DOI: 10.1016/j.npep.2022.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
How to use NSC repair mechanisms, minimize the loss of neurons, and recover the damaged spinal cord functions are hotspots and difficulties in spinal cord injury research. Studies have shown that Cend1 signaling is involved in regulating the NSC differentiation, that p75NTR signaling is involved in the regulation of mature neuronal apoptosis and that NSC differentiation decreases mature neuron apoptosis. Our research group found an interaction between Cend1 and p75NTR, and there was a correlation with spinal cord injury. Therefore, we speculate that Cend1 regulates p75NTR signals and promotes the differentiation of NSCs, and inhibits neuronal apoptosis. Therefore, this study first analyzed the expression of p75NTR and Cend1 in spinal cord injury and its relationship with NSCs and neurons and then analyzed the regulatory mechanism and the mechanism of survival on neuronal apoptosis and differentiation of NSCs. Finally, we analyzed the effect of p75NTR and the regulation of Cend1 damage on functional recovery of the spinal cord with overall intervention. The completion of the subject will minimize the loss of neurons, innovative use of NSC repair mechanisms, and open up a new perspective for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China; Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Qin Yu
- Department of Imaging, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Yunsheng Huang
- Center of Stomatology, The Second Affiliated Hospital of soochow University,No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China
| | - Xiao-Qin Shen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Zhen-Zhong Ding
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Gui-Wen Chen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China.
| | - Qing-Guo Gu
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China.
| | - Xingxing Mao
- Department of Orthopedics, The Sixth People's Hospital of Nantong, Yonghe Road 500, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
7
|
Sun R, Bai L, Yang Y, Ding Y, Zhuang J, Cui J. Nervous System-Driven Osseointegration. Int J Mol Sci 2022; 23:ijms23168893. [PMID: 36012155 PMCID: PMC9408825 DOI: 10.3390/ijms23168893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Implants are essential therapeutic tools for treating bone fractures and joint replacements. Despite the in-depth study of osseointegration for more than fifty years, poor osseointegration caused by aseptic loosening remains one of the leading causes of late implant failures. Osseointegration is a highly sophisticated and spatiotemporal process in vivo involving the immune response, angiogenesis, and osteogenesis. It has been unraveled that the nervous system plays a pivotal role in skeletal health via manipulating neurotrophins, neuropeptides, and nerve cells. Herein, the research related to nervous system-driven osseointegration was systematically analyzed and reviewed, aiming to demonstrate the prominent role of neuromodulation in osseointegration. Additionally, it is indicated that the implant design considering the role of neuromodulation might be a promising way to prevent aseptic loosening.
Collapse
Affiliation(s)
- Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| |
Collapse
|
8
|
Paidi RK, Sarkar S, Ambareen N, Biswas SC. Medha Plus - A novel polyherbal formulation ameliorates cognitive behaviors and disease pathology in models of Alzheimer's disease. Biomed Pharmacother 2022; 151:113086. [PMID: 35617801 DOI: 10.1016/j.biopha.2022.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is a multi-faceted neurodegenerative disorder that leads to drastic cognitive impairments culminating in death. Pathologically, it is characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles and neurodegeneration in brain. Complete cure of AD remains elusive to date. Available synthetic drugs only provide symptomatic reliefs targeting single molecule, hence, are unable to address the multi-factorial aspects in AD pathogenesis. It is imperative to develop combinatorial drugs that address the multiple molecular targets in AD. We show a unique polyherbal formulation of Brahmi, Mandukaparni, Shankhpushpi, Yastimadhu, Kokilaksha and Shunthi called 'Medha Plus' (MP), conventionally used for improving memory and reducing anxiety, was able to ameliorate cognitive deficits and associated pathological hallmarks of AD. Viability assays revealed that MP prevented Aβ-induced loss of neurites as well as neuronal apoptosis in cellular models. An array of behavioral studies showed that MP was able to recover AD-associated memory deficits in both Aβ-injected rats and 5XFAD mice. Immunohistochemical studies further revealed that MP treatment reduced Aβ depositshpi and decreased apoptotic cell death in the hippocampus. Enzymatic assays demonstrated anti-oxidative and anti-acetyl cholinesterase properties of MP especially in hippocampus of Aβ-injected rats. An underlying improvement in synaptic plasticity was observed with MP treatment in 5XFAD mice along with an increased expression of phospho-Akt at serine 473 indicating a role of PI3K/Akt signaling in correcting these synaptic deficits. Thus, our strong experiment-driven approach shows that MP is an incredible combinatorial drug that targets multiple molecular targets with exemplary neuroprotective properties and is proposed for clinical trial.
Collapse
Affiliation(s)
- Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Naqiya Ambareen
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| |
Collapse
|
9
|
Contó MB, Pautassi RM, Camarini R. Rewarding and Antidepressant Properties of Ketamine and Ethanol: Effects on the Brain-Derived Neurotrophic Factor and TrkB and p75 NTR Receptors. Neuroscience 2022; 493:1-14. [PMID: 35469972 DOI: 10.1016/j.neuroscience.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
There is a high level of comorbidity between depression and alcohol use disorder. Subanesthetic doses of ketamine induce short-acting and enduring antidepressant effects after a single or a few administrations. Considering such comorbidity, we assessed, in Swiss male mice, if ketamine-induced antidepressant-like effects would alter ethanol's rewarding effects; and, if ethanol pretreatment would alter the rewarding and antidepressant effects of ketamine. The role of the brain-derived neurotrophic factor (BDNF) and its high and low affinity receptors TrkB and p75NTR, respectively, in both reward and depression-related behaviors is well established. The present study assessed, in outbred Swiss male mice, the expression of these proteins in the prefrontal cortex and hippocampus. Ketamine did not alter the development of ethanol-induced conditioned place preference (CPP), yet ethanol inhibited the expression of CPP induced by 50 mg/kg ketamine. The antidepressant action of 50 mg/kg ketamine was attenuated after repeated treatment (i.e., developed tolerance), an effect blocked by ethanol preexposure; ethanol also inhibited the antidepressant effect of 30 mg/kg ketamine. Ketamine (50 mg/kg) and Ethanol-Ketamine (50 mg/kg) groups showed lower levels of 145 kDa TrkB in the hippocampus than Saline-treated group. Ethanol-Ketamine (50 mg/kg) decreased the hippocampal expression of p75NTR compared to Saline-Saline and Saline-Ethanol groups. Ketamine (50 mg/kg) induced hippocampal downregulation of 145 kDa TrkB may contribute to ketamine-induced antidepressant tolerance. Likewise, a relationship between low hippocampal levels of p75NTR in the Ethanol-Ketamine (50 mg/kg) and ketamine-induced CPP blockade may be considered. The findings underscore potential ethanol-ketamine interactions likely to undermine ketamine putative antidepressant effects.
Collapse
Affiliation(s)
- Marcos Brandão Contó
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brasil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba C.P. 5000 Argentina
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brasil.
| |
Collapse
|
10
|
Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair. J Biol Chem 2022; 298:101568. [PMID: 35051416 PMCID: PMC8889134 DOI: 10.1016/j.jbc.2022.101568] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 10/27/2022] Open
Abstract
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.
Collapse
Affiliation(s)
- Jacinta N Conroy
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Clem Jones Centre for Ageing and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
12
|
Geng W, Wang J, Xie L, Song Y, Cao M, Shen J. p75 NTR Interacts with the Zinc Finger Protein Glis2 and Participates in Neuronal Apoptosis Following Intracerebral Hemorrhage. Neurotox Res 2022; 40:461-472. [PMID: 35192146 DOI: 10.1007/s12640-022-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022]
Abstract
Intracerebral hemorrhage (ICH) is a serious condition with a particularly high mortality rate. Gli-similar 2 (Glis2) has been reported to play an important role in the pathogenesis of ICH; however, its underlying mechanisms and biological significance remains unclear. In the present study, a specific interaction between Glis2 and p75NTR, a member of the tumor necrosis factor receptor superfamily, was identified both in vivo and in vitro. These experiments further indicated that p75NTR may interact with Glis2, and that the complex was transported into the nucleus, initially, inducing neuronal death. Furthermore, the mechanism of neuronal death was explored, and may have been mediated via the activation of the mitochondrial-dependent apoptotic pathway, and this was further investigated in the pathogenesis of ICH in rats in vivo. The study may provide evidences for regulating p75NTR-Glis2 complex as a potential reliable treatment for the secondary damage following ICH.
Collapse
Affiliation(s)
- Wenqing Geng
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Neurology, The People's Hospital of Hai'an, Nantong, Jiangsu, 226600, People's Republic of China
| | - Lili Xie
- Department of Neurology, The Third People's Hospital of Yancheng, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, 224300, People's Republic of China
| | - Yan Song
- Department of Neurology, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, 226006, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
13
|
Jasińska-Mikołajczyk A, Drews K, Domaszewska K, Kolasa G, Konofalska M, Jowik K, Skibińska M, Rybakowski F. The Effect of Physical Activity on Neurotrophin Concentrations and Cognitive Control in Patients With a Depressive Episode. Front Psychiatry 2022; 13:777394. [PMID: 35546921 PMCID: PMC9084496 DOI: 10.3389/fpsyt.2022.777394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cognitive deficits occur in most patients with affective disorders. The role of neurotrophic factors (e.g., BDNF) as modulators of brain plasticity affecting neurocognitive abilities has been emphasized. Neurotrophin concentrations may change under the influence of various interventions, including physical activity. Selected studies have shown that cognitive function may also be affected by exercise. AIM The aim of the study was to determine whether physical activity changes the concentration of neurotrophins and their receptors in patients with an episode of depression. It was also examined how one session of aerobic exercise affects cognitive control. METHODS The study included 41 participants. The subjects were asked to exercise on a cycloergometer for 40 min with individually selected exercise loads (70% VO2max). Before and shortly after the exercise blood samples were acquired to perform blood assays (proBDNF, BDNF, TrkB, NGFR). The participants also performed a Stroop test twice-before the exercise and 10 min after its cessation. RESULTS The single bout of physical exercise did not cause any significant changes in the concentration of neurotrophic factors. The SCWT results: both the mean reading time (29.3 s vs. 47.8 s) and the color naming time (36.7 s vs. 50.7 s) increased. The patients made more mistakes after physical exercise, both in part A (0.2 vs. 1.5) and B (0.6 vs. 1.5). The so-called interference effect decreased-the difference between naming and reading times was smaller after exercise (6.2 s vs. 2.4 s). No significant correlations were found between the concentrations of the studied neurotrophic factors and the Stroop test results. CONCLUSIONS The results did not confirm changes in neurotrophin concentration under the influence of a single session of physical activity. The shortening of the interference time after exercise may be caused by practice effects. A significant limitation of the study is the use of the Stroop test twice in short intervals.
Collapse
Affiliation(s)
| | - Katarzyna Drews
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Domaszewska
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznan, Poland
| | - Grzegorz Kolasa
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Konofalska
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Jowik
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Filip Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
In vivo functions of p75 NTR: challenges and opportunities for an emerging therapeutic target. Trends Pharmacol Sci 2021; 42:772-788. [PMID: 34334250 DOI: 10.1016/j.tips.2021.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
The p75 neurotrophin receptor (p75NTR) functions at the molecular nexus of cell death, survival, and differentiation. In addition to its contribution to neurodegenerative diseases and nervous system injuries, recent studies have revealed unanticipated roles of p75NTR in liver repair, fibrinolysis, lung fibrosis, muscle regeneration, and metabolism. Linking these various p75NTR functions more precisely to specific mechanisms marks p75NTR as an emerging candidate for therapeutic intervention in a wide range of disorders. Indeed, small molecule inhibitors of p75NTR binding to neurotrophins have shown efficacy in models of Alzheimer's disease (AD) and neurodegeneration. Here, we outline recent advances in understanding p75NTR pleiotropic functions in vivo, and propose an integrated view of p75NTR and its challenges and opportunities as a pharmacological target.
Collapse
|
15
|
Sankorrakul K, Qian L, Thangnipon W, Coulson EJ. Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 2021; 158:1292-1306. [PMID: 34109634 DOI: 10.1111/jnc.15451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Cholinergic basal forebrain (cBF) neurons are particularly vulnerable to degeneration following trauma and in neurodegenerative conditions. One reason for this is their characteristic expression of the p75 neurotrophin receptor (p75NTR ), which is up-regulated and mediates neuronal death in a range of neurological and neurodegenerative conditions, including dementia, stroke and ischaemia. The signalling pathway by which p75NTR signals cell death is incompletely characterised, but typically involves activation by neurotrophic ligands and signalling through c-Jun kinase, resulting in caspase activation via mitochondrial apoptotic signalling pathways. Less well appreciated is the link between conditions of oxidative stress and p75NTR death signalling. Here, we review the literature describing what is currently known regarding p75NTR death signalling in environments of oxidative stress and hypoxia to highlight the overlap in signalling pathways and the implications for p75NTR signalling in cBF neurons. We propose that there is a causal relationship and define key questions to test this assertion.
Collapse
Affiliation(s)
- Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Lei Qian
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| |
Collapse
|
16
|
Iñiguez SD, Flores-Ramirez FJ, Themann A, Lira O. Adolescent Fluoxetine Exposure Induces Persistent Gene Expression Changes in the Hippocampus of Adult Male C57BL/6 Mice. Mol Neurobiol 2021; 58:1683-1694. [PMID: 33241493 PMCID: PMC7933079 DOI: 10.1007/s12035-020-02221-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Mood-related disorders have a high prevalence among children and adolescents, posing a public health challenge, given their adverse impact on these young populations. Treatment with the selective serotonin reuptake inhibitor fluoxetine (FLX) is the first line of pharmacological intervention in pediatric patients suffering from affect-related illnesses. Although the use of this antidepressant has been deemed efficacious in the juvenile population, the enduring neurobiological consequences of adolescent FLX exposure are not well understood. Therefore, we explored for persistent molecular adaptations, in the adult hippocampus, as a function of adolescent FLX pretreatment. To do this, we administered FLX (20 mg/kg/day) to male C57BL/6 mice during adolescence (postnatal day [PD] 35-49). After a 21-day washout period (PD70), whole hippocampal tissue was dissected. We then used qPCR analysis to assess changes in the expression of genes associated with major intracellular signal transduction pathways, including the extracellular signal-regulated kinase (ERK), the phosphatidylinositide-3-kinase (PI3K)/AKT pathway, and the wingless (Wnt)-dishevelled-GSK3β signaling cascade. Our results show that FLX treatment results in long-term dysregulation of mRNA levels across numerous genes from the ERK, PI3K/AKT, and Wnt intracellular signaling pathways, along with increases of the transcription factors CREB, ΔFosB, and Zif268. Lastly, FLX treatment resulted in persistent increases of transcripts associated with cytoskeletal integrity (β-actin) and caspase activation (DIABLO), while decreasing genes associated with metabolism (fucose kinase) and overall neuronal activation (c-Fos). Collectively, these data indicate that adolescent FLX exposure mediates persistent alterations in hippocampal gene expression in adulthood, thus questioning the safety of early-life exposure to this antidepressant medication.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Francisco J Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
17
|
Ji S, Wu H, Ding X, Chen Q, Jin X, Yu J, Yang M. Increased hippocampal TrkA expression ameliorates cranial radiation‑induced neurogenesis impairment and cognitive deficit via PI3K/AKT signaling. Oncol Rep 2020; 44:2527-2536. [PMID: 33125501 PMCID: PMC7640353 DOI: 10.3892/or.2020.7782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Cognitive deficit is one of the most serious complications of cranial radiotherapy of head and neck cancers. However, the underlying mechanism of this cognitive impairment remains unclear. In the present study, the role of tropomyosin receptor kinase A (TrkA) and its ligand neurotrophin nerve growth factor (NGF) were investigated following whole‑brain irradiation (WBI). Young male Sprague‑Dawley rats underwent WBI at a single dose of 10 Gy. WBI was determined to result in notable memory decline and substantial neurogenesis impairment in the hippocampus 3 months post‑irradiation. Compared with the control group, TrkA protein expression was greater in irradiated rats 1 week after WBI, which then decreased significantly by the 3‑month time‑point. However, no difference in NGF expression was observed from 1 day to 3 months post‑WBI. Overexpression of hippocampal TrkA in rats using adeno‑associated virus ameliorated memory decline induced by irradiation. Additionally, upregulating TrkA expression rescued irradiation‑induced hippocampal precursor cell proliferation and promoted neurogenesis. PI3K, Akt and ERK1/2 phosphorylation were also revealed to be significantly inhibited by WBI, which was ameliorated by TrkA overexpression. Findings of the present study indicated that the TrkA‑dependent signaling pathway may serve a critical role in radiotherapy‑induced cognitive deficit and impairments in neurogenesis.
Collapse
Affiliation(s)
- Shengjun Ji
- Clinical College, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Haohao Wu
- Department of Radiotherapy and Oncology, Yancheng No. 1 People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Xin Ding
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Qingqing Chen
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Xing Jin
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Jinming Yu
- Clinical College, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ming Yang
- Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
18
|
Sbai O, Soussi R, Bole A, Khrestchatisky M, Esclapez M, Ferhat L. The actin binding protein α-actinin-2 expression is associated with dendritic spine plasticity and migrating granule cells in the rat dentate gyrus following pilocarpine-induced seizures. Exp Neurol 2020; 335:113512. [PMID: 33098872 DOI: 10.1016/j.expneurol.2020.113512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo. We examined the levels of α-actn-2 expression within the dentate gyrus (DG) during the development of chronic limbic seizures (epileptogenesis) induced by pilocarpine in rats. In this model, plasticity of the DG glutamatergic granule cells including spine loss, spinogenesis, morphogenesis, neo-synaptogenesis, aberrant migration, and alterations of NMDA receptors have been well characterized. We showed that α-actn-2 immunolabeling was reduced in the inner molecular layer at 1-2 weeks post-status epilepticus (SE), when granule cell spinogenesis and morphogenesis occur. This low level persisted at the chronic stage when new functional synapses are established. This decreased of α-actn-2 protein is concomitant with the recovery of drebrin A (DA), another actin-binding protein, at the chronic stage. Indeed, we demonstrated in cultured cells that in contrast to DA, α-actn-2 did not protect F-actin destabilization and DA inhibited α-actn-2 binding to F-actin. Such alteration could affect the anchoring of NR1 in dendritic spines. Furthermore, we showed that the expression of α-actn-2 and NR1 are co-down-regulated in membrane fractions of pilocarpine animals at chronic stage. Last, we showed that α-actn-2 is expressed in migrating newly born granule cells observed within the hilus of pilocarpine-treated rats. Altogether, our results suggest that α-actn-2 is not critical for the structural integrity and stabilization of granule cell dendritic spines. Instead, its expression is regulated when spinogenesis and morphogenesis occur and within migrating granule cells. Our data also suggest that the balance between α-actn-2 and DA expression levels may modulate NR1 anchoring within dendritic spines.
Collapse
Affiliation(s)
- Oualid Sbai
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Rabia Soussi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Angélique Bole
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Monique Esclapez
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
19
|
Saha P, Guha S, Biswas SC. P38K and JNK pathways are induced by amyloid-β in astrocyte: Implication of MAPK pathways in astrogliosis in Alzheimer's disease. Mol Cell Neurosci 2020; 108:103551. [PMID: 32896578 DOI: 10.1016/j.mcn.2020.103551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocyte activation is one of the crucial hallmarks of Alzheimer's disease (AD) along with amyloid-β (Aβ) plaques, neurofibrillary tangles and neuron death. Glial scar and factors secreted from activated astrocytes have important contribution on neuronal health in AD. In this study, we investigated the mechanisms of astrocyte activation both in in vitro and in vivo models of AD. In this regard, mitogen activated protein kinase (MAPK) signalling cascades that control several fundamental and stress related cellular events, has been implicated in astrocyte activation in various neurological diseases. We checked activation of different MAPKs by western blot and immunocytochemistry and found that both JNK and p38K, but not ERK pathways are activated in Aβ-treated astrocytes in culture and in Aβ-infused rat brain cortex. Next, to investigate the downstream consequences of these two MAPKs (JNK and p38K) in Aβ-induced astrocyte activation, we individually blocked these pathways by specific inhibitors in presence and absence of Aβ and checked Aβ-induced cellular proliferation, morphological changes and glial fibrillary acidic protein (GFAP) upregulation. We found that activation of both JNK and p38K signalling cascades are involved in astrocyte proliferation evoked by Aβ, whereas only p38K pathway is implicated in morphological changes and GFAP upregulation in astrocytes exposed to Aβ. To further validate the implication of p38K pathway in Aβ-induced astrocyte activation, we also observed that transcription factor ATF2, a downstream phosphorylation substrate of p38, is phosphorylated upon Aβ treatment. Taken together, our study indicates that p38K and JNK pathways mediate astrocyte activation and both the pathways are involved in cellular proliferation but only p38K pathway contributes in morphological changes triggered by Aβ.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhalakshmi Guha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
20
|
Saha P, Sarkar S, Paidi RK, Biswas SC. TIMP-1: A key cytokine released from activated astrocytes protects neurons and ameliorates cognitive behaviours in a rodent model of Alzheimer's disease. Brain Behav Immun 2020; 87:804-819. [PMID: 32194232 DOI: 10.1016/j.bbi.2020.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by two pathologic species, extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles. Astrocytes that maintain normal homeostasis in the brain undergo a set of molecular, cellular and functional changes called reactive astrogliosis in various neurological diseases including AD. It is hypothesized that reactive astrocytes initially tend to protect neurons by reducing Aβ load and by secreting a plethora of cytokines, however, their functions have only been poorly investigated. Our studies on the kinetics of activation of cortical astrocytes following Aβ-exposure revealed significant level of activation as early as in 6 h. The astrocyte conditioned medium (ACM) from 6 h Aβ-treated astrocytes (Aβ-ACM) provided significant neuroprotection of cultured cortical neurons against Aβ insults. Analysis of the secreted proteins in Aβ-ACM revealed a marked increase of Tissue inhibitor of Metalloproteinase-1 (TIMP-1) within 6 h. Interestingly, we found that neutralization of TIMP-1 with antibody or knockdown with siRNA in astrocytes abolished most of the neuroprotective ability of the 6 h Aβ-ACM on Aβ-treated cultured neurons. Furthermore addition of exogenous rat recombinant TIMP-1 protein protects primary neurons from Aβ mediated toxicity. In a well characterized Aβ-infused rodent model of AD, intra-cerebroventricular administration of TIMP-1 revealed a reduction in Aβ load and apoptosis in hippocampal and cortical regions. Finally, we found that TIMP-1 can ameliorate Aβ-induced cognitive dysfunctions through restoration of Akt and its downstream pathway and maintenance of synaptic integrity. Thus, our results not only provide a functional clarity for TIMP-1, secreted by activated astrocytes, but also support it as a major candidate in cytokine-mediated therapy of AD especially at the early phase of disease progression.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
21
|
Ilie A, Boucher A, Park J, Berghuis AM, McKinney RA, Orlowski J. Assorted dysfunctions of endosomal alkali cation/proton exchanger SLC9A6 variants linked to Christianson syndrome. J Biol Chem 2020; 295:7075-7095. [PMID: 32277048 PMCID: PMC7242699 DOI: 10.1074/jbc.ra120.012614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic screening has identified numerous variants of the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+,K+)/H+ exchanger 6 (NHE6) gene that cause Christianson syndrome, a debilitating X-linked developmental disorder associated with a range of neurological, somatic, and behavioral symptoms. Many of these variants cause complete loss of NHE6 expression, but how subtler missense substitutions or nonsense mutations that partially truncate its C-terminal cytoplasmic regulatory domain impair NHE6 activity and endosomal function are poorly understood. Here, we describe the molecular and cellular consequences of six unique mutations located in the N-terminal cytoplasmic segment (A9S), the membrane ion translocation domain (L188P and G383D), and the C-terminal regulatory domain (E547*, R568Q, and W570*) of human NHE6 that purportedly cause disease. Using a heterologous NHE6-deficient cell expression system, we show that the biochemical, catalytic, and cellular properties of the A9S and R568Q variants were largely indistinguishable from those of the WT transporter, which obscured their disease significance. By contrast, the L188P, G383D, E547*, and W570* mutants exhibited variable deficiencies in biosynthetic post-translational maturation, membrane sorting, pH homeostasis in recycling endosomes, and cargo trafficking, and they also triggered apoptosis. These findings broaden our understanding of the molecular dysfunctions of distinct NHE6 variants associated with Christianson syndrome.
Collapse
Affiliation(s)
- Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Jaeok Park
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
22
|
Montroull LE, Rothbard DE, Kanal HD, D’Mello V, Dodson V, Troy CM, Zanin JP, Levison SW, Friedman WJ. Proneurotrophins Induce Apoptotic Neuronal Death After Controlled Cortical Impact Injury in Adult Mice. ASN Neuro 2020; 12:1759091420930865. [PMID: 32493127 PMCID: PMC7273561 DOI: 10.1177/1759091420930865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/29/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) can regulate multiple cellular functions including proliferation, survival, and apoptotic cell death. The p75NTR is widely expressed in the developing brain and is downregulated as the nervous system matures, with only a few neuronal subpopulations retaining expression into adulthood. However, p75NTR expression is induced following damage to the adult brain, including after traumatic brain injury, which is a leading cause of mortality and disability worldwide. A major consequence of traumatic brain injury is the progressive neuronal loss that continues secondary to the initial trauma, which ultimately contributes to cognitive decline. Understanding mechanisms governing this progressive neuronal death is key to developing targeted therapeutic strategies to provide neuroprotection and salvage cognitive function. In this study, we demonstrate that a cortical impact injury to the sensorimotor cortex elicits p75NTR expression in apoptotic neurons in the injury penumbra, confirming previous studies. To establish whether preventing p75NTR induction or blocking the ligands would reduce the extent of secondary neuronal cell death, we used a noninvasive intranasal strategy to deliver either siRNA to block the induction of p75NTR, or function-blocking antibodies to the ligands pro-nerve growth factor and pro-brain-derived neurotrophic factor. We demonstrate that either preventing the induction of p75NTR or blocking the proneurotrophin ligands provides neuroprotection and preserves sensorimotor function.
Collapse
Affiliation(s)
- Laura E. Montroull
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Deborah E. Rothbard
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Hur D. Kanal
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Veera D’Mello
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Vincent Dodson
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Carol M. Troy
- Department of Pathology and
Cell Biology, Columbia University Medical Center, New York, NY, United
States
| | - Juan P. Zanin
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| | - Steven W. Levison
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey,
United States
| | - Wilma J. Friedman
- Department of Biological
Sciences, Rutgers University, Newark, New Jersey, United States
| |
Collapse
|
23
|
Yong Y, Gamage K, Cheng I, Barford K, Spano A, Winckler B, Deppmann C. p75NTR and DR6 Regulate Distinct Phases of Axon Degeneration Demarcated by Spheroid Rupture. J Neurosci 2019; 39:9503-9520. [PMID: 31628183 PMCID: PMC6880466 DOI: 10.1523/jneurosci.1867-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022] Open
Abstract
The regressive events associated with trophic deprivation are critical for sculpting a functional nervous system. After nerve growth factor withdrawal, sympathetic axons derived from male and female neonatal mice maintain their structural integrity for ∼18 h (latent phase) followed by a rapid and near unison disassembly of axons over the next 3 h (catastrophic phase). Here we examine the molecular basis by which axons transition from latent to catastrophic phases of degeneration following trophic withdrawal. Before catastrophic degeneration, we observed an increase in intra-axonal calcium. This calcium flux is accompanied by p75 neurotrophic factor receptor-Rho-actin-dependent expansion of calcium-rich axonal spheroids that eventually rupture, releasing their contents to the extracellular space. Conditioned media derived from degenerating axons are capable of hastening transition into the catastrophic phase of degeneration. We also found that death receptor 6, but not p75 neurotrophic factor receptor, is required for transition into the catastrophic phase in response to conditioned media but not for the intra-axonal calcium flux, spheroid formation, or rupture that occur toward the end of latency. Our results support the existence of an interaxonal degenerative signal that promotes catastrophic degeneration among trophically deprived axons.SIGNIFICANCE STATEMENT Developmental pruning shares several morphological similarities to both disease- and injury-induced degeneration, including spheroid formation. The function and underlying mechanisms governing axonal spheroid formation, however, remain unclear. In this study, we report that axons coordinate each other's degeneration during development via axonal spheroid rupture. Before irreversible breakdown of the axon in response to trophic withdrawal, p75 neurotrophic factor receptor-RhoA signaling governs the formation and growth of spheroids. These spheroids then rupture, allowing exchange of contents ≤10 kDa between the intracellular and extracellular space to drive death receptor 6 and calpain-dependent catastrophic degeneration. This finding informs not only our understanding of regressive events during development but may also provide a rationale for designing new treatments toward myriad neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kanchana Gamage
- Department of Cell Biology
- Amgen, Massachusetts & Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene Cheng
- Department of Biology
- Neuroscience Graduate Program
| | | | | | | | - Christopher Deppmann
- Department of Biology,
- Neuroscience Graduate Program
- Department of Cell Biology
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, and
| |
Collapse
|
24
|
Wong LW, Tann JY, Ibanez CF, Sajikumar S. The p75 Neurotrophin Receptor Is an Essential Mediator of Impairments in Hippocampal-Dependent Associative Plasticity and Memory Induced by Sleep Deprivation. J Neurosci 2019; 39:5452-5465. [PMID: 31085607 PMCID: PMC6616296 DOI: 10.1523/jneurosci.2876-18.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Sleep deprivation (SD) interferes with hippocampal structural and functional plasticity, formation of long-term memory and cognitive function. The molecular mechanisms underlying these effects are incompletely understood. Here, we show that SD impaired synaptic tagging and capture and behavioral tagging, two major mechanisms of associative learning and memory. Strikingly, mutant male mice lacking the p75 neurotrophin receptor (p75NTR) were resistant to the detrimental effects of SD on hippocampal plasticity at both cellular and behavioral levels. Mechanistically, SD increased p75NTR expression and its interaction with phosphodiesterase. p75NTR deletion preserved hippocampal structural and functional plasticity by preventing SD-mediated effects on hippocampal cAMP-CREB-BDNF, cAMP-PKA-LIMK1-cofilin, and RhoA-ROCK2 pathways. Our study identifies p75NTR as an important mediator of hippocampal structural and functional changes associated with SD, and suggests that targeting p75NTR could be a promising strategy to limit the memory and cognitive deficits that accompany sleep loss.SIGNIFICANCE STATEMENT The lack of sufficient sleep is a major health concern in today's world. Sleep deprivation (SD) affects cognitive functions such as memory. We have investigated how associative memory mechanisms, synaptic tagging and capture (STC), was impaired in SD mice at cellular and behavioral level. Interestingly, mutant male mice that lacked the p75 neurotrophin receptor (p75NTR) were seen to be resistant to the SD-induced impairments in hippocampal synaptic plasticity and STC. Additionally, we elucidated the molecular pathways responsible for this rescue of plasticity in the mutant mice. Our study has thus identified p75NTR as a promising target to limit the cognitive deficits associated with SD.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| | - Jason Y Tann
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| | - Carlos F Ibanez
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm S-17177, Sweden
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore,
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| |
Collapse
|
25
|
Mufson EJ, Counts SE, Ginsberg SD, Mahady L, Perez SE, Massa SM, Longo FM, Ikonomovic MD. Nerve Growth Factor Pathobiology During the Progression of Alzheimer's Disease. Front Neurosci 2019; 13:533. [PMID: 31312116 PMCID: PMC6613497 DOI: 10.3389/fnins.2019.00533] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
The current review summarizes the pathobiology of nerve growth factor (NGF) and its cognate receptors during the progression of Alzheimer's disease (AD). Both transcript and protein data indicate that cholinotrophic neuronal dysfunction is related to an imbalance between TrkA-mediated survival signaling and the NGF precursor (proNGF)/p75NTR-mediated pro-apoptotic signaling, which may be related to alteration in the metabolism of NGF. Data indicate a spatiotemporal pattern of degeneration related to the evolution of tau pathology within cholinotrophic neuronal subgroups located within the nucleus basalis of Meynert (nbM). Despite these degenerative events the cholinotrophic system is capable of cellular resilience and/or plasticity during the prodromal and later stages of the disease. In addition to neurotrophin dysfunction, studies indicate alterations in epigenetically regulated proteins occur within cholinotrophic nbM neurons during the progression of AD, suggesting a mechanism that may underlie changes in transcript expression. Findings that increased cerebrospinal fluid levels of proNGF mark the onset of MCI and the transition to AD suggests that this proneurotrophin is a potential disease biomarker. Novel therapeutics to treat NGF dysfunction include NGF gene therapy and the development of small molecule agonists for the cognate prosurvival NGF receptor TrkA and antagonists against the pan-neurotrophin p75NTR death receptor for the treatment of AD.
Collapse
Affiliation(s)
- Elliott J. Mufson
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Scott E. Counts
- Translational Science and Molecular Medicine Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, Department of Neuroscience, and Physiology and NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
| | - Laura Mahady
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Stephen M. Massa
- Department of Neurology, San Francisco VA Health Care System, University of California, San Francisco, San Francisco, CA, United States
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Milos D. Ikonomovic
- Department of Neurology and Department of Psychiatry, Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Fahnestock M, Shekari A. ProNGF and Neurodegeneration in Alzheimer's Disease. Front Neurosci 2019; 13:129. [PMID: 30853882 PMCID: PMC6395390 DOI: 10.3389/fnins.2019.00129] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Profound and early basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Alzheimer's disease (AD). Loss of synapses between basal forebrain and hippocampal and cortical target tissue correlates highly with the degree of dementia and is thought to be a major contributor to memory loss. BFCNs depend for their survival, connectivity and function on the neurotrophin nerve growth factor (NGF) which is retrogradely transported from its sites of synthesis in the cortex and hippocampus. The form of NGF found in human brain is proNGF. ProNGF binds to the NGF receptors TrkA and p75NTR, but it binds more strongly to p75NTR and more weakly to TrkA than does mature NGF. This renders proNGF more sensitive to receptor balance than mature NGF. In the healthy brain, where BFCNs express both TrkA and p75NTR, proNGF is neurotrophic, activating TrkA-dependent signaling pathways such as MAPK and Akt-mTOR and eliciting cell survival and neurite outgrowth. However, if TrkA is lost or if p75NTR is increased, proNGF activates p75NTR-dependent apoptotic pathways such as JNK. This receptor sensitivity serves as a neurotrophic/apoptotic switch that eliminates BFCNs that cannot maintain TrkA/p75NTR balance and therefore synaptic connections with their targets. TrkA is increasingly lost in mild cognitive impairment (MCI) and AD. In addition, proNGF accumulates at BFCN terminals in cortex and hippocampus, reducing the amount of trophic factor that reaches BFCN cell bodies. The loss of TrkA and accumulation of proNGF occur early in MCI and correlate with cognitive impairment. Increased levels of proNGF and reduced levels of TrkA lead to BFCN neurodegeneration and eventual p75NTR-dependent apoptosis. In addition, in AD BFCNs suffer from reduced TrkA-dependent retrograde transport which reduces neurotrophic support. Thus, BFCNs are particularly vulnerable to AD due to their dependence upon retrograde trophic support from proNGF signaling and transport.
Collapse
Affiliation(s)
- Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Arman Shekari
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Yuan W, Ibáñez CF, Lin Z. Death domain of p75 neurotrophin receptor: a structural perspective on an intracellular signalling hub. Biol Rev Camb Philos Soc 2019; 94:1282-1293. [PMID: 30762293 DOI: 10.1111/brv.12502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
The death domain (DD) is a globular protein motif with a signature feature of an all-helical Greek-key motif. It is a primary mediator of a variety of biological activities, including apoptosis, cell survival and cytoskeletal changes, which are related to many neurodegenerative diseases, neurotrauma, and cancers. DDs exist in a wide range of signalling proteins including p75 neurotrophin receptor (p75NTR ), a member of the tumour necrosis factor receptor superfamily. The specific signalling mediated by p75NTR in a given cell depends on the type of ligand engaging the extracellular domain and the recruitment of cytosolic interactors to the intracellular domain, especially the DD, of the receptor. In solution, the p75NTR -DDs mainly form a symmetric non-covalent homodimer. In response to extracellular signals, conformational changes in the p75NTR extracellular domain (ECD) propagate to the p75NTR -DD through the disulfide-bonded transmembrane domain (TMD) and destabilize the p75NTR -DD homodimer, leading to protomer separation and exposure of binding sites on the DD surface. In this review, we focus on recent advances in the study of the structural mechanism of p75NTR -DD signalling through recruitment of diverse intracellular interactors for the regulation and control of diverse functional outputs.
Collapse
Affiliation(s)
- Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Carlos F Ibáñez
- Department of Physiology, National University of Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, 117456, Singapore.,Department of Cell & Molecular Biology, Karolinska Institute, 17165, Stockholm, Sweden
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, People's Republic of China.,Department of Physiology, National University of Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, 117456, Singapore
| |
Collapse
|
28
|
Montroull LE, Danelon V, Cragnolini AB, Mascó DH. Loss of TrkB Signaling Due to Status Epilepticus Induces a proBDNF-Dependent Cell Death. Front Cell Neurosci 2019; 13:4. [PMID: 30800056 PMCID: PMC6375841 DOI: 10.3389/fncel.2019.00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023] Open
Abstract
Neurotrophins (NTs) are secretory proteins that bind to target receptors and influence many cellular functions, such as cell survival and cell death in neurons. The mammalian NT brain-derived neurotrophic factor (matBDNF) is the C-terminal mature form released by cleavage from the proBDNF precursor. The binding of matBDNF to the tyrosine kinase receptor B (TrkB) activates different signaling cascades and leads to neuron survival and plasticity, while the interaction of proBDNF with the p75 NT receptor (p75NTR)/sortilin receptor complex has been highly involved in apoptosis. Many studies have demonstrated that prolonged seizures such as status epilepticus (SE) induce changes in the expression of NT, pro-NT, and their receptors. We have previously described that the blockage of both matBDNF and proBDNF signaling reduces neuronal death after SE in vivo (Unsain et al., 2008). We used an in vitro model as well as an in vivo model of SE to determine the specific role of TrkB and proBDNF signaling during neuronal cell death. We found that the matBDNF sequestering molecule TrkB-Fc induced an increase in neuronal death in both models of SE, and it also prevented a decrease in TrkB levels. Moreover, SE triggered the interaction between proBDNF and p75NTR, which was not altered by sequestering matBDNF. The intra-hippocampal administration of TrkB-Fc, combined with an antibody against proBDNF, prevented neuronal degeneration. In addition, we demonstrated that proBDNF binding to p75NTR exacerbates neuronal death when matBDNF signaling is impaired through TrkB. Our results indicated that both the mature and the precursor forms of BDNF may have opposite effects depending on the scenario in which they function and the signaling pathways they activate.
Collapse
Affiliation(s)
- Laura Ester Montroull
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Beatriz Cragnolini
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel Hugo Mascó
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
29
|
Yagami T, Yamamoto Y, Koma H. Pathophysiological Roles of Intracellular Proteases in Neuronal Development and Neurological Diseases. Mol Neurobiol 2018; 56:3090-3112. [PMID: 30097848 DOI: 10.1007/s12035-018-1277-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Proteases are classified into six distinct classes (cysteine, serine, threonine, aspartic, glutamic, and metalloproteases) on the basis of catalytic mechanism. The cellular control of protein quality senses misfolded or damaged proteins principally by selective ubiquitin-proteasome pathway and non-selective autophagy-lysosome pathway. The two pathways do not only maintain cell homeostasis physiologically, but also mediate necrosis and apoptosis pathologically. Proteasomes are threonine proteases, whereas cathepsins are lysosomal aspartic proteases. Calpains are non-lysosomal cysteine proteases and calcium-dependent papain-like enzyme. Calpains and cathepsins are involved in the neuronal necrosis, which are accidental cell death. Necrosis is featured by the disruption of plasma membranes and lysosomes, the loss of ATP and ribosomes, the lysis of cell and nucleus, and the caspase-independent DNA fragmentation. On the other hand, caspases are cysteine endoproteases and mediate neuronal cell death such as apoptosis and pyroptosis, which are programmed cell death. In the central nervous system, necroptosis, ferroptosis and autophagic cell death are also classified into programmed cell death. Neuronal apoptosis is characterized by cell shrinkage, plasma membrane blebbing, karyorrhexis, chromatin condensation, and DNA fragmentation. Necroptosis and pyroptosis are necrotic and lytic forms of programmed cell death, respectively. Although autophagy is involved in cell survival, it fails to maintain cellular homeostasis, resulting in autophagic cell death. Ferroptosis is induced by reactive oxygen species in excitotoxicity of glutamate and ischemia-reperfusion. Apoptosis and pyroptosis are dependent on caspase-3 and caspase-1, respectively. Autophagic cell death and necroptosis are dependent on calpain and cathepsin, respectively, but independent of caspase. Although apoptosis has been defined by the absence of morphological features of necrosis, the two deaths are both parts of a continuum. The intracellular proteases do not only maintain cell homeostasis but also regulate neuronal maturation during the development of embryonic brain. Furthermore, neurodegenerative diseases are caused by the impairment of quality control mechanisms for a proper folding and function of protein.
Collapse
Affiliation(s)
| | | | - Hiromi Koma
- Himeji Dokkyo University, Himeji, Hyogo, Japan
| |
Collapse
|
30
|
Mehrabi S, Janahamdi M, Joghataie MT, Barati M, Marzban M, Hadjighassem M, Farahmandfar M. Blockade of p75 Neurotrophin Receptor Reverses Irritability and Anxiety-Related Behaviors in a Rat Model of Status Epilepticus. IRANIAN BIOMEDICAL JOURNAL 2018; 22:264-74. [PMID: 29108398 PMCID: PMC5949129 DOI: 10.22034/ibj.22.4.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022]
Abstract
Background Many recent epidemiological studies have shown that epileptic patients are more likely suffer from depression, anxiety, and irritability. However, the cellular mechanisms of epilepsy-induced psychotic behaviors are not fully elucidated. Neurotrophin receptors have been suggested to be involved in epilepsy and also in psychiatric disorders. Up-regulation of p75NTR expression and activation of p75NTR signalling cascades after the seizure have been shown, but the role of the p75 receptor in epilepsy-induced psychotic behaviors has not been documented so far. Therefore, the present work aimed to investigate the effect of p75 receptor blockade on seizure activity, irritability, and anxiety-like behaviors in a rat model of status epilepticus. Methods Rats were injected with pilocarpine (350 mg/ kg, i.p.) to induce status epilepticus. Then various behavioral tests were performed after the blockade of p75NTR alone or in combination with p75 antagonist and phenobarbital. Molecular analysis by PCR was performed to investigate the expression of p75 and pro-NGF. Results Molecular findings indicated a high level of mRNA expression for both p75 receptors and pro-NGF in the epileptic model group. Results also showed that the administration of p75 antagonist alone or in combination with phenobarbital was able to significantly influence the behavioral responses. Furthermore, 20-hours video monitoring showed a decrease in the frequency and duration of seizures in the rat group receiving p75 antagonist. Conclusion Taken together, the present study suggests that the blockade of the p75 receptor may affect the irritability and anxiety-related behavior in a rat model of status epilepticus.
Collapse
Affiliation(s)
- Soraya Mehrabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahamdi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataie
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of pharmaceutical biotechnology, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Marzban
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway. Oncotarget 2018; 7:81026-81048. [PMID: 27835587 PMCID: PMC5348374 DOI: 10.18632/oncotarget.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling.
Collapse
|
32
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
Greenwood SG, Montroull L, Volosin M, Scharfman HE, Teng KK, Light M, Torkin R, Maxfield F, Hempstead BL, Friedman WJ. A Novel Neuroprotective Mechanism for Lithium That Prevents Association of the p75 NTR-Sortilin Receptor Complex and Attenuates proNGF-Induced Neuronal Death In Vitro and In Vivo. eNeuro 2018; 5:ENEURO.0257-17.2017. [PMID: 29349290 PMCID: PMC5771681 DOI: 10.1523/eneuro.0257-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins play critical roles in the survival, maintenance and death of neurons. In particular, proneurotrophins have been shown to mediate cell death following brain injury induced by status epilepticus (SE) in rats. Previous studies have shown that pilocarpine-induced seizures lead to increased levels of proNGF, which binds to the p75NTR-sortilin receptor complex to elicit apoptosis. A screen to identify compounds that block proNGF binding and uptake into cells expressing p75 and sortilin identified lithium citrate as a potential inhibitor of proNGF and p75NTR-mediated cell death. In this study, we demonstrate that low, submicromolar doses of lithium citrate effectively inhibited proNGF-induced cell death in cultured neurons and protected hippocampal neurons following pilocarpine-induced SE in vivo. We analyzed specific mechanisms by which lithium citrate afforded neuroprotection and determined that lithium citrate prevented the association and internalization of the p75NTR-sortilin receptor complex. Our results demonstrate a novel mechanism by which low-dose treatments of lithium citrate are effective in attenuating p75NTR-mediated cell death in vitro and in vivo.
Collapse
Affiliation(s)
| | - Laura Montroull
- Department of Biological Science, Rutgers University, Newark, NJ 07102
| | - Marta Volosin
- Department of Biological Science, Rutgers University, Newark, NJ 07102
| | | | - Kenneth K. Teng
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Matthew Light
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Risa Torkin
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | | | - Wilma J. Friedman
- Department of Biological Science, Rutgers University, Newark, NJ 07102
| |
Collapse
|
34
|
Islam MI, Sharoar MG, Ryu EK, Park IS. Limited activation of the intrinsic apoptotic pathway plays a main role in amyloid-β-induced apoptosis without eliciting the activation of the extrinsic apoptotic pathway. Int J Mol Med 2017; 40:1971-1982. [PMID: 29039468 DOI: 10.3892/ijmm.2017.3193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/03/2017] [Indexed: 11/06/2022] Open
Abstract
Amyloid-β (Aβ), a main pathogenic factor of Alzheimer's disease (AD), induces apoptosis accompanied by caspase activation. However, limited caspase activation and the suppression of the intrinsic apoptotic pathway (IAPW) are frequently observed upon Aβ treatment. In this study, we investigated whether these suppressive effects of Aβ can be overcome; we also examined the death-related pathways. Single treatments of cells with Aβ42 for up to 48 h barely induced caspase activation. In cells treated with Aβ42 twice for 2 h followed by 22 h (2+22 h) or for longer durations, the apoptotic protease activating factor-1 (Apaf-1) apoptosome was formed and caspases-3 and -9 were activated to a certain extent, suggesting the activation of the IAPW. However, the Aβ42-induced activation of the IAPW differed from that induced by treatment with other agents, such as staurosporine (STS) in that lower amounts of cytochrome c were released from the mitochondria, the majority of procaspase-9 in the Apaf-1 complex was not processed and caspase-3 was activated to a lesser extent in the peptide-treated cells. Thus, it seemed that the IAPW was not fully activated by Aβ42. The 30- and 41/43-kDa fragments derived from procaspase-8 were detected, which appear to be produced through the IAPW without death-inducing signaling-complex (DISC) formation, a key feature of the extrinsic apoptotic pathway (EAPW). Bid cleavage was observed only after caspase-3 activity reached its maximal levels, suggesting that the cleavage may contribute in a limited capacity to the amplification process of the IAPW in the Aβ-treated cells. Taken together, our data suggest that the IAPW, albeit functional only to a limited extent, plays a major role in Aβ42-induced apoptosis without the EAPW.
Collapse
Affiliation(s)
- Md Imamul Islam
- Department of Medical Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| | - Md Golam Sharoar
- Department of Medical Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| | - Eun-Kyoung Ryu
- Department of Nursing, Kongju National University, Kongju 314-701, Republic of Korea
| | - Il-Seon Park
- Department of Medical Sciences, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
35
|
Chemokine CCL2-CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus. J Neurosci 2017; 37:7878-7892. [PMID: 28716963 DOI: 10.1523/jneurosci.0315-17.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2-CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2-CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2-CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy.SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2-CCR2 signaling is required for monocyte infiltration, which in turn contributes to kainic acid (KA)-induced neuronal cell death. The downstream of CCR2 activation involves STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. The current study provides a novel insight on the function and mechanisms of CCL2-CCR2 signaling in KA-induced neurodegeneration and behavioral deficits.
Collapse
|
36
|
Park JK, Hong YP, Lee SJ. Effects of exercise on mature or precursor brain‑derived neurotrophic factor pathways in ovariectomized rats. Mol Med Rep 2017; 16:435-440. [PMID: 28534952 DOI: 10.3892/mmr.2017.6614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Ovariectomy (OVX) is a method used to block estrogen in female rats that induces hippocampal dysfunction and affects brain‑derived neurotrophic factor (BDNF) pathways. The majority of previous studies investigating OVX focused on BDNF expression in the hippocampus and cognitive function. The present study focused on the pathways of each BDNF type, precursor (proBDNF) and mature (mBDNF), and the effects of regular exercise in the hippocampus of ovariectomized rats. Female Sprague‑Dawely rats were used and OVX surgery was performed. After 1 week of recovery from surgery, two groups of rats that received OVX surgery were subjected to regular treadmill exercise for 8 weeks. The results of protein levels by western blotting indicated that the expression of proBDNF, p75 neurotrophin receptor (p75NTR) and c‑Jun N‑terminal protein kinase (JNK) was increased, and mBDNF, tropomyosin‑related kinase B (TrkB) and nuclear factor‑κB expression was significantly reduced in the OVX control group compared with the sham control group SC (P<0.05). Thus, the survival pathway by mBDNF was impaired and the pro‑apoptotic response was activated by increased JNK expression due to proBDNF‑p75NTR binding in the hippocampus of ovariectomized rats. By contrast, exercise reduced activation of the pro‑apoptotic response and increased mBDNF‑TrkB expression in the hippocampus of ovariectomized rats. Thus, regular exercise may increase the activation of survival pathways via mBDNF and reducing the activation of the pro‑apoptotic pathway of proBDNF in the hippocampus of ovariectomized rats.
Collapse
Affiliation(s)
- Joon-Ki Park
- Division of Exercise and Health Science, College of Arts and Physical Education, Incheon National University, Incheon 22012, Republic of Korea
| | - Young-Pyo Hong
- Health Education Laboratory, Department of Physical Education, Korea National Sport University, Seoul 05541, Republic of Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Social Welfare and Education, Tong Myong University, Busan 48520, Republic of Korea
| |
Collapse
|
37
|
PROneurotrophins and CONSequences. Mol Neurobiol 2017; 55:2934-2951. [DOI: 10.1007/s12035-017-0505-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
38
|
Pincelli C. p75 Neurotrophin Receptor in the Skin: Beyond Its Neurotrophic Function. Front Med (Lausanne) 2017; 4:22. [PMID: 28326307 PMCID: PMC5339601 DOI: 10.3389/fmed.2017.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 12/16/2022] Open
Abstract
p75 neurotrophin receptor (p75NTR), also known as CD271, is the low-affinity receptor that, together with the tyrosine kinase receptor tropomyosin-receptor kinase (Trk), mediate neurotrophin (NT) functions. Beside their classic role in skin innervation, NT and their receptors constitute a complex cutaneous network associated with a number of autocrine and paracrine activities. In this context, the role of p75NTR is becoming more and more important. This review will focus on the intriguing functions of p75NTR in healthy and diseased skin. First, p75NTR counterbalances the proliferative and survival activities of its cognate receptor Trk by inducing keratinocyte apoptosis. In addition, p75NTR identifies an early transit-amplifying (TA) keratinocyte population and plays a critical role in keratinocyte stem cell transition to its progeny as well as in epidermal differentiation. p75NTR is absent in psoriatic TA cells, thus rendering these cells resistant to apoptosis. On the other hand, p75NTR infection restores NT-induced apoptosis in psoriatic keratinocytes. Taken together, these results provide evidence for a critical role of p75NTR in epidermal homeostasis, while its lack may account for the TA defect in psoriasis. While the issue of p75NTR as a marker of melanoma initiating cells is still to be solved, there is strong evidence that downregulation of this receptor is a precondition to melanoma invasion and metastasis in vitro and in vivo. All in all, this review points to p75NTR as a major actor in both physiologic and pathologic conditions at the skin level.
Collapse
Affiliation(s)
- Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
39
|
Retrograde apoptotic signaling by the p75 neurotrophin receptor. Neuronal Signal 2017; 1:NS20160007. [PMID: 32714573 PMCID: PMC7373242 DOI: 10.1042/ns20160007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.
Collapse
|
40
|
Aghdaei FH, Soltani BM, Dokanehiifard S, Mowla SJ, Soleimani M. Overexpression of hsa-miR-939 follows by NGFR down-regulation and apoptosis reduction. J Biosci 2017; 42:23-30. [DOI: 10.1007/s12038-017-9669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Synthesis and Biological Evaluation of Novel Multi-target-Directed Benzazepines Against Excitotoxicity. Mol Neurobiol 2016; 54:6697-6722. [PMID: 27744571 DOI: 10.1007/s12035-016-0184-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.
Collapse
|
42
|
Ilie A, Gao AYL, Reid J, Boucher A, McEwan C, Barrière H, Lukacs GL, McKinney RA, Orlowski J. A Christianson syndrome-linked deletion mutation (∆(287)ES(288)) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death. Mol Neurodegener 2016; 11:63. [PMID: 27590723 PMCID: PMC5010692 DOI: 10.1186/s13024-016-0129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/27/2016] [Indexed: 01/19/2023] Open
Abstract
Background Christianson Syndrome, a recently identified X-linked neurodevelopmental disorder, is caused by mutations in the human gene SLC9A6 encoding the recycling endosomal alkali cation/proton exchanger NHE6. The patients have pronounced limitations in cognitive ability, motor skills and adaptive behaviour. However, the mechanistic basis for this disorder is poorly understood as few of the more than 20 mutations identified thus far have been studied in detail. Methods Here, we examined the molecular and cellular consequences of a 6 base-pair deletion of amino acids Glu287 and Ser288 (∆ES) in the predicted seventh transmembrane helix of human NHE6 expressed in established cell lines (CHO/AP-1, HeLa and neuroblastoma SH-SY5Y) and primary cultures of mouse hippocampal neurons by measuring levels of protein expression, stability, membrane trafficking, endosomal function and cell viability. Results In the cell lines, immunoblot analyses showed that the nascent mutant protein was properly synthesized and assembled as a homodimer, but its oligosaccharide maturation and half-life were markedly reduced compared to wild-type (WT) and correlated with enhanced ubiquitination leading to both proteasomal and lysosomal degradation. Despite this instability, a measurable fraction of the transporter was correctly sorted to the plasma membrane. However, the rates of clathrin-mediated endocytosis of the ∆ES mutant as well as uptake of companion vesicular cargo, such as the ligand-bound transferrin receptor, were significantly reduced and correlated with excessive endosomal acidification. Notably, ectopic expression of ∆ES but not WT induced apoptosis when examined in AP-1 cells. Similarly, in transfected primary cultures of mouse hippocampal neurons, membrane trafficking of the ∆ES mutant was impaired and elicited marked reductions in total dendritic length, area and arborization, and triggered apoptotic cell death. Conclusions These results suggest that loss-of-function mutations in NHE6 disrupt recycling endosomal function and trafficking of cargo which ultimately leads to neuronal degeneration and cell death in Christianson Syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0129-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Ilie
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Andy Y L Gao
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jonathan Reid
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Cassandra McEwan
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Hervé Barrière
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
43
|
Guha I, Slamova I, Chun S, Clegg A, Golos M, Thrasivoulou C, Simons JP, Al-Shawi R. The effects of short-term JNK inhibition on the survival and growth of aged sympathetic neurons. Neurobiol Aging 2016; 46:138-48. [PMID: 27490965 DOI: 10.1016/j.neurobiolaging.2016.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/27/2022]
Abstract
During the course of normal aging, certain populations of nerve growth factor (NGF)-responsive neurons become selectively vulnerable to cell death. Studies using dissociated neurons isolated from neonates have shown that c-Jun N-terminal kinases (JNKs) are important in regulating the survival and neurite outgrowth of NGF-responsive sympathetic neurons. Unlike neonatal neurons, adult sympathetic neurons are not dependent on NGF for their survival. Moreover, the NGF precursor, proNGF, is neurotoxic for aging but not young adult NGF-responsive neurons. Because of these age-related differences, the effects of JNK inhibition on the survival and growth of sympathetic neurons isolated from aged mice were studied. Aged neurons, as well as glia, were found to be dependent on JNK for their growth but not their survival. Conversely, proNGF neurotoxicity was JNK-dependent and mediated by the p75-interacting protein NRAGE, whereas neurite outgrowth was independent of NRAGE. These results have implications for the potential use of JNK inhibitors as therapies for ameliorating age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Isa Guha
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Ivana Slamova
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Soyon Chun
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Arthur Clegg
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Michal Golos
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Chris Thrasivoulou
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | - J Paul Simons
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| | - Raya Al-Shawi
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
44
|
Zanin JP, Abercrombie E, Friedman WJ. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor. eLife 2016; 5:e16654. [PMID: 27434667 PMCID: PMC4975574 DOI: 10.7554/elife.16654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.
Collapse
Affiliation(s)
- Juan Pablo Zanin
- Department of Biological Sciences, Rutgers University, Newark, United States
| | - Elizabeth Abercrombie
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, United States
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, United States
| |
Collapse
|
45
|
Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep 2016; 6:28142. [PMID: 27334554 PMCID: PMC4917886 DOI: 10.1038/srep28142] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/27/2016] [Indexed: 12/29/2022] Open
Abstract
The plethora of literature has supported the potential benefits of Resveratrol (RV) as a life-extending as well as an anticancer compound. However, these two functional discrepancies resulted at different concentration ranges. Likewise, the role of Resveratrol on adult neurogenesis still remains controversial and less understood despite its well documented health benefits. To gather insight into the biological effects of RV on neurogenesis, we evaluated the possible effects of the compound on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of aged rats. Resveratrol exerted biphasic effects on NPCs; low concentrations (10 μM) stimulated cell proliferation mediated by increased phosphorylation of extracellular signal-regulated kinases (ERKs) and p38 kinases, whereas high concentrations (>20 μM) exhibited inhibitory effects. Administration of Resveratrol (20 mg/kg body weight) to adult rats significantly increased the number of newly generated cells in the hippocampus, with upregulation of p-CREB and SIRT1 proteins implicated in neuronal survival and lifespan extension respectively. We have successfully demonstrated that Resveratrol exhibits dose dependent discrepancies and at a lower concentration can have a positive impact on the proliferation, survival of NPCs and aged rat hippocampal neurogenesis implicating its potential as a candidate for restorative therapies against age related disorders.
Collapse
|
46
|
Tanaka K, Kelly CE, Goh KY, Lim KB, Ibáñez CF. Death Domain Signaling by Disulfide-Linked Dimers of the p75 Neurotrophin Receptor Mediates Neuronal Death in the CNS. J Neurosci 2016; 36:5587-95. [PMID: 27194337 PMCID: PMC6601771 DOI: 10.1523/jneurosci.4536-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The p75 neurotrophin receptor (p75(NTR)) mediates neuronal death in response to neural insults by activating a caspase apoptotic pathway. The oligomeric state and activation mechanism that enable p75(NTR) to mediate these effects have recently been called into question. Here, we have investigated mutant mice lacking the p75(NTR) death domain (DD) or a highly conserved transmembrane (TM) cysteine residue (Cys(259)) implicated in receptor dimerization and activation. Neuronal death induced by proneurotrophins or epileptic seizures was assessed and compared with responses in p75(NTR) knock-out mice and wild-type animals. Proneurotrophins induced apoptosis of cultured hippocampal and cortical neurons from wild-type mice, but mutant neurons lacking p75(NTR), only the p75(NTR) DD, or just Cys(259) were all equally resistant to proneurotrophin-induced neuronal death. Homo-FRET anisotropy experiments demonstrated that both NGF and proNGF induce conformational changes in p75(NTR) that are dependent on the TM cysteine. In vivo, neuronal death induced by pilocarpine-mediated seizures was significantly reduced in the hippocampus and somatosensory, piriform, and entorhinal cortices of all three strains of p75(NTR) mutant mice. Interestingly, the levels of protection observed in mice lacking the DD or only Cys(259) were identical to those of p75(NTR) knock-out mice even though the Cys(259) mutant differed from the wild-type receptor in only one amino acid residue. We conclude that, both in vitro and in vivo, neuronal death induced by p75(NTR) requires the DD and TM Cys(259), supporting the physiological relevance of DD signaling by disulfide-linked dimers of p75(NTR) in the CNS. SIGNIFICANCE STATEMENT A detailed understanding of the physiological significance of distinct structural determinants in the p75 neurotrophin receptor (p75(NTR)) is crucial for the identification of suitable drug targets in this receptor. We have tested the relevance of the p75(NTR) death domain (DD) and the highly conserved transmembrane residue Cys(259) for the ability of p75(NTR) to induce apoptosis in neurons of the CNS using gene-targeted mutant mice. The physiological importance of these determinants had been contested in some recent in vitro studies. Our results indicate a requirement for DD signaling by disulfide-linked dimers of p75(NTR) for neuronal death induced by proneurotrophins and epileptic seizures. These new mouse models will be useful for clarifying different aspects of p75(NTR) physiology.
Collapse
Affiliation(s)
- Kazuhiro Tanaka
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Claire E Kelly
- Department of Neuroscience, Karolinska Institute, Stockholm S-17177, Sweden, and
| | - Ket Yin Goh
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Kim Buay Lim
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Carlos F Ibáñez
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore, Department of Neuroscience, Karolinska Institute, Stockholm S-17177, Sweden, and Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
47
|
Hollmann G, Linden R, Giangrande A, Allodi S. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:1-8. [PMID: 26807499 DOI: 10.1016/j.aquatox.2015.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/14/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while the number of mitotic cells in the same groups decreased. In conclusion, environmental doses of UV can cause apoptosis by increasing p53 and decreasing p21, revealing an UV-damage pathway for U. cordatus.
Collapse
Affiliation(s)
- Gabriela Hollmann
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Rafael Linden
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire-IGBMC, INSERM, Strasbourg, France.
| | - Silvana Allodi
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590, Brazil.
| |
Collapse
|
48
|
Machhi J, Sinha A, Patel P, Kanhed AM, Upadhyay P, Tripathi A, Parikh ZS, Chruvattil R, Pillai PP, Gupta S, Patel K, Giridhar R, Yadav MR. Neuroprotective Potential of Novel Multi-Targeted Isoalloxazine Derivatives in Rodent Models of Alzheimer's Disease Through Activation of Canonical Wnt/β-Catenin Signalling Pathway. Neurotox Res 2016; 29:495-513. [PMID: 26797524 DOI: 10.1007/s12640-016-9598-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/04/2023]
Abstract
Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aβ aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aβ1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aβ1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/β-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aβ1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aβ1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aβ1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/β-catenin pathway as evidenced by increased p-GSK-3, β-catenin, and neuroD1 levels in Aβ1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD.
Collapse
Affiliation(s)
- Jatin Machhi
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pratik Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashish M Kanhed
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pragnesh Upadhyay
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Zalak S Parikh
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ragitha Chruvattil
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Sarita Gupta
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kirti Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Rajani Giridhar
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India.
| |
Collapse
|
49
|
Molecular Mechanism of Switching of TrkA/p75(NTR) Signaling in Monocrotophos Induced Neurotoxicity. Sci Rep 2015; 5:14038. [PMID: 26370177 PMCID: PMC4570211 DOI: 10.1038/srep14038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/14/2015] [Indexed: 01/19/2023] Open
Abstract
We demonstrate the role of molecular switching of TrkA/p75(NTR) signaling cascade in organophosphate pesticide-Monocrotophos (MCP) induced neurotoxicity in stem cell derived cholinergic neurons and in rat brain. Our in-silico studies reveal that MCP followed the similar pattern of binding as staurosporine and AG-879 (known inhibitors of TrkA) with TrkA protein (PDB ID: 4AOJ) at the ATP binding sites. This binding of MCP to TrkA led to the conformational change in this protein and triggers the cell death cascades. The in-silico findings are validated by observing the down regulated levels of phosphorylated TrkA and its downstream molecules viz., pERK1/2, pAkt and pCREB in MCP-exposed cells. We observe that these MCP induced alterations in pTrkA and downstream signaling molecules are found to be associated with apoptosis and injury to neurons. The down-regulation of TrkA could be linked to increased p75(NTR). The in-vitro studies could be correlated in the rat model. The switching of TrkA/p75(NTR) signaling plays a central role in MCP-induced neural injury in rBNSCs and behavioral changes in exposed rats. Our studies significantly advance the understanding of the switching of TrkA/p75(NTR) that may pave the way for the application of TrkA inducer/p75(NTR) inhibitor for potential therapeutic intervention in various neurodegenerative disorders.
Collapse
|
50
|
Saha P, Biswas SC. Amyloid-β induced astrocytosis and astrocyte death: Implication of FoxO3a-Bim-caspase3 death signaling. Mol Cell Neurosci 2015; 68:203-11. [PMID: 26260111 DOI: 10.1016/j.mcn.2015.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022] Open
Abstract
Astrocytes, the main element of the homeostatic system in the brain, are affected in various neurological conditions including Alzheimer's disease (AD). A common astrocytic reaction in pathological state is known as astrocytosis which is characterized by a specific change in astrocyte shape due to cytoskeletal remodeling, cytokine secretion and cellular proliferation. Astrocytes also undergo apoptosis in various neurological conditions or in response to toxic insults. AD is pathologically characterized by progressive deposition of amyloid-β (Aβ) in senile plaques, intraneuronal neurofibrillary tangles, synaptic dysfunction and neuron death. Astrocytosis and astrocyte death have been reported in AD brain as well as in response to Aβ in vitro. However, how astrocytes undergo both proliferation and death in response to Aβ remains elusive. In this study, we used primary cultures of cortical astrocytes and exposed them to various doses of oligomeric Aβ. We found that cultured astrocytes proliferate and manifest all signs of astrocytosis at a low dose of Aβ. However, at high dose of Aβ the activated astrocytes undergo apoptosis. Astrocytosis was also noticed in vivo in response to Aβ in the rat brain. Next, we investigated the mechanism of astrocyte apoptosis in response to a high dose of Aβ. We found that death of astrocyte induced by Aβ requires a set of molecules that are instrumental for neuron death in response to Aβ. It involves activation of Forkhead transcription factor Foxo3a, induction of its pro-apoptotic target Bim and activation of its downstream molecule, caspase3. Hence, this study demonstrates that the concentration of Aβ decides whether astrocytes do proliferate or undergo apoptosis via a mechanism that is required for neuron death.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|