1
|
Parsons AJ, Stein KR, Atanasoff KE, Ophir SI, Casado JP, Tortorella D. The CD46 ectodomain participates in human cytomegalovirus infection of epithelial cells. J Gen Virol 2023; 104:001892. [PMID: 37668349 PMCID: PMC10484303 DOI: 10.1099/jgv.0.001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.
Collapse
Affiliation(s)
- Andrea J. Parsons
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathryn R. Stein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina E. Atanasoff
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailene Paredes Casado
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Viruses Binding to Host Receptors Interacts with Autophagy. Int J Mol Sci 2023; 24:ijms24043423. [PMID: 36834833 PMCID: PMC9968160 DOI: 10.3390/ijms24043423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Viruses must cross the plasma membrane to infect cells, making them eager to overcome this barrier in order to replicate in hosts. They bind to cell surface receptors as the first step of initiating entry. Viruses can use several surface molecules that allow them to evade defense mechanisms. Various mechanisms are stimulated to defend against viruses upon their entry into cells. Autophagy, one of the defense systems, degrades cellular components to maintain homeostasis. The presence of viruses in the cytosol regulates autophagy; however, the mechanisms by which viral binding to receptors regulates autophagy have not yet been fully established. This review discusses recent findings on autophagy induced by interactions between viruses and receptors. It provides novel perspectives on the mechanism of autophagy as regulated by viruses.
Collapse
|
3
|
Abstract
CD46 is a receptor for human herpesvirus 6A (HHV-6A) and is in some cells also important for infection with HHV-6B. CD46 has several isoforms of which the most commonly expressed can be distinguished by expression of a BC domain or a C domain in a serine-threonine-proline rich (STP) extracellular region. Using a SupT1 CD46 CRISPR-Cas9 knockout model system reconstituted with specific CD46 isoforms, we demonstrated that HHV-6A infection was more efficient when BC-isoforms were expressed as opposed to C-isoforms, measured by higher levels of intracellular viral transcripts and recovery of more progeny virus. Although the B domain contains several O-glycosylations, mutations of Ser and Thr residues did not prevent infection with HHV-6A. The HHV-6A infection was blocked by inhibitors of clathrin-mediated endocytosis. In contrast, infection with HHV-6B was preferentially promoted by C-isoforms mediating fusion-from-without, and this infection was less affected by inhibitors of clathrin-mediated endocytosis. Taken together, HHV-6A preferred BC isoforms, mediating endocytosis, whereas HHV-6B preferred C isoforms, mediating fusion-from-without. This demonstrates that the STP region of CD46 is important for regulating the mode of infection in SupT1 cells and suggests an epigenetic regulation of the host susceptibility to HHV-6A and HHV-6B infection. Importance CD46 is the receptor used by human herpesvirus 6A (HHV-6A) during infection of T cells, but it is also involved in infection of certain T cells by HHV-6B. The gene for CD46 allows expression of several variants of CD46, known as isoforms, but whether the isoforms matter for infection of T cells is unknown. We used a genetic approach to delete CD46 from T cells and reconstituted them with separate isoforms to study these individually. We expressed the isoforms known as BC and C, which are distinguished by the potential inclusion of a B domain in the CD46 molecule. We demonstrate that HHV-6A prefers the BC isoform to infect T cells, and this occurs predominantly by clathrin-mediated endocytosis. In contrast, HHV-6B prefers the C isoform and infects predominantly by fusion-from-without. Thus, CD46 isoforms may affect susceptibility of T cells to infection with HHV-6A and HHV-6B.
Collapse
|
4
|
Moreira EA, Yamauchi Y, Matthias P. How Influenza Virus Uses Host Cell Pathways during Uncoating. Cells 2021; 10:1722. [PMID: 34359892 PMCID: PMC8305448 DOI: 10.3390/cells10071722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
5
|
The tetraspanin protein CD9 modulates infection with human herpesvirus 6A and 6B in a CD46-dependent manner. J Virol 2021; 95:JVI.02259-20. [PMID: 33504606 PMCID: PMC8103686 DOI: 10.1128/jvi.02259-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetraspanins are four-span transmembrane proteins that organize the membrane by forming tetraspanin-enriched microdomains. These have been shown to be important for virus entry. The human herpesvirus (HHV)-6A receptor CD46 is known to form complexes with the tetraspanin CD9 and β1-integrins, however the significance of this for HHV-6A infection remains unexplored. Using a genetic approach, we demonstrate that knock out of CD46 abolishes binding to and infection of SupT1 cells by both HHV-6A and HHV-6B, establishing CD46 as a necessary receptor for productive infection of these cells. Knock out of CD9 in SupT1 cells had no effect on binding of either virus to the cell surface, but it reduced expression of immediate early transcripts to between 25-60% compared with the wild type cells. Although HHV-6B required CD46 for infection of SupT1, infection of Molt3 cells was independent of CD46 expression. Conversely, the absence of CD9 expression promoted infection of Molt3 cells with HHV-6B, indicating a negative role of CD9 for CD46-independent infection. Taken together, these data demonstrate that CD9 modulates infection with HHV-6A/B by promoting CD46-dependent infection and impairing CD46-independent infection. This also suggests that HHV-6A is strictly dependent on CD46 for entry, although other proteins, like CD9, may enhance the infection, whereas HHV-6B is more promiscuous and may use CD134, as demonstrated by others, CD46 in SupT1, and a novel yet unidentified receptor in Molt3 cells.Importance The mechanisms of entry of human herpesvirus (HHV)-6A and HHV-6B into host cells are of significance in order to develop novel drugs that may inhibit infection. To elucidate the contribution of the membrane proteins CD9 and CD46, we employed a genetic approach that eliminated these molecules from the host cell. This demonstrated that CD46 is critical for infection by HHV-6A, whereas infection by HHV-6B appeared to be more promiscuous. The infection of a T-cell line in the absence of CD46 and CD134 strongly suggest that an additional receptor for HHV-6B entry exists. Moreover, elimination of CD9 and subsequent reconstitution experiments demonstrated that CD9 promoted infection with HHV-6A and HHV-6B mediated by CD46, but inhibited infection with HHV-6B that occurred independent of CD46. Together, this demonstrated a CD46-dependent role of CD9 during infection with HHV-6A and HHV-6B and emphasized that HHV-6B may employ different entry mechanisms in various cells.
Collapse
|
6
|
Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People. Int J Mol Sci 2021; 22:ijms22052364. [PMID: 33673426 PMCID: PMC7956495 DOI: 10.3390/ijms22052364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis. This indicates a high number (p < 0.001) of activated microglia observed in the temporal lobe in the UEP group. The question remains of whether human HHV contributes to neurological diseases or are markers for some aspect of the disease process.
Collapse
|
7
|
Abstract
In this chapter, we present an overview on betaherpesvirus entry, with a focus on human cytomegalovirus, human herpesvirus 6A and human herpesvirus 6B. Human cytomegalovirus (HCMV) is a complex human pathogen with a genome of 235kb encoding more than 200 genes. It infects a broad range of cell types by switching its viral ligand on the virion, using the trimer gH/gL/gO for infection of fibroblasts and the pentamer gH/gL/UL128/UL130/UL131 for infection of other cells such as epithelial and endothelial cells, leading to membrane fusion mediated by the fusion protein gB. Adding to this scenario, however, accumulating data reveal the actual complexity in the viral entry process of HCMV with an intricate interplay among viral and host factors. Key novel findings include the identification of entry receptors platelet-derived growth factor-α receptor (PDGFRα) and Netropilin-2 (Nrp2) for trimer and pentamer, respectively, the determination of atomic structures of the fusion protein gB and the pentamer, and the in situ visualization of the state and arrangement of functional glycoproteins on virion. This is covered in the first part of this review. The second part focusses on HHV-6 which is a T lymphotropic virus categorized as two distinct virus species, HHV-6A and HHV-6B based on differences in epidemiological, biological, and immunological aspects, although homology of their entire genome sequences is nearly 90%. HHV-6B is a causative agent of exanthema subitum (ES), but the role of HHV-6A is unknown. HHV-6B reactivation occasionally causes encephalitis in patients with hematopoietic stem cell transplant. The HHV-6 specific envelope glycoprotein complex, gH/gL/gQ1/gQ2 is a viral ligand for the entry receptor. Recently, each virus has been found to recognize a different cellular receptor, CD46 for HHV 6A amd CD134 for HHV 6B. These findings show that distinct receptor recognition differing between both viruses could explain their different pathogenesis.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
8
|
Charvet B, Reynaud JM, Gourru-Lesimple G, Perron H, Marche PN, Horvat B. Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Front Immunol 2018; 9:2803. [PMID: 30574140 PMCID: PMC6291489 DOI: 10.3389/fimmu.2018.02803] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of human endogenous retrovirus (HERV) elements of the HERV-W family has been associated with different diseases, including multiple sclerosis (MS). In particular, the expression of the envelope protein (Env) from the multiple sclerosis-associated retrovirus (MSRV), a member of HERV-W family and known for its potent proinflammatory activity, is repeatedly detected in the brain lesions and blood of MS patients. Furthermore, human herpesvirus 6 (HHV-6) infection has long been suspected to play a role in the pathogenesis of MS and neuroinflammation. We show here that both HHV-6A and stimulation of its receptor, transmembrane glycoprotein CD46, induce the expression of MSRV-Env. The engagement of extracellular domains SCR3 and SCR4 of CD46-Cyt1 isoform was required for MSRV-env transactivation, limiting thus the MSRV-Env induction to the CD46 ligands binding these domains, including C3b component of complement, specific monoclonal antibodies, and both infectious and UV-inactivated HHV-6A, but neither HHV-6B nor measles virus vaccine strain. Induction of MSRV-Env required CD46 Cyt-1 singling and was abolished by the inhibitors of protein kinase C. Finally, both membrane-expressed and secreted MSRV-Env trigger TLR4 signaling, displaying thus a proinflammatory potential, characteristic for this viral protein. These data expand the specter of HHV-6A effects in the modulation of the immune response and support the hypothesis that cross-talks between exogenous and endogenous viruses may contribute to inflammatory diseases and participate in neuroinflammation. Furthermore, they reveal a new function of CD46, known as an inhibitor of complement activation and receptor for several pathogens, in transactivation of HERV env genes, which may play an important role in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Benjamin Charvet
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,GeNeuro Innovation, Lyon, France
| | - Josephine M Reynaud
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Geraldine Gourru-Lesimple
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | | | - Patrice N Marche
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, IAPC, La Tronche, France
| | - Branka Horvat
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
9
|
Tang H, Mori Y. Glycoproteins of HHV-6A and HHV-6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:145-165. [PMID: 29896667 DOI: 10.1007/978-981-10-7230-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, human herpesvirus 6A and 6B (HHV-6A and HHV-6B) were classified into distinct species. Although these two viruses share many similarities, cell tropism is one of their striking differences, which is partially because of the difference in their entry machinery. Many glycoproteins of HHV-6A/B have been identified and analyzed in detail, especially in their functions during entry process into host cells. Some of these glycoproteins were unique to HHV-6A/B. The cellular factors associated with these viral glycoproteins (or glycoprotein complex) were also identified in recent years. Detailed interaction analyses were also conducted, which could partially prove the difference of entry machinery in these two viruses. Although there are still issues that should be addressed, all the knowledges that have been earned in recent years could not only help us to understand these viruses' entry mechanism well but also would contribute to the development of the therapy and/or prophylaxis methods for HHV-6A/B-associated diseases.
Collapse
Affiliation(s)
- Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
10
|
A teleost CD46 is involved in the regulation of complement activation and pathogen infection. Sci Rep 2017; 7:15028. [PMID: 29101395 PMCID: PMC5670209 DOI: 10.1038/s41598-017-15124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
In mammals, CD46 is involved in the inactivation of complement by factor I (FI). In teleost, study on the function of CD46 is very limited. In this study, we examined the immunological property of a CD46 molecule (CsCD46) from tongue sole, a teleost species with important economic value. We found that recombinant CsCD46 (rCsCD46) interacted with FI and inhibited complement activation in an FI-dependent manner. rCsCD46 also interacted with bacterial pathogens via a different mechanism to that responsible for the FI interaction, involving different rCsCD46 sites. Cellular study showed that CsCD46 was expressed on peripheral blood leukocytes (PBL) and protected the cells against the killing effect of complement. When the CsCD46 on PBL was blocked by antibody before incubation of the cells with bacterial pathogens, cellular infection was significantly reduced. Consistently, when tongue sole were infected with bacterial pathogens in the presence of rCsCD46, tissue dissemination and survival of the pathogens were significantly inhibited. These results provide the first evidence to indicate that CD46 in teleosts negatively regulates complement activation via FI and protects host cells from complement-induced damage, and that CD46 is required for optimal bacterial infection probably by serving as a receptor for the bacteria.
Collapse
|
11
|
Agrawal P, Nawadkar R, Ojha H, Kumar J, Sahu A. Complement Evasion Strategies of Viruses: An Overview. Front Microbiol 2017; 8:1117. [PMID: 28670306 PMCID: PMC5472698 DOI: 10.3389/fmicb.2017.01117] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation - either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae.
Collapse
Affiliation(s)
- Palak Agrawal
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Renuka Nawadkar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Hina Ojha
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Jitendra Kumar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| |
Collapse
|
12
|
mosGCTL-7, a C-Type Lectin Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol 2017; 91:JVI.01348-16. [PMID: 28250133 DOI: 10.1128/jvi.01348-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an arthropod-borne flavivirus prevalent in Asia and the Western Pacific and is the leading cause of viral encephalitis. JEV is maintained in a transmission cycle between mosquitoes and vertebrate hosts, but the molecular mechanisms by which the mosquito vector participates in transmission are unclear. We investigated the expression of all C-type lectins during JEV infection in Aedes aegypti The C-type lectin mosquito galactose-specific C-type lectin 7 (mosGCTL-7) (VectorBase accession no. AAEL002524) was significantly upregulated by JEV infection and facilitated infection in vivo and in vitro mosGCTL-7 bound to the N-glycan at N154 on the JEV envelope protein. This recognition of viral N-glycan by mosGCTL-7 is required for JEV infection, and we found that this interaction was Ca2+ dependent. After mosGCTL-7 bound to the glycan, mosPTP-1 bound to mosGCTL-7, promoting JEV entry. The viral burden in vivo and in vitro was significantly decreased by mosPTP-1 double-stranded RNA (dsRNA) treatment, and infection was abolished by anti-mosGCTL-7 antibodies. Our results indicate that the mosGCTL-7/mosPTP-1 pathway plays a key role in JEV infection in mosquitoes. An improved understanding of the mechanisms underlying flavivirus infection in mosquitoes will provide further opportunities for developing new strategies to control viral dissemination in nature.IMPORTANCE Japanese encephalitis virus is a mosquito-borne flavivirus and is the primary cause of viral encephalitis in the Asia-Pacific region. Twenty-four countries in the WHO Southeast Asia and Western Pacific regions have endemic JEV transmission, which exposes >3 billion people to the risks of infection, although JEV primarily affects children. C-type lectins are host factors that play a role in flavivirus infection in humans, swine, and other mammals. In this study, we investigated C-type lectin functions in JEV-infected Aedes aegypti and Culex pipiens pallens mosquitoes and cultured cells. JEV infection changed the expression of almost all C-type lectins in vivo and in vitro, and mosGCTL-7 bound to the JEV envelope protein via an N-glycan at N154. Cell surface mosPTP-1 interacted with the mosGCTL-7-JEV complex to facilitate virus infection in vivo and in vitro Our findings provide further opportunities for developing new strategies to control arbovirus dissemination in nature.
Collapse
|
13
|
Hansen AS, Bundgaard BB, Biltoft M, Rossen LS, Höllsberg P. Divergent tropism of HHV-6A GS and HHV-6B PL1 in T cells expressing different CD46 isoform patterns. Virology 2017; 502:160-170. [PMID: 28056415 DOI: 10.1016/j.virol.2016.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
CD46 is a receptor for HHV-6A, but its role as a receptor for HHV-6B is controversial. The significance of CD46 isoforms for HHV-6A and HHV-6B tropism is unknown. HHV-6AGS was able to initiate transcription of the viral genes U7 and U23 in the CD46+CD134- T-cell lines Peer, Jurkat, Molt3, and SupT1, whereas HHV-6BPL1 was only able to do so in Molt3 and SupT1, which expressed a CD46 isoform pattern different from Peer and Jurkat. The HHV-6BPL1-susceptible T-cell lines were characterized by low expression of the CD46 isoform BC2 and domination of isoforms containing the cytoplasmic tail, CYT-1. A HHV-6BPL1 susceptible cell line, Be13, changed over time its CD46 isoform pattern to resemble Peer and Jurkat and concomitantly lost its susceptibility to HHV-6BPL1 but not HHV-6AGS infection. We propose that isoforms of CD46 impact on HHV-6B infection and thereby in part explain the distinct tropism of HHV-6AGS and HHV-6BPL1.
Collapse
Affiliation(s)
- Aida S Hansen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Bettina B Bundgaard
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Mette Biltoft
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Litten S Rossen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark.
| |
Collapse
|
14
|
Ito C, Toshimori K. Acrosome markers of human sperm. Anat Sci Int 2016; 91:128-42. [PMID: 26748928 DOI: 10.1007/s12565-015-0323-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 01/03/2023]
Abstract
Molecular biomarkers that can assess sperm acrosome status are very useful for evaluating sperm quality in the field of assisted reproductive technology. In this review, we introduce and discuss the localization and function of acrosomal proteins that have been well studied. Journal databases were searched using keywords, including "human acrosome", "localization", "fertilization-related protein", "acrosomal membrane", "acrosomal matrix", "acrosome reaction", "knockout mouse", and "acrosome marker".
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Kiyotaka Toshimori
- Department of Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| |
Collapse
|
15
|
Detailed study of the interaction between human herpesvirus 6B glycoprotein complex and its cellular receptor, human CD134. J Virol 2014; 88:10875-82. [PMID: 25008928 DOI: 10.1128/jvi.01447-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recently, we identified a novel receptor, CD134, which interacts with the human herpesvirus 6B (HHV-6B) glycoprotein (g)H/gL/gQ1/gQ2 complex and plays a key role in the entry of HHV-6B into target cells. However, details of the interaction between the HHV-6B gH/gL/gQ1/gQ2 complex and CD134 were unknown. In this study, we identified a cysteine-rich domain (CRD), CDR2, of CD134 that is critical for binding to the HHV-6B glycoprotein complex and HHV-6B infection. Furthermore, we found that the expression of HHV-6B gQ1 and gQ2 subunits was sufficient for CD134 binding, which is different from the binding of human herpesvirus 6A (HHV-6A) to its receptor, CD46. Finally, we identified a region in gQ1 critical for HHV-6B gQ1 function. These results contribute much to our understanding of the interaction between this ligand and receptor. IMPORTANCE We identified the domain in HHV-6B entry receptor CD134 and the components in the HHV-6B gH/gL/gQ1/gQ2 complex required for ligand-receptor binding during HHV-6B infection. Furthermore, we identified domains in gQ1 proteins of HHV-6A and -6B and a key amino acid residue in HHV-6B gQ1 required for its function. These data should be the basis for further investigation of ligand-receptor interaction in the study of HHV-6A and -6B.
Collapse
|
16
|
Pan X, Yang Y, Zhang JR. Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 2014; 3:e23. [PMID: 26038515 PMCID: PMC3974339 DOI: 10.1038/emi.2014.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.
Collapse
Affiliation(s)
- Xiaolei Pan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Yang Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| |
Collapse
|
17
|
Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 2014; 88:5421-36. [PMID: 24574405 DOI: 10.1128/jvi.03763-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B (Z29) infection was inefficient. HHV-6A DNA persisted for up to 9 months in the brain of CD46-expressing mice but not in the nontransgenic littermates, whereas HHV-6B DNA levels decreased rapidly after infection in all mice. Persistence in the brain was observed with infectious but not heat-inactivated HHV-6A. Immunohistological studies revealed the presence of infiltrating lymphocytes in periventricular areas of the brain of HHV-6A-infected mice. Furthermore, HHV-6A stimulated the production of a panel of proinflammatory chemokines in primary brain glial cultures, including CCL2, CCL5, and CXCL10, and induced the expression of CCL5 in the brains of HHV-6A-infected mice. HHV-6A-induced production of chemokines in the primary glial cultures was dependent on the stimulation of toll-like receptor 9 (TLR9). Finally, HHV-6A induced signaling through human TLR9 as well, extending observations from the murine model to human infection. Altogether, this study presents a first murine model for HHV-6A-induced brain infection and suggests a role for TLR9 in the HHV-6A-initiated production of proinflammatory chemokines in the brain, opening novel perspectives for the study of virus-associated neuropathology. IMPORTANCE HHV-6 infection has been related to neuroinflammatory diseases; however, the lack of a suitable small-animal infection model has considerably hampered further studies of HHV-6-induced neuropathogenesis. In this study, we have characterized a new model for HHV-6 infection in mice expressing the human CD46 protein. Infection of CD46 transgenic mice with HHV-6A resulted in long-term persistence of viral DNA in the brains of infected animals and was followed by lymphocyte infiltration and upregulation of the CCL5 chemokine in the absence of clinical signs of disease. The secretion of a panel of chemokines was increased after infection in primary murine brain glial cultures, and the HHV-6-induced chemokine expression was inhibited when TLR9 signaling was blocked. These results describe the first murine model for HHV-6A-induced brain infection and suggest the importance of the TLR9 pathway in HHV-6A-initiated neuroinflammation.
Collapse
|
18
|
Dagna L, Pritchett JC, Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol 2013; 8:273-287. [PMID: 24163703 PMCID: PMC3806647 DOI: 10.2217/fvl.13.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Like other members of the Herpesviridae family, human herpesvirus (HHV)-6A and HHV-6B have developed a wide variety of strategies to modulate or suppress host immune responses and, thereby, facilitate their own spread and persistence in vivo. Long considered two variants of the same virus, HHV-6A and HHV-6B have recently been reclassified as distinct viral species, although the established nomenclature has been maintained. In this review, we summarize the distinctive profiles of interaction of these two viruses with the human immune system. Both HHV-6A and HHV-6B display a tropism for CD4+ T lymphocytes, but they can also infect, in a productive or nonproductive fashion, other cells of the immune system. However, there are important differences regarding the ability of each virus to infect cytotoxic effector cells, as HHV-6A has been shown to productively infect several of these cells, whereas HHV-6B infects them inefficiently at best. In addition to direct cytopathic effects, both HHV-6A and HHV-6B can interfere with immunologic functions to varying degrees via cytokine modulation, including blockade of IL-12 production by professional antigen-presenting cells, modulation of cell-surface molecules essential for T-cell activation, and expression of viral chemokines and chemokine receptors. Some of these effects are related to signaling through and downregulation of the viral receptor, CD46, a key molecule linking innate and adaptive immune responses. Increasing attention has recently been focused on the importance of viral interactions with dendritic cells, which may serve both as targets of virus-mediated immunosuppression and as vehicles for viral transfer to CD4+ T cells. Our deepening knowledge of the mechanisms developed by HHV-6A and HHV-6B to evade immunologic control may lead to new strategies for the prevention and treatment of the diseases associated with these viruses. Moreover, elucidation of these viral mechanisms may uncover new avenues to therapeutically manipulate or modulate the immune system in immunologically mediated human diseases.
Collapse
Affiliation(s)
- Lorenzo Dagna
- Department of Medicine & Clinical Immunology, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Features of Human Herpesvirus-6A and -6B Entry. Adv Virol 2012; 2012:384069. [PMID: 23133452 PMCID: PMC3485865 DOI: 10.1155/2012/384069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/25/2012] [Indexed: 11/23/2022] Open
Abstract
Human herpesvirus-6 (HHV-6) is a T lymphotropic herpesvirus belonging to the Betaherpesvirinae subfamily. HHV-6 was long classified into variants A and B (HHV-6A and HHV-6B); however, recently, HHV-6A and HHV-6B were reclassified as different species. The process of herpesvirus entry into target cells is complicated, and in the case of HHV-6A and HHV-6B, the detailed mechanism remains to be elucidated, although both viruses are known to enter cells via endocytosis. In this paper, (1) findings about the cellular receptor and its ligand for HHV-6A and HHV-6B are summarized, and (2) a schematic model of HHV-6A's replication cycle, including its entry, is presented. In addition, (3) reports showing the importance of lipids in both the HHV-6A envelope and target-cell membrane for viral entry are reviewed, and (4) glycoproteins involved in cell fusion are discussed.
Collapse
|
20
|
HHV-6 encephalitis in umbilical cord blood transplantation: a systematic review and meta-analysis. Bone Marrow Transplant 2012; 48:574-80. [PMID: 23000642 DOI: 10.1038/bmt.2012.180] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reactivation of human herpesvirus-6 (HHV-6) frequently occurs following hematopoietic SCT (HSCT), and has been associated with clinical consequences in many patient populations. HHV-6 reactivation and HHV-6 encephalitis seem to occur more frequently in patients undergoing HSCT with cord blood (CB) as the stem cell source. We have conducted a systematic literature review and meta-analysis to investigate the clinical significance of this correlation. A systematic review of publications indexed in PubMed was performed for HSCT studies published over the past 10 years that fit inclusion criteria. Data on prevalences of HHV-6 reactivation and HHV-6 encephalitis post HSCT were abstracted from 19 papers. Meta-analyses were conducted to calculate combined prevalence estimates. The prevalences of HHV-6 reactivation and encephalitis were compared among CB vs non-CB HSCT. Prevalences of HHV-6 reactivation and HHV-6 encephalitis were significantly higher in patients receiving CB as the stem cell source than in patients receiving another stem cell source (72.0% vs 37.4%, P<0.0001; 8.3% vs 0.50%, P<0.0001, respectively). HHV-6 reactivation and HHV-6 encephalitis are significant complications in the post-HSCT setting, particularly in patients receiving CB as the stem cell source. Thus, patients undergoing umbilical CB transplantation should be closely monitored for HHV-6 reactivation.
Collapse
|
21
|
Abstract
human herpesvirus 6 (HHV-6) is the major causative agent of exanthem subitum which is one of popular diseases in infant, and establishes latent infections in adults of more than 90%. Recently, the encephalitis caused by reactivated- HHV-6 has been shown in patients after transplantation. In addition, the relationship HHV-6 and drug-induced hypersensitivity syndrome has also been reported. human herpesvirus 7 (HHV-7) was isolated from the stimulated-peripheral blood lymphocytes of a healthy individual, and also causes exanthema subitum. Both viruses are related viruses which belong to betaherpesvirus subfamily, and replicate and produce progeny viruses in T cells.
Collapse
|
22
|
Ni Choileain S, Astier AL. CD46 processing: a means of expression. Immunobiology 2011; 217:169-75. [PMID: 21742405 DOI: 10.1016/j.imbio.2011.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
Abstract
CD46 is a ubiquitously expressed type I transmembrane protein, first identified as a regulator of complement activation, and later as an entry receptor for a variety of pathogens. The last decade has also revealed the role of CD46 in regulating the adaptive immune response, acting as an additional costimulatory molecule for human T cells and inducing their differentiation into Tr1 cells, a subset of regulatory T cells. Interestingly, CD46 regulatory pathways are defective in T cells from patients with multiple sclerosis, asthma and rheumatoid arthritis, illustrating its importance in regulating T cell homeostasis. Indeed, CD46 expression at the cell surface is tightly regulated in many different cell types, highlighting its importance in several biological processes. Notably, CD46 is the target of enzymatic processing, being cleaved by metalloproteinases and by the presenilin/gamma secretase complex. This processing is required for its functions, at least in T cells. This review will summarize the latest updates on the regulation of CD46 expression and on its effects on T cell activation.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- MRC Centre for Inflammation Research, Centre for MS Research, University of Edinburgh, UK
| | | |
Collapse
|
23
|
Abstract
CD46 was discovered in 1986 during a search for novel C3b-binding proteins. CD46 is expressed ubiquitously and functions as a co-factor in the factor I-mediated proteolytic cleavage of C3b and C4b. Its vital role in preventing complement deposition on host tissue is underpinned by the fact that deficiency of CD46 is a predisposing factor for numerous disease conditions arising from complement-mediated 'self-attack'. However, in the last 10 years, it has become apparent that CD46 is also heavily involved in a new and somewhat surprising functional aspect of the complement system: the down-modulation of adaptive T helper type 1 (Th1) immune responses by regulating the production of interferon (IFN)-γ versus interleukin (IL)-10 within these cells. Specifically, this latter function of CD46 is a tantalizing discovery - it may not only have delivered the explanation as to why so many pathogens use and abuse CD46 as cell entry receptor but clearly has important clinical implications for the better understanding of Th1-mediated disease states and novel therapeutic approaches for their amelioration. Here, we summarize and discuss the current knowledge about CD46 and its expanding roles in the immune system.
Collapse
Affiliation(s)
- J Cardone
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | | | | |
Collapse
|
24
|
Flamand L, Komaroff AL, Arbuckle JH, Medveczky PG, Ablashi DV. Review, part 1: Human herpesvirus-6-basic biology, diagnostic testing, and antiviral efficacy. J Med Virol 2010; 82:1560-8. [PMID: 20648610 DOI: 10.1002/jmv.21839] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
25
|
Pyaram K, Yadav VN, Reza MJ, Sahu A. Virus–complement interactions: an assiduous struggle for dominance. Future Virol 2010. [DOI: 10.2217/fvl.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is a major component of the innate immune system that recognizes invading pathogens and eliminates them by means of an array of effector mechanisms, in addition to using direct lytic destruction. Viruses, in spite of their small size and simple composition, are also deftly recognized and neutralized by the complement system. In turn, as a result of years of coevolution with the host, viruses have developed multiple mechanisms to evade the host complement. These complex interactions between the complement system and viruses have been an area of focus for over three decades. In this article, we provide a broad overview of the field using key examples and up-to-date information on the complement-evasion strategies of viruses.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Viveka Nand Yadav
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Malik Johid Reza
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
26
|
Abstract
Human herpesvirus-6 (HHV-6) belongs to the herpesvirus family and is categorized into variant A and B (HHV-6A and HHV-6B). Primary HHV-6 infection in children and its related diseases are almost exclusively caused by HHV-6B and no disease caused by HHV-6A has been identified. The cellular receptor of HHV-6 has been shown to be a human CD46, and its viral ligand is an envelope glycoprotein complex, gH/gL/gQ1/gQ2 in HHV-6A. Furthermore, both cellular and viral lipid rafts play an important role in the HHV-6 entry process, suggesting that HHV-6 may enter its target cells through a lipid raft-associated mechanism.
Collapse
Affiliation(s)
- Huamin Tang
- Laboratoy of Virology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | | |
Collapse
|
27
|
Persson BD, Schmitz NB, Santiago C, Zocher G, Larvie M, Scheu U, Casasnovas JM, Stehle T. Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens. PLoS Pathog 2010; 6:e1001122. [PMID: 20941397 PMCID: PMC2947992 DOI: 10.1371/journal.ppat.1001122] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/26/2010] [Indexed: 12/30/2022] Open
Abstract
The human membrane cofactor protein (MCP, CD46) is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6), Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4) that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system. The human membrane cofactor protein (MCP, CD46) is expressed on all nucleated cells and serves as a marker that prevents host cells from destruction by the immune system. It functions as a cofactor that helps to inactivate the C3b and C4b molecules, which are central components of the complement system. In addition to its role in regulation complement activation, CD46 is also used by a large number of pathogens, including measles virus and adenovirus, as a receptor to allow these pathogens to attach to the cell surface and initiate an infection. We have determined the three-dimensional structure of the bulk of the extracellular region of CD46 using X-ray crystallography. This structure provides detailed information about the location of previously identified residues that play a role in the interactions with C3b, C4b, and several pathogens, advancing an understanding of the function of the CD46 protein as a host and pathogen receptor. Moreover, the structure also reveals an unexpected, bent conformation of the protein that has implications for how the binding sites are presented at the cell surface.
Collapse
Affiliation(s)
| | | | - César Santiago
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autonóma, Madrid, Spain
| | | | - Mykol Larvie
- Laboratory of Developmental Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - José M. Casasnovas
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autonóma, Madrid, Spain
| | - Thilo Stehle
- University of Tuebingen, Tuebingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
28
|
Recombinant respiratory syncytial virus F protein expression is hindered by inefficient nuclear export and mRNA processing. Virus Genes 2010; 40:212-21. [PMID: 20111897 DOI: 10.1007/s11262-010-0449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Studies of the fusion activity of respiratory syncytial virus (RSV) F protein are significantly hindered by low recombinant expression levels. While infection produces F protein levels detectable by western blot, recombinant expression produces undetectable to low levels of F protein. Identifying the obstacles that hinder recombinant F protein expression may lead to improved expression and facilitate the study of F protein function. We hypothesized that nuclear localization and/or inefficient RNA polymerase II-mediated transcription contribute to poor recombinant F protein expression. This study shows a combination of stalled nuclear export, premature polyadenylation, and low mRNA abundance all contribute to low recombinant F protein expression levels. In addition, this study provides an expression optimization strategy that results in greater F protein expression levels than observed by codon-optimization of the F protein gene, which will be useful for future studies of F protein function.
Collapse
|
29
|
Defining the role of CD46, CD80 and CD86 in mediating adenovirus type 3 fiber interactions with host cells. Virology 2009; 392:222-9. [PMID: 19682720 DOI: 10.1016/j.virol.2009.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/17/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022]
Abstract
Attachment of human adenoviruses (Ads) to host cells is mediated by the interaction of the fiber protein of the capsid with specific cell-surface molecules. For one of the species B adenoviruses, Ad3, the mechanism of binding to cells remains to be defined. Several previous reports have proposed CD46, CD80 or CD86 as possible Ad3 fiber attachment molecules. In this study, CD80 and CD86 were not found to mediate Ad3 fiber binding or Ad3-EGFP transduction of cells. Low levels of Ad3-EGFP transduction of a CHO cell line expressing relatively high levels of CD46 were detected which might suggest a role for CD46 in facilitating Ad3: cell interactions, in the absence of other attachment molecules. Anti-CD46 antibodies and siRNAs had almost no effect on Ad3 fiber binding or Ad3-EGFP transduction of HeLa cells. However, treatment of A549 cells with CD46 siRNA resulted in some decrease of transduction with Ad3-EGFP.
Collapse
|
30
|
Abstract
Human herpesvirus 6 (HHV-6) is a T lymphotropic herpes virus that is categorized into two variants, A (HHV-6A) and B (HHV-6B), on the basis of distinct genetic, immunological and biological characteristics. HHV-6 uses human CD46 as a cellular receptor. Without viral replication, HHV-6A induces cell-cell fusion between cells expressing human CD46. Some HHV-6B strains can also induce CD46-mediated cell-cell fusion. A multiple glycoprotein complex composed of glycoprotein (g) H-gL complexed with gQ1 and gQ2 has been identified, and found to be a viral ligand for the human CD46 receptor. Moreover, a novel complex consisting of gH/gL/gO, which does not associate with CD46, has also been identified. The evidence suggests that an additional receptor for HHV-6B or both variants may play a role in determining the cell tropism of this virus. Finally, cholesterol in the HHV-6 envelope and plasma membrane of the host cells plays an important role in HHV-6 entry, although how this function relates to cell-envelope fusion remains to be elucidated.
Collapse
Affiliation(s)
- Yasuko Mori
- Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Japan.
| |
Collapse
|
31
|
Abstract
Measles virus (MV) was isolated in 1954 (Enders and Peeble 1954). It is among the most contagious of viruses and a leading cause of mortality in children in developing countries (Murray and Lopez 1997; Griffin 2001; Bryce et al. 2005). Despite intense research over decades on the biology and pathogenesis of the virus and the successful development in 1963 of an effective MV vaccine (Cutts and Markowitz 1994), cell entry receptor(s) for MV remained unidentified until 1993. Two independent studies showed that transfection of nonsusceptible rodent cells with human CD46 renders these cells permissive to infection with the Edmonston and Halle vaccine strains of measles virus (Dorig et al. 1993; Naniche et al. 1993). A key finding in these investigations was that MV binding and infection was inhibited by monoclonal and polyclonal antibodies to CD46. These reports established CD46 as a MV cell entry receptor. This chapter summarizes the role of CD46 in measles virus infection.
Collapse
Affiliation(s)
- C Kemper
- Division of Rheumatology, St. Louis, MO 63110, USA
| | | |
Collapse
|
32
|
Abstract
CD46 is a complement regulatory molecule expressed on every cell type, except for erythrocytes. While initially described as a regulator of complement activity, it later became a 'magnet for pathogens', binding to several viruses and bacteria. More recently, an alternative role for such complement molecules has emerged: they do regulate T-cell immunity, affecting T-cell proliferation and differentiation. In particular, CD46 stimulation induces Tr1 cells, regulatory T cells characterized by massive production of interleukin-10 (IL-10), a potent anti-inflammatory cytokine. Hence, CD46 is likely to control inflammation. Indeed, data from CD46 transgenic mice highlight a role for CD46 in inflammation, with antagonist roles depending on the cytoplasmic tail being expressed. Furthermore, recent data have shown that CD46 is defective in multiple sclerosis, IL-10 production being severely impaired in these patients. This lack of IL-10 production probably participates in the inflammation observed in patients with multiple sclerosis. This review will summarize the data on CD46 and T cells, and how CD46 is likely involved in multiple sclerosis.
Collapse
Affiliation(s)
- Anne L Astier
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Abstract
Clinical and experimental evidence indicates that human herpesvirus 6 (HHV-6) can interfere with the function of the host immune system through a variety of mechanisms. Both HHV-6A and B can infect, either productively or nonproductively, several types of immune cells. The primary target for HHV-6 replication, both in vitro and in vivo, is the CD4+ T lymphocyte, a pivotal cell in the generation of humoral and cell-mediated adaptive immune responses. HHV-6A, but not B, also replicates in various cytotoxic effector cells, such as CD8+ T cells, gammadelta T cells and natural killer cells. In professional antigen-presenting cells like macrophages and dendritic cells, HHV-6 infection is typically nonproductive; yet, it induces dramatic functional abnormalities, including a selective suppression of IL-12, a critical cytokine in the generation of Th1-polarized antiviral immune responses. This and other immunomodulatory effects seem to be mediated by the engagement of the primary HHV-6 receptor, CD46. Moreover, HHV-6 infection results in a generalized loss of CD46 expression in lymphoid tissue, which may lead to an aberrant activation of autologous complement. Additional mechanisms of immunomodulation by HHV-6 include alterations in cell surface receptor expression and cytokine/chemokine production. HHV-6 can also modulate influence responses through the expression of virally-encoded homologs of chemokines and chemokine receptors. By modulating specific antiviral immune responses, HHV-6 can facilitate its own spread and persistence in vivo, as well as enhance the pathogenic effects of other agents, such as human immunodeficiency virus.
Collapse
Affiliation(s)
- Paolo Lusso
- Unit of Human Virology, Department of Biological and Technical Research (DIBIT), San Rafaele Scientific Institute, Milano, Italy.
| |
Collapse
|
34
|
Pedersen SM, Höllsberg P. Complexities in human herpesvirus-6A and -6B binding to host cells. Virology 2006; 356:1-3. [PMID: 16959284 DOI: 10.1016/j.virol.2006.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/13/2006] [Accepted: 07/19/2006] [Indexed: 11/18/2022]
Abstract
Human herpesvirus-6A and -6B uses the cellular receptor CD46 for fusion and infection of the host cell. The viral glycoprotein complex gH-gL from HHV-6A binds to the short consensus repeat 2 and 3 in CD46. Although all the major isoforms of CD46 bind the virus, certain isoforms may have higher affinity than others for the virus. Within recent years, elucidation of the viral complex has identified additional HHV-6A and -6B specific glycoproteins. Thus, gH-gL associates with a gQ1-gQ2 dimer to form a heterotetrameric complex. In addition, a novel complex consisting of gH-gL-gO has been described that does not bind CD46. Accumulating evidence suggests that an additional HHV-6A and -6B receptor exists. The previous simple picture of HHV-6A/B-host cell contact therefore includes more layers of complexities on both the viral and the host cell side of the interaction.
Collapse
Affiliation(s)
- Simon Metz Pedersen
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
35
|
Thulke S, Radonić A, Nitsche A, Siegert W. Quantitative expression analysis of HHV-6 cell receptor CD46 on cells of human cord blood, peripheral blood and G-CSF mobilised leukapheresis cells. Virol J 2006; 3:77. [PMID: 16984646 PMCID: PMC1584223 DOI: 10.1186/1743-422x-3-77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 09/19/2006] [Indexed: 11/18/2022] Open
Abstract
Human herpesvirus-6 (HHV-6) can infect blood cells and thereby may inhibit hematopoietic stem and progenitor cell expansion and differentiation. In this context, it has been discussed if early progenitor cells can be infected by HHV-6. CD46 was identified as one possible cellular surface receptor for HHV-6. The study presented here had been done to get insight into the susceptibility of various leukocyte subpopulations to HHV-6 (including early hematopoietic progenitors) by determining the amount of CD46 molecules expressed on their surfaces. Human cord blood cells, peripheral blood cells and G-CSF mobilised progenitor cells were analysed by flow cytometry. CD46 molecule number per cell was determined and compared to calibration beads conjugated with known ratio of PE per bead. Highest CD46 expression was detected on B- lymphocytes, whereas T-lymphocytes only showed about half of the amount found on B cells. Hematopoietic progenitors also carried CD46 at intermediate levels. Unexpectedly, CD46 expression on progenitors from G-CSF mobilised leukapheresis products was approximately 20% of that found on comparable cells from untreated cord blood. In conclusion, hematopoietic progenitor cells express CD46 on their surface, thereby fulfilling a basic requirement for the susceptibility of HHV-6 infection.
Collapse
Affiliation(s)
- Stefanie Thulke
- Charité-Universitätsmedizin Berlin, CCM – Medizinische Klinik m.S. Onkologie/Hämatologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Aleksandar Radonić
- Charité-Universitätsmedizin Berlin, CCM – Medizinische Klinik m.S. Onkologie/Hämatologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Nitsche
- Robert Koch Institut, ZBS 1, Nordufer 20, 13353 Berlin, Germany
| | - Wolfgang Siegert
- Charité-Universitätsmedizin Berlin, CCM – Medizinische Klinik m.S. Onkologie/Hämatologie, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
36
|
Sakurai F, Murakami S, Kawabata K, Okada N, Yamamoto A, Seya T, Hayakawa T, Mizuguchi H. The short consensus repeats 1 and 2, not the cytoplasmic domain, of human CD46 are crucial for infection of subgroup B adenovirus serotype 35. J Control Release 2006; 113:271-8. [PMID: 16790289 DOI: 10.1016/j.jconrel.2006.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 03/27/2006] [Accepted: 05/08/2006] [Indexed: 11/24/2022]
Abstract
Human CD46 (membrane cofactor protein) has recently been identified to be an attachment receptor for subgroup B adenoviruses (Ads); however, the precise interaction between human CD46 and subgroup B Ads are just beginning to be understood. In this study, to characterize the interaction between human CD46 and subgroup B Ads, varieties of mutant CD46 were tested for their ability to act as a receptor for Ad serotype 35 (Ad35), which belongs to subgroup B. In addition, we determined Ad35 vector-mediated transgene expression and cellular uptake of Ad35 vectors in the presence of a set of anti-CD46 antibodies. Our data demonstrated that the short consensus repeats (SCRs) 1 and 2 in human CD46 are important for interaction with Ad35, whereas the cytoplasmic domain of human CD46 was found not to be required for the function as an Ad35 receptor. Rather, a complete deletion of the cytoplasmic domain of human CD46 increased the transduction efficiencies of Ad35 vectors. This information should help in elucidation of the mechanism of subgroup B Ad infection, as well in the improvement of the subgroup B Ad vectors.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Adenoviruses, Human/pathogenicity
- Animals
- Antibodies, Monoclonal
- Binding Sites/genetics
- CHO Cells
- Cricetinae
- Cricetulus
- Genes, Reporter
- Luciferases/genetics
- Membrane Cofactor Protein/chemistry
- Membrane Cofactor Protein/genetics
- Membrane Cofactor Protein/immunology
- Membrane Cofactor Protein/metabolism
- Mutation
- Protein Structure, Tertiary/genetics
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- Transduction, Genetic
- Transfection
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cassiani-Ingoni R, Greenstone HL, Donati D, Fogdell-Hahn A, Martinelli E, Refai D, Martin R, Berger EA, Jacobson S. CD46 on glial cells can function as a receptor for viral glycoprotein-mediated cell-cell fusion. Glia 2006; 52:252-8. [PMID: 15920733 DOI: 10.1002/glia.20219] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Membrane cofactor protein (CD46) is a regulator of complement activation that also serves as the entry receptor for human herpes virus 6 (HHV-6) and measles virus (MV) into human cells. While it is clear that oligodendrocytes and astrocytes are cell types commonly infected by these viruses, it is unclear whether oligodendrocytes express CD46, or which are the cellular mechanisms underlying the infection. We show that adult oligodendrocytes, as well as astrocytes and microglial cells, express CD46 on the cellular surface. Moreover, we employed a quantitative fusion assay to demonstrate that HHV-6A infection of T lymphocytes enables cell-cell fusion of these cells to astrocytes or to oligodendroglial cells. This fusion is mediated by the interaction between viral glycoproteins expressed on the membrane of the infected cells and CD46 on the glial targets, and is also observed using cells expressing recombinant MV glycoproteins. These data suggest a mechanism that involves cell-cell fusion by which certain viruses could spread the infection from the periphery to the cells in the nervous system.
Collapse
Affiliation(s)
- Riccardo Cassiani-Ingoni
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liszewski MK, Kemper C, Price JD, Atkinson JP. Emerging roles and new functions of CD46. ACTA ACUST UNITED AC 2005; 27:345-58. [PMID: 16200405 DOI: 10.1007/s00281-005-0002-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
In the past 20 years, our understanding of the workings of complement regulatory protein, CD46 (membrane cofactor protein), has grown as has the impressive list of pathogens interacting with this membrane-bound complement inhibitor. Referred to as a "pathogen magnet," CD46 serves as a receptor for seven human pathogens. Initially discovered as a widely expressed C3b- and C4b-binding protein, it was subsequently shown to be a cofactor for the serine protease factor I to inactivate by limited proteolysis these two opsonins and components of the convertases. The involvement of CD46 in reproductive processes continues to be an emerging story. It is a protector of placental tissue, but it may also play a more direct role in reproduction through its expression on the inner acrosomal membrane of spermatozoa. Cross-linking CD46 with antibodies or natural or pathogenic ligands induces rapid turnover and signaling events. In this regard, much attention is currently focused on generating human T lymphocyte regulatory cells by cross-linking CD46. Finally, highlighting its importance in protecting cells against excessive complement activation is the discovery that even a heterozygous deficiency of CD46 predisposes to hemolytic uremic syndrome.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
39
|
Donati D, Martinelli E, Cassiani-Ingoni R, Ahlqvist J, Hou J, Major EO, Jacobson S. Variant-specific tropism of human herpesvirus 6 in human astrocytes. J Virol 2005; 79:9439-48. [PMID: 16014907 PMCID: PMC1181567 DOI: 10.1128/jvi.79.15.9439-9448.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Though first described as a lymphotropic virus, human herpesvirus 6 (HHV-6) is highly neuropathogenic. Two viral variants are known: HHV-6A and HHV-6B. Both variants can infect glial cells and have been differentially associated with central nervous system diseases, suggesting an HHV-6 variant-specific tropism for glial cell subtypes. We have performed infections with both viral variants in human progenitor-derived astrocytes (HPDA) and monitored infected cell cultures for cytopathic effect (CPE), intra- and extracellular viral DNA load, the presence of viral particles by electronic microscopy, mRNA transcription, and viral protein expression. HHV-6A established a productive infection with CPE, visible intracellular virions, and high virus DNA loads. HHV-6B-infected HPDA showed no morphological changes, intracellular viral particles, and decreasing intra- and extracellular viral DNA over time. After long-term passage, HHV-6B-infected HPDA had stable but low levels of intracellular viral DNA load with no detectable viral mRNA. Our results demonstrate that HHV-6A and HHV-6B have differential tropisms and patterns of infection for HPDA in vitro, where HHV-6A results in a productive lytic infection. In contrast, HHV-6B was associated with a nonproductive infection. These findings suggest that HHV-6 variants might be responsible for specific infection patterns in glial cells in vivo. Astrocytes may be an important reservoir for this virus in which differential tropism of HHV-6A and HHV-6B may be associated with different disease outcomes.
Collapse
Affiliation(s)
- Donatella Donati
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Fleischli C, Verhaagh S, Havenga M, Sirena D, Schaffner W, Cattaneo R, Greber UF, Hemmi S. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35. J Virol 2005; 79:10013-22. [PMID: 16014961 PMCID: PMC1181579 DOI: 10.1128/jvi.79.15.10013-10022.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.
Collapse
|
41
|
Gill DB, Spitzer D, Koomey M, Heuser JE, Atkinson JP. Release of host-derived membrane vesicles following pilus-mediated adhesion of Neisseria gonorrhoeae. Cell Microbiol 2005; 7:1672-83. [PMID: 16207253 DOI: 10.1111/j.1462-5822.2005.00584.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following attachment of Neisseria gonorrhoeae to human epithelial cell lines, the cellular pilus receptor CD46 is shed from the cell and accumulates in the media. In this report, we assess Neisseria-induced alterations in CD46 surface distribution and characterize this complement regulatory protein following its release from the infected cell. Within 3 h of attachment of gonococci to human epithelial cell lines, CD46 is enriched beneath sites of microcolony adhesion. By 6 h post infection, differential ultracentrifugation of culture media from ME-180 monolayers resulted in sedimentation of structurally and functionally intact CD46. Electron microscopy of these 100,000 g pellets revealed 30-200 nm vesicles. These vesicles likely originated from the host cell as they contained additional host cell surface proteins including CD55 and the epidermal growth factor receptor. Further, these vesicles were visualized by quick-freeze, deep-etch electron microscopy in association with the surface of infected ME-180 cells and with pili of adherent gonococci. Like CD46 shedding, CD46 redistribution and vesicle release were insensitive to colchicine and cytochalasin-D but dependent on expression of the pilus retraction protein PilT. This vesiculation may represent a host cell defence response in which surface proteins that are commonly exploited by pathogens, such as CD46, are removed from the cell.
Collapse
Affiliation(s)
- Darcy B Gill
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63112, USA
| | | | | | | | | |
Collapse
|
42
|
Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol 2005; 79:7503-13. [PMID: 15919905 PMCID: PMC1143628 DOI: 10.1128/jvi.79.12.7503-7513.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of pathogens use CD46, a ubiquitously expressed membrane protein that regulates complement activation, as a cellular attachment receptor. While the CD46 binding sites of several pathogens, including measles virus, Neisseria gonorrhea, and human herpesvirus 6, have been described, the region of CD46 responsible for adenovirus binding has not been determined. In this study, we used competition experiments with known CD46 ligands, CD46-specific antibodies, and a set of CD46 mutants to localize the binding domain for the group B adenovirus serotype 35 (Ad35). Our results show that Ad35 competes with measles virus for binding to CD46 but not with complement protein C3b. We further show that this interaction is a protein-protein interaction and that N glycosylations do not critically contribute to infection with Ad35 fiber-containing Ad vectors. Our data demonstrate that the native conformation of the CCP2 domain is crucial for Ad35 binding and that the substitution of amino acids at positions 130 to 135 or 152 to 156 completely abolishes the receptor function of CD46. These regions localize to the same planar face of CD46 and likely form an extended adenovirus binding surface, since no single amino acid substitution within these areas eliminates virus binding. Finally, we demonstrate that the infection with a virus possessing human group B serotype Ad11 fibers is also mediated by the CCP2 domain. This information is important to better characterize the mechanisms of the receptor recognition by adenovirus relative to other pathogens that interact with CD46, and it may help in the design of antiviral therapeutics against adenovirus serotypes that use CD46 as a primary cellular attachment receptor.
Collapse
Affiliation(s)
- Anuj Gaggar
- University of Washington School of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
43
|
De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 2005; 18:217-45. [PMID: 15653828 PMCID: PMC544175 DOI: 10.1128/cmr.18.1.217-245.2005] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a betaherpesvirus that is closely related to human cytomegalovirus. It was discovered in 1986, and HHV-6 literature has expanded considerably in the past 10 years. We here present an up-to-date and complete overview of the recent developments concerning HHV-6 biological features, clinical associations, and therapeutic approaches. HHV-6 gene expression regulation and gene products have been systematically characterized, and the multiple interactions between HHV-6 and the host immune system have been explored. Moreover, the discovery of the cellular receptor for HHV-6, CD46, has shed a new light on HHV-6 cell tropism. Furthermore, the in vitro interactions between HHV-6 and other viruses, particularly human immunodeficiency virus, and their relevance for the in vivo situation are discussed, as well as the transactivating capacities of several HHV-6 proteins. The insight into the clinical spectrum of HHV-6 is still evolving and, apart from being recognized as a major pathogen in transplant recipients (as exemplified by the rising number of prospective clinical studies), its role in central nervous system disease has become increasingly apparent. Finally, we present an overview of therapeutic options for HHV-6 therapy (including modes of action and resistance mechanisms).
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
44
|
Mizuno M, Harris CL, Suzuki N, Matsuo S, Morgan BP. Expression of CD46 in developing rat spermatozoa: ultrastructural localization and utility as a marker of the various stages of the seminiferous tubuli. Biol Reprod 2004; 72:908-15. [PMID: 15601919 DOI: 10.1095/biolreprod.104.035485] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Identification of the various stages of the seminal tubule epithelium that are important in spermatogenesis in humans and rodents requires considerable expertise for analysis of ultrastructural appearance under light microscopy. Few good stage-specific markers have been reported to facilitate the process. We recently described characterization of the expression of CD46 (membrane cofactor protein) in the rat using a novel monoclonal antibody. Expression of CD46 was restricted to spermatozoa and their immediate precursors in the testis. In the present study, we used a combination of morphological analyses, known acrosome markers, actin staining, direct nuclear staining, and staining for CD46 to delineate precisely the subcellular location of CD46. Staining of CD46 colocalized with known acrosome markers in late spermatids and mature spermatozoa and was confirmed by electron microscopy to be acrosome-restricted. Expression was first detected in step 7 spermatids, whereas known markers were not expressed until step 9. The CD46 staining pattern differed through spermatid development, and distinct patterns of staining could be identified that, when combined with 4'-6-diamino-2-phenylindole-2HCl nuclear staining, enabled the accurate staging of the seminiferous tubule epithelium in different profiles. This detailed description of the spatiotemporal expression patterns of CD46 provides a valuable tool for analysis of spermatogenesis in the rat. Furthermore, this information will aid ongoing studies regarding the roles of CD46 in acrosome-related spermatozoal functions.
Collapse
Affiliation(s)
- Masashi Mizuno
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP. CD46: expanding beyond complement regulation. Trends Immunol 2004; 25:496-503. [PMID: 15324743 DOI: 10.1016/j.it.2004.07.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the 1980s CD46 was discovered in a search for C3b binding proteins of human peripheral blood cells. Its role as an inactivator of C3b and C4b deposited on self-tissue is highlighted by the observation that partial deficiency of CD46 is a predisposing factor to hemolytic uremic syndrome. This discovery has an impact on the treatment options for these patients. Other new findings have expanded the role of CD46 in immunity and disease. For example, signaling through CD46 on human T lymphocytes drives them to become regulatory cells, indicating a novel link between the complement system and cellular immunity. Also, CD46 interacts with at least seven human pathogens and participates in reproduction/fertilization, further suggesting that dissecting its multi-faceted activities will have important clinical implications.
Collapse
Affiliation(s)
- Rebecca C Riley-Vargas
- Washington University School of Medicine, Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Clare E Blue
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
47
|
Santoro F, Greenstone HL, Insinga A, Liszewski MK, Atkinson JP, Lusso P, Berger EA. Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46. J Biol Chem 2003; 278:25964-9. [PMID: 12724329 DOI: 10.1074/jbc.m302373200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) employs the complement regulator CD46 (membrane cofactor protein) as a receptor for fusion and entry into target cells. Like other known herpesviruses, HHV-6 encodes multiple glycoproteins, several of which have been implicated in the entry process. In this report, we present evidence that glycoprotein H (gH) is the viral component responsible for binding to CD46. Antibodies to CD46 co-immunoprecipitated an approximately 110-kDa protein band specifically associated with HHV-6-infected cells. This protein was identified as gH by selective depletion with an anti-gH monoclonal antibody, as well as by immunoblot analysis with a rabbit hyperimmune serum directed against a gH synthetic peptide. In reciprocal experiments, a monoclonal antibody against HHV-6 gH was found to co-immunoprecipitate CD46. Studies using monoclonal antibodies directed against specific CD46 domains, as well as engineered constructs lacking defined CD46 regions, demonstrated a close correspondence between the CD46 domains involved in the interaction with gH and those previously shown to be critical for HHV-6 fusion (i.e. short consensus repeats 2 and 3).
Collapse
Affiliation(s)
- Fabio Santoro
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mori Y, Yang X, Akkapaiboon P, Okuno T, Yamanishi K. Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46. J Virol 2003; 77:4992-9. [PMID: 12663806 PMCID: PMC152135 DOI: 10.1128/jvi.77.8.4992-4999.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human CD46 is a cellular receptor for human herpesvirus 6 (HHV-6). Virus entry into host cells requires a glycoprotein H (gH)-glycoprotein L (gL) complex. We show that the CD46 ectodomain blocked HHV-6 infection and bound a complex of gH-gL and the 80-kDa U100 gene product, designated glycoprotein Q, indicating that the complex is a viral ligand for CD46.
Collapse
Affiliation(s)
- Yasuko Mori
- Department of Microbiology, Osaka University Medical School, Suita, Osaka 565-0871, USA.
| | | | | | | | | |
Collapse
|
49
|
Krueger GRF, Ablashi DV. Human Herpesvirus-6: A Short Review of Its Biological Behavior. Intervirology 2003; 46:257-69. [PMID: 14555846 DOI: 10.1159/000073205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 07/03/2003] [Indexed: 11/19/2022] Open
Abstract
HHV-6 shows a widespread distribution with life-long persistence. The virus is frequently reactivated, yet remains clinically inapparent unless the patient is immunodeficient in some way. Even then, HHV-6 reactivation may simply enhance the pathogenicity of other viruses or existing autoimmune disorders rather than becoming a pathogen itself. Future clinical studies need to focus on such indirect viral influences mediated through molecular mimicry and interference with cell receptor expression, and cytokine and chemokine network regulation. Nevertheless, such disturbances may afford therapeutic intervention to disrupt herpesvirus interference and improve certain disease processes. There are only a few diseases for which an immediate causal relationship to HHV-6 infection has been suggested.
Collapse
Affiliation(s)
- Gerhard R F Krueger
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, University of Texas, Houston Medical School, Houston, Tex., USA.
| | | |
Collapse
|