1
|
Scarlet D, Serbetci I, Lautner M, Kowalewski MP, Bollwein H. Exogenous FSH/LH modulates TGF beta signaling genes in granulosa cells of Simmental heifers without affecting IVP results. Theriogenology 2024; 227:60-67. [PMID: 39018835 DOI: 10.1016/j.theriogenology.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Follicular wave synchronization and follicular superstimulation with FSH are commonly used in OPU-IVP programs to increase oocyte developmental competence. Factors like Growth Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15), from the TGF beta superfamily, are produced by the oocyte and modulate follicular function. The aim of this study was to analyze the FSH-induced effects on (1) embryo production in dual-purpose Simmental cattle, and (2) TGF beta-mediated effects on oocyte-granulosa cell communication. Simmental heifers (n = 12, age 484 ± 62 days) underwent two OPU-IVP cycles in a cross-over design. Follicular waves were synchronized using 0.5 mg cloprostenol on Day 0, followed by 10 μg buserelin on Day 2. Subsequently, half of the heifers were randomly assigned to receive FSH/LH (four injections of 75 IU FSHp and 75IU LHp, 12 h apart on Days 4 and 5) before the first OPU, while the remaining heifers received FSH/LH before the second OPU. At the time of OPU, i.e. 7 days after the start of synchronization, granulosa cells were collected for RT-qPCR analysis. FSH treatment did not affect the number of oocytes collected (17.3 vs. 13.3, P > 0.05), but increased the percentage of quality 1 oocytes compared to controls (45.7 % vs. 22.0 %, P < 0.001). Neither cleavage (86.4 % vs. 85.7 %), nor blastocyst (42.1 % vs. 39.3 %) rate, or the number of transferable embryos produced by IVP (4.1 vs 4.8) was influenced by FSH treatment (P > 0.05 in all cases). FSH treatment increased HIF1A and FSHR levels in granulosa cells, while STAR was decreased (P = 0.008 in all cases). FSH treatment did not affect BMP15 or GDF9 mRNA expression (P > 0.05) but appeared to modulate the expression of genes involved in the BMP signaling pathway. Transcriptional levels of BMP15 receptor (BMPR1A, P = 0.016), and its downstream signaling factor SMAD1 (P = 0.008) were affected by FSH treatment. Our results demonstrated no benefit of this FSH stimulation protocol on IVP results in Simmental heifers. Further, our results suggest that the effects of FSH on bovine oocytes during acquisition of developmental competence may be mediated through BMP, but do not involve the regulation of transcriptional availability of GDF9, providing new insights into possible paracrine effects of the oocyte on granulosa cells.
Collapse
Affiliation(s)
- Dragos Scarlet
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Idil Serbetci
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Matthias Lautner
- Besamungsverein Neustadt a. d. Aisch e. V., Neustadt a. d. Aisch, Germany
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies (ZKS), Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Fountas S, Petinaki E, Bolaris S, Kargakou M, Dafopoulos S, Zikopoulos A, Moustakli E, Sotiriou S, Dafopoulos K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J Clin Med 2024; 13:3775. [PMID: 38999341 PMCID: PMC11242125 DOI: 10.3390/jcm13133775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Growth differentiation factor 9 (GDF-9) contributes to early ovarian development and oocyte survival. Higher concentrations of GDF-9 in follicular fluid (FF) are associated with oocyte nuclear maturation and optimal embryo development. In in vitro fertilization (IVF), GDF-9 affects the ability of the oocyte to fertilize and subsequent embryonic development. Bone morphogenetic protein 15 (BMP-15) is involved in the regulation of ovarian function and affects oocyte development. During IVF, BMP-15 contributes to the formation of competent blastocysts. BMP-15 may play a role in embryo implantation by affecting endometrial receptivity. Bone morphogenetic protein 4 (BMP-4) is involved in the regulation of follicle growth and development and affects granulosa cell (GC) differentiation. In relation to IVF, BMP-4 is important for embryonic development, influences cell fate and differentiation, and plays a role in facilitating embryo-endometrial interactions during the implantation process. Extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with ovulation and follicle rupture, promotes the release of mature eggs, and affects the modification of the extracellular matrix of the follicular environment. In IVF, EMMPRIN is involved in embryo implantation by modulating the adhesive properties of endometrial cells and promotes trophoblastic invasion, which is essential for pregnancy to occur. The purpose of the current article is to review the studies and recent findings of GDF-9, BMP-15, BMP-4 and EMMPRIN as fundamental factors in normal follicular development and in vitro fertilization.
Collapse
Affiliation(s)
- Serafeim Fountas
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Efthymia Petinaki
- Department of Microbiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Stamatis Bolaris
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Magdalini Kargakou
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | | | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Dafopoulos
- ART Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
3
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
4
|
Ruan X, Xu Z, Xu X, Yang Y, Cheng J, Luo S, Min M, Li M, Zhang L, Ju R, Jin F, Mueck AO. A prospective study on the endometrium properties and the pregnancy rate of infertile women with thin endometrium receiving Fructus ligustri lucidi used in traditional Chinese medicine. Gynecol Endocrinol 2023; 39:2249997. [PMID: 37624969 DOI: 10.1080/09513590.2023.2249997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE To evaluate whether Zi Gui Nv Zhen capsules (ZGNZC) can increase the fertility rate of Chinese women with infertility due to thin endometrium. METHODS Prospective, randomized, open-labeled 3-monthly study; 104 patients (aged 20-40 years) receiving either ZGNZC (experimental group, n = 55) or not (control group, n = 49). Main outcomes: thickness/type of the endometrium during ovulation and pregnancy rate. Between-group analysis (A) compares the experimental vs. control group, and within-group analysis (B) compares data at baseline and after study in the experimental group. RESULTS (A) Between-group-analysis: Patients with ZGNZC had a higher endometrium thickness (0.8 ± 0.27 vs. 0.68 ± 0.10; p < .05) and higher type A endometrium rates (34.2% vs. 13.2%; p < .05) than the control group. Pregnancy rates were higher in the experimental than in the control group (43.6% vs. 22.4%; p < .05). (B) Within-group-analysis: ZGNZC increased endometrium thickness (0.58 ± 0.13 vs. 0.87 ± 0.24 vs. 0.83 ± 0.26 vs. 0.80 ± 0.27), and type A endometrium rates (10.9% vs. 60.0% vs. 49.0% vs. 34.2%) (all p < .05). Univariate analysis of pregnancy with other study parameters showed positive and significant correlations between pregnancy and administration of ZGNZC (p < .05). All hepato-renal biomarkers remained within the norm. There were no adverse events. CONCLUSIONS In infertile women with thin endometrium who wish to conceive, two months' application of ZGNZC can improve endometrial properties and proliferation, which is necessary for a healthy pregnancy, and increase the clinical pregnancy rate in our prospective randomized observational study.
Collapse
Affiliation(s)
- Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department for Women's Health, University Women's Hospital and Research Centre for Women's Health, University Hospitals of Tuebingen, Tuebingen, Germany
| | - Zhongting Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Suiyu Luo
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Min Min
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Meng Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Luping Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fengyu Jin
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Alfred Otto Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department for Women's Health, University Women's Hospital and Research Centre for Women's Health, University Hospitals of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Soejima Y, Yamamoto K, Nakano Y, Suyama A, Iwata N, Otsuka F. Functional interaction of Clock genes and bone morphogenetic proteins in the adrenal cortex. VITAMINS AND HORMONES 2023; 124:429-447. [PMID: 38408807 DOI: 10.1016/bs.vh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The bone morphogenetic protein (BMP) system in the adrenal cortex plays modulatory roles in the control of adrenocortical steroidogenesis. BMP-6 enhances aldosterone production by modulating angiotensin (Ang) II-mitogen-activated protein kinase (MAPK) signaling, whereas activin regulates the adrenocorticotropin (ACTH)-cAMP cascade in adrenocortical cells. A peripheral clock system in the adrenal cortex was discovered and it has been shown to have functional roles in the adjustment of adrenocortical steroidogenesis by interacting with the BMP system. It was found that follistatin, a binding protein of activin, increased Clock mRNA levels, indicating an endogenous function of activin in the regulation of Clock mRNA expression. Elucidation of the interrelationships among the circadian clock system, the BMP system and adrenocortical steroidogenesis regulated by the hypothalamic-pituitary-adrenal (HPA) axis would lead to an understanding of the pathophysiology of adrenal disorders and metabolic disorders and the establishment of better medical treatment from the viewpoint of pharmacokinetics.
Collapse
Affiliation(s)
- Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan.
| |
Collapse
|
6
|
Yao Y, Wang Y, Wang F, Meng C, Niu J, Guo M, Sizhu S, Xu Y. BMP15 Modulates the H19/miR-26b/SMAD1 Axis Influences Yak Granulosa Cell Proliferation, Autophagy, and Apoptosis. Reprod Sci 2023; 30:1266-1280. [PMID: 36071342 DOI: 10.1007/s43032-022-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
Bone morphogenetic protein 15 (BMP15) regulates the growth and development of follicles. In particular, the long non-coding RNA H19 plays an important role in mammalian reproduction. However, the function and regulatory mechanism of the interaction of BMP15 with H19 in yak granulosa cell (GC) proliferation, autophagy, and apoptosis are poorly understood. In our study, quantitative reverse-transcription-polymerase chain reaction analysis showed that H19 were highly expressed in yak healthy follicles. H19 was induced by BMP15 protein in yak GCs. In addition, we confirmed that overexpression of H19 promoted yak GC proliferation and autophagy and inhibited apoptosis. Bioinformatic analysis and luciferase reporter assays demonstrated that H19 directly binds to miR-26b, and SMAD1 was identified as a target of miR-26b. miR-26b overexpression inhibited GC proliferation and autophagy and promoted apoptosis through decreased SMAD1 expression, which was attenuated by H19 overexpression. RNA immunoprecipitation-quantitative polymerase chain reaction and dual-luciferase assays showed that miR-26b was sponged by H19 to preserve SMAD1 expression. Furthermore, SMAD1 mRNA expression was induced and miR-26b expression was reduced after yak GCs were treated with BMP15 protein. In conclusion, our results demonstrated that the H19/miR-26b/SMAD1 axis responds to BMP15 to regulate yack GC proliferation, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Yilong Yao
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yunlu Wang
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Tibet, 860000, Nyingchi, China
| | - Fupeng Wang
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing, 100193, China
| | - Chaoyi Meng
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
| | - Jiaqiang Niu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
- Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease Research, Tibet Agriculture & Animal Husbandry College, Tibet, 860000, Nyingchi, China
| | - Ming Guo
- College of Animal Science and Technology, China Agricultural University, Haidian, Beijing, 100193, China
| | - Suolang Sizhu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China
| | - Yefen Xu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, China.
| |
Collapse
|
7
|
Future potential of in vitro maturation including fertility preservation. Fertil Steril 2023; 119:550-559. [PMID: 36702341 DOI: 10.1016/j.fertnstert.2023.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
In several mammalian species, oocytes from small antral follicles after in vitro maturation (IVM) are successfully used for procreation. Humans are the exception, mainly because of limited access to immature oocytes and because oocyte maturation is uniquely regulated in women. With the introduction of cryopreservation of the ovarian cortex for fertility preservation, immature oocytes from small antral follicles in the medulla are now available for developing IVM on the basis of actual human studies. This review presents recent findings in favor of developing human IVM, including the oocyte diameter, follicle size from which the immature oocytes are collected, necessary level of follicle-stimulating hormone and luteinizing hormone to accelerate IVM, and secretion of factors from the cumulus-oocyte complex that affect the way oocyte maturation takes place. Furthermore, on the basis of studies in human granulosa cells and follicle fluid collected during the final maturation of follicles in vivo, a number of signal transduction pathways and hormone levels active during physiological conditions have been identified, providing new candidates and ways to improve the current IVM platform. Furthermore, it is suggested that the small droplet of culture medium in which IVM is performed mimics the hormonal milieu within a follicle created by the somatic cells and oocyte in vivo and may be used to advance oocyte nuclear and cytoplasmic maturation. Collectively, we envision that a continued research effort will develop a human IVM platform equally effective as for other mammalian species.
Collapse
|
8
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
9
|
Biswas A, Ng BH, Prabhakaran VS, Chan CJ. Squeezing the eggs to grow: The mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol 2022; 10:1038107. [PMID: 36531957 PMCID: PMC9756970 DOI: 10.3389/fcell.2022.1038107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 08/25/2023] Open
Abstract
The formation of functional eggs (oocyte) in ovarian follicles is arguably one of the most important events in early mammalian development since the oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. While past studies have identified many genes that are critical to normal ovarian development and function, recent studies have highlighted the role of mechanical force in shaping folliculogenesis. In this review, we discuss the underlying mechanobiological principles and the force-generating cellular structures and extracellular matrix that control the various stages of follicle development. We also highlight emerging techniques that allow for the quantification of mechanical interactions and follicular dynamics during development, and propose new directions for future studies in the field. We hope this review will provide a timely and useful framework for future understanding of mechano-signalling pathways in reproductive biology and diseases.
Collapse
Affiliation(s)
- Arikta Biswas
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Hao X, Yuan F, Cui Y, Zhang M. Oocyte-secreted factor TGFB2 enables mouse cumulus cell expansion in vitro. Mol Reprod Dev 2022; 89:554-562. [PMID: 36128893 DOI: 10.1002/mrd.23646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 12/25/2022]
Abstract
Cumulus expansion is necessary for the release of a fertilizable oocyte from the ovary, which is critical for the normal fertilization of mammals. Cumulus expansion requires cooperation between epidermal growth factor (EGF)-like growth factors and oocyte paracrine factors. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are well-known paracrine factors secreted by oocytes. In addition, transforming growth factor-β2 (TGFB2) was primarily expressed in oocytes and its membrane receptors type 1 receptor (TGFBR1) and type 2 receptor (TGFBR2) were located in cumulus cells. In our present study, TGFB2 induced expansion of oocytectomized (OOX) complexes and increased the expression of expansion-related genes in the presence of EGF, suggesting that TGFB2 enables cumulus expansion. Inhibition of TGF-β signaling with SD208 blocked TGFB2-promoted cumulus expansion. Furthermore, in the culture of OOX complexes from mice of Tgfbr2-specific depletion in granulosa cells, TGFB2-promoted cumulus expansion and the expression of expansion-related genes were impaired. These results suggest that TGFB2 could induce cumulus expansion through TGFBR-SMAD2/3 signaling. Tgfb2-specific depletion in oocytes using Zp3-Cre mice had no effect on cumulus expansion in vivo, possibly due to the compensatory effect of other cumulus expansion-enabling factors. Taken together, TGFB2 is involved in expansion-related gene expression and consequent cumulus expansion.
Collapse
Affiliation(s)
- Xiaoqiong Hao
- Department of Physiology, Baotou Medical College, Baotou, China.,Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Feifei Yuan
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanying Cui
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Meijia Zhang
- Division of Cell, Developmental, and Integrative Biology, Department of Physiology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Cao LY, Zhang ZQ, Liu PP, Xu DF, Tang L, Fan L, Sun XC, Li JY, Wu QF, Li ZM, Tan J. Aberrant BMP15/HIF-1α/SCF signaling pathway in human granulosa cells is involved in the PCOS related abnormal follicular development. Gynecol Endocrinol 2022; 38:971-977. [PMID: 36151730 DOI: 10.1080/09513590.2022.2125951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS To investigate the regulatory mechanism of SCF expression in human GCs of PCOS related follicles. MATERIALS AND METHODS SCF, BMP15 and HIF-1α were evaluated in human serums, follicular fluids (FFs) and GCs, which were collected from 69 PCOS patients and 74 normal ovulatory patients. KGN cell line was used in this study. RESULTS Our results showed that the rate of MII oocyte and 2PN fertilization was lower in PCOS group, though PCOS patients retrieved much more oocytes. The level of BMP15 in FF and the level of SCF in serum and FF were also lower in PCOS patients. We found a weakened expression of HIF-1α and SCF in GCs from PCOS patients when compared with the non-PCOS patients. The expression of HIF-1α and SCF was significantly increased in KGN cells after treating cells with rhBMP15, however, this promotion effects of BMP15 on HIF-1α and SCF expression were obviously abolished by co-treatment with BMP-I receptor inhibitor (DM). Moreover, knock down of HIF-1α expression in KGN cells significantly reduced the expression of SCF in human GCs, in spite of activating BMP15 signaling pathway. CONCLUSIONS The present study suggest that BMP15 could induce SCF expression by up-regulating HIF-1α expression in human GCs, the aberrance of this signaling pathway might be involved in the PCOS related abnormal follicular development.
Collapse
Affiliation(s)
- Li-Yun Cao
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Zhi-Qin Zhang
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Pei-Pei Liu
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Ding-Fei Xu
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Liang Tang
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Lu Fan
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xue-Chen Sun
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jia-Yi Li
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Qiong-Fang Wu
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Zeng-Ming Li
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Jun Tan
- Jiangxi Provincial Maternal and Child Health Hospital, Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
12
|
Maruyama H, Sakai S, Ieda M. Endothelin-1 Alters BMP Signaling to Promote Proliferation of Pulmonary Artery Smooth Muscle Cells. Can J Physiol Pharmacol 2022; 100:1018-1027. [PMID: 36037530 DOI: 10.1139/cjpp-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal outgrowth of pulmonary artery smooth muscle cells (PASMCs) of the media. Abundant expression of endothelin-1 (ET-1) and activated p38 mitogen-activated protein kinase (p38MAPK) has been observed in PAH patients. p38MAPK has been implicated in cell proliferation. An unspecified disturbance in bone morphogenetic protein (BMP) signaling may be involved in the development of PAH. Type I receptors (BMPR1A and BMPR1B) and type II receptors (BMPR2) transduce signals via two distinct pathways, i.e., canonical and non-canonical pathways, activating Smad1/5/8 and p38MAPK, respectively. BMPR1B expression was previously reported to be enhanced in the PASMCs of patients with idiopathic PAH. BMP15 binds specifically to BMPR1B. We assessed the effects of ET-1 on BMP receptor expression and cell proliferation. BMP2 increased BMPR1B expression in human PASMCs after pretreatment with ET-1 in vitro. Although BMP2 alone did not affect PASMC proliferation, BMP2 treatment after ET-1 pretreatment significantly accelerated PASMC proliferation. PH-797804, a selective p38MAPK inhibitor, abrogated this proliferation. Similarly, after ET-1 pretreatment, BMP15 significantly accelerated the proliferation of PASMCs, whereas stimulation with BMP15 alone did not. In conclusion, in PASMCs, ET-1 exposure under pathological conditions alters BMP signaling to activate p38MAPK, resulting in cell proliferation.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- National Hospital Organisation Kasumigaura Medical Center Internal Medicine, Cardiology, Tsuchiura, Japan;
| | - Satoshi Sakai
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| | - Masaki Ieda
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| |
Collapse
|
13
|
Cadenas J, Pors SE, Kumar A, Kalra B, Kristensen SG, Andersen CY, Mamsen LS. Concentrations of oocyte secreted GDF9 and BMP15 decrease with MII transition during human IVM. Reprod Biol Endocrinol 2022; 20:126. [PMID: 35986324 PMCID: PMC9389727 DOI: 10.1186/s12958-022-01000-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The suggested effects of the oocyte secreted GDF9 and BMP15 growth factors on oocyte maturation are currently based on recombinant proteins, and little is known about native GDF9 and BMP15 in humans. METHODS Human immature cumulus-oocyte complexes (COCs) obtained in connection with ovarian tissue cryopreservation (OTC) underwent in vitro maturation (IVM). Oocyte-produced GDF9 and BMP15 were detected in COCs using immunofluorescence, and in fresh GV oocytes and in GV and MII oocytes after IVM by western blot. Concentrations of GDF9, BMP15 homodimers, and GDF9/BMP15 heterodimer in spent media after IVM were measured by ELISA. The relative expression of seven genes from the GDF9 and BMP15 signaling pathways (BMPR2, ALK5, ALK6, SMAD1, SMAD2, SMAD3, and SMAD5) was evaluated in fresh cumulus cells (before IVM) and in cumulus cells from GV and MII oocytes after IVM by RT-qPCR. RESULTS We detected native pro-mature GDF9 and BMP15 in human oocytes with molecular weights (Mw) of 47 kDa and 43 kDa, respectively. Concentrations of GDF9 and BMP15 in spent media after IVM were detected in 99% and 64% of the samples, respectively. The GDF9/BMP15 heterodimer was detected in 76% of the samples. Overall, the concentration of GDF9 was approximately 10-times higher than BMP15. The concentrations of both GDF9 and BMP15 were significantly lower in spent medium from MII oocytes than in media from oocytes that remained at the GV stage. Concentrations of the GDF9/BMP15 heterodimer did not differ between GV and MII oocytes. Furthermore, BMPR2, SMAD3, and SMAD5 were significantly upregulated in cumulus cells from MII oocytes, indicating that both GDF9 and BMP15 signaling were active during oocyte meiotic resumption in vitro. CONCLUSION These data suggest that the driving mechanisms for oocyte nuclear maturation may involve both GDF9 and BMP15 homodimers, while the role of the GDF9/BMP15 heterodimer is questionable.
Collapse
Affiliation(s)
- Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Ajay Kumar
- Ansh Labs LLC, 445 W. Medical Center Blvd, Webster, TX, 77598, USA
| | - Bhanu Kalra
- Ansh Labs LLC, 445 W. Medical Center Blvd, Webster, TX, 77598, USA
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| |
Collapse
|
14
|
Hosseinzadeh S, Masoudi AA, Torshizi RV, Ehsani A. Identification of differentially expressed long noncoding RNAs in the ovarian tissue of ewes Shal and Sangsari using RNA-seq. Vet Med Sci 2022; 8:2138-2146. [PMID: 35667079 PMCID: PMC9514483 DOI: 10.1002/vms3.859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The ovary has an important role in reproductive function. Animal reproduction is dominated by numerous coding genes and noncoding elements. Although long noncoding RNAs (LncRNAs) are important in biological activity, little is known about their role in the ovary and fertility. Methods Three adult Shal ewes and three adult Sangsari ewes were used in this investigation. LncRNAs in ovarian tissue from two breeds were identified using bioinformatics analyses, and then target genes of LncRNAs were discovered. Target genes were annotated using the DAVID database, and their interactions were examined using the STRING database and Cytoscape software. The expression levels of seven LncRNAs with their target genes were assessed by real‐time PCR to confirm the RNA‐seq. Results Among all the identified LncRNAs, 124 LncRNAs were detected with different expression levels between the two breeds (FDR < 0.05). According to the DAVID database, target genes were discovered to be engaged in one biological process, one cellular component, and 21 KEGG pathways (FDR < 0.05). The PES1, RPS9, EF‐1, Plectin, SURF6, CYC1, PRKACA MAPK1, ITGB2 and BRD2 genes were some of the most crucial target genes (hub genes) in the ovary. Conclusion These results could pave the way for future efforts to address sheep prolificacy barriers.
Collapse
Affiliation(s)
- Shahram Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Alireza Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Lv J, Ge W, Ding Z, Zeng J, Wang W, Duan H, Zhang Y, Zhao X, Hu J. Regulatory role of dihydrotestosterone on BMP-6 receptors in granular cells of sheep antral follicles. Gene 2022; 810:146066. [PMID: 34838638 DOI: 10.1016/j.gene.2021.146066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein-6 (BMP-6) and dihydrotestosterone (DHT) affect steroid synthesis in follicles and regulate cell proliferation in the ovaries of female animals. However, little is known about granular cells (GCs) in sheep. We identified the key BMP-6 receptors, activin receptor-like kinase(ALK-6), and bone morphogenetic protein receptor type 2 (BMPRII) in sheep follicles using immunohistochemistry (IHC) and immunofluorescence (IF). Both ALK-6 and BMPRII were expressed in the GC layer, GC membranes, and cytoplasm. We evaluated ALK-6 and BMPRII expression at the follicular development stage using quantitative real-time PCR and western blotting to detect sheep GCs from large, medium, and small follicles (diameters of ≥5, 2-5, and ≤2 mm, respectively). The mRNA abundance and protein expression of ALK-6 and BMPRII were significantly higher in GCs from large follicles compared to those in GCs from small follicles (P < 0.05) and were the lowest in GCs from medium follicles. To assess whether DHT affects ALK-6 and BMPRII expression in sheep GCs, we cultured GCs from large follicles in vitro then incubated them with DHT (10-11, 10-9, 10-7 M). We found that 10-7-M DHT significantly inhibited ALK-6 and BMPRII mRNA and protein (P < 0.05). We further explored whether DHT regulates ALK-6 and BMPRII through the nuclear androgen receptor (AR) pathway and found that 10-6-M flutamide, a non-selective androgen inhibitor, partially relieved the inhibitory effect of 10-7-M DHT on ALK-6 and BMPRII expression. Thus, GCs in sheep antral follicles differentially expressed ALK-6 and BMPRII at various stages, indicating that BMP-6 plays different roles to some extent during the development of antral follicles, and that high concentrations of DHT can inhibit the expression of ALK-6 and BMPRII via the androgen receptor pathway in sheep GCs. The present study aimed to determine the expression of the main BMP-6-related main receptors, namely, ALK-6 and BMPRII, during the development of GCs in sheep antral follicles and a potential mechanism of DHT regulation in sheep GCs. Our findings lay a foundation for the further exploration of the effects of ovarian BMP-6 expression on follicular development.
Collapse
Affiliation(s)
- Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, China.
| |
Collapse
|
16
|
Meidan R, Basavaraja R. Interferon-Tau regulates a plethora of functions in the corpus luteum. Domest Anim Endocrinol 2022; 78:106671. [PMID: 34509740 DOI: 10.1016/j.domaniend.2021.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL maintenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was downregulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro, IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal endothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Furthermore, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro, activating diverse pathways to promote cell survival while suppressing cell death signals. Pentraxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabilization. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabilization while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel.
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel
| |
Collapse
|
17
|
Xu Z, Ruan X, Xu X, Yang Y, Cheng J, Luo S, Min M, Li M, Zhang L, Ju R, Jin F, Mueck AO. Efficacy and safety of Zi Gui Nv Zhen ® capsules used in TCM for fertility preservation in patients with diminished ovarian reserve. Gynecol Endocrinol 2022; 38:73-77. [PMID: 34308735 DOI: 10.1080/09513590.2021.1957095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To evaluate for the first time whether Zi Gui Nv Zhen® capsules (ZGNZC), until now used in traditional Chinese medicine (TCM) for menopausal complaints, can increase the fertility of Chinese women with diminished ovarian reserve (DOR). METHODS Prospective, randomized, open-labeled 3-monthly study; 109 DOR patients (aged 20-40 years) receiving either ZGNZC (experimental group, n = 75) or not (control group, n = 34). Main outcomes: markers for ovarian function, thickness/type of the endometrium during ovulation, and pregnancy rate. Between-group analysis (A) comparing experimental vs. control group and within-group analysis (B) comparing data at baseline and after study in each of both groups. RESULTS (A) Between-group-analysis: patients with ZGNZC had a higher endometrium thickness (0.75 vs. 0.62; p<.05) and higher anti-Müllerian hormone (AMH, 0.50 vs. 0.40; p<.05) than control group. Pregnancy rates were higher in the experimental than the control group (26.7% vs. 14.7%; n.s.). (B) Within-group-analysis: ZGNZC decreased levels of follicle-stimulating hormone (FSH, 11.42 vs. 8.69), increased estradiol-levels (E2, 56.09 vs. 73.36), and type A endometrium rates (5.3% vs. 39.7%) (all p< .05) and increased antral follicle count (AFC, 2 vs. 3). All hepato-renal biomarkers remained within the norm. The tolerability was good. There were no adverse events. CONCLUSIONS In women with DOR who wish to conceive, three months' application of ZGNZC can improve ovarian function and oocyte quality by adjusting the neuroendocrine system, can improve endometrial properties and proliferation, necessary for a healthy pregnancy, and increased the clinical pregnancy rate in our prospective randomized observational study.
Collapse
Affiliation(s)
- Zhongting Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Suiyu Luo
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Min Min
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Meng Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Luping Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Fengyu Jin
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Alfred Otto Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Department of Women's Health, Research Centre for Women's Health and University Women's Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
di Clemente N, Racine C, Pierre A, Taieb J. Anti-Müllerian Hormone in Female Reproduction. Endocr Rev 2021; 42:753-782. [PMID: 33851994 DOI: 10.1210/endrev/bnab012] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance, was shown to be synthesized by the ovary in the 1980s. This article reviews the main findings of the past 20 years on the regulation of the expression of AMH and its specific receptor AMHR2 by granulosa cells, the mechanism of action of AMH, the different roles it plays in the reproductive organs, its clinical utility, and its involvement in the principal pathological conditions affecting women. The findings in respect of regulation tell us that AMH and AMHR2 expression is mainly regulated by bone morphogenetic proteins, gonadotropins, and estrogens. It has now been established that AMH regulates the different steps of folliculogenesis and that it has neuroendocrine effects. On the other hand, the importance of serum AMH as a reliable marker of ovarian reserve and as a useful tool in the prediction of the polycystic ovary syndrome (PCOS) and primary ovarian failure has also been acknowledged. Last but not least, a large body of evidence points to the involvement of AMH in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, Paris, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| | - Joëlle Taieb
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| |
Collapse
|
19
|
Esfandyari S, Winston NJ, Fierro MA, Scoccia H, Stocco C. Oocyte-secreted factors strongly stimulate sFRP4 expression in human cumulus cells. Mol Hum Reprod 2021; 27:6255760. [PMID: 33905521 DOI: 10.1093/molehr/gaab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related protein-4 (SFRP4) belongs to a family of soluble ovarian-expressed proteins that participate in female reproduction, particularly in rodents. In humans, SFRP4 is highly expressed in cumulus cells (CCs). However, the mechanisms that stimulate SFRP4 in CCs have not been examined. We hypothesise that oocyte-secreted factors such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are involved in the regulation of SFRP4. Human CCs were collected from patients undergoing fertility treatments and treated with GDF9 or BMP15 or their combination in the presence of FSH or vehicle. FSH treatment significantly decreased SFRP4 mRNA levels when compared with nontreated cells. However, SFRP4 mRNA levels were increased significantly by GDF9 plus BMP15 in a concentration-dependent manner in the presence or absence of FSH. The combination of GDF9 plus BMP15 also increased SFRP4 protein levels and decreased the activity of the β-catenin/T cell factor-responsive promoter significantly. GDF9 plus BMP15 inhibited steroidogenic acute regulatory protein and LH/hCG receptor stimulation by FSH, while treatment with SFRP4 blocked the stimulatory effect of FSH on these genes. The evidence demonstrates that GDF9 and BMP15 act in coordination to stimulate SFRP4 expression and suggests that SFRP4 mediates the anti-luteinising effects of the oocyte in human CCs.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Nicola J Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Michelle A Fierro
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Humberto Scoccia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Wang Y, Shi H, Zhang G, Wu P, Chen L, Shen M, Li T, Lv X, Gu Y, Wang J. Transcriptome Analysis of Long Noncoding RNAs and mRNAs in Granulosa Cells of Jinghai Yellow Chickens Illuminated With Red Light. Front Genet 2021; 12:563623. [PMID: 33633775 PMCID: PMC7900633 DOI: 10.3389/fgene.2021.563623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/15/2021] [Indexed: 01/23/2023] Open
Abstract
Jinghai Yellow chickens are a new indigenous breed with a dual purpose in China, but their egg laying performance is limited. Compared with white light (WL), exposure to red light (RL) can improve the egg laying performance of hens. Herein, to elucidate the molecular mechanism by which RL affects the egg laying performance, RNA sequencing was used to analyze long noncoding RNAs (lncRNAs) and mRNAs from granulosa cells of small yellow follicles from Jinghai Yellow chickens in RL and WL groups. A total of 12,466 lncRNAs were identified among the assembled transcripts, of which 168 lncRNAs were significantly different between the RL and WL groups (101 downregulated and 67 upregulated). Additionally, 1182 differentially expressed mRNAs were identified (958 downregulated and 224 upregulated). Integrated network analysis demonstrated that numerous differential mRNAs were involved in follicular development through steroid hormone synthesis, oocyte meiosis, and the PI3K-Akt signaling pathway. The impact of lncRNAs on cis and trans target mRNAs indicates that some lncRNAs play important roles in follicular development of small yellow follicles. The results provide a starting point for studies aimed at understanding the molecular mechanisms by which monochromatic light affects follicular development and egg production in hens.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Industry Group Co. Ltd, Nantong, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Manman Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yunfei Gu
- Jiangsu Jinghai Poultry Industry Group Co. Ltd, Nantong, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Simon SE, Radhika G, Aravindakshan TV, Thomas M, Raji K. Discovery of single nucleotide polymorphisms in bone morphogenetic protein (BMP) genes of goats by double digest restriction-site associated DNA sequencing. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Two native goat breeds from Kerala, Malabari and Attappady Black, differ significantly in prolificacy (i.e. no. of kids born/kidding). Prolificacy is an important economic trait and the subject of genetic research showing that bone morphogenetic protein (BMP) genes have a significant effect. Double digest restriction-site associated DNA sequencing (ddRADseq) is a highly efficient and low cost technology for high density discovery of single nucleotide polymorphisms (SNPs), which could serve as predictive markers for animal breeding programs.
Aims
The study was aimed at discovering SNPs in BMP genes that affect prolificacy, using ddRADseq followed by validation of selected SNP.
Methods
Blood DNA samples of 10 highly prolific Malabari and 10 less prolific Attappady Black goats were pooled by group and subjected to ddRADseq. SNPs observed in BMP genes were investigated and compared between groups. A validation study was done for the c.614–32789C>T variant in 100 Malabari and 50 Attappady Black goats by using PCR-RFLP.
Key results
In total, 6333 variants were identified by ddRADseq. Three variants were identified in BMP genes, which included two intronic variants c.614–32789C>T and c.490+6793T>C, in genes BMP6 and BMP5 and a downstream gene variant near the BMPR1B gene. According to ddRADseq data, variants in BMP5 and BMP6 differed in allelic distribution between Malabari and Attappady Black goats. For c.490+6793T>C in BMP5, the CC genotype was predominant in the highly prolific Malabari whereas TC was present in the Attappady Black group. The variant c.614–32789C>T in BMP6 was genotyped as TC in Malabari and CC in Attappady Black goats by ddRADseq. This variant was predicted to have an effect on splicing, according to the tool SplicePort. On the basis of bioinformatics analysis and the role of BMP6 gene in follicular dynamics, the variant in BMP6 was selected for further validation studies. All three genotypes were identified by PCR-RFLP; the C allele was the rare allele in the population with an allele frequency of 0.36. Presence of both alleles C and T and the three genotypes CC, TC and TT in this larger population substantiated the robustness of ddRADseq technique.
Conclusions
The technique discovered high confidence SNPs, which could be used for further validation and association studies to develop markers for selection of animals and for genetic improvement of this complex trait.
Implications
Techniques such as ddRADseq provide a large number of SNPs, and investigation of those polymorphisms found across the genome will help to identify new loci affecting traits of interest. This, in turn, will aid in exploring genetically complex traits in a faster and cheaper manner.
Collapse
|
22
|
Shi X, Tang T, Lin Q, Liu H, Qin Y, Liang X, Cong P, Mo D, Liu X, Chen Y, He Z. Efficient generation of bone morphogenetic protein 15-edited Yorkshire pigs using CRISPR/Cas9†. Biol Reprod 2020; 103:1054-1068. [PMID: 32761111 DOI: 10.1093/biolre/ioaa138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15), a member of the transforming growth factor beta superfamily, plays an essential role in ovarian follicular development in mono-ovulatory mammalian species. Studies using a biallelic knockout mouse model revealed that BMP15 potentially has just a minimal impact on female fertility and ovarian follicular development in polyovulatory species. In contrast, our previous study demonstrated that in vivo knockdown of BMP15 significantly affected porcine female fertility, as evidenced by the dysplastic ovaries containing significantly decreased numbers of follicles and an increased number of abnormal follicles. This finding implied that BMP15 plays an important role in the regulation of female fertility and ovarian follicular development in polyovulatory species. To further investigate the regulatory role of BMP15 in porcine ovarian and follicular development, here, we describe the efficient generation of BMP15-edited Yorkshire pigs using CRISPR/Cas9. Using artificial insemination experiments, we found that the biallelically edited gilts were all infertile, regardless of different genotypes. One monoallelically edited gilt #4 (Δ66 bp/WT) was fertile and could deliver offspring with a litter size comparable to that of wild-type gilts. Further analysis established that the infertility of biallelically edited gilts was caused by the arrest of follicular development at preantral stages, with formation of numerous structurally abnormal follicles, resulting in streaky ovaries and the absence of obvious estrous cycles. Our results strongly suggest that the role of BMP15 in nonrodent polyovulatory species may be as important as that in mono-ovulatory species.
Collapse
Affiliation(s)
- Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hongbo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
23
|
Abstract
The diagnosis of primary ovarian insufficiency (POI) has untold effects on women and a better understanding alongside potential treatments are paramount to improve quality of life of these women. Various causes have been linked to the development of POI with genetics playing a key role. A better understanding of the genetics of POI could lead to earlier diagnosis and broaden fertility options. This chapter discusses previously known and more recently discovered genes that have been implicated in the development of POI. It explores the varying phenotypic expressions of some genes in different populations and areas for further research in the genetics of POI.
Collapse
|
24
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
25
|
Martinez-Hackert E, Sundan A, Holien T. Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 2020; 57:39-54. [PMID: 33087301 DOI: 10.1016/j.cytogfr.2020.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The transforming growth factor (TGF)-β family is a group of structurally related, multifunctional growth factors, or ligands that are crucially involved in the development, regulation, and maintenance of animal tissues. In humans, the family counts over 33 members. These secreted ligands typically form multimeric complexes with two type I and two type II receptors to activate one of two distinct signal transduction branches. A striking feature of the family is its promiscuity, i.e., many ligands bind the same receptors and compete with each other for binding to these receptors. Although several explanations for this feature have been considered, its functional significance has remained puzzling. However, several recent reports have promoted the idea that ligand-receptor binding promiscuity and competition are critical features of the TGF-β family that provide an essential regulating function. Namely, they allow a cell to read and process multi-ligand inputs. This capability may be necessary for producing subtle, distinctive, or adaptive responses and, possibly, for facilitating developmental plasticity. Here, we review the molecular basis for ligand competition, with emphasis on molecular structures and binding affinities. We give an overview of methods that were used to establish experimentally ligand competition. Finally, we discuss how the concept of ligand competition may be fundamentally tied to human physiology, disease, and therapy.
Collapse
Affiliation(s)
- Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Hematology, St. Olav's University Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
26
|
Yu H, Wang Y, Wang M, Liu Y, Cheng J, Zhang Q. Growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) are potential intraovarian regulators of steroidogenesis in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2020; 297:113547. [PMID: 32659273 DOI: 10.1016/j.ygcen.2020.113547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
Members of transforming growth factor-β (TGF-β) superfamily are vital regulators during the development of fish ovary. However, its intraovarian functions in teleost are still unclear. As members of the TGF-β superfamily, gdf9 and bmp15 are necessary for follicle formation and granulosa cell proliferation. Here in Japanese flounder, quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) analysis showed that gdf9 and bmp15 were mainly expressed in oogonia and oocytes, whereas weakly expressed in non-ovarian tissues. Overexpression of single gdf9 and the co-overexpression with bmp15 could up-regulate the expression of most steroidogenic genes, while the overexpression of single bmp15 could down-regulate the expression of most steroidogenic genes. These findings demonstrate that single gdf9 and the combination with bmp15 may act as "activator", while single bmp15 may act as "inhibitor" in the process of steroidogenesis in flounder. This was also verified in negative feedback regulation of gdf9 and bmp15 during hormone treatment. High concentration of human chorionic gonadotropin (hCG) could down-regulate gdf9 and up-regulate bmp15, which were beneficial for the homeostasis of hCG hormone. Besides, knockdown of either gdf9 or bmp15 could significantly down-regulate most steroidogenic genes. This indicated that heterodimer of GDF9:BMP15 might be the most bioactive ligand in gonad development of flounder. Taken together, our study provided a novel recognition that gdf9 and bmp15 could regulate steroidogenesis in teleost through mechanism different from that in mammals.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Mengya Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
27
|
Christoforou ER, Pitman JL. Intrafollicular growth differentiation factor 9: bone morphogenetic 15 ratio determines litter size in mammals†. Biol Reprod 2020; 100:1333-1343. [PMID: 30698706 DOI: 10.1093/biolre/ioz011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
We previously showed that rat, pig, sheep, and red deer oocytes express species-specific ratios of GDF9: BMP15 mRNA (3.7, 0.5, 1.26, and 0.1, respectively), and with the exception of the pig, they are directly correlated to litter size. The purpose of this study was to determine the alternative mechanism that enables pig oocytes to secrete low ratios whilst maintaining a large litter size. Herein, we performed same- and cross-species coincubations of oocytes with granulosa cells (GCs) of rat, pig, sheep, and red deer to compare the proliferation rate, mRNA expression levels of growth factor receptors, and downstream signalling pathways in GCs. A decreased proliferation rate, lower Bmpr1b and Bmpr2 mRNA expression levels, and higher SMAD1/5/8 protein levels were exhibited in rat GCs cocultured with red deer oocytes, compared to all other species. Pig GCs unequivocally expressed GDF9 mRNA, suggesting that, similar to rat GCs, the proliferation of pig GCs is regulated mainly by GDF9, despite lower intraoocyte expression of GDF9 mRNA. In support, a higher basal proliferation, and their ability to proliferate readily when coincubated with red deer oocytes, was observed in pig GCs. In contrast, red deer GC proliferation is likely to be mainly regulated by BMP15 in vivo with only red deer oocytes capable of altering SMAD1/5/8 and pSMAD2/3 levels, while both GDF9 and BMP15 appear important for sheep GC proliferation. In summary, this study strengthens our hypothesis that the ratio of GDF9: BMP15 in the intrafollicular milieu is directly correlated with litter size, and that the GCs of each species have evolved to respond to these unique ratios.
Collapse
Affiliation(s)
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
28
|
Stocker WA, Walton KL, Richani D, Chan KL, Beilby KH, Finger BJ, Green MP, Gilchrist RB, Harrison CA. A variant of human growth differentiation factor-9 that improves oocyte developmental competence. J Biol Chem 2020; 295:7981-7991. [PMID: 32350111 DOI: 10.1074/jbc.ra120.013050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/26/2020] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are co-expressed exclusively in oocytes throughout most of folliculogenesis and play central roles in controlling ovarian physiology. Although both growth factors exist as homodimers, recent evidence indicates that GDF9 and BMP15 can also heterodimerize to form the potent growth factor cumulin. Within the cumulin complex, BMP15 "activates" latent GDF9, enabling potent signaling in granulosa cells via type I receptors (i.e. activin receptor-like kinase-4/5 (ALK4/5)) and SMAD2/3 transcription factors. In the cumulin heterodimer, two distinct type I receptor interfaces are formed compared with homodimeric GDF9 and BMP15. Previous studies have highlighted the potential of cumulin to improve treatment of female infertility, but, as a noncovalent heterodimer, cumulin is difficult to produce and purify without contaminating GDF9 and BMP15 homodimers. In this study we addressed this challenge by focusing on the cumulin interface formed by the helix of the GDF9 chain and the fingers of the BMP15 chain. We demonstrate that unique BMP15 finger residues at this site (Arg301, Gly304, His307, and Met369) enable potent activation of the SMAD2/3 pathway. Incorporating these BMP15 residues into latent GDF9 generated a highly potent growth factor, called hereafter Super-GDF9. Super-GDF9 was >1000-fold more potent than WT human GDF9 and 4-fold more potent than cumulin in SMAD2/3-responsive transcriptional assays in granulosa cells. Our demonstration that Super-GDF9 can effectively promote mouse cumulus cell expansion and improve oocyte quality in vitro represents a potential solution to the current challenges of producing and purifying intact cumulin.
Collapse
Affiliation(s)
- William A Stocker
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Kelly L Walton
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW, Australia
| | - Karen L Chan
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kiri H Beilby
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW, Australia
| | - Craig A Harrison
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Xia Q, Li Q, Gan S, Guo X, Zhang X, Zhang J, Chu M. Exploring the roles of fecundity-related long non-coding RNAs and mRNAs in the adrenal glands of small-tailed Han Sheep. BMC Genet 2020; 21:39. [PMID: 32252625 PMCID: PMC7137433 DOI: 10.1186/s12863-020-00850-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can play important roles in uterine and ovarian functions. However, little researches have been done on the role of lncRNAs in the adrenal gland of sheep. Herein, RNA sequencing was used to compare and analyze gene expressions in adrenal tissues between follicular phases and luteal phases in FecBBB (MM) and FecB++ (WW) sheep, respectively, and differentially expressed lncRNAs and genes associated with reproduction were identified. RESULTS In MM sheep, 38 lncRNAs and 545 mRNAs were differentially expressed in the adrenal gland between the luteal and follicular phases; In WW sheep, 513 differentially expressed lncRNAs and 2481 mRNAs were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that differentially expressed lncRNAs and their target genes are mainly involved in the circadian rhythm, the mitogen activated protein kinase, thyroid, ovarian steroidogenesis and transforming growth factor beta signaling pathways. Differentially expressed lncRNAs can regulate reproduction by modulating genes involved in these signaling pathways and biological processes. Specifically, XLOC_254761, XLOC_357966, 105,614,839 and XLOC_212877 targeting CREB1, PER3, SMAD1 and TGFBR2, respectively, appear to play key regulatory roles. CONCLUSION These results broaden our understanding of lncRNAs in adrenal gland of sheep and provide new insights into the molecular mechanisms underlying sheep reproduction.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Qiuling Li
- College of Life Sciences, Langfang Normal University, Langfang, 065000, P.R. China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, P. R. China
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin, 300381, P. R. China
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin, 300381, P. R. China
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, 300381, P. R. China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
30
|
Renault L, Patiño LC, Magnin F, Delemer B, Young J, Laissue P, Binart N, Beau I. BMPR1A and BMPR1B Missense Mutations Cause Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2020; 105:5643734. [PMID: 31769494 DOI: 10.1210/clinem/dgz226] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a frequently occurring disorder affecting approximately 1% of women under 40 years of age. POI, which is characterized by the premature depletion of ovarian follicles and elevated plasma levels of follicle-stimulating hormone, leads to infertility. Although various etiological factors have been described, including chromosomal abnormalities and gene mutations, most cases remain idiopathic. OBJECTIVE To identify and to functionally validate new sequence variants in 2 genes that play a key role in mammalian ovarian function, BMPR1A and BMPR1B (encoding for bone morphogenic protein receptor), leading to POI. METHODS The impact on bone morphogenic protein (BMP) signaling of BMPR1A and BMPR1B variants, previously identified by whole-exome sequencing on 69 women affected by isolated POI, was established by different in vitro functional experiments. RESULTS We demonstrate that the BMPR1A-p.Arg442His and BMPR1B-p.Phe272Leu variants are correctly expressed and located but lead to an impairment of downstream BMP signaling. CONCLUSION In accordance with infertility observed in mice lacking Bmpr1a in the ovaries and in Bmpr1b-/- mice, our results unveil, for the first time, a link between BMPR1A and BMPR1B variants and the origin of POI. We show that BMP signaling impairment through specific BMPR1A and BMPR1B variants is a novel pathophysiological mechanism involved in human POI. We consider that BMPR1A and BMPR1B variants constitute genetic biomarkers of the origin of POI and have clinical utility.
Collapse
Affiliation(s)
- Lucie Renault
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Liliana C Patiño
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Françoise Magnin
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, Reims, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France
| | - Paul Laissue
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Isabelle Beau
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
31
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
32
|
Hobeika E, Armouti M, Fierro MA, Winston N, Scoccia H, Zamah AM, Stocco C. Regulation of Insulin-Like Growth Factor 2 by Oocyte-Secreted Factors in Primary Human Granulosa Cells. J Clin Endocrinol Metab 2020; 105:5582040. [PMID: 31588501 PMCID: PMC6938692 DOI: 10.1210/clinem/dgz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023]
Abstract
CONTEXT Human granulosa cells (hGCs) produce and respond to insulin-like growth factor 2 (IGF2) but whether the oocyte participates in IGF2 regulation in humans is unknown. OBJECTIVE To determine the role of oocyte-secreted factors (OSFs) such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in IGF2 production by hGCs. DESIGN Primary human cumulus GCs in culture. SETTING University infertility center. PATIENTS OR OTHER PARTICIPANTS GCs of women undergoing in vitro fertilization. INTERVENTION(S) Cells treated with GDF9 and BMP15 in the presence of vehicle, follicle-stimulating hormone (FSH), dibutyryl cyclic-AMP (dbcAMP), or mothers against decapentaplegic homolog (SMAD) inhibitors. MAIN OUTCOME MEASURE(S) Quantification of mRNA, protein, promoter activity, and DNA methylation. RESULTS FSH stimulation of IGF2 (protein and mRNA) was significantly potentiated by the GDF9 and BMP15 (G+B) combination (P < 0.0001) in a concentration-dependent manner showing a maximal effect at 5 ng/mL each. However, GDF9 or BMP15 alone or in combination (G+B) have no effect on IGF2 in the absence of FSH. FSH stimulated IGF2 promoter 3 activity, but G+B had no effect on promoter activity. G+B potentiated IGF2 stimulation by cAMP. SMAD3 inhibitors inhibited G+B enhancement of IGF2 stimulation by FSH (P < 0.05) but had no effect on FSH induction. Moreover, inhibition of insulin-like growth factor receptor partially blocked G+B potentiation of FSH actions (P < 0.009). CONCLUSIONS For the first time, we show that the oocyte actively participates in the regulation of IGF2 expression in hGCs, an effect that is mediated by the specific combination of G+B via SMAD2/3, which in turn target mechanisms downstream of the FSH receptor.
Collapse
Affiliation(s)
- Elie Hobeika
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Marah Armouti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Michele A Fierro
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Nichola Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Humberto Scoccia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Alberuni M Zamah
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, the University of Chicago Medicine, Chicago, Illinois
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
- Correspondence: Carlos Stocco, 835 S Wolcott Ave, Chicago, Illinois, 60612. E-mail:
| |
Collapse
|
33
|
Sun T, Diaz FJ. Ovulatory signals alter granulosa cell behavior through YAP1 signaling. Reprod Biol Endocrinol 2019; 17:113. [PMID: 31883523 PMCID: PMC6935177 DOI: 10.1186/s12958-019-0552-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Hippo pathway plays critical roles in regulating cell proliferation, differentiation and survival among species. Hippo pathway proteins are expressed in the ovary and are involved in ovarian function. Deletion of Lats1 causes germ cell loss, ovarian stromal tumors and reduced fertility. Ovarian fragmentation induces nuclear YAP1 accumulation and increased follicular development. At ovulation, follicular cells stop proliferating and terminally differentiate, but the mechanisms controlling this transition are not completely known. Here we explore the role of Hippo signaling in mouse granulosa cells before and during ovulation. METHODS To assess the effect of oocytes on Hippo transcripts in cumulus cells, cumulus granulosa cells were cultured with oocytes and cumulus oocyte complexes (COCs) were cultured with a pSMAD2/3 inhibitor. Secondly, to evaluate the criticality of YAP1 on granulosa cell proliferation, mural granulosa cells were cultured with oocytes, YAP1-TEAD inhibitor verteporfin or both, followed by cell viability assay. Next, COCs were cultured with verteporfin to reveal its role during cumulus expansion. Media progesterone levels were measured using ELISA assay and Hippo transcripts and expansion signatures from COCs were assessed. Lastly, the effects of ovulatory signals (EGF in vitro and hCG in vivo) on Hippo protein levels and phosphorylation were examined. Throughout, transcripts were quantified by qRT-PCR and proteins were quantified by immunoblotting. Data were analyzed by student's t-test or one-way ANOVA followed by Tukey's post-hoc test or Dunnett's post-hoc test. RESULTS Our data show that before ovulation oocytes inhibit expression of Hippo transcripts and promote granulosa cell survival likely through YAP1. Moreover, the YAP1 inhibitor verteporfin, triggers premature differentiation as indicated by upregulation of expansion transcripts and increased progesterone production from COCs in vitro. In vivo, ovulatory signals cause an increase in abundance of Hippo transcripts and stimulate Hippo pathway activity as indicated by increased phosphorylation of the Hippo targets YAP1 and WWTR1 in the ovary. In vitro, EGF causes a transient increase in YAP1 phosphorylation followed by decreased YAP1 protein with only modest effects on WWTR1 in COCs. CONCLUSIONS Our results support a YAP1-mediated mechanism that controls cell survival and differentiation of granulosa cells during ovulation.
Collapse
Affiliation(s)
- Tianyanxin Sun
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Francisco J Diaz
- Center for Reproductive Biology and Health and Department of Animal Science, The Pennsylvania State University, 313 FRL Building, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Torrecilha RBP, Milanesi M, Wade CM, Gallana M, Falbo AK, Reichler IM, Hug P, Jagannathan V, Trigo BB, Paulan SC, Bruno DB, Garcia SD, Scaramele NF, Lopes FL, Dolf G, Leeb T, Sölkner J, Garcia JF, Pieńkowska-Schelling A, Schelling C, Utsunomiya YT. Association of missense variants in GDF9 with litter size in Entlebucher Mountain dogs. Anim Genet 2019; 51:78-86. [PMID: 31802524 DOI: 10.1111/age.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/28/2022]
Abstract
In the past two decades, average litter size (ALS) in Entlebucher Mountain dogs decreased by approximately 0.8 puppies. We conducted a GWAS for ALS using the single-step methodology to take advantage of 1632 pedigree records, 892 phenotypes and 372 genotypes (173 662 markers) for which only 12% of the dogs had both phenotypes and genotypes available. Our analysis revealed associations towards the growth differentiation factor 9 gene (GDF9), which is known to regulate oocyte maturation. The trait heritability was estimated at 43.1%, from which approximately 15% was accountable by the GDF9 locus alone. Therefore, markers flanking GDF9 explained approximately 6.5% of the variance in ALS. Analysis of WGSs revealed two missense substitutions in GDF9, one of which (g.11:21147009G>A) affected a highly conserved nucleotide in vertebrates. The derived allele A was validated in 111 dogs and shown to be associated with decreased ALS (-0.75 ± 0.22 puppies per litter). The variant was further predicted to cause a proline to serine substitution. The affected residue was immediately followed by a six-residue deletion that is fixed in the canine species but absent in non-canids. We further confirmed that the deletion is prevalent in the Canidae family by sequencing three species of wild canids. Since canids uniquely ovulate oocytes at the prophase stage of the first meiotic division, requiring maturation in the oviduct, we conjecture that the amino acid substitution and the six-residue deletion of GDF9 may serve as a model for insights into the dynamics of oocyte maturation in canids.
Collapse
Affiliation(s)
- R B P Torrecilha
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agriculture and Veterinarian Sciences, São Paulo State University (Unesp), Via de acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - M Milanesi
- International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| | | | - M Gallana
- Clinic of Reproductive Medicine, Vetsuisse-Faculty University of Zurich, Eschikon 27, Lindau, 8315, Switzerland
| | - A-K Falbo
- Clinic of Reproductive Medicine, Vetsuisse-Faculty University of Zurich, Eschikon 27, Lindau, 8315, Switzerland
| | - I M Reichler
- Clinic of Reproductive Medicine, Vetsuisse-Faculty University of Zurich, Winterthurerstr. 260, Zürich, 8057, Switzerland
| | - P Hug
- Institute of Genetics, Vetsuisse-Faculty University of Bern, Bremgartenstrasse 109A, Bern, 3012, Switzerland
| | - V Jagannathan
- Institute of Genetics, Vetsuisse-Faculty University of Bern, Bremgartenstrasse 109A, Bern, 3012, Switzerland
| | - B B Trigo
- International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - S C Paulan
- International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - D B Bruno
- Department of Clinics, Surgery and Animal Reproduction, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793,, 16050-680, Araçatuba, São Paulo, Brazil
| | - S D Garcia
- Department of Clinics, Surgery and Animal Reproduction, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793,, 16050-680, Araçatuba, São Paulo, Brazil
| | - N F Scaramele
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - F L Lopes
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - G Dolf
- Institute of Genetics, Vetsuisse-Faculty University of Bern, Bremgartenstrasse 109A, Bern, 3012, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse-Faculty University of Bern, Bremgartenstrasse 109A, Bern, 3012, Switzerland
| | - J Sölkner
- Division of Livestook Sciences, Department of Sustainable Agriculture System, BOKU - University of Natural Resource and Live Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - J F Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agriculture and Veterinarian Sciences, São Paulo State University (Unesp), Via de acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paulo, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - A Pieńkowska-Schelling
- Clinic of Reproductive Medicine, Vetsuisse-Faculty University of Zurich, Eschikon 27, Lindau, 8315, Switzerland.,Institute of Genetics, Vetsuisse-Faculty University of Bern, Bremgartenstrasse 109A, Bern, 3012, Switzerland
| | - C Schelling
- Clinic of Reproductive Medicine, Vetsuisse-Faculty University of Zurich, Eschikon 27, Lindau, 8315, Switzerland
| | - Y T Utsunomiya
- International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil
| |
Collapse
|
35
|
Torkashvand H, Fathi R, Shahverdi A, Golkar A, Mozdziak PE, Eimani H. The in vitro effect of chick embryo extract on mice pre-antral follicles. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:213-219. [PMID: 31737230 PMCID: PMC6828170 DOI: 10.30466/vrf.2019.79305.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/08/2018] [Indexed: 11/17/2022]
Abstract
Chick embryo extract (CEE) contains a variety of growth factors which may improve in vitro follicle growth. Therefore, the effect of CEE on mouse pre-antral follicle culture was evaluated. Different percentages of CEE (0, 0.50%, 1.00%, 5.00% and 10.00%) were added to culture medium. Hence, the osmolarity of media was measured. Pre-antral follicles with diameter of 120-150 μm were isolated from 12-14 days old mouse ovary and cultured for 12 days. After culture, the maturation rate was assessed. Granulosa cells viability was evaluated using MTT test and estradiol levels were evaluated using related radio-immunoassay (RIA). Genes expression (BMP15 and ALK6) was also evaluated. The osmolarity of media and granulosa cells viability were the same in all groups. Estradiol level in group with 10.00% CEE was significantly decreased compared to the control group. After 12 days culture, the percentage of antral follicles development was significantly higher in the group with 5.00% CEE compared to control group. The percentage of metaphase II and germinal vesicle breakdown oocytes was significantly higher in group 5.00% CEE compared to control group. The expression of BMP15 gene in antral follicles in 5.00% CEE and control groups was significantly lower compared to pre-antral follicles. However, the expression of ALK6 gene in antral follicles in 5.00% CEE and control groups was not significantly different compared to pre-antral follicles. The increasing effect of CEE on follicle viability with keeping normal gene expression indicates that addition of proper percentage of CEE to culture media improves culture conditions, making it a possible choice to be used as a follicular growth enhancer in infertility clinics.
Collapse
Affiliation(s)
- Hossein Torkashvand
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Afsaneh Golkar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Paul Edward Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Hussein Eimani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Baqiyatallah University, Tehran, Iran
| |
Collapse
|
36
|
Qin Y, Tang T, Li W, Liu Z, Yang X, Shi X, Sun G, Liu X, Wang M, Liang X, Cong P, Mo D, Liu X, Chen Y, He Z. Bone Morphogenetic Protein 15 Knockdown Inhibits Porcine Ovarian Follicular Development and Ovulation. Front Cell Dev Biol 2019; 7:286. [PMID: 31803742 PMCID: PMC6877722 DOI: 10.3389/fcell.2019.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is strongly associated with animal reproduction and woman reproductive disease. As a multifunctional oocyte-specific secret factor, BMP15 controls female fertility and follicular development in both species-specific and dosage-sensitive manners. Previous studies found that BMP15 played a critical role in follicular development and ovulation rate in mono-ovulatory mammalian species, especially in sheep and human, but study on knockout mouse model implied that BMP15 possibly has minimal impact on female fertility of poly-ovulatory species. However, this needs to be validated in other poly-ovulatory species. To investigate the regulatory role of BMP15 on porcine female fertility, we generated a BMP15-knockdown pig model through somatic nuclear transfer technology. The BMP15-knockdown gilts showed markedly reduced fertility accompanied by phenotype of dysplastic ovaries containing significantly declined number of follicles, increased number of abnormal follicles, and abnormally enlarged antral follicles resulting in disordered ovulation, which is remarkably different from the unchanged fertility observed in BMP15 knockout mice. Molecular and transcriptome analysis revealed that the knockdown of BMP15 significantly affected both granulosa cells (GCs) and oocytes development, including suppression of cell proliferation, differentiation, and follicle stimulating hormone receptor (Fshr) expression, leading to premature luteinization and reduced estradiol (E2) production in GCs, and simultaneously decreased quality and meiotic maturation of oocyte. Our results provide in vivo evidence of the essential role of BMP15 in porcine ovarian and follicular development, and new insight into the complicated regulatory function of BMP15 in female fertility of poly-ovulatory species.
Collapse
Affiliation(s)
- Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiguo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoliang Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guanjie Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Brązert M, Kranc W, Celichowski P, Ożegowska K, Budna-Tukan J, Jeseta M, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B. Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach. Mol Med Rep 2019; 20:4403-4414. [PMID: 31702034 PMCID: PMC6797957 DOI: 10.3892/mmr.2019.10709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Under physiological conditions, human ovarian granulosa cells (GCs), are responsible for a number of processes associated with folliculogenesis and oogenesis. The primary functions of GCs in the individual phases of follicle growth are: Hormone production in response to follicle stimulating hormone (FSH), induction of ovarian follicle atresia through specific molecular markers and production of nexus cellular connections for communication with the oocyte. In recent years, interest in obtaining stem cells from particular tissues, including the ovary, has increased. Special attention has been paid to the novel properties of GCs during long‑term in vitro culture. It has been demonstrated that the usually recycled material in the form of follicular fluid can be a source of cells with stem‑like properties. The study group consisted of patients enrolled in the in vitro fertilization procedure. Total RNA was isolated from GCs at 4 time points (after 1, 7, 15 and 30 days of culture) and was used for microarray expression analysis (Affymetrix® Human HgU 219 Array). The expression of 22,480 transcripts was examined. The selection of significantly altered genes was based on a P‑value <0.05 and expression higher than two‑fold. The leucine rich repeat containing 17, collagen type I α1 chain, bone morphogenetic protein 4, twist family bHLH transcription factor 1, insulin like growth factor binding protein 5, GLI family zinc finger 2 and collagen triple helix repeat containing genes exhibited the highest changes in expression. Reverse‑transcription‑quantitative PCR was performed to validate the results obtained in the analysis of expression microarrays. The direction of expression changes was validated in the majority of cases. The presented results indicated that GCs have the potential of cells that can differentiate towards osteoblasts in long‑term in vitro culture conditions. Increased expression of genes associated with the osteogenesis process suggests a potential for uninduced change of GC properties towards the osteoblast phenotype. The present study, therefore, suggests that GCs may become an excellent starting material in obtaining stable osteoblast cultures. GCs differentiated towards osteoblasts may be used in regenerative and reconstructive medicine in the future.
Collapse
Affiliation(s)
- Maciej Brązert
- Department of Gynecology, Obstetrics and Gynecological Oncology, Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Katarzyna Ożegowska
- Department of Gynecology, Obstetrics and Gynecological Oncology, Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| | - Leszek Pawelczyk
- Department of Gynecology, Obstetrics and Gynecological Oncology, Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Małgorzata Bruska
- Department of Gynecology, Obstetrics and Gynecological Oncology, Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Maciej Zabel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
38
|
Yan YL, Batzel P, Titus T, Sydes J, Desvignes T, BreMiller R, Draper B, Postlethwait JH. A Hormone That Lost Its Receptor: Anti-Müllerian Hormone (AMH) in Zebrafish Gonad Development and Sex Determination. Genetics 2019; 213:529-553. [PMID: 31399485 PMCID: PMC6781894 DOI: 10.1534/genetics.119.302365] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fetal mammalian testes secrete Anti-Müllerian hormone (Amh), which inhibits female reproductive tract (Müllerian duct) development. Amh also derives from mature mammalian ovarian follicles, which marks oocyte reserve and characterizes polycystic ovarian syndrome. Zebrafish (Danio rerio) lacks Müllerian ducts and the Amh receptor gene amhr2 but, curiously, retains amh To discover the roles of Amh in the absence of Müllerian ducts and the ancestral receptor gene, we made amh null alleles in zebrafish. Results showed that normal amh prevents female-biased sex ratios. Adult male amh mutants had enormous testes, half of which contained immature oocytes, demonstrating that Amh regulates male germ cell accumulation and inhibits oocyte development or survival. Mutant males formed sperm ducts and some produced a few offspring. Young female mutants laid a few fertile eggs, so they also had functional sex ducts. Older amh mutants accumulated nonvitellogenic follicles in exceedingly large but sterile ovaries, showing that Amh helps control ovarian follicle maturation and proliferation. RNA-sequencing data partitioned juveniles at 21 days postfertilization (dpf) into two groups that each contained mutant and wild-type fish. Group21-1 upregulated ovary genes compared to Group21-2, which were likely developing as males. By 35 dpf, transcriptomes distinguished males from females and, within each sex, mutants from wild types. In adult mutants, ovaries greatly underexpressed granulosa and theca genes, and testes underexpressed Leydig cell genes. These results show that ancestral Amh functions included development of the gonadal soma in ovaries and testes and regulation of gamete proliferation and maturation. A major gap in our understanding is the identity of the gene encoding a zebrafish Amh receptor; we show here that the loss of amhr2 is associated with the breakpoint of a chromosome rearrangement shared among cyprinid fishes.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | | |
Collapse
|
39
|
Bertoldo MJ, Cheung MY, Sia ZK, Agapiou D, Corley SM, Wilkins MR, Richani D, Harrison CA, Gilchrist RB. Non-canonical cyclic AMP SMAD1/5/8 signalling in human granulosa cells. Mol Cell Endocrinol 2019; 490:37-46. [PMID: 30953749 DOI: 10.1016/j.mce.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/07/2019] [Accepted: 04/02/2019] [Indexed: 01/21/2023]
Abstract
Development of mammalian ovarian follicles is promoted by the combined action of endocrine cues and paracrine factors. Follicle stimulating hormone (FSH), through the action of cAMP drives follicular growth and development. The oocyte secretes powerful growth factors such as bone morphogenetic protein 15 (BMP15) to regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation through the activation of SMAD1/5/8. This study investigated the role of the cAMP signalling pathway on SMAD1/5/8 action in human granulosa cells. Cyclic AMP enhanced BMP15-induction of a SMAD1/5/8-specific BRE reporter. Moreover, in the absence of BMP ligand, cAMP also activated SMAD1/5/8-induced BRE activity. Cyclic AMP increased canonical downstream targets of BMP signalling such as inhibitor of differentiation (ID) mRNA expression. The observed effects were not mediated by secretion of BMPs as cAMP did not promote BMP ligand mRNA expression and a BMP extracellular antagonist, the BMP type II receptor ectodomain, did not affect cAMP-induced ID mRNA expression. Finally, the ERK1/2 pathway was shown to be required for the maintenance of cAMP-induced SMAD1/5/8 activity. Together our results suggest a novel and non-canonical pathway for cAMP signalling in human granulosa cells. Cyclic AMP appears to promote SMAD1/5/8 pathway activity intracellularly and has the ability to activate canonical SMAD1/5/8 downstream targets. Our results add another layer of complexity to the interactions between endocrine signalling and oocyte-secreted BMP ligands during folliculogenesis. Given the importance of both cAMP and SMAD1/5/8 pathways in follicular development, these interactions are likely required for the fine-tuning of oocyte paracrine signalling by endocrine stimuli.
Collapse
Affiliation(s)
- M J Bertoldo
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales Sydney, NSW, 2052, Australia.
| | - M Y Cheung
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales Sydney, NSW, 2052, Australia
| | - Z K Sia
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales Sydney, NSW, 2052, Australia
| | - D Agapiou
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales Sydney, NSW, 2052, Australia
| | - S M Corley
- School of Biotechnology and Biomolecular Science, NSW Systems Biology Initiative, University of New South Wales Sydney, NSW, 2052, Australia
| | - M R Wilkins
- School of Biotechnology and Biomolecular Science, NSW Systems Biology Initiative, University of New South Wales Sydney, NSW, 2052, Australia
| | - D Richani
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales Sydney, NSW, 2052, Australia
| | - C A Harrison
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - R B Gilchrist
- School of Women's and Children's Health, Fertility and Research Centre, University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
40
|
Kamalludin MH, Garcia-Guerra A, Wiltbank MC, Kirkpatrick BW. Trio, a novel high fecundity allele: I. Transcriptome analysis of granulosa cells from carriers and noncarriers of a major gene for bovine ovulation rate. Biol Reprod 2019; 98:323-334. [PMID: 29088317 DOI: 10.1093/biolre/iox133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
A major gene for bovine ovulation rate has been mapped to a 1.2 Mb region of chromosome 10. Screening of coding regions of positional candidate genes within this region failed to reveal a causative polymorphism, leading to the hypothesis that the phenotype results from differences in candidate gene expression rather than alteration of gene structure. This study tested differences in expression of positional candidate genes in granulosa cells between carriers and noncarriers of the high fecundity allele, as well as characterizing differences in the transcriptomic profile between genotypes. Five carriers and five noncarriers, female descendants of "Trio," a carrier of the high fecundity allele were initially used in an RNA-seq analysis of gene expression. Four of ten samples were contaminated with theca cells, so that six samples were used in the final analysis (three of each genotype). Of 14 973 genes expressed, 143 were differentially expressed (false discovery rate P < 0.05) in carriers versus noncarriers. Among the positional candidate genes, SMAD6 was 6.6-fold overexpressed in the carriers compared to noncarriers (P < 5 × 10-5). This result was replicated in an independent group of 12 females (7 carriers and 5 noncarriers) using quantitative real-time PCR; SMAD6 was 9.3-fold overexpressed in carriers versus noncarriers (P = 1.17 × 10-6). Association of overexpression of SMAD6, an inhibitor of the BMP/SMAD signaling pathway, with high ovulation rate corresponds well with disabling mutations in ligands (BMP15 and GDF9) and a receptor (BMPR1B) of this pathway that cause increased ovulation rate in sheep.
Collapse
Affiliation(s)
- Mamat H Kamalludin
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Alvaro Garcia-Guerra
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milo C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian W Kirkpatrick
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Gioacchini G, Marisaldi L, Basili D, Candelma M, Pignalosa P, Aiese Cigliano R, Sanseverino W, Hardiman G, Carnevali O. A de novo transcriptome assembly approach elucidates the dynamics of ovarian maturation in the swordfish (Xiphias gladius). Sci Rep 2019; 9:7375. [PMID: 31089194 PMCID: PMC6517582 DOI: 10.1038/s41598-019-43872-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
The Mediterranean swordfish (Xiphias gladius) has been recently classified as overfished and in 2016, the International Commission for the Conservation of the Atlantic Tunas (ICCAT) established a multi-annual management plan to recover this stock. To successfully achieve this goal, knowledge about swordfish biology is needed. To date, few studies on swordfish have been performed and none of them has provided useful insights into the reproductive biology at molecular level. Here we set to characterise the molecular dynamics underlying ovarian maturation by employing a de novo transcriptome assembly approach. Differential gene expression analysis in mature and immature ovaries identified a number of differentially expressed genes associated with biological processes driving ovarian maturation. Focusing on ovarian steroidogenesis and vitellogenin uptake, we depict the molecular dynamics characterizing these processes while a phylogenetic analysis let us identify a candidate vitellogenin receptor. This is the first swordfish transcriptome assembly and these findings provide in-depth understanding of molecular processes describing ovarian maturation. Moreover, the establishment of a publicly available database containing information on the swordfish transcriptome aims to boost research on this species with the long-term of developing more comprehensive and successful stock management plans.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Luca Marisaldi
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Danilo Basili
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Michela Candelma
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | | | | | | | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, BT9 5AG, Belfast, UK
| | - Oliana Carnevali
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy.
| |
Collapse
|
42
|
Shimizu K, Nakamura T, Bayasula, Nakanishi N, Kasahara Y, Nagai T, Murase T, Osuka S, Goto M, Iwase A, Kikkawa F. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells. J Assist Reprod Genet 2019; 36:1185-1194. [PMID: 31079267 DOI: 10.1007/s10815-019-01469-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/28/2019] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Follicle-stimulating hormone receptor (FSHR) expression in granulosa cells is critical in enabling follicles to achieve accelerated growth. Although FSHR expression has been reported to be epigenetically regulated, the mechanism is unclear. Cooperation between oocytes and granulosa cells is also essential for normal follicular growth. Among oocyte-derived factors, bone morphogenetic protein 15 (BMP15) promotes follicular growth and is suggested to have epigenetic effects. We examined the role of BMP15 in the acquirement of FSHR in human granulosa cells. METHODS Immortalized non-luteinized human granulosa (HGrC1) cells were stimulated with trichostatin A (TSA) or BMP15 to analyze FSHR expression, histone modifications, and USF1/2 binding at the FSHR promoter region. Histone acetyl transferase (HAT) activity and phosphorylation of Smad 1/5/8 and p38 MAPK were examined with or without BMP15, SB203580, and LDN193189. CYP19A1 expression and estradiol production were also studied. RESULTS TSA and BMP15 induced FSHR mRNA expression in a dose-dependent manner and histone modifications were observed with increased binding of USF1/2. BMP15 increased FSHR protein expression, which was suppressed by LDN193189. BMP15 increased phosphorylation of Smad 1/5/8 and significantly increased HAT activity, which was inhibited by LDN193189, but not by SB203580. BMP15 increased phosphorylation of p38 MAPK and USF1. LDN193189 suppressed BMP15-induced phosphorylation of both p38 MAPK and USF1, whereas SB203580 suppressed the phosphorylation of USF1. BMP15 increased CYP19A1 mRNA expression and estradiol production. CONCLUSION BMP15 induced FSHR expression in human granulosa cells through Smad and non-Smad pathways. This mechanism of FSHR induction by BMP15 may be utilized for controlling follicular growth.
Collapse
Affiliation(s)
- Ken Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Bayasula
- Bell Research Center for Reproductive Health and Cancer; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Nagai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, 371-8511, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
43
|
Hobeika E, Armouti M, Kala H, Fierro MA, Winston NJ, Scoccia B, Zamah AM, Stocco C. Oocyte-Secreted Factors Synergize With FSH to Promote Aromatase Expression in Primary Human Cumulus Cells. J Clin Endocrinol Metab 2019; 104:1667-1676. [PMID: 30541132 PMCID: PMC6441017 DOI: 10.1210/jc.2018-01705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
CONTEXT The role of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) on aromatase regulation is poorly understood in humans. OBJECTIVE Determine GDF9 and BMP15 effects on FSH stimulation of estradiol production in primary human cumulus granulosa cells (GCs). We hypothesized that the combination of GDF9 and BMP15 potentiates FSH-induced aromatase expression. DESIGN Primary human cumulus GCs in culture. SETTING University infertility center. PATIENTS OR OTHER PARTICIPANTS GCs of 60 women undergoing in vitro fertilization were collected. INTERVENTIONS Cells were treated with GDF9 and/or BMP15 (GB) in the presence or absence of FSH, dibutyryl cAMP, or SMAD inhibitors. MAIN OUTCOME MEASURES Promoter activity, mRNA, protein, and estradiol levels were quantified. RESULTS FSH and GB treatment increased CYP19A1 promoter activity, mRNA, and protein levels as well as estradiol when compared with cells treated with FSH only. GB treatment potentiated cAMP stimulation of aromatase and IGF2 stimulation by FSH. GB effects were inhibited by SMAD3 inhibitors and IGF1 receptor inhibitors. GB, but not FSH, stimulates SMAD3 phosphorylation. CONCLUSION The combination of GDF9 and BMP15 potently stimulates the effect of FSH and cAMP on CYP19a1 promoter activity and mRNA/protein levels. These effects translate into an increase in estradiol production. This potentiation seems to occur through activation of the SMAD2/3 and SMAD3 signaling pathway and involves, at least in part, the effect of the IGF system.
Collapse
Affiliation(s)
- Elie Hobeika
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Marah Armouti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Hamsini Kala
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Michele A Fierro
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Nicola J Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Bert Scoccia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Alberuni M Zamah
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
- Correspondence and Reprint Requests: Carlos Stocco, PhD, Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 60612. E-mail:
| |
Collapse
|
44
|
Zhang Z, Liu Q, Di R, Hu W, Wang X, He X, Ma L, Chu M. Single nucleotide polymorphisms in BMP2 and BMP7 and the association with litter size in Small Tail Han sheep. Anim Reprod Sci 2019; 204:183-192. [PMID: 30962038 DOI: 10.1016/j.anireprosci.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022]
Abstract
Although it has been investigated for many years, the physiological processes regulating prolificacy in sheep remains unclear because of regulation by many genes. To better understand the effects of three single nucleotide polymorphisms (SNPs) comprising g.48462350C>T in BMP2, g.58171856C>G and g.58171886A>C in BMP7, a population genetic analysis was conducted using data obtained from genotyping in 768 sheep from six breeds (three polytocous and three monotocous). The results indicate that all the sheep breeds were considered to conform to the Hardy-Weinberg equilibrium (P > 0.05). The associations of these three SNPs with litter size in 384 Small Tail Han sheep were analyzed, therefore, and found to be correlated with fecundity as assessed by mean litter size (P < 0.05). Bioinformatic analysis indicated there was a transmembrane domain change that occurred after a mutation in BMP2 at g.48462350C>T, and changes involving transcription factors such as USF1, USF2 and INMS1 in the BMP7 promoter region might be involved in greater sheep prolificacy.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Wenping Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lin Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
45
|
Yadav H, Lal B. Cellular localization and seasonal variation in BMP15 expression in ovary of the catfish Clarias batrachus and its role in ovarian steroidogenesis. Theriogenology 2019; 129:14-22. [DOI: 10.1016/j.theriogenology.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
46
|
Jones ASK, Shikanov A. Follicle development as an orchestrated signaling network in a 3D organoid. J Biol Eng 2019; 13:2. [PMID: 30647770 PMCID: PMC6327556 DOI: 10.1186/s13036-018-0134-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/13/2018] [Indexed: 02/12/2023] Open
Abstract
The ovarian follicle is the structural and functional unit of the ovary, composed of the female gamete (the oocyte) and supportive somatic cells. Follicles are not only the source of a female's germ cell supply, but also secrete important hormones necessary for proper endocrine function. Folliculogenesis, the growth and maturation of the follicular unit, is a complex process governed by both intrafollicular crosstalk and pituitary-secreted hormones. While the later stages of this process are gonadotropin-dependent, early folliculogenesis appears to be controlled by the ovarian microenvironment and intrafollicular paracrine and autocrine signaling. In vitro follicle culture remains challenging because of the limited knowledge of growth factors and other cytokines influencing early follicle growth. Here we discuss the current state of knowledge on paracrine and autocrine signaling influencing primary follicles as they develop into the antral stage. Given the importance of intrafollicular signaling and the ovarian microenvironment, we reviewed the current engineering approaches for in vitro follicle culture, including 3D systems using natural hydrogels such as alginate and synthetic hydrogels such as poly(ethylene glycol). Our discussion is focused on what drives the proliferation of granulosa cells, development of the thecal layer, and antrum formation-three processes integral to follicle growth up to the antral stage. Further research in this area may reveal the mechanisms behind these complex signaling relationships within the follicle, leading to more successful and physiologically-relevant in vitro culture methods that will translate well to clinical applications.
Collapse
Affiliation(s)
- Andrea S. K. Jones
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
47
|
Zhang X, Ji M, Tan X, Yu K, Liu X, Li N, Yu Z. Impairment of ovaries by 2,3,7,8-tetrachlorobenzo-p-dioxin (TCDD) exposure in utero associated with BMP15 and GDF9 in the female offspring rat. Toxicology 2018; 410:16-25. [PMID: 30172648 DOI: 10.1016/j.tox.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
2,3,7,8-Tetrachlorobenzo-p-dioxin (TCDD) exposure in utero had been shown to affect ovarian development and functions. However, its mechanism remained unknown. In this study, to investigate the effect of maternal exposure to TCDD on ovaries, the pregnant Sprague Dawley (SD) rats were treated with TCDD (100 ng/kg or 500 ng/kg) or only vehicle and corn oil on the day 8-14 of gestation through the gavage with a stainless-steel feeding needle (once a day). The vaginal opening and estrous cycle of female offspring rats (F1) were monitored twice a day. The ovarian histology, follicle counts, real-time PCR, western blotting and DNA methylation analysis about Gdf9 and Bmp15 were carried out in F1 rats. The results showed that exposure to TCDD (especially the dose of 500 ng/kg) in utero on GD8-14 might change the ovary weight, the concentration of E2 and FSH, the estrous cycles and the numbers of primordial and secondary follicles of the offspring rats. In addition, the mRNA and protein expression of GDF9 and BMP15 was down-regulated, while the methylation patterns of Gdf9 and Bmp15 were not affected. In conclusion, maternal exposure to TCDD could affect the ovary development and functions which were possibly associated with down-regulation of mRNA and protein expression of GDF9 and BMP15. However, the down-regulation was not related to the pattern of methylation of Gdf9 and Bmp15.
Collapse
Affiliation(s)
- Xiuli Zhang
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China; The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe East Road, Zhengzhou, 450052, China
| | - Mengmeng Ji
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xuemei Tan
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Kailun Yu
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xiaozhuan Liu
- Henan Provincial Peoples Hospital, No. 7 of Weiwu Road, Zhengzhou, 450001, China
| | - Ning Li
- Henan Agricultural University, No. 63 of Agricultural Road, Zhengzhou, 450002, China
| | - Zengli Yu
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China.
| |
Collapse
|
48
|
Yao Y, Niu J, Sizhu S, Li B, Chen Y, Li R, Yangzong Q, Li Q, Xu Y. microRNA-125b Regulates Apoptosis by Targeting Bone Morphogenetic Protein Receptor 1B in Yak Granulosa Cells. DNA Cell Biol 2018; 37:878-887. [PMID: 30260685 DOI: 10.1089/dna.2018.4354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The intronic microRNA, miR-125b, plays a vital role in promyelocytic and hematopoietic stem cells, and in the development and apoptosis of cancer cells. In this study, we showed that miR-125b regulates granulosa cell (GC) apoptosis in the yak ovary. Bioinformatic analyses and luciferase reporter assays demonstrated that bone morphogenetic protein receptor type 1B (BMPR1B) is an miR-125b target. miR-125b overexpression induced apoptosis in yak GC, and affected the mRNA and protein expression of BMPR1B and the ratio of Bcl2/Bax. Silencing of miR-125b decreased the rate of yak GC apoptosis and increased the ratio of Bcl2/Bax. In addition, the effects of an miR-125b inhibitor were overturned by cotransfection with siRNA-BMPR1B2 (siRNA-299) in yak GC. Together, these results demonstrated that miR-125b regulates GC apoptosis in the yak ovary by targeting BMPR1B.
Collapse
Affiliation(s)
- Yilong Yao
- 1 Department of Animal Science, Tibet Agricultural and Animal Husbandry College , Nyingzhi, Tibet, P.R. China .,2 Department of Animal Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, P.R. China
| | - Jiaqiang Niu
- 1 Department of Animal Science, Tibet Agricultural and Animal Husbandry College , Nyingzhi, Tibet, P.R. China
| | - Suolang Sizhu
- 1 Department of Animal Science, Tibet Agricultural and Animal Husbandry College , Nyingzhi, Tibet, P.R. China
| | - Bojiang Li
- 2 Department of Animal Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, P.R. China
| | - Yun Chen
- 2 Department of Animal Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, P.R. China
| | - Rongyang Li
- 2 Department of Animal Science and Technology, Nanjing Agricultural University , Nanjing, Jiangsu, P.R. China
| | - Qiangba Yangzong
- 1 Department of Animal Science, Tibet Agricultural and Animal Husbandry College , Nyingzhi, Tibet, P.R. China
| | - Qifa Li
- 1 Department of Animal Science, Tibet Agricultural and Animal Husbandry College , Nyingzhi, Tibet, P.R. China
| | - Yefen Xu
- 1 Department of Animal Science, Tibet Agricultural and Animal Husbandry College , Nyingzhi, Tibet, P.R. China
| |
Collapse
|
49
|
BMP15 regulates AMH expression via the p38 MAPK pathway in granulosa cells from goat. Theriogenology 2018; 118:72-79. [DOI: 10.1016/j.theriogenology.2018.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022]
|
50
|
Roy S, Gandra D, Seger C, Biswas A, Kushnir VA, Gleicher N, Kumar TR, Sen A. Oocyte-Derived Factors (GDF9 and BMP15) and FSH Regulate AMH Expression Via Modulation of H3K27AC in Granulosa Cells. Endocrinology 2018; 159:3433-3445. [PMID: 30060157 PMCID: PMC6112599 DOI: 10.1210/en.2018-00609] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Anti-Müllerian hormone (AMH) produced by ovarian granulosa cells (GCs) plays a crucial role in ovarian function. It is used as a diagnostic and/or prognostic marker of fertility as well as for pathophysiological conditions in women. In this study, we investigated the underlying mechanism for regulation of AMH expression in GCs using primary mouse GCs and a human GC tumor-derived KGN cell line. We find that growth differentiation factor 9 (GDF9) and bone morphogenetic factor 15 (BMP15) together (GDF9 + BMP15), but not when tested separately, significantly induce AMH expression in vitro and in vivo (serum AMH). Our results show that GDF9 + BMP15 through the PI3K/Akt and Smad2/3 pathways synergistically recruit the coactivator p300 on the AMH promoter region that promotes acetylation of histone 3 lysine 27 (H3K27ac), facilitating AMH/Amh expression. Intriguingly, we also find that FSH inhibits GDF9 + BMP15-induced increase of AMH/Amh expression. This inhibition occurs through FSH-induced protein kinase A/SF1-mediated expression of gonadotropin inducible ovarian transcription factor 1, a transcriptional repressor, that recruits histone deacetylase 2 to deacetylate H3K27ac, resulting in the suppression of AMH/Amh expression. Furthermore, we report that ovarian Amh mRNA levels are significantly higher in Fshβ-null mice (Fshβ-/-) compared with those in wild-type (WT) mice. In addition, ovarian Amh mRNA levels are restored in Fshβ-null mice expressing a human WT FSHβ transgene (FSHβ-/-hFSHβWT). Our study provides a mechanistic insight into the regulation of AMH expression that has many implications in female reproduction/fertility.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Divya Gandra
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Christina Seger
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Anindita Biswas
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | | | - Norbert Gleicher
- Center for Human Reproduction, New York, New York
- Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University, New York, New York
- Department of Obstetrics and Gynecology, Vienna University of Medicine, Vienna, Austria
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz, Denver, Colorado
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| |
Collapse
|