1
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
2
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
3
|
Chatterjee S, Salimi A, Lee JY. Unraveling the Histidine Tautomerism Effect on the Initial Stages of Prion Misfolding: New Insights from a Computational Perspective. ACS Chem Neurosci 2021; 12:3203-3213. [PMID: 34382391 DOI: 10.1021/acschemneuro.1c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aggregation and structural conversion of normal prion peptide (PrPC) into the pathogenic scrapie form (PrPSc), which can act as a seed to enhance prion amyloid fiber formation, is believed to be a crucial event in prionopathies. Previous research suggests that the prion monomer may play an important role in oligomer generation during disease pathogenesis. In the present study, extensive replica-exchange molecular dynamics (REMD) simulations were conducted to explore the conformational characteristics of the huPrP (125-160) monomer under the histidine tautomerism effect. Investigating the structural characteristics and fibrilization process is challenging because two histidine tautomers [Nε2-H (ε) and Nδ1-H (δ)] can occur in the open neutral state. Molecular dynamics (MD) simulation outcomes have shown that the toxic εδ and δδ isomer (containing several and broader local minima) had the highest α-helix structures, with contents of 21.11% and 21.01%, respectively, and may have a strong influence on the organizational behavior of a monomeric prion. The amino acids aspartate 20 (D20)-asparagine 29 (N29) and isoleucine 15 (I15)-histidine 16 (H16), D20-arginine 27 (R27) as well as N29 formed α-helix with the highest probabilities in the δδ and εδ isomer, accordingly. On the basis of our findings, we propose the histidine tautomerization hypothesis as a new prion accumulation mechanism, which may exist to induce the formation of prion accumulates. Overall, our tautomerism hypothesis constitutes a promising perspective for enhancing understanding of prion disease pathobiology and may help in the design of a good inhibitor.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
4
|
Lee KH, Kuczera K. Free energy simulations to understand the effect of Met → Ala mutations at positions 205, 206 and 213 on stability of human prion protein. Biophys Chem 2021; 275:106620. [PMID: 34058726 DOI: 10.1016/j.bpc.2021.106620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023]
Abstract
Prion diseases are a family of infectious amyloid diseases affecting human and animals. Prion propagation in transmissible spongiform encephalopathies is associated with the unfolding and conversion of normal cellular prion protein into its pathogenic scrapie form. Understanding the fundamentals of prion protein aggregation caused by mutations is crucial to unravel the pathology of prion diseases. To help understand the contributions of individual residues to the stability of the human prion protein, we have carried out free energy simulations based on atomistic molecular dynamics trajectories. We focus on Met → Ala mutations at positions 205, 206 and 213, which are mostly buried residues located on helix 3 of the protein. The simulations predicted that all three mutations destabilize the prion protein. Changes in unfolding free energy upon mutation, ∆∆G, are 3.10 ± 0.79, 2.00 ± 0.26 and 3.06 ± 0.66 kcal/mol for M205A, M206A and M213A, respectively, in excellent agreement with the corresponding experimental values of 3.09 ± 0.28, 1.50 ± 0.34 and 3.12 ± 0.27 kcal/mol [T. Hart et al. (2009) PNAS 106, 5651-5656]. Component analysis indicates that the major contributions to the loss of protein stability arise from van der Waals interactions for the M205A and M206A mutations, and from van der Waals and covalent energy terms for M213A. Interestingly, while free energy contributions from a majority of residues neighboring the mutation sites tend to stabilize the wild type, there are a few residues stabilizing the mutant side chains. Our results show that this approach to free energy calculation can be very useful for understanding the detailed mechanism of human prion protein stability.
Collapse
Affiliation(s)
- Kyung-Hoon Lee
- Department of Biology, Chowan University, One University Drive, Murfreesboro, NC 27855, United States of America.
| | - Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, United States of America
| |
Collapse
|
5
|
Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proc Natl Acad Sci U S A 2021; 118:2019631118. [PMID: 33731477 PMCID: PMC7999870 DOI: 10.1073/pnas.2019631118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The misfolding and aggregation of the human prion protein (PrP) is associated with transmissible spongiform encephalopathies (TSEs). Intermediate conformations forming during the conversion of the cellular form of PrP into its pathological scrapie conformation are key drivers of the misfolding process. Here, we analyzed the properties of the C-terminal domain of the human PrP (huPrP) and its T183A variant, which is associated with familial forms of TSEs. We show that the mutation significantly enhances the aggregation propensity of huPrP, such as to uniquely induce amyloid formation under physiological conditions by the sole C-terminal domain of the protein. Using NMR spectroscopy, biophysics, and metadynamics simulations, we identified the structural characteristics of the misfolded intermediate promoting the aggregation of T183A huPrP and the nature of the interactions that prevent this species to be populated in the wild-type protein. In support of these conclusions, POM antibodies targeting the regions that promote PrP misfolding were shown to potently suppress the aggregation of this amyloidogenic mutant.
Collapse
|
6
|
Zhang M, Zhang H, Yao H, Guo C, Lin D. Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1223-1232. [PMID: 31735962 DOI: 10.1093/abbs/gmz124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/14/2022] Open
Abstract
The pathogenesis of fatal neurodegenerative prion diseases is closely associated with the conversion of α-helix-rich cellular prion protein into β-sheet-rich scrapie form. Pathogenic point mutations of prion proteins usually promote the conformational conversion and trigger inherited prion diseases. The G131V mutation of human prion protein (HuPrP) was identified to be involved in Gerstmann-Sträussler-Scheinker syndrome. Few studies have been carried out to address the pathogenesis of the G131V mutant. Here, we addressed the effects of the G131V mutation on oligomerization and fibrillization of the full-length HuPrP(23-231) and truncated HuPrP(91-231) proteins. The G131V mutation promotes the oligomerization but alleviates the fibrillization of HuPrP, implying that the oligomerization might play a crucial role in the pathogenic mechanisms of the G131V mutant. Moreover, the flexible N-terminal fragment in either the wild-type or the G131V mutant HuPrP increases the oligomerization tendencies but decreases the fibrillization tendencies. Furthermore, this mutation significantly alters the tertiary structure of human PrPC and might distinctly change the conformational conversion tendency. Interestingly, both guanidine hydrochloride denaturation and thermal denaturation experiments showed that the G131V mutation does not significantly change the thermodynamic stabilities of the HuPrP proteins. This work may be of benefit to a mechanistic understanding of the conformational conversion of prion proteins and also provide clues for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2019; 59:114-124. [DOI: 10.1021/acs.biochem.9b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| |
Collapse
|
8
|
Chandrasekaran P, Santosh Kumar C, Rangachari K, Sekar K. Disassociation of β1-α1-β2 from the α2-α3 domain of prion protein (PrP) is a prerequisite for the conformational conversion of PrPC into PrPSc: Driven by the free energy landscape. Int J Biol Macromol 2019; 136:368-376. [DOI: 10.1016/j.ijbiomac.2019.06.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
|
9
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018; 54:6230-6242. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always β-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the β-sheet rich core of the aggregates formed in vitro, to lie in the α2-α3 subdomain of the prion protein, albeit with local stabilities that vary with the type of aggregate. This feature article describes recent advances in the investigation of in vitro prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded intermediates and final aggregates.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | | |
Collapse
|
11
|
Abskharon R, Dang J, Elfarash A, Wang Z, Shen P, Zou LS, Hassan S, Wang F, Fujioka H, Steyaert J, Mulaj M, Surewicz WK, Castilla J, Wohlkonig A, Zou WQ. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors. Microb Cell Fact 2017; 16:170. [PMID: 28978309 PMCID: PMC5628483 DOI: 10.1186/s12934-017-0782-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background The infectious prion protein (PrPSc or prion) is derived from its cellular form (PrPC) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrPC to PrPSc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrPC (BVPrP) is highly susceptible to PrPSc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. Results To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Conclusions Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.
Collapse
Affiliation(s)
- Romany Abskharon
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium.,National Institute of Oceanography and Fisheries (NIFO), Cairo, 11516, Egypt.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Johnny Dang
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ameer Elfarash
- Genetic Department, Faculty of Agriculture, Assiut University, Assuit, 71516, Egypt
| | - Zerui Wang
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Pingping Shen
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Lewis S Zou
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sedky Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, El-Kharja, 72511, Egypt
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jan Steyaert
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Mentor Mulaj
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain
| | - Alexandre Wohlkonig
- VIB Center for Structural Biology, VIB, 1050, Brussels, Belgium. .,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium.
| | - Wen-Quan Zou
- Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China. .,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Sengupta I, Bhate SH, Das R, Udgaonkar JB. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR. J Mol Biol 2017; 429:1852-1872. [DOI: 10.1016/j.jmb.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
|
13
|
Malevanets A, Chong PA, Hansen DF, Rizk P, Sun Y, Lin H, Muhandiram R, Chakrabartty A, Kay LE, Forman-Kay JD, Wodak SJ. Interplay of buried histidine protonation and protein stability in prion misfolding. Sci Rep 2017; 7:882. [PMID: 28408762 PMCID: PMC5429843 DOI: 10.1038/s41598-017-00954-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/20/2017] [Indexed: 12/03/2022] Open
Abstract
Misofolding of mammalian prion proteins (PrP) is believed to be the cause of a group of rare and fatal neurodegenerative diseases. Despite intense scrutiny however, the mechanism of the misfolding reaction remains unclear. We perform nuclear Magnetic Resonance and thermodynamic stability measurements on the C-terminal domains (residues 90–231) of two PrP variants exhibiting different pH-induced susceptibilities to aggregation: the susceptible hamster prion (GHaPrP) and its less susceptible rabbit homolog (RaPrP). The pKa of histidines in these domains are determined from titration experiments, and proton-exchange rates are measured at pH 5 and pH 7. A single buried highly conserved histidine, H187/H186 in GHaPrP/RaPrP, exhibited a markedly down shifted pKa ~5 for both proteins. However, noticeably larger pH-induced shifts in exchange rates occur for GHaPrP versus RaPrP. Analysis of the data indicates that protonation of the buried histidine destabilizes both PrP variants, but produces a more drastic effect in the less stable GHaPrP. This interpretation is supported by urea denaturation experiments performed on both PrP variants at neutral and low pH, and correlates with the difference in disease susceptibility of the two species, as expected from the documented linkage between destabilization of the folded state and formation of misfolded and aggregated species.
Collapse
Affiliation(s)
- Anatoly Malevanets
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada
| | - P Andrew Chong
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - D Flemming Hansen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,University College London, Division of Biosciences, London, WC1E 6BT, UK
| | - Paul Rizk
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yulong Sun
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Hong Lin
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada
| | - Ranjith Muhandiram
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Lewis E Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Julie D Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Shoshana J Wodak
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,VIB Structural Biology Research Center, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
14
|
Understanding the Effect of Disease-Related Mutations on Human Prion Protein Structure: Insights From NMR Spectroscopy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:83-103. [DOI: 10.1016/bs.pmbts.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Yu Y, Yu Z, Zheng Z, Wang H, Wu X, Guo C, Lin D. Distinct effects of mutations on biophysical properties of human prion protein monomers and oligomers. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1016-1025. [PMID: 27649893 DOI: 10.1093/abbs/gmw094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 02/05/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative illnesses, resulting from the conformational conversion of the cellular prion protein (PrPC) into a misfolded form (PrPSc). The formation of neurotoxic soluble prion protein oligomer (PrPO) is regarded as a key step in the development of prion diseases. About 10%-15% of human prion diseases are caused by mutations in the prion protein gene; however, the underlying molecular mechanisms remain unclear. In the present work, we compared the biophysical properties of wild-type (WT) human prion protein 91-231 (WT HuPrP91-231) and its disease-associated variants (P105L, D178N, V203I, and Q212P) using several biophysical techniques. In comparison with WT HuPrPC, the Q212P and D178N variants possessed greatly increased conversion propensities of PrPC into PrPO, while the V203I variant had dramatically decreased conversion propensity. The P105L variant displayed a similar conversion propensity to WT HuPrPC Guanidine hydrochloride-induced unfolding experiments ranked the thermodynamic stabilities of these proteins as Q212P < D178N < WT ≈ P105L < V203I. It was thus suggested that the conversion propensities of the prion proteins are closely associated with their thermodynamic stabilities. Furthermore, structural comparison illustrated that Q212P, D178N, and V203I variants underwent larger structural changes compared with WT HuPrPC, while the P105L variant adopted a similar structure to the WT HuPrPC The mutation-induced structural perturbations might change the thermodynamic stabilities of the HuPrPC variants, and correspondingly alter the conversion propensities for these prion proteins. Our results extend the mechanistic understanding of prion pathogenesis, and lay the basis for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Yuanhui Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziyao Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Zheng
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xueji Wu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015; 54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, make up a group of fatal neurodegenerative disorders linked with the misfolding and aggregation of the prion protein (PrP). Although it is not yet understood how the misfolding of PrP induces neurodegeneration, it is widely accepted that the formation of misfolded prion protein (termed PrP(Sc)) is both the triggering event in the disease and the main component of the infectious agent responsible for disease transmission. Despite the clear involvement of PrP(Sc) in prion diseases, the exact composition of PrP(Sc) is not yet well-known. Recent studies show that misfolded oligomers of PrP could, however, be responsible for neurotoxicity and/or infectivity in the prion diseases. Hence, understanding the molecular mechanism of formation of the misfolded oligomers of PrP is critical for developing an understanding about the prion diseases and for developing anti-prion therapeutics. This review discusses recent advances in understanding the molecular mechanism of misfolded oligomer formation by PrP and its implications for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
17
|
Singh J, Udgaonkar JB. Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Singh J, Udgaonkar JB. Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angew Chem Int Ed Engl 2015; 54:7529-33. [DOI: 10.1002/anie.201501011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/17/2015] [Indexed: 12/17/2022]
|
19
|
Cheng CJ, Daggett V. Different misfolding mechanisms converge on common conformational changes: human prion protein pathogenic mutants Y218N and E196K. Prion 2015; 8:125-35. [PMID: 24509603 DOI: 10.4161/pri.27807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prion diseases are caused by misfolding and aggregation of the prion protein (PrP). Pathogenic mutations such as Y218N and E196K are known to cause Gerstmann-Sträussler-Scheinker syndrome and Creutzfeldt-Jakob disease, respectively. Here we describe molecular dynamics simulations of these mutant proteins to better characterize the detailed conformational effects of these sequence substitutions. Our results indicate that the mutations disrupt the wild-type native PrP(C) structure and cause misfolding. Y218N reduced hydrophobic packing around the X-loop (residues 165-171), and E196K abolished an important wild-type salt bridge. While differences in the mutation site led PrP mutants to misfold along different pathways, we observed multiple traits of misfolding that were common to both mutants. Common traits of misfolding included: 1) detachment of the short helix (HA) from the PrP core; 2) exposure of side chain F198; and 3) formation of a nonnative strand at the N-terminus. The effect of the E196K mutation directly abolished the wild-type salt bridge E196-R156, which further destabilized the F198 hydrophobic pocket and HA. The Y218N mutation propagated its effect by increasing the HB-HC interhelical angle, which in turn disrupted the packing around F198. Furthermore, a nonnative contact formed between E221 and S132 on the S1-HA loop, which offered a direct mechanism for disrupting the hydrophobic packing between the S1-HA loop and HC. While there were common misfolding features shared between Y218N and E196K, the differences in the orientation of HB and HC and the X-loop conformation might provide a structural basis for identifying different prion strains.
Collapse
|
20
|
Doss CGP, Rajith B, Rajasekaran R, Srajan J, Nagasundaram N, Debajyoti C. In silico analysis of prion protein mutants: a comparative study by molecular dynamics approach. Cell Biochem Biophys 2014; 67:1307-18. [PMID: 23723004 DOI: 10.1007/s12013-013-9663-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polymorphisms in the human prion proteins lead to amino acid substitutions by the conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker disease and fatal familial insomnia. Cation-π interaction is a non-covalent binding force that plays a significant role in protein stability. Here, we employ a novel approach by combining various in silico tools along with molecular dynamics simulation to provide structural and functional insight into the effect of mutation on the stability and activity of mutant prion proteins. We have investigated impressions of prevalent mutations including 1E1S, 1E1P, 1E1U, 1E1P, 1FKC and 2K1D on the human prion proteins and compared them with wild type. Structural analyses of the models were performed with the aid of molecular dynamics simulation methods. According to our results, frequently occurred mutations were observed in conserved sequences of human prion proteins and the most fluctuation values appear in the 2K1D mutant model at around helix 4 with residues ranging from 190 to 194. Our observations in this study could help to further understand the structural stability of prion proteins.
Collapse
Affiliation(s)
- C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India,
| | | | | | | | | | | |
Collapse
|
21
|
Cheng CJ, Daggett V. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 2014; 4:181-201. [PMID: 24970211 PMCID: PMC4030982 DOI: 10.3390/biom4010181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 12/24/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process.
Collapse
Affiliation(s)
- Chin Jung Cheng
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| |
Collapse
|
22
|
Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease-sensitive prion species with increased lethality. J Virol 2013; 88:2690-703. [PMID: 24352465 DOI: 10.1128/jvi.02720-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrP(C) share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrP(Sc) are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrP(Sc), giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. IMPORTANCE Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that the mutants make highly infectious prions that are more sensitive to protease treatment. This study highlights a certain region of the prion protein as being involved in this effect and demonstrates that prions are not always resistant to protease treatment.
Collapse
|
23
|
Visual detection of prion protein based on color complementarity principle. Biosens Bioelectron 2013; 50:14-8. [DOI: 10.1016/j.bios.2013.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 11/23/2022]
|
24
|
Dutta A, Chen S, Surewicz WK. The effect of β2-α2 loop mutation on amyloidogenic properties of the prion protein. FEBS Lett 2013; 587:2918-23. [PMID: 23892077 DOI: 10.1016/j.febslet.2013.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Recent studies revealed that elk-like S170N/N174T mutation in mouse prion protein (moPrP), which results in an increased rigidity of β2-α2 loop, leads to a prion disease in transgenic mice. Here we characterized the effect of this mutation on biophysical properties of moPrP. Despite similar thermodynamic stabilities of wild type and mutant proteins, the latter was found to have markedly higher propensity to form amyloid fibrils. Importantly, this effect was observed even under fully denaturing conditions, indicating that the increased conversion propensity of the mutant protein is not due to loop rigidity but rather results from greater amyloidogenic potential of the amino acid sequence within the loop region of S170N/N174T moPrP.
Collapse
Affiliation(s)
- Arpana Dutta
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
25
|
Kong Q, Mills JL, Kundu B, Li X, Qing L, Surewicz K, Cali I, Huang S, Zheng M, Swietnicki W, Sönnichsen FD, Gambetti P, Surewicz WK. Thermodynamic stabilization of the folded domain of prion protein inhibits prion infection in vivo. Cell Rep 2013; 4:248-54. [PMID: 23871665 DOI: 10.1016/j.celrep.2013.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/29/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are associated with the conformational conversion of the cellular prion protein, PrP(C), into a protease-resistant form, PrP(Sc). Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrP(C) has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrP(C)→PrP(Sc) conformational transition, and they suggest an approach to the treatment of prion diseases.
Collapse
Affiliation(s)
- Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Larda ST, Simonetti K, Al-Abdul-Wahid MS, Sharpe S, Prosser RS. Dynamic Equilibria between Monomeric and Oligomeric Misfolded States of the Mammalian Prion Protein Measured by 19F NMR. J Am Chem Soc 2013; 135:10533-41. [DOI: 10.1021/ja404584s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sacha Thierry Larda
- Department of Chemistry, University of Toronto, Toronto, Ontario,
Canada M5S 3H6
| | - Karen Simonetti
- Molecular
Structure and Function
Program, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | - Simon Sharpe
- Molecular
Structure and Function
Program, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, University of Toronto, Toronto, Ontario,
Canada M5S 1A8
| | - R. Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario,
Canada M5S 3H6
- Department of Biochemistry, University of Toronto, Toronto, Ontario,
Canada M5S 1A8
| |
Collapse
|
27
|
Kyle LM, John TR, Schätzl HM, Lewis RV. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro. PLoS One 2013; 8:e66715. [PMID: 23825561 PMCID: PMC3692500 DOI: 10.1371/journal.pone.0066715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids.
Collapse
Affiliation(s)
- Leah M Kyle
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | | | | | | |
Collapse
|
28
|
Jetha NN, Semenchenko V, Wishart DS, Cashman NR, Marziali A. Nanopore analysis of wild-type and mutant prion protein (PrP(C)): single molecule discrimination and PrP(C) kinetics. PLoS One 2013; 8:e54982. [PMID: 23393562 PMCID: PMC3564863 DOI: 10.1371/journal.pone.0054982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrP(C)) in the central nervous system into the infectious isoform (PrP(Sc)). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrP(Sc). A number of pathogenic PrP(C) mutants exist that are characterized by an increased propensity for conversion into PrP(Sc) and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrP(C) conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic α-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrP(C), (a PrP(C) mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrP(C) capture event. Moreover, we present a four-state model to describe wild-type PrP(C) kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrP(C). These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level.
Collapse
Affiliation(s)
- Nahid N Jetha
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
29
|
D'Angelo P, Della Longa S, Arcovito A, Mancini G, Zitolo A, Chillemi G, Giachin G, Legname G, Benetti F. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site. Biochemistry 2012; 51:6068-79. [PMID: 22788868 DOI: 10.1021/bi300233n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prion diseases are a class of fatal neurodegenerative disorders characterized by brain spongiosis, synaptic degeneration, microglia and astrocytes activation, neuronal loss and altered redox control. These maladies can be sporadic, iatrogenic and genetic. The etiological agent is the prion, a misfolded form of the cellular prion protein, PrP(C). PrP(C) interacts with metal ions, in particular copper and zinc, through the octarepeat and non-octarepeat binding sites. The physiological implication of this interaction is still unclear, as is the role of metals in the conversion. Since prion diseases present metal dyshomeostasis and increased oxidative stress, we described the copper-binding site located in the human C-terminal domain of PrP-HuPrP(90-231), both in the wild-type protein and in the protein carrying the pathological mutation Q212P. We used the synchrotron-based X-ray absorption fine structure technique to study the Cu(II) and Cu(I) coordination geometries in the mutant, and we compared them with those obtained using the wild-type protein. By analyzing the extended X-ray absorption fine structure and the X-ray absorption near-edge structure, we highlighted changes in copper coordination induced by the point mutation Q212P in both oxidation states. While in the wild-type protein the copper-binding site has the same structure for both Cu(II) and Cu(I), in the mutant the coordination site changes drastically from the oxidized to the reduced form of the copper ion. Copper-binding sites in the mutant resemble those obtained using peptides, confirming the loss of short- and long-range interactions. These changes probably cause alterations in copper homeostasis and, consequently, in redox control.
Collapse
Affiliation(s)
- Paola D'Angelo
- Department of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, I-00185 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Behmard E, Abdolmaleki P, Asadabadi EB. Mutation in a valine residue induces drastic changes in 3D structure of human prion protein. FRONTIERS IN LIFE SCIENCE 2012. [DOI: 10.1080/21553769.2013.775078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Meli M, Gasset M, Colombo G. Dynamic diagnosis of familial prion diseases supports the β2-α2 loop as a universal interference target. PLoS One 2011; 6:e19093. [PMID: 21552571 PMCID: PMC3084259 DOI: 10.1371/journal.pone.0019093] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/28/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mutations in the cellular prion protein associated to familial prion disorders severely increase the likelihood of its misfolding into pathogenic conformers. Despite their postulation as incompatible elements with the native fold, these mutations rarely modify the native state structure. However they variably have impact on the thermodynamic stability and metabolism of PrP(C) and on the properties of PrP(Sc) aggregates. To investigate whether the pathogenic mutations affect the dynamic properties of the HuPrP(125-229) α-fold and find possible common patterns of effects that could help in prophylaxis we performed a dynamic diagnosis of ten point substitutions. METHODOLOGY/PRINCIPAL FINDINGS Using all-atom molecular dynamics simulations and novel analytical tools we have explored the effect of D178N, V180I, T183A, T188K, E196K, F198S, E200K, R208H, V210I and E211Q mutations on the dynamics of HuPrP(125-228) α-fold. We have found that while preserving the native state, all mutations produce dynamic changes which perturb the coordination of the α2-α3 hairpin to the rest of the molecule and cause the reorganization of the patches for intermolecular recognition, as the disappearance of those for conversion inhibitors and the emergence of an interaction site at the β2-α2 loop region. CONCLUSIONS/SIGNIFICANCE Our results suggest that pathogenic mutations share a common pattern of dynamical alterations that converge to the conversion of the β2-α2 loop into an interacting region that can be used as target for interference treatments in genetic diseases.
Collapse
Affiliation(s)
- Massimiliano Meli
- Department of Computational Biology, Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Maria Gasset
- Department of Biological Physical Chemistry, Instituto Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail: (GC); (MG)
| | - Giorgio Colombo
- Department of Computational Biology, Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milano, Italy
- * E-mail: (GC); (MG)
| |
Collapse
|
32
|
van der Kamp MW, Daggett V. Molecular dynamics as an approach to study prion protein misfolding and the effect of pathogenic mutations. Top Curr Chem (Cham) 2011; 305:169-97. [PMID: 21526434 DOI: 10.1007/128_2011_158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computer simulation of protein dynamics offers unique high-resolution information that complements experiment. Using experimentally derived structures of the natively folded prion protein (PrP), physically realistic dynamics and conformational changes can be simulated, including the initial steps of misfolding. By introducing mutations in silico, the effect of pathogenic mutations on PrP conformation and dynamics can be assessed. Here, we briefly introduce molecular dynamics methods and review the application of molecular dynamics simulations to obtain insight into various aspects of the PrP, including the mechanism of misfolding, the response to changes in the environment, and the influence of disease-related mutations.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | | |
Collapse
|
33
|
van der Kamp MW, Daggett V. Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding. J Mol Biol 2010; 404:732-48. [PMID: 20932979 PMCID: PMC2994014 DOI: 10.1016/j.jmb.2010.09.060] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/27/2010] [Indexed: 11/21/2022]
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We used extensive molecular dynamics simulations of these five PrP mutants to compare their dynamics and conformations to those of the wild type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases.
Collapse
Affiliation(s)
- Marc W. van der Kamp
- Department of Bioengineering, University of Washington, Seattle, Washington, USA 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington, USA 98195-5013
| |
Collapse
|
34
|
The Unfolded State of the Murine Prion Protein and Properties of Single-point Mutants Related to Human Prion Diseases. J Mol Biol 2010; 401:7-12. [DOI: 10.1016/j.jmb.2010.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/12/2010] [Accepted: 06/03/2010] [Indexed: 01/18/2023]
|
35
|
Ilc G, Giachin G, Jaremko M, Jaremko Ł, Benetti F, Plavec J, Zhukov I, Legname G. NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. PLoS One 2010; 5:e11715. [PMID: 20661422 PMCID: PMC2908606 DOI: 10.1371/journal.pone.0011715] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/21/2010] [Indexed: 11/23/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrPC) conformer, denoted as infectious scrapie isoform or PrPSc. In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrPSc in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90–124) and a globular domain (residues 125–231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the β2–α2 loop region. This structure might provide new insights into the early events of conformational transition of PrPC into PrPSc. Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of β2–α2 loop and α3 helix.
Collapse
Affiliation(s)
- Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gabriele Giachin
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Mariusz Jaremko
- Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Jaremko
- Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, Warsaw University, Warsaw, Poland
| | - Federico Benetti
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- SISSA Unit, Italian Institute of Technology, Trieste, Italy
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (JP); (GL)
| | - Igor Zhukov
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
- Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Giuseppe Legname
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- SISSA Unit, Italian Institute of Technology, Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., Trieste, Italy
- * E-mail: (JP); (GL)
| |
Collapse
|
36
|
Julien O, Chatterjee S, Thiessen A, Graether SP, Sykes BD. Differential stability of the bovine prion protein upon urea unfolding. Protein Sci 2009; 18:2172-82. [PMID: 19693935 DOI: 10.1002/pro.231] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are a group of infectious neurological diseases associated with the structural conversion of an endogenous protein (PrP) in the central nervous system. There are two major forms of this protein: the native and noninfectious cellular form, PrP(C); and the misfolded, infectious, and proteinase K-resistant form, PrP(Sc). The C-terminal domain of PrP(C) is mainly alpha-helical in structure, whereas PrP(Sc) in known to aggregate into an assembly of beta-sheets, forming amyloid fibrils. To identify the regions of PrP(C) potentially involved in the initial steps of the conversion to the infectious conformation, we have used high-resolution NMR spectroscopy to characterize the stability and structure of bovine recombinant PrP(C) (residues 121 to 230) during unfolding with the denaturant urea. Analysis of the 800 MHz (1)H NMR spectra reveals region-specific information about the structural changes occurring upon unfolding. Our data suggest that the dissociation of the native beta-sheet of PrP(C) is a primary step in the urea-induced unfolding process, while strong hydrophobic interactions between helices alpha1 and alpha3, and between alpha2 and alpha3, stabilize these regions even at very high concentrations of urea.
Collapse
Affiliation(s)
- Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
37
|
Jodoin J, Misiewicz M, Makhijani P, Giannopoulos PN, Hammond J, Goodyer CG, LeBlanc AC. Loss of anti-Bax function in Gerstmann-Sträussler-Scheinker syndrome-associated prion protein mutants. PLoS One 2009; 4:e6647. [PMID: 19680558 PMCID: PMC2722024 DOI: 10.1371/journal.pone.0006647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022] Open
Abstract
Previously, we have shown the loss of anti-Bax function in Creutzfeldt Jakob disease (CJD)-associated prion protein (PrP) mutants that are unable to generate cytosolic PrP (CyPrP). To determine if the anti-Bax function of PrP modulates the manifestation of prion diseases, we further investigated the anti-Bax function of eight familial Gerstmann-Sträussler-Scheinker Syndrome (GSS)-associated PrP mutants. These PrP mutants contained their respective methionine (M) or valine (V) at codon 129. All of the mutants lost their ability to prevent Bax-mediated chromatin condensation or DNA fragmentation in primary human neurons. In the breast carcinoma MCF-7 cells, the F198SV, D202NV, P102LV and Q217RV retained, whereas the P102LM, P105LV, Y145stopM and Q212PM PrP mutants lost their ability to inhibit Bax-mediated condensed chromatin. The inhibition of Bax-mediated condensed chromatin depended on the ability of the mutants to generate cytosolic PrP. However, except for the P102LV, none of the mutants significantly inhibited Bax-mediated caspase activation. These results show that the cytosolic PrP generated from the GSS mutants is not as efficient as wild type PrP in inhibiting Bax-mediated cell death. Furthermore, these results indicate that the anti-Bax function is also disrupted in GSS-associated PrP mutants and is not associated with the difference between CJD and GSS.
Collapse
Affiliation(s)
- Julie Jodoin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Micheal Misiewicz
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Priya Makhijani
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Paresa N. Giannopoulos
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Jennifer Hammond
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | | | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- * E-mail: .
| |
Collapse
|
38
|
van der Kamp MW, Daggett V. The consequences of pathogenic mutations to the human prion protein. Protein Eng Des Sel 2009; 22:461-8. [PMID: 19602567 PMCID: PMC2719504 DOI: 10.1093/protein/gzp039] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 11/14/2022] Open
Abstract
Prion diseases, in which the conformational transition of the native prion protein (PrP) to a misfolded form causes aggregation and subsequent neurodegeneration, have fascinated the scientific community as this transmissible disease appears to be purely protein-based. Disease can arise due to genetic factors only. At least 30 single point mutations have been indicated to cause disease in humans. Somehow, these mutations must influence the stability, processing and/or cellular interactions of PrP, such that aggregation can occur and disease develops. In this review, the current evidence for such effects of single point mutations is discussed, indicating that PrP can be affected in many different ways, although questions remain about the mechanism by which mutations cause disease.
Collapse
Affiliation(s)
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, 98195-5013 WA, USA
| |
Collapse
|
39
|
Laroche-Pierre S, Jodoin J, LeBlanc AC. Helix 3 is necessary and sufficient for prion protein's anti-Bax function. J Neurochem 2009; 108:1019-31. [PMID: 19196429 DOI: 10.1111/j.1471-4159.2008.05851.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To identify the structural elements of the prion protein (PrP) necessary for its protective function against Bcl-2 associated protein X (Bax), we performed structure-function analyses of the anti-Bax function of cytosolic PrP (CyPrP) in MCF-7 cells. Deletions of 1, 2, or 3 N-terminal Bcl-2 homology domain 2-like octapeptide repeats (BORs), but not deletion of all four BORs, abolish CyPrPs anti-Bax function. Deletion of alpha-helix 3 (PrP23-199) or further C-terminal deletions of alpha-helix 1 and 2, and beta-strand 1 and 2 (PrP23-172, PrP23-160, PrP23-143, and PrP23-127) eliminates CyPrPs protection against Bax-mediated cell death. The substitution of helix 3 amino acid residues K204, V210, and E219 by proline inhibits the anti-Bax function of CyPrP. The substitution of K204, but not V210 and E219, by alanine residues also prevents CyPrPs anti-Bax function. Expression of PrPs helix 3 displays anti-Bax activity in MCF-7 cells and in human neurons. Together, these results indicate that although the BOR domain has an influence on PrPs anti-Bax function, the helix 3 is necessary and sufficient for the anti-Bax function of CyPrP. Identification of helix 3 as the structural element for the anti-Bax function thus provides a molecular target to modulate PrPs anti-Bax function in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Stéphanie Laroche-Pierre
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Quebec, Canada
| | | | | |
Collapse
|
40
|
Yu S, Yin S, Pham N, Wong P, Kang SC, Petersen RB, Li C, Sy MS. Ligand binding promotes prion protein aggregation--role of the octapeptide repeats. FEBS J 2008; 275:5564-75. [PMID: 18959744 DOI: 10.1111/j.1742-4658.2008.06680.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aggregation of the normal cellular prion protein, PrP, is important in the pathogenesis of prion disease. PrP binds glycosaminoglycan (GAG) and divalent cations, such as Cu(2+) and Zn(2+). Here, we report our findings that GAG and Cu(2+) promote the aggregation of recombinant human PrP (rPrP). The normal cellular prion protein has five octapeptide repeats. In the presence of either GAG or Cu(2+), mutant rPrPs with eight or ten octapeptide repeats are more aggregation prone, exhibit faster kinetics and form larger aggregates than wild-type PrP. When the GAG-binding motif, KKRPK, is deleted the effect of GAG but not that of Cu(2+) is abolished. By contrast, when the Cu(2+)-binding motif, the octapeptide-repeat region, is deleted, neither GAG nor Cu(2+) is able to promote aggregation. Therefore, the octapeptide-repeat region is critical in the aggregation of rPrP, irrespective of the promoting ligand. Furthermore, aggregation of rPrP in the presence of GAG is blocked with anti-PrP mAbs, whereas none of the tested anti-PrP mAbs block Cu(2+)-promoted aggregation. However, a mAb that is specific for an epitope at the N-terminus enhances aggregation in the presence of either GAG or Cu(2+). Therefore, although binding of either GAG or Cu(2+) promotes the aggregation of rPrP, their aggregation processes are different, suggesting multiple pathways of rPrP aggregation.
Collapse
Affiliation(s)
- Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zheng L, Longfei J, Jing Y, Xinqing Z, Haiqing S, Haiyan L, Fen W, Xiumin D, Jianping J. PRNP mutations in a series of apparently sporadic neurodegenerative dementias in China. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:938-44. [PMID: 18425766 DOI: 10.1002/ajmg.b.30761] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in prion protein gene (PRNP) may lead to genetic prion disease, which usually has a broad range of phenotypic presentations that overlap with other neurodegenerative dementias. In this study, we screened the PRNP gene to evaluate the frequency of PRNP mutations and their correlations with clinical phenotype in 185 sporadic neurodegenerative dementia cases and 310 control subjects. Samples of DNA from each subject underwent polymerase chain reaction (PCR) amplification and direct sequencing of PRNP. The clinical characteristics of patients carrying PRNP mutations were detailed. We identified five different PRNP mutations in five patients, of which three were novel (S97N, F198V, and R208C) and two were known (D178N-129M and M232R). The rate of PRNP mutation was 2.70% in our sample. Though future studies confirming the correlation between PRNP mutations and clinical phenotype need to be undertaken, PRNP genotyping may be a valuable tool to differentiate between prion disease and other neurodegenerative dementias.
Collapse
Affiliation(s)
- Liu Zheng
- Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Apetri AC, Maki K, Roder H, Surewicz WK. Early intermediate in human prion protein folding as evidenced by ultrarapid mixing experiments. J Am Chem Soc 2007; 128:11673-8. [PMID: 16939293 PMCID: PMC2856597 DOI: 10.1021/ja063880b] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An important step toward understanding the mechanism of the PrP(C)-to-PrP(Sc) conversion is to elucidate the folding pathway(s) of the prion protein. On the basis of stopped-flow measurements, we recently proposed that the prion protein folds via a transient intermediate formed on the submillisecond time scale, and mutations linked to familial diseases result in a pronounced increase in the population of this intermediate. Here, we have extended these studies to continuous-flow measurements using a capillary mixing system with a time resolution of approximately 100 micros. This allowed us to directly observe two distinct phases in folding of the recombinant human prion protein 90-231, providing unambiguous evidence for rapid accumulation of an early intermediate (with a time constant of approximately 50 micros), followed by a rate-limiting folding step (with a time constant of approximately 700 micros). The present study also clearly demonstrates that the population of the intermediate is significantly increased at mildly acidic pH and in the presence of urea. A similar three-state folding behavior was observed for the Gerstmann-Straussler-Scheinker disease-associated F198S mutant, in which case the population of an intermediate was greatly increased as compared to that of the wild-type protein. Overall, the present data strongly suggest that this partially structured intermediate may be a direct monomeric precursor of the misfolded PrP(Sc) oligomer.
Collapse
Affiliation(s)
- Adrian C. Apetri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kosuke Maki
- Basic Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Heinrich Roder
- Basic Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
- To whom correspondence should be addressed. Witold Surewicz, ; Heinrich Roder,
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
- To whom correspondence should be addressed. Witold Surewicz, ; Heinrich Roder,
| |
Collapse
|
43
|
Li A, Piccardo P, Barmada SJ, Ghetti B, Harris DA. Prion protein with an octapeptide insertion has impaired neuroprotective activity in transgenic mice. EMBO J 2007; 26:2777-85. [PMID: 17510630 PMCID: PMC1888682 DOI: 10.1038/sj.emboj.7601726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Accepted: 04/20/2007] [Indexed: 01/13/2023] Open
Abstract
Familial prion diseases are due to dominantly inherited, germline mutations in the PRNP gene that encodes the prion protein (PrP). The cellular mechanism underlying the pathogenic effect of these mutations remains uncertain. To investigate whether pathogenic mutations impair a normal, physiological activity of PrP, we have crossed Tg(PG14) mice, which express PrP with an octapeptide insertion associated with an inherited prion dementia, with Tg(PrPDelta32-134) mice. Tg(PrPDelta32-134) mice, which express an N-terminally truncated form of PrP, spontaneously develop a neurodegenerative phenotype that is stoichiometrically reversed by coexpression of wild-type PrP. We find that, at equivalent expression levels, PG14 PrP is significantly less efficient than wild-type PrP in suppressing the development of clinical symptoms and neuropathology in Tg(PrPDelta32-134) mice. Thus, our results suggest that some features of the neurological illness associated with inherited PrP mutations may be attributable to a loss of PrP neuroprotective function. This mechanism stands in contrast to the toxic gain-of-function mechanisms that are usually invoked to explain the pathogenesis of dominantly inherited neurodegenerative disorders.
Collapse
Affiliation(s)
- Aimin Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Pedro Piccardo
- Division of Neuropathology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| | - Sami J Barmada
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bernardino Ghetti
- Division of Neuropathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA. Tel.: +1 314 362 4690; Fax: +1 314 747 0940. E-mail:
| |
Collapse
|
44
|
Yin S, Pham N, Yu S, Li C, Wong P, Chang B, Kang SC, Biasini E, Tien P, Harris DA, Sy MS. Human prion proteins with pathogenic mutations share common conformational changes resulting in enhanced binding to glycosaminoglycans. Proc Natl Acad Sci U S A 2007; 104:7546-51. [PMID: 17456603 PMCID: PMC1863438 DOI: 10.1073/pnas.0610827104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation in the prion gene PRNP accounts for 10-15% of human prion diseases. However, little is known about the mechanisms by which mutant prion proteins (PrPs) cause disease. Here we investigated the effects of 10 different pathogenic mutations on the conformation and ligand-binding activity of recombinant human PrP (rPrP). We found that mutant rPrPs react more strongly with N terminus-specific antibodies, indicative of a more exposed N terminus. The N terminus of PrP contains a glycosaminoglycan (GAG)-binding motif. Binding of GAG is important in prion disease. Accordingly, all mutant rPrPs bind more GAG, and GAG promotes the aggregation of mutant rPrPs more efficiently than wild-type recombinant normal cellular PrP (rPrP(C)). Furthermore, point mutations in PRNP also cause conformational changes in the region between residues 109 and 136, resulting in the exposure of a second, normally buried, GAG-binding motif. Importantly, brain-derived PrP from transgenic mice, which express a pathogenic mutant with nine extra octapeptide repeats, also binds more strongly to GAG than wild-type PrP(C). Thus, several rPrPs with distinct pathogenic mutations have common conformational changes, which enhance binding to GAG. These changes may contribute to the pathogenesis of inherited prion diseases.
Collapse
Affiliation(s)
- Shaoman Yin
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Nancy Pham
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Research Foundation, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Shuiliang Yu
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Chaoyang Li
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Poki Wong
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Binggong Chang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Shin-Chung Kang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Emiliano Biasini
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110; and
| | - Po Tien
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 10080, China
| | - David A. Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110; and
| | - Man-Sun Sy
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106
- To whom correspondence should be addressed at:
School of Medicine, Case Western Reserve University, Room 5131, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106-7288. E-mail:
| |
Collapse
|
45
|
Yu S, Yin S, Li C, Wong P, Chang B, Xiao F, Kang SC, Yan H, Xiao G, Tien P, Sy MS. Aggregation of prion protein with insertion mutations is proportional to the number of inserts. Biochem J 2007; 403:343-51. [PMID: 17187581 PMCID: PMC1874237 DOI: 10.1042/bj20061592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutation in the prion gene, PRNP, accounts for approx. 10-15% of human prion diseases. However, little is known about the mechanisms by which a mutant prion protein (PrP) causes disease. We compared the biochemical properties of a wild-type human prion protein, rPrP(C) (recombinant wild-type PrP), which has five octapeptide-repeats, with two recombinant human prion proteins with insertion mutations, one with three more octapeptide repeats, rPrP(8OR), and the other with five more octapeptide repeats, rPrP(10OR). We found that the insertion mutant proteins are more prone to aggregate, and the degree and kinetics of aggregation are proportional to the number of inserts. The octapeptide-repeat and alpha-helix 1 regions are important in aggregate formation, because aggregation is inhibited with monoclonal antibodies that are specific for epitopes in these regions. We also showed that a small amount of mutant protein could enhance the formation of mixed aggregates that are composed of mutant protein and wild-type rPrP(C). Accordingly, rPrP(10OR) is also more efficient in promoting the aggregation of rPrP(C) than rPrP(8OR). These findings provide a biochemical explanation for the clinical observations that the severity of the disease in patients with insertion mutations is proportional to the number of inserts, and thus have implications for the pathogenesis of inherited human prion disease.
Collapse
Affiliation(s)
- Shuiliang Yu
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Shaoman Yin
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Chaoyang Li
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Poki Wong
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Binggong Chang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Fan Xiao
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Shin-Chung Kang
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
| | - Huimin Yan
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Gengfu Xiao
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Po Tien
- †Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
- ‡Institute of Microbiology, Chinese Academy of Science, Beijing 100080, People's Republic of China
| | - Man-Sun Sy
- *Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44120, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Purohit PG, Tate RJ, Pow E, Hill D, Connolly JG. The role of the amino acid residue at alpha1:189 in the binding of neuromuscular blocking agents to mouse and human muscle nicotinic acetylcholine receptors. Br J Pharmacol 2007; 150:920-31. [PMID: 17293883 PMCID: PMC2013881 DOI: 10.1038/sj.bjp.0707156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic acetylcholine receptors (AChRs) are valuable therapeutic targets. To exploit them fully requires rapid assays for the evaluation of potentially therapeutic ligands and improved understanding of the interaction of such ligands with their receptor binding sites. EXPERIMENTAL APPROACH A variety of neuromuscular blocking agents (NMBAs) were tested for their ability to inhibit the binding of [(125)I]alpha-bungarotoxin to TE671 cells expressing human muscle AChRs. Association and dissociation rate constants for vecuronium inhibition of functional agonist responses were then estimated by electrophysiological studies on mouse muscle AChRs expressed in Xenopus oocytes containing either wild type or mutant alpha1 subunits. KEY RESULTS The TE671 inhibition binding assay allowed for the rapid detection of competitive nicotinic AChR ligands and the relative IC(50) results obtained for NMBAs agreed well with clinical data. Electrophysiological studies revealed that acetylcholine EC(50) values of muscle AChRs were not substantially altered by non-conservative mutagenesis of phenylalanine at alpha1:189 and proline at alpha1:194 to serine. However the alpha1:Phe189Ser mutation did result in a 3-4 fold increase in the rate of dissociation of vecuronium from mouse muscle AChRs. CONCLUSIONS AND IMPLICATIONS The TE671 binding assay is a useful tool for the evaluation of potential therapeutic agents. The alpha1:Phe189Ser substitution, but not alpha1:Pro194Ser, significantly increases the rate of dissociation of vecuronium from mouse muscle AChRs. In contrast, these non-conservative mutations had little effect on EC(50) values. This suggests that the AChR agonist binding site has a robust functional architecture, possibly as a result of evolutionary 'reinforcement'.
Collapse
Affiliation(s)
- P G Purohit
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, Scotland, UK
| | - R J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, Scotland, UK
| | - E Pow
- Pharmacology Department, Organon Laboratories Ltd., Newhouse Lanarkshire, Scotland, UK
| | - D Hill
- Pharmacology Department, Organon Laboratories Ltd., Newhouse Lanarkshire, Scotland, UK
| | - J G Connolly
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, Scotland, UK
- Author for correspondence:
| |
Collapse
|
47
|
Apetri AC, Vanik DL, Surewicz WK. Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90-231. Biochemistry 2006; 44:15880-8. [PMID: 16313190 DOI: 10.1021/bi051455+] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the arguments in favor of the protein-only hypothesis of transmissible spongiform encephalopathies is the link between inherited prion diseases and specific mutations in the PRNP gene. One such mutation (Asp178 --> Asn) is associated with two distinct disorders: fatal familial insomnia or familial Creutzfeldt-Jakob disease, depending upon the presence of Met or Val at position 129, respectively. In this study, we have characterized the biophysical properties of recombinant human prion proteins (huPrP90-231) corresponding to the polymorphic variants D178N/M129 and D178N/V129. In comparison to the wild-type protein, both polymorphic forms of D178N huPrP show a greatly increased propensity for a conversion to beta-sheet-rich oligomers (at acidic pH) and thioflavine T-positive amyloid fibrils (at neutral pH). Importantly, the conversion propensity for the D178N variant is strongly dependent upon the M/V polymorphism at position 129, whereas under identical experimental conditions, no such dependence is observed for the wild-type protein. Amyloid fibrils formed by wild-type huPrP90-231 and the D178N variant are characterized by different secondary structures, and these structures are further modulated by residue 129 polymorphism. Although on the basis of only in vitro data, this study strongly suggests that polymorphism-dependent phenotypic variability of familial prion diseases may be linked to differences in biophysical properties of prion protein variants.
Collapse
Affiliation(s)
- Adrian C Apetri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
48
|
Torrent J, Alvarez-Martinez MT, Liautard JP, Balny C, Lange R. The role of the 132-160 region in prion protein conformational transitions. Protein Sci 2005; 14:956-67. [PMID: 15772306 PMCID: PMC2253438 DOI: 10.1110/ps.04989405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The native conformation of host-encoded cellular prion protein (PrP(C)) is metastable. As a result of a post-translational event, PrP(C) can convert to the scrapie form (PrP(Sc)), which emerges as the essential constituent of infectious prions. Despite thorough research, the mechanism underlying this conformational transition remains unknown. However, several studies have highlighted the importance of the N-terminal region spanning residues 90-154 in PrP folding. In order to understand why PrP folds into two different conformational states exhibiting distinct secondary and tertiary structure, and to gain insight into the involvement of this particular region in PrP transconformation, we studied the pressure-induced unfolding/ refolding of recombinant Syrian hamster PrP expanding from residues 90-231, and compared it with heat unfolding. By using two intrinsic fluorescent variants of this protein (Y150W and F141W), conformational changes confined to the 132-160 segment were monitored. Multiple conformational states of the Trp variants, characterized by their spectroscopic properties (fluorescence and UV absorbance in the fourth derivative mode), were achieved by tuning the experimental conditions of pressure and temperature. Further insight into unexplored conformational states of the prion protein, likely to mimic the in vivo structural change, was obtained from pressure-assisted cold unfolding. Furthermore, salt-induced conformational changes suggested a structural stabilizing role of Tyr150 and Phe141 residues, slowing down the conversion to a beta-sheet form.
Collapse
Affiliation(s)
- Joan Torrent
- INSERM U710, CC 105, Université de Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier cédex 5, France
| | | | | | | | | |
Collapse
|
49
|
Gallo M, Paludi D, Cicero DO, Chiovitti K, Millo E, Salis A, Damonte G, Corsaro A, Thellung S, Schettini G, Melino S, Florio T, Paci M, Aceto A. Identification of a conserved N-capping box important for the structural autonomy of the prion alpha 3-helix: the disease associated D202N mutation destabilizes the helical conformation. Int J Immunopathol Pharmacol 2005; 18:95-112. [PMID: 15698515 DOI: 10.1177/039463200501800111] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peptides corresponding to three alpha helices present in the C-terminal region of the human prion protein have been synthesized and their structural autonomy analyzed by circular dichroism (CD) and NMR spectroscopy. The results obtained indicate that the protein fragment corresponding to the alpha 3-helix, in contrast to alpha 1 and alpha 2 peptides, shows a complete structural autonomy. The chemical shifts values found for NH and CHalpha resonance of the isolated alpha 3 peptide, formed by 30 aminoacid residues, were markedly and surprisingly similar to the corresponding values of the alpha 3-helix in the protein. The structural autonomy of the alpha 3-helix is profoundly determined by the presence of the conserved capping box and, in part, by the ionic bond formed between Glu200 and Lys204. On the basis of these observations a novel PrP consensus pattern, centered on the alpha 3-helix region, has been defined. The data indicate that this autonomous and highly conserved region of the PrPc likely plays a critical role in folding and stability. This gives an explanation of why many of pathogenic mutations occur in this part of the molecule, sharing relevant effects on the overall protein conformation. In particular the D202N capping mutation almost completely destabilizes the isolated alpha 3 peptide. While it is well known that the D202N substitution is associated with a GSS disease, the possible structural basis of this fatal pathology has never been investigated. We propose that a lower alpha 3-helical propensity leading to a major destabilization of the PrPc molecule initiates the pathogenic process associated with D202N capping mutation.
Collapse
Affiliation(s)
- M Gallo
- Department of Chemical Science and Technology , University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kiachopoulos S, Bracher A, Winklhofer KF, Tatzelt J. Pathogenic mutations located in the hydrophobic core of the prion protein interfere with folding and attachment of the glycosylphosphatidylinositol anchor. J Biol Chem 2004; 280:9320-9. [PMID: 15591591 DOI: 10.1074/jbc.m412525200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal folding of the cellular prion protein (PrPC) is a key feature in prion diseases. Here we show that two pathogenic mutations linked to inherited prion diseases in humans severely affect folding and maturation of PrPC in the secretory pathway of neuronal cells. PrP-T183A and PrP-F198S adopt a misfolded and partially protease-resistant conformation, lack the glycosylphosphatidylinositol anchor, and are not complex glycosylated. These misfolded PrP mutants are not retained in the endoplasmic reticulum and are not subjected to the endoplasmic reticulum-associated degradation pathway. They rather are secreted, moreover, these mutants can be internalized by heterologous cells. Structural studies indicated that the side chains of Thr183 and Phe198 contribute to interactions between secondary structure elements in the C-terminal globular domain of PrPC. Consequently, we reasoned that a destabilized tertiary structure of these mutants could account for the defect in maturation. Indeed, mutations predicted to interfere selectively with the packing of the hydrophobic core of PrPC prevented the addition of the glycosylphosphatidylinositol anchor. Our study reveals that formation of the C-terminal globular domain of PrPC has an impact on membrane anchoring and indicates that misfolded secreted forms of the prion protein are linked to inherited prion diseases in humans.
Collapse
Affiliation(s)
- Sophia Kiachopoulos
- Department of Cellular Biochemistry, Max-Planck-Institute for Biochemie, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|