1
|
ERG Channels Regulate Excitability in Stellate and Bushy Cells of Mice Ventral Cochlear Nucleus. J Membr Biol 2018; 251:711-722. [DOI: 10.1007/s00232-018-0048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
2
|
Lastraioli E, Lottini T, Iorio J, Freschi G, Fazi M, Duranti C, Carraresi L, Messerini L, Taddei A, Ringressi MN, Salemme M, Villanacci V, Vindigni C, Tomezzoli A, La Mendola R, Bencivenga M, Compagnoni B, Chiudinelli M, Saragoni L, Manzi I, De Manzoni G, Bechi P, Boni L, Arcangeli A. hERG1 behaves as biomarker of progression to adenocarcinoma in Barrett's esophagus and can be exploited for a novel endoscopic surveillance. Oncotarget 2018; 7:59535-59547. [PMID: 27517748 PMCID: PMC5312329 DOI: 10.18632/oncotarget.11149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Barrett's esophagus (BE) is the only well-known precursor lesion of esophageal adenocarcinoma (EA). The exact estimates of the annual progression rate from BE to EA vary from 0.07% to 3.6%. The identification of BE patients at higher risk to progress to EA is hence mandatory, although difficult to accomplish. In search of novel BE biomarkers we analyzed the efficacy of hERG1 potassium channels in predicting BE progression to EA. Once tested by immunohistochemistry (IHC) on bioptic samples, hERG1 was expressed in BE, and its expression levels increased during progression from BE to esophageal dysplasia (ED) and EA. hERG1 was also over-expressed in the metaplastic cells arising in BE lesions obtained in different BE mouse models, induced either surgically or chemically. Furthermore, transgenic mice which over express hERG1 in the whole gastrointestinal tract, developed BE lesions after an esophago-jejunal anastomosis more frequently, compared to controls. A case-control study was performed on 104 bioptic samples from newly diagnosed BE patients further followed up for at least 10 years. It emerged a statistically significant association between hERG1 expression status and risk of progression to EA. Finally, a novel fluorophore- conjugated recombinant single chain variable fragment antibody (scFv-hERG1-Alexa488) was tested on freshly collected live BE biopsies: it could recognize hERG1 positive samples, perfectly matching IHC data.Overall, hERG1 can be considered a novel BE biomarker to be exploited for a novel endoscopic surveillance protocol, either in biopsies or through endoscopy, to identify those BE patients with higher risk to progress to EA.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giancarlo Freschi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Marilena Fazi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | | | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Antonio Taddei
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | | | | | - Carla Vindigni
- Pathology Division, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Anna Tomezzoli
- Pathology Division, Borgo Trento Hospital, 37134 Verona, Italy
| | | | | | - Bruno Compagnoni
- Surgery Division, Esine Hospital, ASL Vallecamonica Sebino, 25040 Esine (BS), Italy
| | - Mariella Chiudinelli
- Pathology Division, Esine Hospital, ASL Vallecamonica Sebino, 25040 Esine (BS), Italy
| | - Luca Saragoni
- Pathology Division, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - Ilaria Manzi
- Gastroenterology and Endoscopy Unit, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | | | - Paolo Bechi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Luca Boni
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria Careggi/Istituto Toscano Tumori, 50134 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
3
|
Mayourian J, Sobie EA, Costa KD. An Introduction to Computational Modeling of Cardiac Electrophysiology and Arrhythmogenicity. Methods Mol Biol 2018; 1816:17-35. [PMID: 29987808 DOI: 10.1007/978-1-4939-8597-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Mathematical modeling is a powerful tool to study the complex and orchestrated biological process of cardiac electrical activity. By integrating experimental data from key components of cardiac electrophysiology, systems biology simulations can complement empirical findings, provide quantitative insight into physiological and pathophysiological mechanisms of action, and guide new hypotheses to better understand this complex biological system to develop novel cardiotherapeutic approaches. In this chapter, we briefly introduce in silico methods to describe the dynamics of physiological and pathophysiological single-cell and tissue-level cardiac electrophysiology. Using a "bottom-up" approach, we first describe the basis of ion channel mathematical models. Next, we discuss how the net flux of ions through such channels leads to changes in transmembrane voltage during cardiomyocyte action potentials. By applying these fundamentals, we describe how action potentials propagate in models of cardiac tissue. In addition, we provide case studies simulating single-cell and tissue-level arrhythmogenesis, as well as promising approaches to circumvent or overcome such adverse events. Overall, basic concepts and tools are discussed in this chapter as an accessible introduction to nonmathematicians to foster an understanding of electrophysiological modeling studies and help facilitate communication with dry lab colleagues and collaborators.
Collapse
Affiliation(s)
- Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Currò D. The Modulation of Potassium Channels in the Smooth Muscle as a Therapeutic Strategy for Disorders of the Gastrointestinal Tract. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:263-305. [PMID: 27038377 DOI: 10.1016/bs.apcsb.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Alterations of smooth muscle contractility contribute to the pathophysiology of important functional gastrointestinal disorders (FGIDs) such as functional dyspepsia and irritable bowel syndrome. Consequently, drugs that decrease smooth muscle contractility are effective treatments for these diseases. Smooth muscle contraction is mainly triggered by Ca(2+) influx through voltage-dependent channels located in the plasma membrane. Thus, the modulation of the membrane potential results in the regulation of Ca(2+) influx and cytosolic levels. K(+) channels play fundamental roles in these processes. The open probability of K(+) channels increases in response to various stimuli, including membrane depolarization (voltage-gated K(+) [K(V)] channels) and the increase in cytosolic Ca(2+) levels (Ca(2+)-dependent K(+) [K(Ca)] channels). K(+) channel activation is mostly associated with outward K(+) currents that hyperpolarize the membrane and reduce cell excitability and contractility. In addition, some K(+) channels are open at the resting membrane potential values of the smooth muscle cells in some gut segments and contribute to set the resting membrane potential itself. The closure of these channels induces membrane depolarization and smooth muscle contraction. K(V)1.2, 1.5, 2.2, 4.3, 7.4 and 11.1, K(Ca)1.1 and 2.3, and inwardly rectifying type 6K(+) (K(ir)6) channels play the most important functional roles in the gastrointestinal smooth muscle. Activators of all these channels may theoretically relax the gastrointestinal smooth muscle and could therefore be promising new therapeutic options for FGID. The challenge of future drug research and development in this area will be to synthesize molecules selective for the channel assemblies expressed in the gastrointestinal smooth muscle.
Collapse
Affiliation(s)
- Diego Currò
- Institute of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
5
|
Tomuschat C, O'Donnell AM, Coyle D, Puri P. Reduced expression of voltage-gated Kv11.1 (hERG) K(+) channels in aganglionic colon in Hirschsprung's disease. Pediatr Surg Int 2016; 32:9-16. [PMID: 26519040 DOI: 10.1007/s00383-015-3807-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 10/09/2015] [Indexed: 01/29/2023]
Abstract
PURPOSE The pathophysiology of Hirschsprung's disease (HSCR) is not entirely understood. There is no clear explanation for the occurrence of the spastic or tonically contracted aganglionic segment of bowel. Kv11.1 (hERG) channels play a critical role in the regulation of the resting membrane potential as well as affecting either the force or frequency of contraction of smooth muscles. We designed this study to investigate the expression and distribution of hERG channels in the normal colon and the colon of patients with HSCR. METHODS We investigated hERG protein expression in both the ganglionic and aganglionic regions of HSCR patients (n = 10) versus normal control colon (n = 10). Protein distribution was assessed using immunofluorescence and confocal microscopy. Gene and protein expressions were quantified using real-time polymerase chain reaction, western blot analysis and densitometry. RESULTS Confocal microscopy of the normal colon revealed strong hERG channel expression in interstitial cells of Cajal, platelet-derived growth factor-alpha receptor- (PDGFRα(+)) positive cells and enteric neurons. hERG expression was markedly decreased in aganglionic bowel, whereas colonic hERG gene expression levels were significantly decreased in aganglionic compared to ganglionic bowel and controls (p < 0.05). Western blotting revealed decreased colonic hERG protein expression in aganglionic HSCR specimens compared to controls. CONCLUSIONS We demonstrate, for the first time, the expression and distribution of hERG channels in the human colon. The decreased expression of hERG in the aganglionic colon may be responsible for the increased tone in the aganglionic narrow spastic segment of bowel.
Collapse
Affiliation(s)
- Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
- Conway Institute of Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Tong WC, Tribe RM, Smith R, Taggart MJ. Computational modeling reveals key contributions of KCNQ and hERG currents to the malleability of uterine action potentials underpinning labor. PLoS One 2014; 9:e114034. [PMID: 25474527 PMCID: PMC4256391 DOI: 10.1371/journal.pone.0114034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2014] [Accepted: 11/03/2014] [Indexed: 11/19/2022] Open
Abstract
The electrical excitability of uterine smooth muscle cells is a key determinant of the contraction of the organ during labor and is manifested by spontaneous, periodic action potentials (APs). Near the end of term, APs vary in shape and size reflecting an ability to change the frequency, duration and amplitude of uterine contractions. A recent mathematical model quantified several ionic features of the electrical excitability in uterine smooth muscle cells. It replicated many of the experimentally recorded uterine AP configurations but its limitations were evident when trying to simulate the long-duration bursting APs characteristic of labor. A computational parameter search suggested that delayed rectifying K(+) currents could be a key model component requiring improvement to produce the longer-lasting bursting APs. Of the delayed rectifying K(+) currents family it is of interest that KCNQ and hERG channels have been reported to be gestationally regulated in the uterus. These currents exhibit features similar to the broadly defined uterine IK1 of the original mathematical model. We thus formulated new quantitative descriptions for several I(KCNQ) and I(hERG). Incorporation of these currents into the uterine cell model enabled simulations of the long-lasting bursting APs. Moreover, we used this modified model to simulate the effects of different contributions of I(KCNQ) and I(hERG) on AP form. Our findings suggest that the alterations in expression of hERG and KCNQ channels can potentially provide a mechanism for fine tuning of AP forms that lends a malleability for changing between plateau-like and long-lasting bursting-type APs as uterine cells prepare for parturition.
Collapse
Affiliation(s)
- Wing-Chiu Tong
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel M. Tribe
- Division of Women's Health, King's College London and King's Health Partners, London, United Kingdom
| | - Roger Smith
- Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Michael J. Taggart
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Mitcheson J, Arcangeli A. The Therapeutic Potential of hERG1 K+ Channels for Treating Cancer and Cardiac Arrhythmias. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
hERG potassium channels present pharmacologists and medicinal chemists with a dilemma. On the one hand hERG is a major reason for drugs being withdrawn from the market because of drug induced long QT syndrome and the associated risk of inducing sudden cardiac death, and yet hERG blockers are still widely used in the clinic to treat cardiac arrhythmias. Moreover, in the last decade overwhelming evidence has been provided that hERG channels are aberrantly expressed in cancer cells and that they contribute to tumour cell proliferation, resistance to apoptosis, and neoangiogenesis. Here we provide an overview of the properties of hERG channels and their role in excitable cells of the heart and nervous system as well as in cancer. We consider the therapeutic potential of hERG, not only with regard to the negative impact due to drug induced long QT syndrome, but also its future potential as a treatment in the fight against cancer.
Collapse
Affiliation(s)
- John Mitcheson
- University of Leicester, Department of Cell Physiology and Pharmacology, Medical Sciences Building University Road Leicester LE1 9HN UK
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence Viale GB Morgagni, 50 50134 Firenze Italy
| |
Collapse
|
8
|
An analytical method for the quantification of hERG1 channel gene expression in human colorectal cancer. ACTA ACUST UNITED AC 2014; 22:215-21. [PMID: 24193004 DOI: 10.1097/pdm.0b013e31828e55c7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Cancer molecular investigation revealed a huge molecular heterogeneity between different types of cancers as well as among cancer patients affected by the same cancer type. This implies the necessity of a personalized approach for cancer diagnosis and therapy, on the basis of the development of standardized protocols to facilitate the application of molecular techniques in the clinical decision-making process. Ion channels encoding genes are acquiring increasing relevance in oncological translational studies, representing new candidates for molecular diagnostic and therapeutic purposes. Hence, the development of molecular protocols for the quantification of ion channels encoding genes in tumor specimens may have relevance for diagnostic and prognostic investigation. Two main hindrances must be overcome for these purposes: the use of formalin-fixed and paraffin-embedded samples for gene expression analysis and the physiological expression of ion channels in excitable cells, potentially present in the tumor sample. We here propose a method for hERG1 gene quantification in colorectal cancer samples in both cryopreserved and formalin-fixed and paraffin-embedded samples. An analytical method was developed to estimate hERG1 gene expression exclusively in epithelial cancer cells. Indeed, we found that the hERG1 gene was expressed at significant levels by myofibroblasts present in the tumor stroma. This method was based on the normalization on a smooth muscle-myofibroblast-specific gene, MYH11, with no need of microdissection. By applying this method, hERG1 expression turned out to correlate with VEGF-A expression, confirming previous immunohistochemical data.
Collapse
|
9
|
Diminished hERG K+ channel activity facilitates strong human labour contractions but is dysregulated in obese women. Nat Commun 2014; 5:4108. [PMID: 24937480 DOI: 10.1038/ncomms5108] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2014] [Accepted: 05/13/2014] [Indexed: 01/01/2023] Open
|
10
|
Dhillon MS, Cockcroft CJ, Munsey T, Smith KJ, Powell AJ, Carter P, Wrighton DC, Rong HL, Yusaf SP, Sivaprasadarao A. A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris. Sci Rep 2014; 4:4201. [PMID: 24569544 PMCID: PMC3935203 DOI: 10.1038/srep04201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2013] [Accepted: 02/07/2014] [Indexed: 12/29/2022] Open
Abstract
Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family.
Collapse
Affiliation(s)
| | | | - Tim Munsey
- School of Biomedical Sciences, Faculty of Biological Sciences
| | - Kathrine J Smith
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Andrew J Powell
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Paul Carter
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | - Hong-lin Rong
- School of Biomedical Sciences, Faculty of Biological Sciences
| | - Shahnaz P Yusaf
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Asipu Sivaprasadarao
- 1] School of Biomedical Sciences, Faculty of Biological Sciences [2] Multidisciplinary Cardiovascular Research Centre, University of Leeds, LS2 9JT, Leeds, U.K
| |
Collapse
|
11
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
12
|
Lessons from pharmacogenetics and metoclopramide: toward the right dose of the right drug for the right patient. J Clin Gastroenterol 2012; 46:437-9. [PMID: 22688139 PMCID: PMC3374149 DOI: 10.1097/mcg.0b013e3182549528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/10/2022]
|
13
|
Clinical response and side effects of metoclopramide: associations with clinical, demographic, and pharmacogenetic parameters. J Clin Gastroenterol 2012; 46:494-503. [PMID: 22688145 DOI: 10.1097/mcg.0b013e3182522624] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Metoclopramide is associated with variable efficacy and side effects when used in the treatment of gastroparesis. AIM To determine associations of clinical and pharmacogenetic parameters with response and side effects to metoclopramide in patients with upper gastrointestinal symptoms suggestive of gastroparesis. METHODS Gastroparetic patients treated with metoclopramide were enrolled. Clinical parameters recorded were age, sex, weight, diabetic status, gastric emptying result, daily dose, effectiveness, and side effects. DNA was isolated from salivary samples; 20 single nucleotide polymorphisms were genotyped in 8 candidate genes (ABCB1, ADRA1D, CYP1A2, CYP2D6, DRD2, DRD3, HTR4, KCNH2). RESULTS One hundred gastroparetic patients treated with metoclopramide participated. Dose averaged 33±16 mg/d for 1.1±1.7 years. Responders (53 of 100 patients) were older (48±15 vs. 38±11 y; P=0.0004) and heavier (body mass index of 28±7 vs. 25±7; P=0.0125). Efficacy was associated with polymorphisms in KCNH2 (rs1805123, P=0.020) and ADRA1D (rs2236554, P=0.035) genes. Side effects, occurred in 64 patients, were more common in females (83% vs. 64%; P=0.037), nondiabetics (77% vs. 47%; P=0.004), and patients with normal gastric emptying (41% vs. 17%; P=0.015). Side effects were associated with polymorphisms in CYP2D6 (rs1080985, P=0.045; rs16947, P=0.008; rs3892097, P=0.049), KCNH2 (rs3815459, P=0.015), and serotonin 5-HT4 receptor HTR4 gene (rs9325104, P=0.026). CONCLUSIONS Side effects to metoclopramide were more common in nondiabetic patients with normal gastric emptying. Polymorphisms in CYP2D6, KCNH2, and 5-HT4 receptor HTR4 genes were associated with side effects, whereas polymorphisms in KCNH2 and ADRA1D genes were associated with clinical response. Clinical parameters and pharmacogenetic testing may be useful in identifying patients before treatment with metoclopramide to enhance efficacy and minimize side effects.
Collapse
|
14
|
Abstract
Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (Na(V)), calcium (Ca(V)), potassium (K(V), K(Ca)), chloride (Cl(-)) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress.
Collapse
Affiliation(s)
- Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
15
|
Functional properties of human neuronal Kv11 channels. Pflugers Arch 2009; 458:689-700. [DOI: 10.1007/s00424-009-0651-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2008] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
|
16
|
Potet F, Petersen CI, Boutaud O, Shuai W, Stepanovic SZ, Balser JR, Kupershmidt S. Genetic screening in C. elegans identifies rho-GTPase activating protein 6 as novel HERG regulator. J Mol Cell Cardiol 2008; 46:257-67. [PMID: 19038263 DOI: 10.1016/j.yjmcc.2008.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/03/2008] [Revised: 09/17/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
The human ether-a-go-go related gene (HERG) constitutes the pore forming subunit of I(Kr), a K(+) current involved in repolarization of the cardiac action potential. While mutations in HERG predispose patients to cardiac arrhythmias (Long QT syndrome; LQTS), altered function of HERG regulators are undoubtedly LQTS risk factors. We have combined RNA interference with behavioral screening in Caenorhabditis elegans to detect genes that influence function of the HERG homolog, UNC-103. One such gene encodes the worm ortholog of the rho-GTPase activating protein 6 (ARHGAP6). In addition to its GAP function, ARHGAP6 induces cytoskeletal rearrangements and activates phospholipase C (PLC). Here we show that I(Kr) recorded in cells co-expressing HERG and ARHGAP6 was decreased by 43% compared to HERG alone. Biochemical measurements of cell-surface associated HERG revealed that ARHGAP6 reduced membrane expression of HERG by 35%, which correlates well with the reduction in current. In an atrial myocyte cell line, suppression of endogenous ARHGAP6 by virally transduced shRNA led to a 53% enhancement of I(Kr). ARHGAP6 effects were maintained when we introduced a dominant negative rho-GTPase, or ARHGAP6 devoid of rhoGAP function, indicating ARHGAP6 regulation of HERG is independent of rho activation. However, ARHGAP6 lost effectiveness when PLC was inhibited. We further determined that ARHGAP6 effects are mediated by a consensus SH3 binding domain within the C-terminus of HERG, although stable ARHGAP6-HERG complexes were not observed. These data link a rhoGAP-activated PLC pathway to HERG membrane expression and implicate this family of proteins as candidate genes in disorders involving HERG.
Collapse
Affiliation(s)
- Franck Potet
- Department of Anesthesiology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abdel-Mottaleb Y, Corzo G, Martin-Eauclaire MF, Satake H, Céard B, Peigneur S, Nambaru P, Bougis PE, Possani LD, Tytgat J. A common "hot spot" confers hERG blockade activity to alpha-scorpion toxins affecting K+ channels. Biochem Pharmacol 2008; 76:805-15. [PMID: 18687312 DOI: 10.1016/j.bcp.2008.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 02/01/2023]
Abstract
While alpha-KTx peptides are generally known for their modulation of the Shaker-type and the Ca(2+)-activated potassium channels, gamma-KTxs are associated with hERG channels modulation. An exception to the rule is BmTx3 which belongs to subfamily alpha-KTx15 and can block hERG channels. To explain the peculiar behavior of BmTx3, a tentative "hot spot" formed of 2 basic residues (R18 and K19) was suggested but never further studied [Huys I, et al. BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K(+) and HERG currents. Biochem J 2004;378:745-52]. In this work, we investigated if the "hot spot" is a commonality in subfamily alpha-KTx15 by testing the effect of (AmmTx3, Aa1, discrepin). Furthermore, single mutations altering the "hot spot" in discrepin, have introduced for the very first time a hERG blocking activity to a previously non-active alpha-KTx. Additionally, we could extend our results to other alpha-KTx subfamily members belonging to alpha-KTx1, 4 and 6, therefore, the "hot spot" represents a common pharmacophore serving as a predictive tool for yet to be discovered alpha-KTxs.
Collapse
Affiliation(s)
- Yousra Abdel-Mottaleb
- Laboratory of Toxicology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Miranda P, Manso DG, Barros F, Carretero L, Hughes TE, Alonso-Ron C, Domínguez P, de la Peña P. FRET with multiply labeled HERG K(+) channels as a reporter of the in vivo coarse architecture of the cytoplasmic domains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1681-99. [PMID: 18634834 DOI: 10.1016/j.bbamcr.2008.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2007] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 01/16/2023]
Abstract
The intracellular N-terminus of human ether-a-go-go-related gene (HERG) potassium channels constitutes a key determinant of activation and deactivation characteristics and is necessary for hormone-induced modifications of gating properties. However, the general organization of the long amino and carboxy HERG terminals remains unknown. In this study we performed fluorescence resonance energy transfer (FRET) microscopy with a library of fluorescent HERG fusion proteins obtained combining site-directed and transposon-based random insertion of GFP variants into multiple sites of HERG. Determinations of FRET efficiencies with functional HERG channels labeled in different combinations localize the fluorophores, introduced in the amino and carboxy ends, in two quadratic planes of 7.8 and 8.6 nm lateral size, showing a vertical separation of nearly 8 nm without major angular torsion between the planes. Similar analysis using labels at positions 345 and 905 of the amino and carboxy terminals, located them slightly above the planes delimited by the amino and carboxy end labels, respectively. Our data also indicate an almost vertical arrangement of the fluorophores introduced in the NH(2) and COOH ends and at position 905, but a near 45 degrees angular rotation between the planes delimited by these labels and the 345-located fluorophores. Systematic triangulation using interfluorophore distances coming from multiply labeled channels provides an initial constraint on the overall in vivo arrangement of the HERG cytoplasmic domains, suggesting that the C-linker/CNBD region of HERG hangs centrally below the transmembrane core, with the initial portion of the amino terminus around its top and side surfaces directed towards the gating machinery.
Collapse
Affiliation(s)
- Pablo Miranda
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus del Cristo, Universidad de Oviedo. E-33006. Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res 2008; 57:181-95. [PMID: 18329284 DOI: 10.1016/j.phrs.2008.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/21/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 12/16/2022]
Abstract
The human ether-à-go-go related gene (hERG) K+ channel is of great interest for both basic researchers and clinicians because its blockade by drugs can lead to QT prolongation, which is a risk factor for torsades de pointes, a potentially life-threatening arrhythmia. A growing list of agents with "QT liability" have been withdrawn from the market or restricted in their use, whereas others did not even receive regulatory approval for this reason. Thus, hERG K+ channels have become a primary antitarget (i.e. an unwanted target) in drug development because their blockade causes potentially serious side effects. On the other hand, the recent identification and functional characterization of hERG K+ channels not only in the heart, but also in several other tissues (e.g. neurons, smooth muscle and cancer cells) may have far reaching implications for drug development for a possible exploitation of hERG as a target, especially in oncology and cardiology.
Collapse
Affiliation(s)
- Emanuel Raschi
- Department of Pharmacology, University of Bologna, Via Irnerio, 48, I-40126 Bologna BO, Bologna, Italy
| | | | | | | |
Collapse
|
21
|
Cavarra MS, del Mónaco SM, Assef YA, Ibarra C, Kotsias BA. HERG1 currents in native K562 leukemic cells. J Membr Biol 2007; 219:49-61. [PMID: 17763876 DOI: 10.1007/s00232-007-9060-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2007] [Accepted: 06/18/2007] [Indexed: 10/22/2022]
Abstract
The human ether-a-go-go related gene (HERG1) K+ channel is expressed in neoplastic cells, in which it was proposed to play a role in proliferation, differentiation and/or apoptosis. K562 cells (a chronic myeloid leukemic human cell line) express both the full-length (herg1a) and the N-terminally truncated (herg1b) isoforms of the gene, and this was confirmed with Western blots and coimmunoprecipitation experiments. Whole-cell currents were studied with a tail protocol. Seventy-eight percent of cells showed a HERG1-like current: repolarization to voltages negative to -40 mV produced a transient peak inward tail current, characteristic of HERG1 channels. Cells were exposed to a HERG-specific channel blocker, E4031. Half-maximal inhibitory concentration (IC50) of the blocker was 4.69 nM: The kinetics of the HERG1 current in K562 cells resembled the rapid component of the native cardiac delayed rectifier current, known to be conducted by heterotetrameric HERG1 channels. Fast and slow deactivation time constants at -120 mV were 27.5 and 239.5 ms, respectively. Our results in K562 cells suggest the assembling of heterotetrameric channels, with some parameters being dominated by one of the isoforms and other parameters being intermediate. Hydrogen peroxide was shown to increase HERG1a K+ current in heterologous expression systems, which constitutes an apoptotic signal. However, we found that K562 HERG1 whole-cell currents were not activated by H2O2.
Collapse
Affiliation(s)
- María S Cavarra
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires-CONICET, C. de Malvinas 3150, Buenos Aires, 1427, Argentina
| | | | | | | | | |
Collapse
|
22
|
Elmedyb P, Olesen SP, Grunnet M. Activation of ERG2 potassium channels by the diphenylurea NS1643. Neuropharmacology 2007; 53:283-94. [PMID: 17610913 DOI: 10.1016/j.neuropharm.2007.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2007] [Revised: 03/30/2007] [Accepted: 05/15/2007] [Indexed: 12/01/2022]
Abstract
Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear. The lack of functional information is at least partly due to the lack of specific pharmacological tools. The compound NS1643 has earlier been reported as an ERG1 channel activator. We found that NS1643 also activates the ERG2 channel; however, the molecular mechanism of the activation differs between the ERG1 and ERG2 channels. This is surprising since ERG1 and ERG2 channels have very similar biophysical and structural characteristics. For ERG2, NS1643 causes a left-ward shift of the activation curve, a faster time-constant of activation and a slower time-constant of inactivation as well as an increased relative importance for the fast component of deactivation to the total deactivation. In contrast, for ERG1, NS1643 causes a right-ward shift in the voltage-dependent release from inactivation but does not affect time-constants of deactivation. Because of these differences in the responses of ERG1 and ERG2 to NS1643, NS1643 can be used as a pharmacological tool to address ERG channel function. It may be useful for revealing physiological functions of ERG channels in neuronal tissue as well as to elucidate the structure-function relationships of the ERG channels.
Collapse
Affiliation(s)
- Pernille Elmedyb
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
23
|
Cvetanovic I, Lin C, Ranade V, Keshavarzian A, Somberg J. The effects of quinidine and its chiral isolates on erg-1sm potassium current and correlation with gastrointestinal augmentation. Am J Ther 2007; 14:269-76. [PMID: 17515703 DOI: 10.1097/01.mjt.0000245225.28536.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Smooth-muscle erg 1 (erg1-sm) potassium channel has been recently reported to participate in the modulation of gastrointestinal contractility. Because quinidine inhibits cardiac potassium channel and as a result augments gastrointestinal contractility, it was thought that quinidine may affect erg1-sm. Studies were undertaken to evaluate the effects of quinidine and its chiral isolates on gastrointestinal erg1-sm potassium current and correlate these effects with colon contractility. Chiral separation (high-performance liquid chromatography technique), mass spectrometry, and optical rotation determination were performed to obtain chiral isolates needed for experiments. The erg1-sm potassium channel was expressed in Xenopus oocytes, and the two-electrode patch clamp technique was employed for recording. An isolated rat colon preparation was employed to measure changes in contractility. As a result of chiral separation, two peaks were obtained with elution times of 8.31 and 8.66 minutes, both with a molecular weight of 324; the optical rotations of racemate isolates X and Y were: +258 degrees, +/-0 degrees; and +217 degrees, respectively. The percentage changes in amplitudes of colon contraction (from baseline) were determined at different concentrations of quinidine and for the two isolates in five experiments in each group. Quinidine 0.1, 1, and 10 microM increased contractility by 79 +/- 34, 125 +/- 42, and 217 +/- 51 (P < or = 0.05); for isolate X, the values were 70 +/- 20, 115 +/- 32, and 272 +/- 32 (P < or = 0.05), and for isolate Y the values were 22 +/- 12, 46 +/- 17, and 59 +/- 22. The inhibition of erg1-sm currents by quinidine was 19 +/- 4, 21 +/- 5, and 48 +/- 6 (P < or = 0.05), respectively; that by isolate X was 20 +/- 4, 23 +/- 5, and 39 +/- 7 (P < or = 0.05), and that by isolate Y was 22 +/- 4, 21 +/- 4, and 31 +/- 6. One chiral isolate and quinidine markedly augmented contractility, whereas quinidine and the two chiral isolates inhibited the erg1-sm potassium currents to a similar extent. These results suggest that erg1-sm inhibition does not explain gastrointestinal contractile augmentation caused by the quinidine racemate and its chiral isolates.
Collapse
Affiliation(s)
- Ivana Cvetanovic
- Department of Pharmacology and Medicine, Rush University Medical Center, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great care should be taken when choosing the concentration of XE991 to use for experiments on native potassium channels or animal studies in order to be able to conclude on selective KCNQ channel-mediated effects.
Collapse
Affiliation(s)
- Pernille Elmedyb
- Department of Medical Physiology, The Panum Institute, The University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
25
|
Bina RW, Hempleman SC. Evidence for TREK-like tandem-pore domain channels in intrapulmonary chemoreceptor chemotransduction. Respir Physiol Neurobiol 2006; 156:120-31. [PMID: 17071144 DOI: 10.1016/j.resp.2006.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2006] [Revised: 09/19/2006] [Accepted: 09/22/2006] [Indexed: 11/27/2022]
Abstract
Intrapulmonary chemoreceptors (IPC) are carbon dioxide sensing neurons that innervate the lungs of birds, control breathing pattern, and are inhibited by halothane and intracellular acidosis. TASK and TREK are subfamilies of tandem-pore domain potassium leak channels, important in setting resting membrane potential, that are affected by volatile anesthetics and acidosis. We hypothesized that such channels might underlie signal transduction in IPC. We treated mallard ducks with four volatile anesthetics in increasing concentrations to test their effects on IPC discharge through single cell, extracellular recording from vagal fibers. Isoflurane inhalation attenuated IPC discharge only at 8.25% inspired (alpha=0.05). Halothane attenuated IPC discharge significantly (alpha=0.05) at all treatment levels. Chloroform at 3.8%, 5.6%, and 8.25% significantly attenuated IPC discharge (alpha=0.05). Ether at 1.9%, 2.9%, and 3.8% significantly attenuated IPC discharge (alpha=0.05), abolishing IPC discharge at 3.8% inspired. The pharmacological signature of IPC discharge attenuation suggests that IPC express tandem-pore domain leak channels similar to TREK channels, which are inhibited by intracellular acidosis.
Collapse
Affiliation(s)
- Robert Wagner Bina
- Department of Biology, Northern Arizona University, Franklin and Beaver Streets, Flagstaff, AZ 86011-5640, USA.
| | | |
Collapse
|
26
|
Aydar E, Palmer C. Expression and functional characterization of the human ether-à-go-go-related gene (HERG) K+ channel cardiac splice variant in Xenopus laevis oocytes. J Membr Biol 2006; 211:115-26. [PMID: 17041783 DOI: 10.1007/s00232-006-0010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2006] [Revised: 06/20/2006] [Indexed: 10/24/2022]
Abstract
HERG C(Cardiac), a C-terminal splice variant of the human ether-à-go-go-related gene (HERG A), was identified and found to be 100% homologous to HERG(USO). Real-time polymerase chain reaction data indicated that in the human heart HERG C(Cardiac )mRNA was expressed eight times more than HERG A, whereas in human ventricular tissue it was expressed six times more than HERG A. A HERG C(Cardiac)-green fluorescence protein (GFP) construct was heterologously expressed in Xenopus oocytes. Confocal micrographs revealed that HERG C(Cardiac )was mainly expressed in the plasma membrane. HERG C(Cardiac) channel expressed in oocytes produced slower inactivating outward currents and faster deactivating tail currents than those of HERG A channel. Equal amounts of HERG A and HERG C(Cardiac) cRNA coinjected into oocytes formed intermediate HERG A + HERG C(Cardiac) heteromultimers, which was reconfirmed by immunoprecipitation experiments with a HERG A N-terminal antibody. These heteromultimers had different inactivation, deactivation and activation kinetics from those of HERG A and HERG C(Cardiac) channels. HERG A + HERG C(Cardiac) heteromultimers significantly reduced the model action potential mean amplitude and increased the fast and slow inactivation tau values of the action potential repolarization phase, suggesting involvement of HERG A and HERG C(Cardiac) heteromultimers in modulation of the refractory interval.
Collapse
Affiliation(s)
- Ebru Aydar
- Division of Cell and Molecular Biology, Imperial College, London, South Kensington Campus, Sir Alexander Fleming Building, London, UK.
| | | |
Collapse
|
27
|
Hemmerlein B, Weseloh RM, Mello de Queiroz F, Knötgen H, Sánchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Stühmer W, Pardo LA. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 2006; 5:41. [PMID: 17022810 PMCID: PMC1621079 DOI: 10.1186/1476-4598-5-41] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2006] [Accepted: 10/05/2006] [Indexed: 01/12/2023] Open
Abstract
Background Certain types of potassium channels (known as Eag1, KCNH1, Kv10.1) are associated with the production of tumours in patients and in animals. We have now studied the expression pattern of the Eag1 channel in a large range of normal and tumour tissues from different collections utilising molecular biological and immunohistochemical techniques. Results The use of reverse transcription real-time PCR and specifically generated monoclonal anti-Eag1 antibodies showed that expression of the channel is normally limited to specific areas of the brain and to restricted cell populations throughout the body. Tumour samples, however, showed a significant overexpression of the channel with high frequency (up to 80% depending on the tissue source) regardless of the detection method (staining with either one of the antibodies, or detection of Eag1 RNA). Conclusion Inhibition of Eag1 expression in tumour cell lines reduced cell proliferation. Eag1 may therefore represent a promising target for the tailored treatment of human tumours. Furthermore, as normal cells expressing Eag1 are either protected by the blood-brain barrier or represent the terminal stage of normal differentiation, Eag1 based therapies could produce only minor side effects.
Collapse
Affiliation(s)
- Bernhard Hemmerlein
- Department of Pathology, Georg-August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Rüdiger M Weseloh
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Fernanda Mello de Queiroz
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- Divisão de Farmacologia, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rua André Cavalcanti 37/3° andar, Rio de Janeiro, Brasil
| | | | - Araceli Sánchez
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - María E Rubio
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Sabine Martin
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- DFG Research Center for the Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| | | | - Marc Jenke
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- iOnGen AG, Stiegbreite 13, 37077 Göttingen, Germany
| | - Walter Stühmer
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Luis A Pardo
- Max-Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- iOnGen AG, Stiegbreite 13, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Locke GR, Ackerman MJ, Zinsmeister AR, Thapa P, Farrugia G. Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy. Am J Gastroenterol 2006; 101:1299-304. [PMID: 16771953 DOI: 10.1111/j.1572-0241.2006.00507.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recently, two ion channels associated with congenital long QT syndrome, the SCN5A-encoded Nav1.5 sodium channel and the KCNH2-encoded HERG potassium channel (IKr), have been found on gastrointestinal smooth muscle and interstitial cells of Cajal. The aim of this study was to determine if the cardiac channelopathy-associated mutations in SCN5A or KCNH2 are associated with GI symptom complexes. METHODS Mayo Clinic's Sudden Death Genomics Laboratory performed comprehensive mutational analysis on index patients referred for long QT syndrome genetic testing and their family members thus establishing a cohort of families for which the genotype status for SCN5A or KCNH2 is known. A valid GI symptom questionnaire was mailed to all family members (both genotype positive and genotype negative) in this cohort. The association between cardiac channel genotype and GI symptoms was assessed by logistic regression adjusted for age and sex. RESULTS Two hundred and nineteen (43% of 529) subjects returned the questionnaire. Fifty percent of the subjects with an SCN5A mutation reported abdominal pain compared to only 13% of controls (OR 5.7; 95% CI 1.3-24.4). Over 65% of subjects with an SCN5A mutation reported a GI symptom complex compared to 28% of controls (OR 5.2; 95% CI 1.5-18.3). No associations with KCNH2 genotype status were detected. CONCLUSIONS This study is the first to suggest an association between a well-defined cardiac channelopathy and GI symptoms. The role of sodium channelopathies in the pathogenesis of digestive diseases merits exploration.
Collapse
Affiliation(s)
- G Richard Locke
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
29
|
Cvetanovic I, Ranade V, Lin C, Somberg J. The differential antibacterial and gastrointestinal effects of erythromycin and its chiral isolates. Am J Ther 2006; 13:48-56. [PMID: 16428922 DOI: 10.1097/01.mjt.0000155114.89092.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
The use of erythromycin has been limited by the gastrointestinal side effect properties, which include abdominal distress and diarrhea. To evaluate the possibility of reducing the toxicity of erythromycin, studies were undertaken to separate erythromycin into chiral isolates and then to test the activity of these chiral isolates on gastrointestinal contractility and bacteriostatic actions. Gastrointestinal contractility was obtained by the use of isolated strips of a rat colon. Antibacterial activity was used by obtaining the MICs of erythromycin and isolated agents against Enterococcus faecalis ATCC 29212. ANOVA was performed using the SPSS v.10 to determine statistical differences in the MICs and the amplitude and frequency of spike bursts. Results were expressed as mean+/-SE (N=5). The MICs (microg/mL) of erythromycin (racemate), chiral isolate X, and chiral isolate Y were 0.45+/-0.29, 0.53+/-0.24 (n.s.), and 0.2+/-0.07 (P<or=0.001), respectively. Erythromycin (racemate) at 10 mol/L, 10 mol/L, 5x10 mol/L, 10 mol/L, and 10 mol/L concentrations caused the amplitude of spike bursts to increase by 18+/-7% (P=n.s.), 43+/-10% (P<or=0.05), 55+/-12% (P<or=0.001), 121+/-23% (P<or=0.001), and 163+/-16% (P<or=0.001), respectively. The chiral isolate Y increased the amplitude of spike bursts at the same concentrations as tested above: 32+/-11% (P<or=0.05), 48+/-14% (P<or=0.001), 84+/-13% (P<or=0.001), 112+/-18% (P<or=0.001), and 121+/-13% (P<or=0.001), respectively. Chiral isolate X caused much reduced effect on the amplitude of spike bursts: 9+/-6% (P=n.s.), 27+/-12% (P=n.s.), 27+/-12% (P=n.s.), 30+/-11% (P=n.s.), and 30+/-11.2% (P=n.s.), respectively. EC50 for erythromycin (mixture) was 0.4x10 mol/L, and for erythromycin Y, it was 0.8x10 mol/L. The addition of erythromycin at 10 mol/L caused the frequency of spike bursts to increase 11+/-7% at 10 mol/L, 5x10 mol/L, 10 mol/L, and 10 mol/L; the changes were 13+/-10% (P=n.s.), 13+/-10% (P=n.s.), 22+/-13% (P=ns), and 39+/-30% (P<or=0.05), respectively. Chiral isolate Y of erythromycin, changed the frequency of spike bursts by 26+/-21% (P=n.s.); 35+/-20% (P=n.s.), 39+/-30% (P=n.s.), 41+/-37% (P=n.s.), and 44+/-36% (P=n.s.) at the respective concentrations as discussed above. Chiral isolate X altered the frequency of spike bursts at the same concentrations as 40+/-30% (P=n.s.), 45+/-30% (P=n.s.), 62+/-41% (P=n.s.), 62+/-41% (P=n.s.), and 52+/-35% (P=n.s.), respectively. Data indicate that erythromycin (racemate) and chiral isolates X and Y possess similar antibacterial activity. It was also shown that erythromycin and chiral isolate Y increase significantly the amplitude of spike bursts compared with baseline. Isolate X does not increase the amplitude of spike bursts in a dose-dependent manner. The frequency of spike bursts is not significantly changed in the presence of erythromycin or the 2 chiral isolates.
Collapse
Affiliation(s)
- Ivana Cvetanovic
- Department of Pharmacology, Rush University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
30
|
Zünkler BJ. Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther 2006; 112:12-37. [PMID: 16647758 DOI: 10.1016/j.pharmthera.2006.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 12/25/2022]
Abstract
Torsades de pointes (TdP) arrhythmia is a potentially fatal form of ventricular arrhythmia that occurs under conditions where cardiac repolarization is delayed (as indicated by prolonged QT intervals from electrocardiographic recordings). A likely mechanism for QT interval prolongation and TdP arrhythmias is blockade of the rapid component of the cardiac delayed rectifier K+ current (IKr), which is encoded by human ether-a-go-go-related gene (HERG). Over 100 non-cardiovascular drugs have the potential to induce QT interval prolongations in the electrocardiogram (ECG) or TdP arrhythmias. The binding site of most HERG channel blockers is located inside the central cavity of the channel. An evaluation of possible effects on HERG channels during the development of novel drugs is recommended by international guidelines. During cardiac ischaemia activation of ATP-sensitive K+ (KATP) channels contributes to action potential (AP) shortening which is either cardiotoxic by inducing re-entrant ventricular arrhythmias or cardioprotective by inducing energy-sparing effects or ischaemic preconditioning (IPC). KATP channels are formed by an inward-rectifier K+ channel (Kir6.0) and a sulfonylurea receptor (SUR) subunit: Kir6.2 and SUR2A in cardiac myocytes, Kir6.2 and SUR1 in pancreatic beta-cells. Sulfonylureas and glinides stimulate insulin secretion via blockade of the pancreatic beta-cell KATP channel. Clinical studies about cardiotoxic effects of sulfonylureas are contradictory. Sulfonylureas and glinides differ in their selectivity for pancreatic over cardiovascular KATP channels, being either selective (tolbutamide, glibenclamide) or non-selective (repaglinide). The possibility exists that non-selective KATP channel inhibitors might have cardiovascular side effects. Blockers of the pore-forming Kir6.2 subunit are insulin secretagogues and might have cardioprotective or cardiotoxic effects during cardiac ischaemia.
Collapse
Affiliation(s)
- Bernd J Zünkler
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.
| |
Collapse
|
31
|
Zhang M, Liu J, Jiang M, Wu DM, Sonawane K, Guy HR, Tseng GN. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel. J Membr Biol 2006; 207:169-81. [PMID: 16550488 DOI: 10.1007/s00232-005-0812-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2005] [Revised: 10/09/2005] [Indexed: 11/30/2022]
Abstract
Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.
Collapse
Affiliation(s)
- M Zhang
- Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Nie L, Gratton MA, Mu KJ, Dinglasan JN, Feng W, Yamoah EN. Expression and functional phenotype of mouse ERG K+ channels in the inner ear: potential role in K+ regulation in the inner ear. J Neurosci 2006; 25:8671-9. [PMID: 16177035 PMCID: PMC6725506 DOI: 10.1523/jneurosci.1422-05.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
An outcome of the intricate K+ regulation in the cochlear duct is the endocochlear potential (EP), approximately 80 mV, the "battery" that runs hair-cell transduction; however, the detailed molecular mechanisms for the generation of the EP remain unclear. We provide strong evidence indicating that the intermediate cells (ICs) of the stria vascularis (StV) express outward K+ current that rectifies inwardly at positive potentials. The channel belongs to the ether-a-go-go-related gene (erg) family of K+ channels. We cloned an ERG1a channel in the mouse inner ear (MERG1a). The cellular distribution of MERG1a in the cochlea displayed the highest levels of immunoreactivity in the ICs and modest reactivity in the marginal cells as well as in several extrastrial cells (e.g., hair cells). Functional expression of the StV-specific MERG1a channel reveals a current that activates at relatively negative potentials (approximately-50 mV) and shows rapid inactivation reflected as inward rectification at depolarized potentials. The current was sensitive to the methanesulfonanilide drug E-4031 (IC50, approximately 165 nM) and the recombinant peptide rBeKm-1 (IC50, approximately 16 nM), and the single-channel conductance in symmetrical K+ was approximately 14 pS. The site of expression of MERG1a and its functional phenotype (e.g., modulation of the current by external K+ make it one of the most likely candidates for establishing the high throughput of K+ ions across ICs to generate EP. In addition, the property of the channel that produces marked K+ extrusion in increased external K+ may be important in shaping the dynamics of K+ cycling in the inner ear.
Collapse
Affiliation(s)
- Liping Nie
- Center for Neuroscience, Department of Otolaryngology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
33
|
Blunck R, Starace DM, Correa AM, Bezanilla F. Detecting rearrangements of shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. Biophys J 2005; 86:3966-80. [PMID: 15189893 PMCID: PMC1304298 DOI: 10.1529/biophysj.103.034512] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Time-resolved fluorescence detection of site-directed probes is a major tool in the investigation of structure-function relationships of voltage-dependent ion channels. However, the technique has been limited so far to the Xenopus-oocyte system making it difficult to study proteins, like, e.g., the prokaryotic sodium channel NaChBac, whose expression in oocytes is insufficient or whose physiological functions are distorted in oocytes. To expand the application of site-directed fluorescence detection to these proteins, we used two techniques-semiconfocal epifluorescence and total internal reflection fluorescence-to detect time-resolved fluorescence changes from site-directed labeled proteins expressed in mammalian cells under patch-clamp conditions, and investigated the characteristics and limitations of the techniques. The voltage-sensitive dye, di-8-ANEPPS, was used to monitor control of the membrane voltage in epifluorescence and total internal reflection fluorescence. Fluorescence changes in patch-clamped cells were recorded from a Shaker channel mutant (M356C) labeled in the S3-S4 linker using semiconfocal epifluorescence. The gating kinetics and fluorescence changes were in accordance with previous studies using fluorescence spectroscopy in Xenopus-oocyte systems. We applied our technique to the prokaryotic sodium channel NaChBac. Voltage-dependent protein-rearrangements of S4 could be detected that are independent of inactivation. Comparison of the S3-S4 linker regions revealed structural differences to the KvAP voltage sensor. The results from the NaChBac channel point to structural requirements for the S3-S4 loop to generate a fluorescence signal.
Collapse
Affiliation(s)
- Rikard Blunck
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
34
|
Zhang M, Liu J, Tseng GN. Gating charges in the activation and inactivation processes of the HERG channel. J Gen Physiol 2004; 124:703-18. [PMID: 15545400 PMCID: PMC2234031 DOI: 10.1085/jgp.200409119] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2004] [Accepted: 10/13/2004] [Indexed: 12/02/2022] Open
Abstract
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Physiology, Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298, USA
| | | | | |
Collapse
|
35
|
Petersen CI, McFarland TR, Stepanovic SZ, Yang P, Reiner DJ, Hayashi K, George AL, Roden DM, Thomas JH, Balser JR. In vivo identification of genes that modify ether-a-go-go-related gene activity in Caenorhabditis elegans may also affect human cardiac arrhythmia. Proc Natl Acad Sci U S A 2004; 101:11773-8. [PMID: 15280551 PMCID: PMC511051 DOI: 10.1073/pnas.0306005101] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Human ether-a-go-go-related gene (HERG) encodes the pore-forming subunit of I(Kr), a cardiac K(+) channel. Although many commonly used drugs block I(Kr), in certain individuals, this action evokes a paradoxical life-threatening cardiac rhythm disturbance, known as the acquired long QT syndrome (aLQTS). Although aLQTS has become the leading cause of drug withdrawal by the U.S. Food and Drug Administration, DNA sequencing in aLQTS patients has revealed HERG mutations only in rare cases, suggesting that unknown HERG modulators are often responsible. By using the worm Caenorhabditis elegans, we have developed in vivo behavioral assays that identify candidate modulators of unc-103, the worm HERG orthologue. By using RNA-interference methods, we have shown that worm homologues of two HERG-interacting proteins, Hyperkinetic and K channel regulator 1 (KCR1), modify unc-103 function. Examination of the human KCR1 sequence in patients with drug-induced cardiac repolarization defects revealed a sequence variation (the substitution of isoleucine 447 by valine, I447V) that occurs at a reduced frequency (1.1%) relative to a matched control population (7.0%), suggesting that I447V may be an allele for reduced aLQTS susceptibility. This clinical result is supported by in vitro studies of HERG dofetilide sensitivity by using coexpression of HERG with wild-type and I447V KCR1 cDNAs. Our studies demonstrate the feasibility of using C. elegans to assay and potentially identify aLQTS candidate genes.
Collapse
Affiliation(s)
- Christina I Petersen
- Department of Anesthesiology and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Ether-à-go-go-related gene (erg) channels are voltage-dependent K+ channels mediating inward-rectifying K+ currents because of their peculiar gating kinetics. These characteristics are essential for repolarization of the cardiac action potential. Inherited and acquired malfunctioning of erg channels may lead to the long QT-syndrome. However, erg currents have also been recorded in many other excitable cells, like smooth muscle fibres of the gastrointestinal tract, neuroblastoma cells or neuroendocrine cells. In these cells erg currents contribute to the maintenance of the resting potential. Changes in the resting potential are related to cell-specific functions like increase in hormone secretion, frequency adaptation or increase in contractility.
Collapse
Affiliation(s)
- Jürgen R Schwarz
- Institut für Angewandte Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
37
|
Jin X, Malykhina AP, Lupu F, Akbarali HI. Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2004; 287:G274-85. [PMID: 14962845 DOI: 10.1152/ajpgi.00472.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
The ATP-sensitive K(+) channel (K(ATP)) is a complex composed of an inwardly rectifying, pore-forming subunit (Kir 6.1 and Kir 6.2) and the sulfonylurea receptor (SUR1 and SUR2). In gastrointestinal smooth muscle, these channels are important in regulating cell excitability. We examined the molecular composition of the K(ATP) channel in mouse colonic smooth muscle and determined its activity in the pathophysiological setting of experimental colitis. Following 7 days of dextran sulfate sodium (DSS) treatment in drinking water, colonic inflammation was scored by histology and physical signs. In whole cell recordings, levcromakalim-induced currents were significantly larger in inflamed cells. In cell-attached patch recordings of single-channel events, levcromakalim enhanced the bursting duration in inflamed cells. The single-channel conductance of approximately 42 pS was not altered with inflammation. mRNA for both Kir 6.1 and 6.2 were detected by RT-PCR. Kir 6.1 was localized to the plasma membrane, whereas Kir 6.2 was mainly detected in the cytosol by immunohistochemistry. Quantitative PCR showed that Kir 6.1 gene expression was upregulated by almost 22-fold, whereas SUR2B was downregulated by threefold after inflammation. Thus decreased motility of the colon during inflammation may be associated with changes in the transcriptional regulation of Kir 6.1 and SUR2B gene expression.
Collapse
Affiliation(s)
- Xiaochun Jin
- Dept. of Physiology, University of Oklahoma Health Science Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
38
|
Sacco T, Bruno A, Wanke E, Tempia F. Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol 2003; 90:1817-28. [PMID: 12750425 DOI: 10.1152/jn.00104.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Transcripts encoding ERG potassium channels are expressed by most neurons of the CNS. By patch-clamp whole cell recording from Purkinje neurons in slices of young (5-9 days old) mouse cerebellum we have been able to isolate a tail current [IK(ERG)] with the same characteristics as previously described for ERG channels. In zero external Ca2+ and high K+ (40 mM) the V1/2 of activation was -50.7 mV, the V1/2 of inactivation was -70.6 mV, and the deactivation rate was double exponential and voltage dependent. IK(ERG) was 93.0% blocked by WAY-123,398 (1 microM) and 78.2% by haloperidol (2 microM). The role of IK(ERG) on evoked firing was studied in adult mice, where WAY-123,398 application decreased the first spike latency, increased the firing frequency, and suppressed the frequency adaptation. However, the shape of individual action potentials was not affected. Stimulation of presynaptic climbing fibers evoked the Purkinje neuron "complex spike," composed of an initial spike and several spikelets. IK(ERG) block caused an increase of the number of spikelets of the "complex spike." These data show, for the first time, an IK(ERG) in a neuron of the CNS, the cerebellar Purkinje neuron, and indicate that such a current is involved in the control of membrane excitability, firing frequency adaptation, and in determining the effects of the climbing fiber synapse.
Collapse
Affiliation(s)
- Tiziana Sacco
- Department of Internal Medicine, Section of Human Physiology, University of Perugia, I-06126 Perugia
| | | | | | | |
Collapse
|
39
|
Farrelly AM, Ro S, Callaghan BP, Khoyi MA, Fleming N, Horowitz B, Sanders KM, Keef KD. Expression and function of KCNH2 (HERG) in the human jejunum. Am J Physiol Gastrointest Liver Physiol 2003; 284:G883-95. [PMID: 12736144 DOI: 10.1152/ajpgi.00394.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Previous studies suggest that ether-a-go-go related gene (ERG) KCNH2 potassium channels contribute to the control of motility patterns in the gastrointestinal tract of animal models. The present study examines whether these results can be translated into a role in human gastrointestinal muscles. Messages for two different variants of the KCNH2 gene were detected: KCNH2 V1 human ERG (HERG) (28) and KCNH2 V2 (HERG(USO)) (13). The amount of V2 message was greater than V1 in both human jejunum and brain. The base-pair sequence that gives rise to domains S3-S5 of the channel was identical to that previously published for human KCNH2 V1 and V2. KCNH2 protein was detected immunohistochemically in circular and longitudinal smooth muscle and enteric neurons but not in interstitial cells of Cajal. In the presence of TTX (10(-6) M), atropine (10(-6) M). and l-nitroarginine (10(-4) M) human jejunal circular muscle strips contracted phasically (9 cycles/min) and generated slow waves with superimposed spikes. Low concentrations of the KCNH2 blockers E-4031 (10(-8) M) and MK-499 (3 x 10(-8) M) increased phasic contractile amplitude and the number of spikes per slow wave. The highest concentration of E-4031 (10(-6) M) produced a 10-20 mV depolarization, eliminated slow waves, and replaced phasic contractions with a small tonic contracture. E-4031 (10(-6) M) did not affect [(14)C]ACh release from enteric neurons. We conclude that KCNH2 channels play a fundamental role in the control of motility patterns in human jejunum through their ability to modulate the electrical behavior of smooth muscle cells.
Collapse
Affiliation(s)
- A M Farrelly
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|