1
|
Loveridge KM, Sigala PA. Identification of a divalent metal transporter required for cellular iron metabolism in malaria parasites. Proc Natl Acad Sci U S A 2024; 121:e2411631121. [PMID: 39467134 PMCID: PMC11551425 DOI: 10.1073/pnas.2411631121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Plasmodium falciparum malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, P. falciparum requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron. Although most FV heme is sequestered into inert hemozoin crystals, prior studies indicate that trace heme escapes biomineralization and is susceptible to nonenzymatic degradation within the oxidizing FV environment to release labile iron. Parasites retain a homolog of divalent metal transporter 1 (DMT1), a known mammalian iron transporter, but its role in P. falciparum iron acquisition has not been tested. Our phylogenetic studies indicate that P. falciparum DMT1 (PfDMT1) retains conserved molecular features critical for metal transport. We localized this protein to the FV membrane and defined its orientation in an export-competent topology. Conditional knockdown of PfDMT1 expression is lethal to parasites, which display broad cellular defects in iron-dependent functions, including impaired apicoplast biogenesis and mitochondrial polarization. Parasites are selectively rescued from partial PfDMT1 knockdown by supplementation with exogenous iron, but not other metals. These results support a cellular paradigm whereby PfDMT1 is the molecular gatekeeper to essential iron acquisition by blood-stage malaria parasites and suggest that therapeutic targeting of PfDMT1 may be a potent antimalarial strategy.
Collapse
Affiliation(s)
- Kade M. Loveridge
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| |
Collapse
|
2
|
Shadija N, Dass S, Xu W, Wang L, Ke H. Functionality of the V-type ATPase during asexual growth and development of Plasmodium falciparum. J Biol Chem 2024; 300:107608. [PMID: 39084459 PMCID: PMC11387698 DOI: 10.1016/j.jbc.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Vacuolar type ATPases (V-type ATPases) are highly conserved hetero-multisubunit proton pumping machineries found in all eukaryotes. They utilize ATP hydrolysis to pump protons, acidifying intracellular or extracellular compartments, and are thus crucial for various biological processes. Despite their evolutionary conservation in malaria parasites, this proton pump remains understudied. To understand the localization and biological functions of Plasmodium falciparum V-type ATPase, we employed CRISPR/Cas9 to endogenously tag the subunit A of the V1 domain. V1A (PF3D7_1311900) was tagged with a triple hemagglutinin epitope and the TetR-DOZI-aptamer system for conditional expression under the regulation of anhydrotetracycline. Via immunofluorescence assays, we identified that V-type ATPase is expressed throughout the intraerythrocytic developmental cycle and is mainly localized to the digestive vacuole and parasite plasma membrane. Immuno-electron microscopy further revealed that V-type ATPase is also localized on secretory organelles in merozoites. Knockdown of V1A led to cytosolic pH imbalance and blockage of hemoglobin digestion in the digestive vacuole, resulting in an arrest of parasite development in the trophozoite-stage and, ultimately, parasite demise. Using bafilomycin A1, a specific inhibitor of V-type ATPases, we found that the P. falciparum V-type ATPase is likely involved in parasite invasion but is not critical for ring-stage development. Further, we detected a large molecular weight complex in blue native-PAGE (∼1.0 MDa), corresponding to the total molecular weights of V1 and Vo domains. Together, we show that V-type ATPase is localized to multiple subcellular compartments in P. falciparum, and its functionality throughout the asexual cycle varies depending on the parasite developmental stages.
Collapse
Affiliation(s)
- Neeta Shadija
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Wei Xu
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Liying Wang
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Wendt C, Miranda K. Endocytosis in malaria parasites: An ultrastructural perspective of membrane interplay in a unique infection model. CURRENT TOPICS IN MEMBRANES 2024; 93:27-49. [PMID: 39181577 DOI: 10.1016/bs.ctm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.
Collapse
Affiliation(s)
- Camila Wendt
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Biomineralização, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
5
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Collins JE, Lee JW, Rocamora F, Saggu GS, Wendt KL, Pasaje CFA, Smick S, Santos NM, Paes R, Jiang T, Mittal N, Luth MR, Chin T, Chang H, McLellan JL, Morales-Hernandez B, Hanson KK, Niles JC, Desai SA, Winzeler EA, Cichewicz RH, Chakrabarti D. Antiplasmodial peptaibols act through membrane directed mechanisms. Cell Chem Biol 2024; 31:312-325.e9. [PMID: 37995692 PMCID: PMC10923054 DOI: 10.1016/j.chembiol.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.
Collapse
Affiliation(s)
- Jennifer E Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Jin Woo Lee
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Frances Rocamora
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Karen L Wendt
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA
| | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Natalia Mojica Santos
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Raphaella Paes
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Tiantian Jiang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Nimisha Mittal
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline R Luth
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Taylor Chin
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Howard Chang
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - James L McLellan
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Institute for Natural Products Applications & Research Technologies, University of Oklahoma, Norman OK 73019, USA.
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
7
|
Solebo O, Ling L, Nwankwo I, Zhou J, Fu TM, Ke H. Plasmodium falciparum utilizes pyrophosphate to fuel an essential proton pump in the ring stage and the transition to trophozoite stage. PLoS Pathog 2023; 19:e1011818. [PMID: 38048362 PMCID: PMC10732439 DOI: 10.1371/journal.ppat.1011818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
During asexual growth and replication cycles inside red blood cells, the malaria parasite Plasmodium falciparum primarily relies on glycolysis for energy supply, as its single mitochondrion performs little or no oxidative phosphorylation. Post merozoite invasion of a host red blood cell, the ring stage lasts approximately 20 hours and was traditionally thought to be metabolically quiescent. However, recent studies have shown that the ring stage is active in several energy-costly processes, including gene transcription, protein translation, protein export, and movement inside the host cell. It has remained unclear whether a low glycolytic flux alone can meet the energy demand of the ring stage over a long period post invasion. Here, we demonstrate that the metabolic by-product pyrophosphate (PPi) is a critical energy source for the development of the ring stage and its transition to the trophozoite stage. During early phases of the asexual development, the parasite utilizes Plasmodium falciparum vacuolar pyrophosphatase 1 (PfVP1), an ancient pyrophosphate-driven proton pump, to export protons across the parasite plasma membrane. Conditional deletion of PfVP1 leads to a delayed ring stage that lasts nearly 48 hours and a complete blockage of the ring-to-trophozoite transition before the onset of parasite death. This developmental arrest can be partially rescued by an orthologous vacuolar pyrophosphatase from Arabidopsis thaliana, but not by the soluble pyrophosphatase from Saccharomyces cerevisiae, which lacks proton pumping activities. Since proton-pumping pyrophosphatases have been evolutionarily lost in human hosts, the essentiality of PfVP1 suggests its potential as an antimalarial drug target. A drug target of the ring stage is highly desired, as current antimalarials have limited efficacy against this stage.
Collapse
Affiliation(s)
- Omobukola Solebo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liqin Ling
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ikechukwu Nwankwo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Kreutzfeld O, Tumwebaze PK, Okitwi M, Orena S, Byaruhanga O, Katairo T, Conrad MD, Rasmussen SA, Legac J, Aydemir O, Giesbrecht D, Forte B, Campbell P, Smith A, Kano H, Nsobya SL, Blasco B, Duffey M, Bailey JA, Cooper RA, Rosenthal PJ. Susceptibility of Ugandan Plasmodium falciparum Isolates to the Antimalarial Drug Pipeline. Microbiol Spectr 2023; 11:e0523622. [PMID: 37158739 PMCID: PMC10269555 DOI: 10.1128/spectrum.05236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- University of California, San Francisco, San Francisco, California, USA
| | | | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D. Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Peter Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alasdair Smith
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Hiroki Kano
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Stasic AJ, Moreno SNJ, Carruthers VB, Dou Z. The Toxoplasma plant-like vacuolar compartment (PLVAC). J Eukaryot Microbiol 2022; 69:e12951. [PMID: 36218001 PMCID: PMC10576567 DOI: 10.1111/jeu.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.
Collapse
Affiliation(s)
- Andrew J Stasic
- Department of Microbiology, Heartland FPG, Carmel, Indiana, USA
| | - Silvia N J Moreno
- Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
| | - Vern B Carruthers
- Department of Microbiology & Immunology, University of Michigan Medical School, Michigan, Ann Arbor, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, South Carolina, Clemson, USA
| |
Collapse
|
10
|
GAPDH mediates drug resistance and metabolism in Plasmodium falciparum malaria parasites. PLoS Pathog 2022; 18:e1010803. [PMID: 36103572 PMCID: PMC9512246 DOI: 10.1371/journal.ppat.1010803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/26/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Efforts to control the global malaria health crisis are undermined by antimalarial resistance. Identifying mechanisms of resistance will uncover the underlying biology of the Plasmodium falciparum malaria parasites that allow evasion of our most promising therapeutics and may reveal new drug targets. We utilized fosmidomycin (FSM) as a chemical inhibitor of plastidial isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway. We have thus identified an unusual metabolic regulation scheme in the malaria parasite through the essential glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Two parallel genetic screens converged on independent but functionally analogous resistance alleles in GAPDH. Metabolic profiling of FSM-resistant gapdh mutant parasites indicates that neither of these mutations disrupt overall glycolytic output. While FSM-resistant GAPDH variant proteins are catalytically active, they have reduced assembly into the homotetrameric state favored by wild-type GAPDH. Disrupted oligomerization of FSM-resistant GAPDH variant proteins is accompanied by altered enzymatic cooperativity and reduced susceptibility to inhibition by free heme. Together, our data identifies a new genetic biomarker of FSM-resistance and reveals the central role of GAPDH in MEP pathway control and antimalarial sensitivity. Malaria is a life-threatening mosquito-borne infection that remains an enormous public health threat worldwide, with over 600,000 deaths reported in 2020 alone. The parasites that cause malaria invade and replicate within human red blood cells. This unique environment provides the malaria parasite with almost unlimited supply of sugar in the form of glucose, which the parasite uses for energy and as building blocks to grow and divide. Parasites break down glucose, and must use these breakdown products to make new molecules, including a very important class of compounds called isoprenoids. Malaria parasites normally die when they are treated with a drug, called fosmidomycin, that inhibits this process. To understand how parasites regulate this critical function, in this study we identified parasites that were resistant to fosmidomycin. These fosmidomycin-resistant cells had mutations in an enzyme that is critical for sugar breakdown, called glyceraldehyde phosphate dehydrogenase (GAPDH). We find that parasites with mutant GAPDH enzymes still break down sugar normally, but are not inhibited by other changes in the cell that happen upon fosmidomycin treatment. These results reveal a new and important role for the enzyme GAPDH as a control-point for downstream metabolism in malaria parasites.
Collapse
|
11
|
Babesia, Theileria, Plasmodium and Hemoglobin. Microorganisms 2022; 10:microorganisms10081651. [PMID: 36014069 PMCID: PMC9414693 DOI: 10.3390/microorganisms10081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
The Propagation of Plasmodium spp. and Babesia/Theileria spp. vertebrate blood stages relies on the mediated acquisition of nutrients available within the host’s red blood cell (RBC). The cellular processes of uptake, trafficking and metabolic processing of host RBC proteins are thus crucial for the intraerythrocytic development of these parasites. In contrast to malarial Plasmodia, the molecular mechanisms of uptake and processing of the major RBC cytoplasmic protein hemoglobin remain widely unexplored in intraerythrocytic Babesia/Theileria species. In the paper, we thus provide an updated comparison of the intraerythrocytic stage feeding mechanisms of these two distantly related groups of parasitic Apicomplexa. As the associated metabolic pathways including proteolytic degradation and networks facilitating heme homeostasis represent attractive targets for diverse antimalarials, and alterations in these pathways underpin several mechanisms of malaria drug resistance, our ambition is to highlight some fundamental differences resulting in different implications for parasite management with the potential for novel interventions against Babesia/Theileria infections.
Collapse
|
12
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
13
|
Mesén-Ramírez P, Bergmann B, Elhabiri M, Zhu L, von Thien H, Castro-Peña C, Gilberger TW, Davioud-Charvet E, Bozdech Z, Bachmann A, Spielmann T. The parasitophorous vacuole nutrient channel is critical for drug access in malaria parasites and modulates the artemisinin resistance fitness cost. Cell Host Microbe 2021; 29:1774-1787.e9. [PMID: 34863371 DOI: 10.1016/j.chom.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Intraerythrocytic malaria parasites proliferate bounded by a parasitophorous vacuolar membrane (PVM). The PVM contains nutrient permeable channels (NPCs) conductive to small molecules, but their relevance for parasite growth for individual metabolites is largely untested. Here we show that growth-relevant levels of major carbon and energy sources pass through the NPCs. Moreover, we find that NPCs are a gate for several antimalarial drugs, highlighting their permeability properties as a critical factor for drug design. Looking into NPC-dependent amino acid transport, we find that amino acid shortage is a reason for the fitness cost in artemisinin-resistant (ARTR) parasites and provide evidence that NPC upregulation to increase amino acids acquisition is a mechanism of ARTR parasites in vitro and in human infections to compensate this fitness cost. Hence, the NPCs are important for nutrient and drug access and reveal amino acid deprivation as a critical constraint in ARTR parasites.
Collapse
Affiliation(s)
- Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Bärbel Bergmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Mourad Elhabiri
- UMR7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Carolina Castro-Peña
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Elisabeth Davioud-Charvet
- UMR7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Honorary Visiting Research Fellow, Nuffield Department of Medicine, University of Oxford, UK
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| |
Collapse
|
14
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
15
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
16
|
Metabolic Survival Adaptations of Plasmodium falciparum Exposed to Sublethal Doses of Fosmidomycin. Antimicrob Agents Chemother 2021; 65:AAC.02392-20. [PMID: 33495219 DOI: 10.1128/aac.02392-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
The malaria parasite Plasmodium falciparum contains the apicoplast organelle that synthesizes isoprenoids, which are metabolites necessary for posttranslational modification of Plasmodium proteins. We used fosmidomycin, an antibiotic that inhibits isoprenoid biosynthesis, to identify mechanisms that underlie the development of the parasite's adaptation to the drug at sublethal concentrations. We first determined a concentration of fosmidomycin that reduced parasite growth by ∼50% over one intraerythrocytic developmental cycle (IDC). At this dose, we maintained synchronous parasite cultures for one full IDC and collected metabolomic and transcriptomic data at multiple time points to capture global and stage-specific alterations. We integrated the data with a genome-scale metabolic model of P. falciparum to characterize the metabolic adaptations of the parasite in response to fosmidomycin treatment. Our simulations showed that, in treated parasites, the synthesis of purine-based nucleotides increased, whereas the synthesis of phosphatidylcholine during the trophozoite and schizont stages decreased. Specifically, the increased polyamine synthesis led to increased nucleotide synthesis, while the reduced methyl-group cycling led to reduced phospholipid synthesis and methyltransferase activities. These results indicate that fosmidomycin-treated parasites compensate for the loss of prenylation modifications by directly altering processes that affect nucleotide synthesis and ribosomal biogenesis to control the rate of RNA translation during the IDC. This also suggests that combination therapies with antibiotics that target the compensatory response of the parasite, such as nucleotide synthesis or ribosomal biogenesis, may be more effective than treating the parasite with fosmidomycin alone.
Collapse
|
17
|
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nat Commun 2021; 12:269. [PMID: 33431834 PMCID: PMC7801607 DOI: 10.1038/s41467-020-20629-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages. Here, Reader et al. screen the Medicines for Malaria Venture Pandemic Response Box in parallel against Plasmodiumasexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. They identify two potent transmission-blocking drugs: a histone demethylase inhibitor ML324 and the antitubercular SQ109.
Collapse
|
18
|
Lu KY, Pasaje CFA, Srivastava T, Loiselle DR, Niles JC, Derbyshire E. Phosphatidylinositol 3-phosphate and Hsp70 protect Plasmodium falciparum from heat-induced cell death. eLife 2020; 9:e56773. [PMID: 32975513 PMCID: PMC7518890 DOI: 10.7554/elife.56773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) levels in Plasmodium falciparum correlate with tolerance to cellular stresses caused by artemisinin and environmental factors. However, PI(3)P function during the Plasmodium stress response was unknown. Here, we used PI3K inhibitors and antimalarial agents to examine the importance of PI(3)P under thermal conditions recapitulating malarial fever. Live cell microscopy using chemical and genetic reporters revealed that PI(3)P stabilizes the digestive vacuole (DV) under heat stress. We demonstrate that heat-induced DV destabilization in PI(3)P-deficient P. falciparum precedes cell death and is reversible after withdrawal of the stress condition and the PI3K inhibitor. A chemoproteomic approach identified PfHsp70-1 as a PI(3)P-binding protein. An Hsp70 inhibitor and knockdown of PfHsp70-1 phenocopy PI(3)P-deficient parasites under heat shock. Furthermore, PfHsp70-1 downregulation hypersensitizes parasites to heat shock and PI3K inhibitors. Our findings underscore a mechanistic link between PI(3)P and PfHsp70-1 and present a novel PI(3)P function in DV stabilization during heat stress.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| | | | | | - David R Loiselle
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke UniversityDurhamUnited States
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke UniversityDurhamUnited States
- Department of Chemistry, Duke UniversityDurhamUnited States
| |
Collapse
|
19
|
Inhibitory Mechanisms of DHA/CQ on pH and Iron Homeostasis of Erythrocytic Stage Growth of Plasmodium Falciparum. Molecules 2019; 24:molecules24101941. [PMID: 31137574 PMCID: PMC6571875 DOI: 10.3390/molecules24101941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Malaria is an infectious disease caused by Plasmodium group. The mechanisms of antimalarial drugs DHA/CQ are still unclear today. The inhibitory effects (IC50) of single treatments with DHA/CQ or V-ATPase inhibitor Baf-A1 or combination treatments by DHA/CQ combined with Baf-A1 on the growth of Plasmodium falciparum strain 3D7 was investigated. Intracellular cytoplasmic pH and labile iron pool (LIP) were labeled by pH probe BCECF, AM and iron probe calcein, AM, the fluorescence of the probes was measured by FCM. The effects of low doses of DHA (0.2 nM, 0.4 nM, 0.8 nM) on gene expression of V-ATPases (vapE, vapA, vapG) located in the membrane of DV were tested by RT-qPCR. DHA combined with Baf-A1 showed a synergism effect (CI = 0.524) on the parasite growth in the concentration of IC50. Intracellular pH and irons were effected significantly by different doses of DHA/Baf-A1. Intracellular pH was decreased by CQ combined with Baf-A1 in the concentration of IC50. Intracellular LIP was increased by DHA combined with Baf-A1 in the concentration of 20 IC50. The expression of gene vapA was down-regulated by all low doses of DHA (0.2/0.4/0.8 nM) significantly (p < 0.001) and the expression of vapG/vapE were up-regulated by 0.8 nM DHA significantly (p < 0.001). Interacting with ferrous irons, affecting the DV membrane proton pumping and acidic pH or cytoplasmic irons homeostasis may be the antimalarial mechanism of DHA while CQ showed an effect on cytoplasmic pH of parasite in vitro. Lastly, this article provides us preliminary results and a new idea for antimalarial drugs combination and new potential antimalarial combination therapies.
Collapse
|
20
|
Lawrence N, Dennis ASM, Lehane AM, Ehmann A, Harvey PJ, Benfield AH, Cheneval O, Henriques ST, Craik DJ, McMorran BJ. Defense Peptides Engineered from Human Platelet Factor 4 Kill Plasmodium by Selective Membrane Disruption. Cell Chem Biol 2018; 25:1140-1150.e5. [PMID: 30033131 DOI: 10.1016/j.chembiol.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
Malaria is a serious threat to human health and additional classes of antimalarial drugs are greatly needed. The human defense protein, platelet factor 4 (PF4), has intrinsic antiplasmodial activity but also undesirable chemokine properties. We engineered a peptide containing the isolated PF4 antiplasmodial domain, which through cyclization, retained the critical structure of the parent protein. The peptide, cPF4PD, killed cultured blood-stage Plasmodium falciparum with low micromolar potency by specific disruption of the parasite digestive vacuole. Its mechanism of action involved selective penetration and accumulation inside the intraerythrocytic parasite without damaging the host cell or parasite membranes; it did not accumulate in uninfected cells. This selective activity was accounted for by observations of the peptide's specific binding and penetration of membranes with exposed negatively charged phospholipid headgroups. Our findings highlight the tremendous potential of the cPF4PD scaffold for developing antimalarial peptide drugs with a distinct and selective mechanism of action.
Collapse
Affiliation(s)
- Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adelaide S M Dennis
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Adele M Lehane
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Anna Ehmann
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aurélie H Benfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Brendan J McMorran
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
21
|
Biswas A, Bhattacharya A, Vij A, Das PK. Role of leishmanial acidocalcisomal pyrophosphatase in the cAMP homeostasis in phagolysosome conditions required for intra-macrophage survival. Int J Biochem Cell Biol 2017; 86:1-13. [PMID: 28268199 DOI: 10.1016/j.biocel.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 02/01/2023]
Abstract
Exposure of Leishmania donovani to macrophage phagolysosome conditions (PC) (37°C and pH 5.5) led to increased intracellular cAMP and cAMP-mediated responses, which help in intra-macrophage survival pre-requisite for infectivity. In the absence of typical orthologs for G-proteins and G-protein coupled receptors, we sought to study the precise mechanisms for positive modulation of cAMP production during exposure to PC. Amongst two promastigote-stage specific membrane bound receptor adenylate cyclases (LdRAC-A and LdRAC-B), LdRAC-A appeared to function as a major cAMP generator following PC exposure. Pyrophosphate (PPi), an energy storage compound as well as a by-product of cAMP biosynthesis by adenylate cyclise, was found to be decreased following PC exposure. This may be due to microtubule and microfilament-driven translocation of acidocalcisomes near plasma membrane vicinity with concomitant increase of acidocalcisome membrane pyrophosphatase (LdV-H+PPase) and acidocalcisomal soluble pyrophosphatase (LdVSP1). Episomal over-expression and conditional silencing demonstrated regulatory role of V-H+PPase on cAMP trigger and consequent induction of resistance to macrophage-derived pro-oxidants and parasite killing. Furthermore, immunofluorescence analysis revealed possible co-localization of LdV-H+PPase and LdRAC-A during PC exposure. Collectively, these results suggest that translocation of acidocalcisome in membrane vicinity functions as a trigger for LdRAC-A-driven cAMP generation through depletion of PPi pool by LdV-H+PPase.
Collapse
Affiliation(s)
- Arunima Biswas
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741325, India
| | - Arijit Bhattacharya
- Centre de Rechercheen Infectiologie, Centre de Recherche du CHU de Québec, University of Laval, Quebec City, Quebec, Canada
| | - Amit Vij
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Pijush K Das
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
22
|
Jida M, Sanchez CP, Urgin K, Ehrhardt K, Mounien S, Geyer A, Elhabiri M, Lanzer M, Davioud-Charvet E. A Redox-Active Fluorescent pH Indicator for Detecting Plasmodium falciparum Strains with Reduced Responsiveness to Quinoline Antimalarial Drugs. ACS Infect Dis 2017; 3:119-131. [PMID: 28183182 DOI: 10.1021/acsinfecdis.5b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutational changes in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) have been associated with differential responses to a wide spectrum of biologically active compounds including current and former quinoline and quinoline-like antimalarial drugs. PfCRT confers altered drug responsiveness by acting as a transport system, expelling drugs from the parasite's digestive vacuole where these drugs exert, at least part of, their antiplasmodial activity. To preserve the efficacy of these invaluable drugs, novel functional tools are required for epidemiological surveys of parasite strains carrying mutant PfCRT variants and for drug development programs aimed at inhibiting or circumventing the action of PfCRT. Here we report the synthesis and characterization of a pH-sensitive fluorescent chloroquine analogue consisting of 7-chloro-N-{2-[(propan-2-yl)amino]ethyl}quinolin-4-amine functionalized with the fluorochrome 7-nitrobenzofurazan (NBD) (henceforth termed Fluo-CQ). In the parasite, Fluo-CQ accumulates in the digestive vacuole, giving rise to a strong fluorescence signal but only in parasites carrying the wild type PfCRT. In parasites carrying the mutant PfCRT, Fluo-CQ does not accumulate. The differential handling of the fluorescent probe, combined with live cell imaging, provides a diagnostic tool for quick detection of those P. falciparum strains that carry a PfCRT variant associated with altered responsiveness to quinoline and quinoline-like antimalarial drugs. In contrast to the accumulation studies, chloroquine (CQ)-resistant parasites were observed cross-resistant to Fluo-CQ when the chemical probe was tested in various CQ-sensitive and -resistant parasite strains. NBD derivatives were found to act as redox cyclers of two essential targets, using a coupled assay based on methemoglobin and the NADPH-dependent glutathione reductase (GRs) from P. falciparum. This redox activity is proposed to contribute to the dual action of Fluo-CQ on redox equilibrium and methemoglobin reduction via PfCRT-mediated drug efflux in the cytosol and then continuous redox-dependent shuttling between food vacuole and cytosol. Taking into account these physicochemical characteristics, a model was proposed to explain Fluo-CQ antimalarial effects involving the contribution of PfCRT-mediated transport, methemoglobin reduction, hematin binding, and NBD reduction activity catalyzed by PfGR in CQ-resistant versus CQ-sensitive parasites. Therefore, introduction of NBD fluorophore in drugs is not inert and should be taken into account in drug transport and imaging studies.
Collapse
Affiliation(s)
- Mouhamad Jida
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Cecilia P. Sanchez
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Karène Urgin
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Katharina Ehrhardt
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Saravanan Mounien
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Aurelia Geyer
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Michael Lanzer
- Zentrum
für Infektiologie, Parasitologie, Universität Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Elisabeth Davioud-Charvet
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
23
|
Abstract
Inorganic polyphosphate (polyP) accumulates in acidocalcisomes, acidic calcium stores that have been found from bacteria to human cells. Proton pumps, such as the vacuolar proton pyrophosphatase (V-H(+)-PPase or VP1), the vacuolar proton ATPase (V-H(+)-ATPase) or both, maintain their acidity. A vacuolar transporter chaperone (VTC) complex is involved in the synthesis and translocation of polyP to these organelles in several eukaryotes, such as yeast, trypanosomatids, Apicomplexan and algae. Studies in trypanosomatids have revealed the role of polyP and acidocalcisomes in osmoregulation and calcium signalling.
Collapse
|
24
|
Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects. Exp Parasitol 2016; 169:59-68. [PMID: 27480055 DOI: 10.1016/j.exppara.2016.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/04/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022]
Abstract
The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.
Collapse
|
25
|
Abstract
Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.
Collapse
Affiliation(s)
- Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
26
|
Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum. PLoS Pathog 2016; 12:e1005647. [PMID: 27227970 PMCID: PMC4881962 DOI: 10.1371/journal.ppat.1005647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2), glycosylphosphotidylinositol (GPI)-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.
Collapse
|
27
|
Presence of an isoform of H+-pyrophosphatase located in the alveolar sacs of a scuticociliate parasite of turbot: physiological consequences. Parasitology 2016; 143:576-87. [DOI: 10.1017/s0031182015001997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SUMMARYH+-pyrophosphatases (H+-PPases) are integral membrane proteins that couple pyrophosphate energy to an electrochemical gradient across biological membranes and promote the acidification of cellular compartments. Eukaryotic organisms, essentially plants and protozoan parasites, contain various types of H+-PPases associated with vacuoles, plasma membrane and acidic Ca+2storage organelles called acidocalcisomes. We used Lysotracker Red DND-99 staining to identify two acidic cellular compartments in trophozoites of the marine scuticociliate parasitePhilasterides dicentrarchi: the phagocytic vacuoles and the alveolar sacs. The membranes of these compartments also contain H+-PPase, which may promote acidification of these cell structures. We also demonstrated for the first time that theP. dicentrarchiH+-PPase has two isoforms: H+-PPase 1 and 2. Isoform 2, which is probably generated by splicing, is located in the membranes of the alveolar sacs and has an amino acid motif recognized by the H+-PPase-specific antibody PABHK. The amino acid sequences of different isolates of this ciliate are highly conserved. Gene and protein expression in this isoform are significantly regulated by variations in salinity, indicating a possible physiological role of this enzyme and the alveolar sacs in osmoregulation and salt tolerance inP. dicentrarchi.
Collapse
|
28
|
Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata. Sci Rep 2016; 6:21517. [PMID: 26898753 PMCID: PMC4761911 DOI: 10.1038/srep21517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
The UV-vis spectra of isocorydine 1, norisocorydine 2 and boldine 3 were studied in 2% v/v acetonitrile, at constant ionic strength (0.1 M NaCl, 35 degree Celsius). The pKa values of isocorydine 1 and norisocorydine 2 were 11.75 and 12.07, respectively. Boldine 3 gave a pKa value of 9.16 and 10.44. All of the alkaloids 1–3 were stable at physiological pH; thereby all of them will not ionize, thus permitting the basic nitrogen to be protonated and accumulated within the acidic food vacuole of Plasmodium via pH trapping. Subsequently, acidic food vacuoles that have been neutralized by alkaloids would result in enhancement of the antiplasmodial activity. The alkaloids showed antiplasmodial activity against Plasmodium falciparum and antioxidant activities; DPPH radical scavenging, metal chelating and ferric reducing power. The antioxidant properties of the alkaloids under investigation revealed that in addition to the antiplasmodial activity, the alkaloids can also prevent oxidative damage. It can be prevented by binding free heme and neutralizing the electrons produced during the Plasmodium falciparum mediated haemoglobin destruction in the host. Slightly basic properties of the aforementioned alkaloids, along with their antioxidant activities, are advantageous in improving the suppression of malaria infection that cause less damage to the host.
Collapse
|
29
|
Mallo N, Lamas J, DeFelipe AP, Sueiro RA, Fontenla F, Leiro JM. Enzymes Involved in Pyrophosphate and Calcium Metabolism as Targets for Anti-scuticociliate Chemotherapy. J Eukaryot Microbiol 2016; 63:505-15. [DOI: 10.1111/jeu.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Natalia Mallo
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Jesús Lamas
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Ana-Paula DeFelipe
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Rosa-Ana Sueiro
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Francisco Fontenla
- Departamento de Biología Celular y Ecología; Facultad de Biología; Instituto de Acuicultura; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - José-Manuel Leiro
- Departamento de Microbiología y Parasitología; Instituto de Investigación y Análisis Alimentarios; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
30
|
Skorokhod OA, Davalos-Schafler D, Gallo V, Valente E, Ulliers D, Notarpietro A, Mandili G, Novelli F, Persico M, Taglialatela-Scafati O, Arese P, Schwarzer E. Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge Plakortis simplex. Free Radic Biol Med 2015; 89:624-37. [PMID: 26459031 DOI: 10.1016/j.freeradbiomed.2015.10.399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/27/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
Plakortin, a polyketide endoperoxide from the sponge Plakortis simplex has antiparasitic activity against P. falciparum. Similar to artemisinin, its activity depends on the peroxide functionality. Plakortin induced stage-, dose- and time-dependent morphologic anomalies, early maturation delay, ROS generation and lipid peroxidation in the parasite. Ring damage by 1 and 10 µM plakortin led to parasite death before schizogony at 20 and 95%, respectively. Treatment of late schizonts with 1, 2, 5 and 10 µM plakortin resulted in decreased reinfection rates by 30, 50, 61 and 65%, respectively. In both rings and trophozoites, plakortin induced a dose- and time-dependent ROS production as well as a significant lipid peroxidation and up to 4-fold increase of the lipoperoxide breakdown product 4-hydroxynonenal (4-HNE). Antioxidants and the free radical scavengers trolox and N-acetylcysteine significantly attenuated the parasite damage. Plakortin generated 4-HNE conjugates with the P. falciparum proteins: heat shock protein Hsp70-1, endoplasmatic reticulum-standing Hsp70-2 (BiP analogue), V-type proton ATPase catalytic subunit A, enolase, the putative vacuolar protein sorting-associated protein 11, and the dynein heavy chain-like protein, whose specific binding sites were identified by mass spectrometry. These proteins are crucially involved in protein trafficking, transmembrane and vesicular transport and parasite survival. We hypothesize that binding of 4-HNE to functionally relevant parasite proteins may explain the observed plakortin-induced morphologic aberrations and parasite death. The identification of 4-HNE-protein conjugates may generate a novel paradigm to explain the mechanism of action of pro-oxidant, peroxide-based antimalarials such as plakortin, artemisinins and synthetic endoperoxides.
Collapse
Affiliation(s)
- Oleksii A Skorokhod
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | | | - Valentina Gallo
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Elena Valente
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Daniela Ulliers
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Agata Notarpietro
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Giorgia Mandili
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino Medical School, Via Nizza 52, 10126 Torino, Italy; Center for Experimental Research and Medical Studies (CeRMS), Città della Salute e della Scienza, Ospedale San Giovanni Battista, Via Cherasco 15, 10126 Torino, Italy.
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino Medical School, Via Nizza 52, 10126 Torino, Italy; Center for Experimental Research and Medical Studies (CeRMS), Città della Salute e della Scienza, Ospedale San Giovanni Battista, Via Cherasco 15, 10126 Torino, Italy.
| | - Marco Persico
- Department of Pharmacy, University of Napoli 'Federico II', Via D. Montesano 49, 80131 Napoli, Italy.
| | | | - Paolo Arese
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| |
Collapse
|
31
|
Docampo R. The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol 2015; 209:3-9. [PMID: 26523947 DOI: 10.1016/j.molbiopara.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/04/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
Abstract
Acidocalcisomes are acidic calcium stores that have been found from bacteria to human cells. They are rich in phosphorus compounds in the form of orthophosphate (Pi), pyrophosphate (PPi), and polyphosphate (polyP) and their acidity is maintained by proton pumps such as the vacuolar proton pyrophosphatase (V-H+-PPase, or VP1), the vacuolar proton ATPase (V-H+-ATPase), or both. Recent studies in trypanosomatids and in other species have revealed their role in phosphate metabolism, and cation and water homeostasis, as suggested by the presence of novel pumps, transporters, and channels. An important role in autophagy has also been described. The study of the biogenesis of acidocalcisomes as well as of the interactions of these lysosome-related organelles with other organelles have uncovered important roles in calcium signaling and osmoregulation. Significantly, despite conservation of acidocalcisomes across all of cellular life, there is evidence for intimate integration of these organelles with eukaryotic cellular functions, and which are directly relevant to parasites.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Global Emerging Diseases and Department of Cellular Biology, University of Georgia, Athens 30602, USA; Departamento de Patología Clínica, Universidade Estadual de Campinas, São Paulo 13083-877, Brazil.
| |
Collapse
|
32
|
Spillman NJ, Kirk K. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:149-62. [PMID: 26401486 PMCID: PMC4559606 DOI: 10.1016/j.ijpddr.2015.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.
Collapse
Affiliation(s)
- Natalie Jane Spillman
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia ; Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
33
|
Subudhi AK, Boopathi PA, Pandey I, Kaur R, Middha S, Acharya J, Kochar SK, Kochar DK, Das A. Disease specific modules and hub genes for intervention strategies: A co-expression network based approach for Plasmodium falciparum clinical isolates. INFECTION GENETICS AND EVOLUTION 2015; 35:96-108. [PMID: 26247716 DOI: 10.1016/j.meegid.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
Abstract
Systems biology approaches that are based on gene expression and bioinformatics analysis have been successful in predicting the functions of many genes in Plasmodium falciparum, a protozoan parasite responsible for most of the deaths due to malaria. However, approaches that can provide information about the biological processes that are active in this parasite in vivo during complicated malaria conditions have been scarcely deployed. Here we report the analysis of a weighted gene co-expression based network for P. falciparum, from non-cerebral clinical complications. Gene expression profiles of 20 P. falciparum clinical isolates were utilized to construct the same. A total of 20 highly interacting modules were identified post network creation. In 12 of these modules, at least 10% of the member genes, were found to be differentially regulated in parasites from patient isolates showing complications, when compared with those from patients with uncomplicated disease. Enrichment analysis helped identify biological processes like oxidation-reduction, electron transport chain, protein synthesis, ubiquitin dependent catabolic processes, RNA binding and purine nucleotide metabolic processes as associated with these modules. Additionally, for each module, highly connected hub genes were identified. Detailed functional analysis of many of these, which have known annotated functions underline their importance in parasite development and survival. This suggests, that other hub genes with unknown functions may also be playing crucial roles in parasite biology, and, are potential candidates for intervention strategies.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Pon Arunachalam Boopathi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Isha Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Ramandeep Kaur
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Sheetal Middha
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Jyoti Acharya
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Sanjay K Kochar
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Dhanpat K Kochar
- Rajasthan University of Health Sciences, Jaipur, Rajasthan, India.
| | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
34
|
Huang G, Docampo R. Proteomic analysis of acidocalcisomes of Trypanosoma brucei uncovers their role in phosphate metabolism, cation homeostasis, and calcium signaling. Commun Integr Biol 2015; 8:e1017174. [PMID: 26480268 PMCID: PMC4594416 DOI: 10.1080/19420889.2015.1017174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/23/2022] Open
Abstract
Trypanosomabrucei, the causative agent of African trypanosomiasis, is a unicellular parasite that possesses lysosome-related organelles known as acidocalcisomes. These organelles have been found from bacteria to human cells, and are characterized by their acidic nature and high calcium and polyphosphate (polyP) content. Our proteomic analysis of acidocalcisomes of T. brucei procyclic stages, together with in situ epitope-tagging and immunofluorescence assays with specific antibodies against selected proteins, established the presence of 2 H+ pumps, a vacuolar H+-ATPase and a vacuolar H+-pyrophosphatase, that acidify the organelles as well as of a number of transporters and channels involved in phosphate metabolism, cation uptake and calcium signaling. Together with recent work in other organisms, these results provide direct evidence that acidocalcisomes are especially adapted to accumulate polyP bound to cations and for calcium signaling.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology; University of Georgia ; Athens, Georgia
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology; University of Georgia ; Athens, Georgia
| |
Collapse
|
35
|
Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate. Nat Commun 2015; 6:6715. [PMID: 25823686 PMCID: PMC4389225 DOI: 10.1038/ncomms7715] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/20/2015] [Indexed: 01/24/2023] Open
Abstract
The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg−1 and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4–5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development. The emergence of resistant Plasmodium strains fuels the search for new antimalarials. Here, the authors present a new class of potent antimalarial compounds, the triaminopyrimidines, that display low toxicity and long half-life in animal models.
Collapse
|
36
|
Plasmodium falciparum chloroquine resistance transporter is a H+-coupled polyspecific nutrient and drug exporter. Proc Natl Acad Sci U S A 2015; 112:3356-61. [PMID: 25733858 DOI: 10.1073/pnas.1417102112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extrusion of chloroquine (CQ) from digestive vacuoles through the Plasmodium falciparum CQ resistance transporter (PfCRT) is essential to establish CQ resistance of the malaria parasite. However, the physiological relevance of PfCRT and how CQ-resistant PfCRT gains the ability to transport CQ remain unknown. We prepared proteoliposomes containing purified CQ-sensitive and CQ-resistant PfCRTs and measured their transport activities. All PfCRTs tested actively took up tetraethylammonium, verapamil, CQ, basic amino acids, polypeptides, and polyamines at the expense of an electrochemical proton gradient. CQ-resistant PfCRT exhibited decreased affinity for CQ, resulting in increased CQ uptake. Furthermore, CQ competitively inhibited amino acid transport. Thus, PfCRT is a H(+)-coupled polyspecific nutrient and drug exporter.
Collapse
|
37
|
Lourido S, Moreno SNJ. The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell Calcium 2014; 57:186-93. [PMID: 25605521 DOI: 10.1016/j.ceca.2014.12.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Apicomplexan parasites have complex life cycles, frequently split between different hosts and reliant on rapid responses as the parasites react to changing environmental conditions. Calcium ion (Ca(2+)) signaling is consequently essential for the cellular and developmental changes that support Apicomplexan parasitism. Apicomplexan genomes reveal a rich repertoire of genes involved in calcium signaling, although many of the genes responsible for observed physiological changes remain unknown. There is evidence, for example, for the presence of a nifedipine-sensitive calcium entry mechanism in Toxoplasma, but the molecular components involved in Ca(2+) entry in both Toxoplasma and Plasmodium, have not been identified. The major calcium stores are the endoplasmic reticulum (ER), the acidocalcisomes, and the plant-like vacuole in Toxoplasma, or the food vacuole in Plasmodium spp. Pharmacological evidence suggests that Ca(2+) release from intracellular stores may be mediated by inositol 1,4,5-trisphosphate (IP3) or cyclic ADP ribose (cADPR) although there is no molecular evidence for the presence of receptors for these second messengers in the parasites. Several Ca(2+)-ATPases are present in Apicomplexans and a putative mitochondrial Ca(2+)/H(+) exchanger has been identified. Apicomplexan genomes contain numerous genes encoding Ca(2+)-binding proteins, with the notable expansion of calcium-dependent protein kinases (CDPKs), whose study has revealed roles in gliding motility, microneme secretion, host cell invasion and egress, and parasite differentiation. Microneme secretion has also been shown to depend on the C2 domain containing protein DOC2 in both Plasmodium spp. and Toxoplasma, providing further evidence for the complex transduction of Ca(2+) signals in these organisms. The characterization of these pathways could lead to the discovery of novel drug targets and to a better understanding of the role of Ca(2+) in these parasites.
Collapse
Affiliation(s)
- Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
38
|
Role of Different Pfcrt and Pfmdr-1 Mutations in Conferring Resistance to Antimalaria Drugs in Plasmodium falciparum. Malar Res Treat 2014; 2014:950424. [PMID: 25506039 PMCID: PMC4243603 DOI: 10.1155/2014/950424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/30/2014] [Indexed: 01/28/2023] Open
Abstract
Emergence of drugs resistant strains of Plasmodium falciparum has augmented the scourge of malaria in endemic areas. Antimalaria drugs act on different intracellular targets. The majority of them interfere with digestive vacuoles (DVs) while others affect other organelles, namely, apicoplast and mitochondria. Prevention of drug accumulation or access into the target site is one of the mechanisms that plasmodium adopts to develop resistance. Plasmodia are endowed with series of transporters that shuffle drugs away from the target site, namely, pfmdr (Plasmodium falciparum multidrug resistance transporter) and pfcrt (Plasmodium falciparum chloroquine resistance transporter) which exist in DV membrane and are considered as putative markers of CQ resistance. They are homologues to human P-glycoproteins (P-gh or multidrug resistance system) and members of drug metabolite transporter (DMT) family, respectively. The former mediates drifting of xenobiotics towards the DV while the latter chucks them outside. Resistance to drugs whose target site of action is intravacuolar develops when the transporters expel them outside the DVs and vice versa for those whose target is extravacuolar. In this review, we are going to summarize the possible pfcrt and pfmdr mutation and their role in changing plasmodium sensitivity to different anti-Plasmodium drugs.
Collapse
|
39
|
Jovel IT, Ferreira PE, Veiga MI, Malmberg M, Mårtensson A, Kaneko A, Zakeri S, Murillo C, Nosten F, Björkman A, Ursing J. Single nucleotide polymorphisms in Plasmodium falciparum V type H(+) pyrophosphatase gene (pfvp2) and their associations with pfcrt and pfmdr1 polymorphisms. INFECTION GENETICS AND EVOLUTION 2014; 24:111-5. [PMID: 24657918 DOI: 10.1016/j.meegid.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chloroquine resistance in Plasmodium falciparum malaria has been associated with pfcrt 76T (chloroquine resistance transporter gene) and pfmdr1 86Y (multidrug resistance gene 1) alleles. Pfcrt 76T enables transport of protonated chloroquine out of the parasites digestive vacuole resulting in a loss of hydrogen ions (H(+)). V type H(+) pyrophosphatase (PfVP2) is thought to pump H(+) into the digestive vacuole. This study aimed to describe the geographic distribution of single nucleotide polymorphisms in pfvp2 and their possible associations with pfcrt and pfmdr1 polymorphisms. METHODS Blood samples from 384 patients collected (1981-2009) in Honduras (n=35), Colombia (n=50), Liberia (n=50), Guinea Bissau (n=50), Tanzania (n=50), Iran (n=50), Thailand (n=49) and Vanuatu (n=50) were analysed. The pfcrt 72-76 haplotype, pfmdr1 copy numbers, pfmdr1 N86Y and pfvp2 V405I, K582R and P711S alleles were identified using PCR based methods. RESULTS Pfvp2 was amplified in 344 samples. The pfvp2 allele proportions were V405 (97%), 405I (3%), K582 (99%), 582R (1%), P711 (97%) and 711S (3%). The number of patients with any of pfvp2 405I, 582R and/or 711S were as follows: Honduras (2/30), Colombia (0/46), Liberia (7/48), Guinea-Bissau (4/50), Tanzania (3/48), Iran (3/50), Thailand (1/49) and Vanuatu (0/31). The alleles were most common in Liberia (P=0.01) and Liberia+Guinea-Bissau (P=0.01). The VKP haplotype was found in 189/194 (97%) and 131/145 (90%) samples harbouring pfcrt 76T and pfcrt K76 respectively (P=0.007). CONCLUSIONS The VKP haplotype was dominant. Most pfvp2 405I, 582R and 711S SNPs were seen where CQ resistance was not highly prevalent at the time of blood sampling possibly due to greater genetic variation prior to the bottle neck event of spreading CQ resistance. The association between the pfvp2 VKP haplotype and pfcrt 76T, which may indicate that pfvp2 is involved in CQ resistance, should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Irina Tatiana Jovel
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Departamento de Parasitología, Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa, Honduras.
| | - Pedro Eduardo Ferreira
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden; School of Biological Sciences, Nanyang Technological University, Singapore.
| | - Maria Isabel Veiga
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maja Malmberg
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Andreas Mårtensson
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden; Global Health, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden.
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Iran.
| | - Claribel Murillo
- Centro Internacional de Entrenamiento e Investigaciones Médicas, Cali, Colombia.
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mae Sot Tak, Thailand; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Anders Björkman
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden.
| | - Johan Ursing
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden.
| |
Collapse
|
40
|
Abstract
As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself.
Collapse
|
41
|
Food vacuole associated enolase in plasmodium undergoes multiple post-translational modifications: evidence for atypical ubiquitination. PLoS One 2013; 8:e72687. [PMID: 24009698 PMCID: PMC3751847 DOI: 10.1371/journal.pone.0072687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/18/2013] [Indexed: 01/05/2023] Open
Abstract
Plasmodium enolase localizes to several sub-cellular compartments viz. cytosol, nucleus, cell membrane, food vacuole (FV) and cytoskeleton, without having any organelle targeting signal sequences. This enzyme has been shown to undergo multiple post-translational modifications (PTMs) giving rise to several variants that show organelle specific localization. It is likely that these PTMs may be responsible for its diverse distribution and moonlighting functions. While most variants have a MW of ~50 kDa and are likely to arise due to changes in pI, food vacuole (FV) associated enolase showed three forms with MW~50, 65 and 75 kDa. Evidence from immuno-precipitation and western analysis indicates that the 65 and 75 kDa forms of FV associated enolase are ubiquitinated. Using mass spectrometry (MS), definitive evidence is obtained for the nature of PTMs in FV associated variants of enolase. Results showed several modifications, viz. ubiquitination at K147, phosphorylation at Y148 and acetylation at K142 and K384. MS data also revealed the conjugation of three ubiquitin (Ub) molecules to enolase through K147. Trimeric ubiquitin has a linear peptide linkage between the NH2-terminal methionine of the first ubiquitin (Ub1) and the C-terminal G76 of the second (Ub2). Ub2 and third ubiquitin (Ub3) were linked through an atypical isopeptide linkage between K6 of Ub2 and G76 of Ub3, respectively. Further, the tri-ubiquitinated form was found to be largely associated with hemozoin while the 50 and 65 kDa forms were present in the NP-40 soluble fraction of FV. Mass spectrometry results also showed phosphorylation of S42 in the cytosolic enolase from P. falciparum and T337 in the cytoskeleton associated enolase from P. yoelii. The composition of food vacuolar proteome and likely interactors of enolase are also being reported.
Collapse
|
42
|
Tjhin ET, Staines HM, van Schalkwyk DA, Krishna S, Saliba KJ. Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis. FEBS Lett 2013; 587:3182-7. [PMID: 23954294 DOI: 10.1016/j.febslet.2013.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 12/16/2022]
Abstract
To characterise plasmodial glycolysis, we generated two transgenic Plasmodium falciparum lines, one expressing P. falciparum hexokinase (PfHK) tagged with GFP (3D7-PfHK(GFP)) and another overexpressing native PfHK (3D7-PfHK(+)). Contrary to previous reports, we propose that PfHK is cytosolic. The glucose analogue, 2-deoxy-d-glucose (2-DG) was nearly 2-fold less toxic to 3D7-PfHK(+) compared with control parasites, supporting PfHK as a potential drug target. Although PfHK activity was higher in 3D7-PfHK(+), they accumulated phospho-[(14)C]2-DG at the same rate as control parasites. Transgenic parasites overexpressing the parasite's glucose transporter (PfHT) accumulated phospho-[(14)C]2-DG at a higher rate, consistent with glucose transport limiting glucose entry into glycolysis.
Collapse
Affiliation(s)
- Erick T Tjhin
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
43
|
van Schalkwyk DA, Saliba KJ, Biagini GA, Bray PG, Kirk K. Loss of pH control in Plasmodium falciparum parasites subjected to oxidative stress. PLoS One 2013; 8:e58933. [PMID: 23536836 PMCID: PMC3594203 DOI: 10.1371/journal.pone.0058933] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/08/2013] [Indexed: 11/29/2022] Open
Abstract
The intraerythrocytic malaria parasite is susceptible to oxidative stress and this may play a role in the mechanism of action of some antimalarial agents. Here we show that exposure of the intraerythrocytic malaria parasite to the oxidising agent hydrogen peroxide results in a fall in the intracellular ATP level and inhibition of the parasite's V-type H+-ATPase, causing a loss of pH control in both the parasite cytosol and the internal digestive vacuole. In contrast to the V-type H+-ATPase, the parasite's digestive vacuole H+-pyrophosphatase is insensitive to hydrogen peroxide-induced oxidative stress. This work provides insights into the effects of oxidative stress on the intraerythrocytic parasite, as well as providing an alternative possible explanation for a previous report that light-induced oxidative stress causes selective lysis of the parasite's digestive vacuole.
Collapse
Affiliation(s)
- Donelly A van Schalkwyk
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | |
Collapse
|
44
|
van de Hoef DL, Coppens I, Holowka T, Ben Mamoun C, Branch O, Rodriguez A. Plasmodium falciparum-derived uric acid precipitates induce maturation of dendritic cells. PLoS One 2013; 8:e55584. [PMID: 23405174 PMCID: PMC3565962 DOI: 10.1371/journal.pone.0055584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/28/2012] [Indexed: 02/04/2023] Open
Abstract
Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies.
Collapse
Affiliation(s)
- Diana L. van de Hoef
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United State of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United State of America
| | - Thomas Holowka
- Section of Infectious Disease and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United State of America
| | - Choukri Ben Mamoun
- Section of Infectious Disease and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United State of America
| | - OraLee Branch
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United State of America
| | - Ana Rodriguez
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United State of America
- * E-mail:
| |
Collapse
|
45
|
PfCRT and its role in antimalarial drug resistance. Trends Parasitol 2012; 28:504-14. [PMID: 23020971 DOI: 10.1016/j.pt.2012.08.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 12/15/2022]
Abstract
Plasmodium falciparum resistance to chloroquine, the former gold standard antimalarial drug, is mediated primarily by mutant forms of the chloroquine resistance transporter (PfCRT). These mutations impart upon PfCRT the ability to efflux chloroquine from the intracellular digestive vacuole, the site of drug action. Recent studies reveal that PfCRT variants can also affect parasite fitness, protect immature gametocytes against chloroquine action, and alter P. falciparum susceptibility to current first-line therapies. These results highlight the need to be vigilant in screening for the appearance of novel pfcrt alleles that could contribute to new multi-drug resistance phenotypes.
Collapse
|
46
|
Plasmodium falciparum enolase complements yeast enolase functions and associates with the parasite food vacuole. Mol Biochem Parasitol 2011; 179:8-17. [PMID: 21600245 DOI: 10.1016/j.molbiopara.2011.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 04/30/2011] [Accepted: 05/02/2011] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum enolase (Pfeno) localizes to the cytosol, nucleus, cell membrane and cytoskeletal elements, suggesting multiple non-glycolytic functions for this protein. Our recent observation of association of enolase with the food vacuole (FV) in immuno-gold electron microscopic images of P. falciparum raised the possibility for yet another moonlighting function for this protein. Here we provide additional support for this localization by demonstrating the presence of Pfeno in purified FVs by immunoblotting. To examine the potential functional role of FV-associated Pfeno, we assessed the ability of Pfeno to complement a mutant Saccharomyces cervisiae strain deficient in enolase activity. In this strain (Tetr-Eno2), the enolase 1 gene is deleted and expression of the enolase 2 gene is under the control of a tetracycline repressible promoter. Enolase deficiency in this strain was previously shown to cause growth retardation, vacuolar fragmentation and altered expression of certain vacuolar proteins. Expression of Pfeno in the enolase-deficient yeast strain restored all three phenotypic effects. However, transformation of Tetr-eno2 with an enzymatically active, monomeric mutant form of Pfeno (Δ(5)Pfeno) fully restored cell growth, but only partially rescued the fragmented vacuolar phenotype, suggesting that the dimeric structure of Pfeno is required for the optimal vacuolar functions. Bioinformatic searches revealed the presence of Plasmodium orthologs of several yeast vacuolar proteins that are predicted to form complexes with Pfeno. Together, these observations raise the possibility that association of Pfeno with food vacuole in Plasmodium may have physiological function(s).
Collapse
|
47
|
Differential drug efflux or accumulation does not explain variation in the chloroquine response of Plasmodium falciparum strains expressing the same isoform of mutant PfCRT. Antimicrob Agents Chemother 2011; 55:2310-8. [PMID: 21343459 DOI: 10.1128/aac.01167-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutant forms of the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate chloroquine resistance by effluxing the drug from the parasite's digestive vacuole, the acidic organelle in which chloroquine exerts its parasiticidal effect. However, different parasites bearing the same mutant form of PfCRT can vary substantially in their chloroquine susceptibility. Here, we have investigated the biochemical basis for the difference in chloroquine response among transfectant parasite lines having different genetic backgrounds but bearing the same mutant form of PfCRT. Despite showing significant differences in their chloroquine susceptibility, all lines with the mutant PfCRT showed a similar chloroquine-induced H+ leak from the digestive vacuole, indicative of similar rates of PfCRT-mediated chloroquine efflux. Furthermore, all lines showed similarly reduced levels of drug accumulation. Factors other than chloroquine efflux and accumulation therefore influence the susceptibility to this drug in parasites expressing mutant PfCRT. Furthermore, in some but not all strains bearing mutant PfCRT, the 50% inhibitory concentration (IC50) for chloroquine and the degree of resistance compared to that of recombinant control parasites varied with the length of the parasite growth assays. In these parasites, the 50% inhibitory concentration for chloroquine measured in 72- or 96-h assays was significantly lower than that measured in 48-h assays. This highlights the importance of considering the first- and second-cycle activities of chloroquine in future studies of parasite susceptibility to this drug.
Collapse
|
48
|
Torrentino-Madamet M, Alméras L, Desplans J, Le Priol Y, Belghazi M, Pophillat M, Fourquet P, Jammes Y, Parzy D. Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach. Malar J 2011; 10:4. [PMID: 21223545 PMCID: PMC3030542 DOI: 10.1186/1475-2875-10-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Over its life cycle, the Plasmodium falciparum parasite is exposed to different environmental conditions, particularly to variations in O2 pressure. For example, the parasite circulates in human venous blood at 5% O2 pressure and in arterial blood, particularly in the lungs, at 13% O2 pressure. Moreover, the parasite is exposed to 21% O2 levels in the salivary glands of mosquitoes. Methods To study the metabolic adaptation of P. falciparum to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken. Results Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response. Conclusions These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of P. falciparum. This study provides a better understanding of the adaptive capabilities of P. falciparum to environmental changes and may lead to the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Marylin Torrentino-Madamet
- UMR-MD3 (Université de la Méditerranée), Antenne IRBA de Marseille (IMTSSA, Le Pharo), Allée du Médecin Colonel Eugène Jamot, BP 60109, 13262 Marseille cedex 07, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lehane AM, Kirk K. Efflux of a range of antimalarial drugs and 'chloroquine resistance reversers' from the digestive vacuole in malaria parasites with mutant PfCRT. Mol Microbiol 2010; 77:1039-51. [PMID: 20598081 DOI: 10.1111/j.1365-2958.2010.07272.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chloroquine-resistant malaria parasites (Plasmodium falciparum) show an increased leak of H(+) ions from their internal digestive vacuole in the presence of chloroquine. This phenomenon has been attributed to the transport of chloroquine, together with H(+), out of the digestive vacuole (and hence away from its site of action) via a mutant form of the parasite's chloroquine resistance transporter (PfCRT). Here, using transfectant parasite lines, we show that a range of other antimalarial drugs, as well as various 'chloroquine resistance reversers' induce an increased leak of H(+) from the digestive vacuole of parasites expressing mutant PfCRT, consistent with these compounds being substrates for mutant forms, but not the wild-type form, of PfCRT. For some compounds there were significant differences observed between parasites having the African/Asian Dd2 form of PfCRT and those with the South American 7G8 form of PfCRT, consistent with there being differences in the transport properties of the two mutant proteins. The finding that chloroquine resistance reversers are substrates for mutant PfCRT has implications for the mechanism of action of this class of compound.
Collapse
Affiliation(s)
- Adele M Lehane
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
50
|
Exploiting the therapeutic potential of Plasmodium falciparum solute transporters. Trends Parasitol 2010; 26:284-96. [DOI: 10.1016/j.pt.2010.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/02/2010] [Accepted: 03/05/2010] [Indexed: 01/16/2023]
|