1
|
Quan Q, Xiong X, Wu S, Yu M. Identification of Immune-Related Key Genes in Ovarian Cancer Based on WGCNA. Front Genet 2021; 12:760225. [PMID: 34868239 PMCID: PMC8634599 DOI: 10.3389/fgene.2021.760225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Ovarian cancer (OV) is a fatal gynecologic malignancy and has poor survival rate in women over the age of forty. In our study, we aimed to identify genes related to immune microenvironment regulations and explore genes associated with OV prognosis. Methods: The RNA-seq data of GDC TCGA Ovarian Cancer cohort of 376 patients was retrieved from website. Weighted gene co-expression network analysis (WGCNA) and ESTIMATE algorithm were applied to identify the key genes associated with the immune scores. The correlation between key genes and 22 immune cell types were estimated by using CIBERSORT algorithms. Results: WGCNA showed that the pink module was most correlated with the immune score. Seven of 14 key genes (FCRL3, IFNG, KCNA3, LY9, PLA2G2D, THEMIS, and TRAT1) were significantly associated with the OS of OV patients. Correlation analysis showed our key genes positively related to M1 macrophages, CD8 T cells, plasma cells, regulatory T (Treg) cells and activated memory CD4 T cells, and negatively related to naive CD4 T cells, M0 macrophages, activated dendritic cells (DCs) and memory B cells. Kaplan-Meier survival analysis showed that lower abundances of neutrophils and higher abundances of M1 macrophages, plasma cells, T cells gamma delta (γδT) cells and follicular helper T (Tfh) cells predicted better OV prognosis. Conclusion: Forteen key genes related to the immune infiltrating of OV were identified, and seven of them were significantly related to prognosis. These key genes have potential roles in tumor infiltrating immune cells differentiation and proliferation. This study provided potential prognostic markers and immunotherapy targets for OV.
Collapse
Affiliation(s)
- Qingli Quan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Xinxin Xiong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shanyun Wu
- Department of Biology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Meixing Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Features of repertoire diversity and gene expression in human cytotoxic T cells following allogeneic hematopoietic cell transplantation. Commun Biol 2021; 4:1177. [PMID: 34635773 PMCID: PMC8505416 DOI: 10.1038/s42003-021-02709-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Cytomegalovirus reactivation is still a critical concern following allogeneic hematopoietic cell transplantation, and cellular immune reconstitution of cytomegalovirus-specific cytotoxic T-cells is necessary for the long-term control of cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation. Here we show the features of repertoire diversity and the gene expression profile of HLA-A24 cytomegalovirus-specific cytotoxic T-cells in actual recipients according to the cytomegalovirus reactivation pattern. A skewed preference for BV7 genes and sequential “G” amino acids motif is observed in complementarity-determining region-3 of T cell receptor-β. Increased binding scores are observed in T-cell clones with complementarity-determining region-3 of T cell receptor-β with a “(G)GG” motif. Single-cell RNA-sequence analyses demonstrate the homogenous distribution of the gene expression profile in individual cytomegalovirus-specific cytotoxic T-cells within each recipient. On the other hand, bulk RNA-sequence analyses reveal that gene expression profiles among patients are different according to the cytomegalovirus reactivation pattern, and are associated with cytokine production or cell division. These methods and results can help us to better understand immune reconstitution following hematopoietic cell transplantation, leading to future studies on the clinical application of adoptive T-cell therapies. Cytomegalovirus reactivation is an important concern after allogeneic stem cell transplantation (allo-HCT) or organ transplantation. Here, Hideki Nakasone et al. investigate changes in repertoire diversity and gene expression among clinically-transferred T cells to improve our understanding of immune reconstitution following allo-HCT.
Collapse
|
3
|
Park I, Son M, Ahn E, Kim YW, Kong YY, Yun Y. The Transmembrane Adaptor Protein LIME Is Essential for Chemokine-Mediated Migration of Effector T Cells to Inflammatiory Sites. Mol Cells 2020; 43:921-934. [PMID: 33243936 PMCID: PMC7700840 DOI: 10.14348/molcells.2020.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022] Open
Abstract
Lck-interacting transmembrane adaptor 1 (LIME) has been previously identified as a raft-associated transmembrane protein expressed predominantly in T and B lymphocytes. Although LIME is shown to transduce the immunoreceptor signaling and immunological synapse formation via its tyrosine phosphorylation by Lck, a Src-family kinase, the in vivo function of LIME has remained elusive in the previous studies. Here we report that LIME is preferentially expressed in effector T cells and mediates chemokine-mediated T cell migration. Interestingly, in LIME-/- mice, while T cell receptor stimulation-dependent proliferation, differentiation to effector T cells, cytotoxic T lymphocyte (CTL) function and regulatory T lymphocyte (Treg) function were normal, only T cell-mediated inflammatory response was significantly defective. The reduced inflammation was accompanied by the impaired infiltration of leukocytes and T cells to the inflammatory sites of LIME-/- mice. More specifically, the absence of LIME in effector T cells resulted in the reduced migration and defective morphological polarization in response to inflammatory chemokines such as CCL5 and CXCL10. Consistently, LIME-/- effector T cells were found to be defective in chemokine-mediated activation of Rac1 and Rap1, and dysregulated phosphorylation of Pyk2 and Cas. Taken together, the present findings show that LIME is a critical regulator of inflammatory chemokine-mediated signaling and the subsequent migration of effector T cells to inflammatory sites.
Collapse
Affiliation(s)
- Inyoung Park
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Myongsun Son
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Eunseon Ahn
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Young-Woong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yungdae Yun
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
4
|
Dohmen E, Klasberg S, Bornberg-Bauer E, Perrey S, Kemena C. The modular nature of protein evolution: domain rearrangement rates across eukaryotic life. BMC Evol Biol 2020; 20:30. [PMID: 32059645 PMCID: PMC7023805 DOI: 10.1186/s12862-020-1591-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Modularity is important for evolutionary innovation. The recombination of existing units to form larger complexes with new functionalities spares the need to create novel elements from scratch. In proteins, this principle can be observed at the level of protein domains, functional subunits which are regularly rearranged to acquire new functions. RESULTS In this study we analyse the mechanisms leading to new domain arrangements in five major eukaryotic clades (vertebrates, insects, fungi, monocots and eudicots) at unprecedented depth and breadth. This allows, for the first time, to directly compare rates of rearrangements between different clades and identify both lineage specific and general patterns of evolution in the context of domain rearrangements. We analyse arrangement changes along phylogenetic trees by reconstructing ancestral domain content in combination with feasible single step events, such as fusion or fission. Using this approach we explain up to 70% of all rearrangements by tracing them back to their precursors. We find that rates in general and the ratio between these rates for a given clade in particular, are highly consistent across all clades. In agreement with previous studies, fusions are the most frequent event leading to new domain arrangements. A lineage specific pattern in fungi reveals exceptionally high loss rates compared to other clades, supporting recent studies highlighting the importance of loss for evolutionary innovation. Furthermore, our methodology allows us to link domain emergences at specific nodes in the phylogenetic tree to important functional developments, such as the origin of hair in mammals. CONCLUSIONS Our results demonstrate that domain rearrangements are based on a canonical set of mutational events with rates which lie within a relatively narrow and consistent range. In addition, gained knowledge about these rates provides a basis for advanced domain-based methodologies for phylogenetics and homology analysis which complement current sequence-based methods.
Collapse
Affiliation(s)
- Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany.,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen, 45665, Germany
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Sören Perrey
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen, 45665, Germany
| | - Carsten Kemena
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany.
| |
Collapse
|
5
|
Hudson WH, Gensheimer J, Hashimoto M, Wieland A, Valanparambil RM, Li P, Lin JX, Konieczny BT, Im SJ, Freeman GJ, Leonard WJ, Kissick HT, Ahmed R. Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1 + Stem-like CD8 + T Cells during Chronic Infection. Immunity 2019; 51:1043-1058.e4. [PMID: 31810882 PMCID: PMC6920571 DOI: 10.1016/j.immuni.2019.11.002] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 08/06/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
Abstract
T cell dysfunction is a characteristic feature of chronic viral infection and cancer. Recent studies in chronic lymphocytic choriomeningitis virus (LCMV) infection have defined a PD-1+ Tcf-1+ CD8+ T cell subset capable of self-renewal and differentiation into more terminally differentiated cells that downregulate Tcf-1 and express additional inhibitory molecules such as Tim3. Here, we demonstrated that expression of the glycoprotein CD101 divides this terminally differentiated population into two subsets. Stem-like Tcf-1+ CD8+ T cells initially differentiated into a transitory population of CD101-Tim3+ cells that later converted into CD101+ Tim3+ cells. Recently generated CD101-Tim3+ cells proliferated in vivo, contributed to viral control, and were marked by an effector-like transcriptional signature including expression of the chemokine receptor CX3CR1, pro-inflammatory cytokines, and granzyme B. PD-1 pathway blockade increased the numbers of CD101-Tim3+ CD8+ T cells, suggesting that these newly generated transitional cells play a critical role in PD-1-based immunotherapy.
Collapse
Affiliation(s)
- William H Hudson
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Julia Gensheimer
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Masao Hashimoto
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Andreas Wieland
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Bogumila T Konieczny
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA.
| |
Collapse
|
6
|
BioTarget: A Computational Framework Identifying Cancer Type Specific Transcriptional Targets of Immune Response Pathways. Sci Rep 2019; 9:9029. [PMID: 31227749 PMCID: PMC6588588 DOI: 10.1038/s41598-019-45304-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/03/2019] [Indexed: 01/04/2023] Open
Abstract
Transcriptome data can provide information on signaling pathways active in cancers, but new computational tools are needed to more accurately quantify pathway activity and identify tissue-specific pathway features. We developed a computational method called “BioTarget” that incorporates ChIP-seq data into cellular pathway analysis. This tool relates the expression of transcription factor TF target genes (based on ChIP-seq data) with the status of upstream signaling components for an accurate quantification of pathway activity. This analysis also reveals TF targets expressed in specific contexts/tissues. We applied BioTarget to assess the activity of TBX21 and GATA3 pathways in cancers. TBX21 and GATA3 are TF regulators that control the differentiation of T cells into Th1 and Th2 helper cells that mediate cell-based and humoral immune responses, respectively. Since tumor immune responses can impact cancer progression, the significance of our pathway scores should be revealed by effective patient stratification. We found that low Th1/Th2 activity ratios were associated with a significantly poorer survival of stomach and breast cancer patients, whereas an unbalanced Th1/Th2 response was correlated with poorer survival of colon cancer patients. Lung adenocarcinoma and lung squamous cell carcinoma patients had the lowest survival rates when both Th1 and Th2 responses were high. Our method also identified context-specific target genes for TBX21 and GATA3. Applying the BioTarget tool to BCL6, a TF associated with germinal center lymphocytes, we observed that patients with an active BCL6 pathway had significantly improved survival for breast, colon, and stomach cancer. Our findings support the effectiveness of the BioTarget tool for transcriptome analysis and point to interesting associations between some immune-response pathways and cancer progression.
Collapse
|
7
|
Johnston HE, Carter MJ, Larrayoz M, Clarke J, Garbis SD, Oscier D, Strefford JC, Steele AJ, Walewska R, Cragg MS. Proteomics Profiling of CLL Versus Healthy B-cells Identifies Putative Therapeutic Targets and a Subtype-independent Signature of Spliceosome Dysregulation. Mol Cell Proteomics 2018; 17:776-791. [PMID: 29367434 PMCID: PMC5880099 DOI: 10.1074/mcp.ra117.000539] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell cancer exhibiting a wide spectrum of disease courses and treatment responses. Molecular characterization of RNA and DNA from CLL cases has led to the identification of important driver mutations and disease subtypes, but the precise mechanisms of disease progression remain elusive. To further our understanding of CLL biology we performed isobaric labeling and mass spectrometry proteomics on 14 CLL samples, comparing them with B-cells from healthy donors (HDB). Of 8694 identified proteins, ∼6000 were relatively quantitated between all samples (q<0.01). A clear CLL signature, independent of subtype, of 544 significantly overexpressed proteins relative to HDB was identified, highlighting established hallmarks of CLL (e.g. CD5, BCL2, ROR1 and CD23 overexpression). Previously unrecognized surface markers demonstrated overexpression (e.g. CKAP4, PIGR, TMCC3 and CD75) and three of these (LAX1, CLEC17A and ATP2B4) were implicated in B-cell receptor signaling, which plays an important role in CLL pathogenesis. Several other proteins (e.g. Wee1, HMOX1/2, HDAC7 and INPP5F) were identified with significant overexpression that also represent potential targets. Western blotting confirmed overexpression of a selection of these proteins in an independent cohort. mRNA processing machinery were broadly upregulated across the CLL samples. Spliceosome components demonstrated consistent overexpression (p = 1.3 × 10-21) suggesting dysregulation in CLL, independent of SF3B1 mutations. This study highlights the potential of proteomics in the identification of putative CLL therapeutic targets and reveals a subtype-independent protein expression signature in CLL.
Collapse
Affiliation(s)
- Harvey E Johnston
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton, UK
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew J Carter
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton, UK
| | - Marta Larrayoz
- ¶Cancer Genomics, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Clarke
- ‖Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Spiro D Garbis
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
- **Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Oscier
- ‡‡Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Jonathan C Strefford
- ¶Cancer Genomics, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew J Steele
- §§Leukemia and Lymphoma Molecular Mechanisms and Therapy Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Renata Walewska
- ¶¶Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Mark S Cragg
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton, UK;
| |
Collapse
|
8
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
9
|
Zhou M, Fu J, Xiao L, Yang S, Song Y, Zhang X, Feng X, Sun H, Xu W, Huang W. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Hum Reprod 2016; 31:2598-2608. [PMID: 27619769 DOI: 10.1093/humrep/dew223] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 01/30/2023] Open
Abstract
STUDY QUESTION Do microRNAs (miRNAs) contribute to aberrant progesterone receptor (PGR) expression in the eutopic endometrium of women with endometriosis? SUMMARY ANSWER: miR-196a upregulates MEK/ERK signalling, mediating a downregulation of PGR expression in the eutopic endometrium of women with minimal or mild endometriosis. WHAT IS KNOWN ALREADY Implantation failure is strongly suggested as an underlying cause for the observed infertility in minimal or mild endometriosis. Progesterone resistance, which is mainly caused by aberrantly expressed progesterone receptor in the eutopic endometrium, is considered as a key factor of decreased endometrial receptivity; thus far, epigenetics, but not miRNA, has been shown to affect PGR expression in the endometrium. STUDY DESIGN SIZE, DURATION Microarray analysis was used to analyse the eutopic endometrium. The differential expression of miR-196a was validated. Bioinformatics analysis predicted that miR-196a targets the 3'-untranslated region (UTR) of the PGR. The relationship between the miR-196a level and PGR expression was studied and the role of the MEK/ERK signal pathway was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS Total RNA was extracted from eutopic endometrium samples in three infertile women with mild/minimal endometriosis and three disease-free control subjects. The miRNA and mRNA expression levels were analysed by microarray analysis. The miR-196a expression was validated by qRT-PCR [endometriosis (n = 22) and control (n = 20)], while functional analysis utilised in vitro transfection of endometrial stromal cells (ESCs), induction of decidualization of ESCs, and luciferase reporter assays in 293 T cell lines. MAIN RESULTS AND THE ROLE OF CHANCE A total of 66 dysregulated miRNAs and 357 dysregulated mRNAs were screened by microarray analysis. miR-196a and P-MEK/P-ERK were both found to be significantly upregulated in the eutopic endometrium in patients with mild/minimal endometriosis. PGR and PGR-B mRNA were inhibited by miR-196a overexpression and upregulated by miR-196a inhibition. Luciferase reporter failed to confirm the target regulation of miR-196a on PGR. Transfection of ESCs with a miR-196a mimic led to an increase in the P-MEK/P-ERK protein levels, decrease in the PGR protein levels, and atypical decidualization. Following miR-196a inhibition, the P-MEK/P-ERK protein was downregulated and the PGR protein was upregulated. Inhibition of P-MEK/P-ERK also increased PGR expression. LARGE SCALE DATA Data are presented in Supplementary Tables SI and SII. LIMITATIONS REASONS FOR CAUTION This study focused on the role of miR-196a, and therefore does not involve other miRNAs; hence, it is possible that other miRNAs may also be responsible for progestin resistance in endometriosis. WIDER IMPLICATIONS OF THE FINDINGS Our data revealed altered miRNA expression and activated MEK/ERK signalling in the eutopic endometrium in minimal or mild endometriosis. We showed that the miR-196a level is associated with reduced expression of PGR isoforms through MEK/ERK, suggesting that miR-196a and MEK/ERK are both potential biomarkers of endometriosis. These results provide a novel approach to target the mechanisms behind progesterone resistance in endometriosis. STUDY FUNDING/COMPETING INTERESTS This research was supported by the National Natural Science Foundation of China (No. 81370693). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Min Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.,Department of Obstetrics and Gynecology, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, PR China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shiyuan Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xianghui Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue Feng
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Huaqin Sun
- Department of Obstetrics and Gynecology Key Laboratory of Obstetric Gynecologic, and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, P R China
| | - Wenming Xu
- Department of Obstetrics and Gynecology Key Laboratory of Obstetric Gynecologic, and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, P R China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
10
|
Keller B, Zaidman I, Yousefi OS, Hershkovitz D, Stein J, Unger S, Schachtrup K, Sigvardsson M, Kuperman AA, Shaag A, Schamel WW, Elpeleg O, Warnatz K, Stepensky P. Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J Exp Med 2016; 213:1185-99. [PMID: 27242165 PMCID: PMC4925012 DOI: 10.1084/jem.20151110] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Keller et al. describe for the first time human LAT deficiency, which causes severe immune dysregulation with autoimmunity, lymphoproliferation, and progressive immunodeficiency. The adapter protein linker for activation of T cells (LAT) is a critical signaling hub connecting T cell antigen receptor triggering to downstream T cell responses. In this study, we describe the first kindred with defective LAT signaling caused by a homozygous mutation in exon 5, leading to a premature stop codon deleting most of the cytoplasmic tail of LAT, including the critical tyrosine residues for signal propagation. The three patients presented from early childhood with combined immunodeficiency and severe autoimmune disease. Unlike in the mouse counterpart, reduced numbers of T cells were present in the patients. Despite the reported nonredundant role of LAT in Ca2+ mobilization, residual T cells were able to induce Ca2+ influx and nuclear factor (NF) κB signaling, whereas extracellular signal-regulated kinase (ERK) signaling was completely abolished. This is the first report of a LAT-related disease in humans, manifesting by a progressive combined immune deficiency with severe autoimmune disease.
Collapse
Affiliation(s)
- Baerbel Keller
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, 79106 Freiburg, Germany
| | - Irina Zaidman
- Department of Pediatric Hematology Oncology, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
| | - O Sascha Yousefi
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, 79106 Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Dov Hershkovitz
- Department of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Jerry Stein
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation Unit, Schneider Children's Medical Center of Israel, Petah-Tikva 49202, Israel
| | - Susanne Unger
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, 79106 Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, 79106 Freiburg, Germany
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Amir A Kuperman
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya 22100, Israel Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 5290002, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel
| | - Wolfgang W Schamel
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, 79106 Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), University Medical Center and University of Freiburg, 79106 Freiburg, Germany
| | - Polina Stepensky
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel Department of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Halova I, Draber P. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case. Front Cell Dev Biol 2016; 4:43. [PMID: 27243007 PMCID: PMC4861716 DOI: 10.3389/fcell.2016.00043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
12
|
Liu H, Li L, Voss C, Wang F, Liu J, Li SSC. A Comprehensive Immunoreceptor Phosphotyrosine-based Signaling Network Revealed by Reciprocal Protein-Peptide Array Screening. Mol Cell Proteomics 2015; 14:1846-58. [PMID: 25907764 PMCID: PMC4587333 DOI: 10.1074/mcp.m115.047951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/22/2015] [Indexed: 01/18/2023] Open
Abstract
Cells of the immune system communicate with their environment through immunoreceptors. These receptors often harbor intracellular tyrosine residues, which, when phosphorylated upon receptor activation, serve as docking sites to recruit downstream signaling proteins containing the Src Homology 2 (SH2) domain. A systematic investigation of interactions between the SH2 domain and the immunoreceptor tyrosine-based regulatory motifs (ITRM), including inhibitory (ITIM), activating (ITAM), or switching (ITSM) motifs, is critical for understanding cellular signal transduction and immune function. Using the B cell inhibitory receptor CD22 as an example, we developed an approach that combines reciprocal or bidirectional phosphopeptide and SH2 domain array screens with in-solution binding assays to identify a comprehensive SH2-CD22 interaction network. Extending this approach to 194 human ITRM sequences and 78 SH2 domains led to the identification of a high-confidence immunoreceptor interactome containing 1137 binary interactions. Besides recapitulating many previously reported interactions, our study uncovered numerous novel interactions. The resulting ITRM-SH2 interactome not only helped to fill many gaps in the immune signaling network, it also allowed us to associate different SH2 domains to distinct immune functions. Detailed analysis of the NK cell ITRM-mediated interactions led to the identification of a network nucleated by the Vav3 and Fyn SH2 domains. We showed further that these SH2 domains have distinct functions in cytotoxicity. The bidirectional protein-peptide array approach described herein may be applied to the numerous other peptide-binding modules to identify potential protein-protein interactions in a systematic and reliable manner.
Collapse
Affiliation(s)
- Huadong Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Lei Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Courtney Voss
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1
| | - Feng Wang
- §Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- §Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Shawn Shun-Cheng Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1;
| |
Collapse
|
13
|
Schneider H, Rudd CE. Diverse mechanisms regulate the surface expression of immunotherapeutic target ctla-4. Front Immunol 2014; 5:619. [PMID: 25538704 PMCID: PMC4255484 DOI: 10.3389/fimmu.2014.00619] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
T-cell co-receptor cytotoxic T-cell antigen-4 (CTLA-4) is a critical inhibitory regulator of T-cell immunity and antibody blockade of the co-receptor has been shown to be effective in tumor immunotherapy. Paradoxically, the majority of CTLA-4 is located in intracellular compartments from where it is transported to the cell surface and rapidly internalized. The intracellular trafficking pathways that control transport of the co-receptor to the cell surface ensures the appropriate balance of negative and positive signaling for a productive immune response with minimal autoimmune disorders. It will also influence the degree of inhibition and the potency of antibody checkpoint blockade in cancer immunotherapy. Current evidence indicates that the mechanisms of CTLA-4 transport to the cell surface and its residency are multifactorial involving a combination of immune cell-specific adapters such as TRIM and LAX, the small GTPase Rab8 as well as generic components such as ARF-1, phospholipase D, and the heterotetrameric AP1/2 complex. This review covers the recent developments in our understanding of the processes that control the expression of this important co-inhibitory receptor for the modulation of T-cell immunity. Interference with the processes that regulate CTLA-4 surface expression could provide an alternate therapeutic approach in the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Helga Schneider
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge , Cambridge , UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge , Cambridge , UK
| |
Collapse
|
14
|
Palmitoylated transmembrane adaptor proteins in leukocyte signaling. Cell Signal 2014; 26:895-902. [PMID: 24440308 DOI: 10.1016/j.cellsig.2014.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
Transmembrane adaptor proteins (TRAPs) are structurally related proteins that have no enzymatic function, but enable inducible recruitment of effector molecules to the plasma membrane, usually in a phosphorylation dependent manner. Numerous surface receptors employ TRAPs for either propagation or negative regulation of the signal transduction. Several TRAPs (LAT, NTAL, PAG, LIME, PRR7, SCIMP, LST1/A, and putatively GAPT) are known to be palmitoylated that could facilitate their localization in lipid rafts or tetraspanin enriched microdomains. This review summarizes expression patterns, binding partners, signaling pathways, and biological functions of particular palmitoylated TRAPs with an emphasis on the three most recently discovered members, PRR7, SCIMP, and LST1/A. Moreover, we discuss in silico methodology used for discovery of new family members, nature of their binding partners, and microdomain localization.
Collapse
|
15
|
Cao L, Ding Y, Hung N, Yu K, Ritz A, Raphael BJ, Salomon AR. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells. PLoS One 2012; 7:e46725. [PMID: 23071622 PMCID: PMC3469622 DOI: 10.1371/journal.pone.0046725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/07/2012] [Indexed: 12/14/2022] Open
Abstract
The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76) plays a critical scaffolding role in T cell receptor (TCR) signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs) Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.
Collapse
Affiliation(s)
- Lulu Cao
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Yiyuan Ding
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Norris Hung
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Kebing Yu
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
| | - Anna Ritz
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
| | - Benjamin J. Raphael
- Department of Computer Science, Brown University, Providence, Rhode Island, United States of America
| | - Arthur R. Salomon
- Department of Chemistry, Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
16
|
Nag A, Monine M, Perelson AS, Goldstein B. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2. PLoS One 2012; 7:e28758. [PMID: 22396725 PMCID: PMC3291652 DOI: 10.1371/journal.pone.0028758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023] Open
Abstract
The linker for activation of T cells (LAT), the linker for activation of B cells (LAB), and the linker for activation of X cells (LAX) form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1∶1 and 2∶1 complexes with the guanine nucleotide exchange factor SOS1. The 2∶1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate). We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate.
Collapse
Affiliation(s)
- Ambarish Nag
- Theoretical Biololgy and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
| | | | | | | |
Collapse
|
17
|
Draber P, Halova I, Levi-Schaffer F, Draberova L. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front Immunol 2012; 2:95. [PMID: 22566884 PMCID: PMC3342071 DOI: 10.3389/fimmu.2011.00095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022] Open
Abstract
Aggregation of the high-affinity IgE receptor (FcεRI) initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of spleen tyrosine kinase (Syk). Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs). These proteins are characterized by a short extracellular domain, a single transmembrane domain, and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), linker for activation of X cells (LAX), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG), and growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT)]; engagement of four of them (LAT, NTAL, LAX, and PAG) in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production, and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | | | |
Collapse
|
18
|
Hrdinka M, Dráber P, Stepánek O, Ormsby T, Otáhal P, Angelisová P, Brdicka T, Paces J, Horejsí V, Drbal K. PRR7 is a transmembrane adaptor protein expressed in activated T cells involved in regulation of T cell receptor signaling and apoptosis. J Biol Chem 2011; 286:19617-29. [PMID: 21460222 DOI: 10.1074/jbc.m110.175117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transmembrane adaptor proteins (TRAPs) are important organizers and regulators of immunoreceptor-mediated signaling. A bioinformatic search revealed several potential novel TRAPs, including a highly conserved protein, proline rich 7 (PRR7), previously described as a component of the PSD-95/N-methyl-d-aspartate receptor protein complex in postsynaptic densities (PSD) of rat neurons. Our data demonstrate that PRR7 is weakly expressed in other tissues but is readily up-regulated in activated human peripheral blood lymphocytes. Transient overexpression of PRR7 in Jurkat T cell line led to gradual apoptotic death dependent on the WW domain binding motif surrounding Tyr-166 in the intracellular part of PRR7. To circumvent the pro-apoptotic effect of PRR7, we generated Jurkat clones with inducible expression of PRR7 (J-iPRR7). In these cells acute induction of PRR7 expression had a dual effect. It resulted in up-regulation of the transcription factor c-Jun and the activation marker CD69 as well as enhanced production of IL-2 after phorbol 12-myristate 13-acetate (PMA) and ionomycin treatment. On the other hand, expression of PRR7 inhibited general tyrosine phosphorylation and calcium influx after T cell receptor cross-linking by antibodies. Moreover, we found PRR7 constitutively tyrosine-phosphorylated and associated with Src. Collectively, these data indicate that PRR7 is a potential regulator of signaling and apoptosis in activated T cells.
Collapse
Affiliation(s)
- Matous Hrdinka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Identification of BCAR-1 as a new substrate of Syk tyrosine kinase through a determination of amino acid sequence preferences surrounding the substrate tyrosine residue. Immunol Lett 2010; 135:151-7. [PMID: 21047529 DOI: 10.1016/j.imlet.2010.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/06/2010] [Accepted: 10/23/2010] [Indexed: 12/27/2022]
Abstract
Syk, a non-receptor tyrosine kinase, is an essential signaling molecule in B cells and other hematopoietic cells. Recently, its unexpected diverse functions were recognized in the regulation of cellular adhesion, innate immune recognition, vascular development, and carcinogenesis. Despite its pleiotropic role, only a few substrate proteins have been identified. To find new substrate proteins for Syk, we performed a systemic in vitro kinase assay using GST fusion peptides to determine the substrate specificity surrounding the tyrosine residue to be phosphorylated. Substitution of amino acid residues surrounding tyrosine 178 of BLNK, a principal Syk substrate in B cell receptor-mediated signaling, revealed that acidic residues at sites -5 to -1 were necessary for phosphorylation by Syk. Valine at site +1 was also influential in phosphorylation and a substitution of Pro on site +3 to a basic amino acid residue, Lys, resulted in attenuated phosphorylation. On the basis of these results, a general consensus phosphorylation motif for Syk was determined and several new candidate target proteins were identified in protein database searches. Of the candidate proteins, BCAR-1 (breast cancer anti-estrogen resistance 1) was confirmed to be phosphorylated by Syk in an in vitro kinase assay using a full-length protein of BCAR-1. Furthermore, BCAR-1 was tyrosine phosphorylated upon the overexpression of Syk in HEK-293T cells. These results suggest that more Syk substrates can be found using an in vitro kinase approach and show for the first time that BCAR-1 is a physiological substrate of Syk.
Collapse
|
20
|
Capitani N, Lucherini OM, Baldari CT. Negative regulation of immunoreceptor signaling by protein adapters: Shc proteins join the club. FEBS Lett 2010; 584:4915-22. [DOI: 10.1016/j.febslet.2010.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/23/2010] [Accepted: 08/31/2010] [Indexed: 11/26/2022]
|
21
|
Abstract
Mast cells are pivotal in innate immunity and play an important role in amplifying adaptive immunity. Nonetheless, they have long been known to be central to the initiation of allergic disorders. This results from the dysregulation of the immune response whereby normally innocuous substances are recognized as non-self, resulting in the production of IgE antibodies to these 'allergens'. Preformed and newly synthesized inflammatory (allergic) mediators are released from the mast cell following allergen-mediated aggregation of allergen-specific IgE bound to the high-affinity receptors for IgE (FcepsilonRI). Thus, the process by which the mast cell is able to interpret the engagement of FcepsilonRI into the molecular events necessary for release of their allergic mediators is of considerable therapeutic interest. Unraveling these molecular events has led to the discovery of a functional class of proteins that are essential in organizing activated signaling molecules and in coordinating and compartmentalizing their activity. These so-called 'adapters' bind multiple signaling proteins and localize them to specific cellular compartments, such as the plasma membrane. This organization is essential for normal mast cell responses. Here, we summarize the role of adapter proteins in mast cells focusing on the most recent advances toward understanding how these molecules work upon FcepsilonRI engagement.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
22
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed and evolutionary conserved adapter protein possessing a plethora of described interaction partners for the regulation of signal transduction. In B lymphocytes, the Grb2-mediated scaffolding function controls the assembly and subcellular targeting of activating as well as inhibitory signalosomes in response to ligation of the antigen receptor. Also, integration of simultaneous signals from B-cell coreceptors that amplify or attenuate antigen receptor signal output relies on Grb2. Hence, Grb2 is an essential signal integrator. The key question remains, however, of how pathway specificity can be maintained during signal homeostasis critically required for the balance between immune cell activation and tolerance induction. Here, we summarize the molecular network of Grb2 in B cells and introduce a proteomic approach to elucidate the interactome of Grb2 in vivo.
Collapse
Affiliation(s)
- Konstantin Neumann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
23
|
Fuller DM, Zhang W. Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol Rev 2010; 232:72-83. [PMID: 19909357 DOI: 10.1111/j.1600-065x.2009.00828.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transmembrane adapter proteins (TRAPs) are critical components of signaling pathways in lymphocytes, linking antigen receptor engagement to downstream cellular processes. While these proteins lack intrinsic enzymatic activity, their phosphorylation following receptor ligation allows them to function as scaffolds for the assembly of multi-molecular signaling complexes. Many TRAPs have recently been discovered, and numerous studies demonstrate their roles in the positive and negative regulation of lymphocyte maturation, activation, and differentiation. One such example is the linker for activation of T cells (LAT) family of adapter proteins. While LAT has been shown to play an indispensable role in T-cell and mast cell function, the other family members, linker for activation of B cells (LAB) and linker for activation of X cells (LAX), are necessary to fine-tune immune responses. In addition to its well-established role in the positive regulation of lymphocyte activation, LAT exerts an inhibitory effect on T-cell receptor-mediated signaling. Furthermore, LAT, along with LAB and LAX, plays a crucial role in establishing and maintaining tolerance. Here, we review recent data concerning the regulation of lymphocyte development and activation by the LAT family of proteins.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
24
|
T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Mol Cell Biol 2010; 30:3421-9. [PMID: 20498282 DOI: 10.1128/mcb.00160-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the function of lipid rafts in generation and signaling of T-cell receptor microclusters (TCR-MCs) and central supramolecular activation clusters (cSMACs) at immunological synapse (IS). It has been suggested that lipid raft accumulation creates a platform for recruitment of signaling molecules upon T-cell activation. However, several lipid raft probes did not accumulate at TCR-MCs or cSMACs even with costimulation and the fluorescence resonance energy transfer (FRET) between TCR or LAT and lipid raft probes was not induced at TCR-MCs under the condition of positive induction of FRET between CD3 zeta and ZAP-70. The analysis of LAT mutants revealed that raft association is essential for the membrane localization but dispensable for TCR-MC formation. Careful analysis of the accumulation of raft probes in the cell interface revealed that their accumulation occurred after cSMAC formation, probably due to membrane ruffling and/or endocytosis. These results suggest that lipid rafts control protein translocation to the membrane but are not involved in the clustering of raft-associated molecules and therefore that the lipid rafts do not serve as a platform for T-cell activation.
Collapse
|
25
|
Phosphorylation at serine 318 is not required for inhibition of T cell activation by ALX. Biochem Biophys Res Commun 2010; 396:994-8. [PMID: 20471366 DOI: 10.1016/j.bbrc.2010.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/10/2010] [Indexed: 11/24/2022]
Abstract
The activation of T cells and the initiation of an immune response is tightly controlled by both positive and negative regulators. Two adaptors which function as negative regulators of T cell activation are ALX and LAX. ALX constitutively associates with LAX in T cells, and T cells from mice deficient in ALX and LAX display similar hyper-responsiveness upon T cell receptor (TCR)/CD28 stimulation, including increased production of interleukin-2. During T cell activation, ALX is inducibly phosphorylated, however the site of ALX phosphorylation had not been previously identified and the role of phosphorylation in the inhibitory function of ALX was not known. Here, using mass spectrometry, we demonstrate that ALX is phosphorylated on a serine at position 318. Substitution of alanine for serine at this position (ALX S318A) leads to an abrogation of the mobility shift in ALX induced upon TCR/CD28 stimulation. However, ALX S318A retained the ability to bind to and stimulate tyrosine phosphorylation of LAX. In addition, overexpression of ALX S318A inhibited RE/AP activation upon TCR/CD28 stimulation to a similar extent as wild-type ALX. Therefore, although ALX is inducibly phosphorylated upon TCR/CD28 stimulation, this phosphorylation is not required for ALX to inhibit T cell activation.
Collapse
|
26
|
Lapinski PE, Oliver JA, Bodie JN, Marti F, King PD. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B. Immunol Rev 2009; 232:240-54. [PMID: 19909368 DOI: 10.1111/j.1600-065x.2009.00829.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | | | | | | | | |
Collapse
|
27
|
Transforming potential of Src family kinases is limited by the cholesterol-enriched membrane microdomain. Mol Cell Biol 2009; 29:6462-72. [PMID: 19822664 DOI: 10.1128/mcb.00941-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The upregulation of Src family kinases (SFKs) has been implicated in cancer progression, but the molecular mechanisms regulating their transforming potentials remain unclear. Here we show that the transforming ability of all SFK members is suppressed by being distributed to the cholesterol-enriched membrane microdomain. All SFKs could induce cell transformation when overexpressed in C-terminal Src kinase (Csk)-deficient fibroblasts. However, their transforming abilities varied depending on their affinity for the microdomain. c-Src and Blk, with a weak affinity for the microdomain due to a single myristate modification at the N terminus, could efficiently induce cell transformation, whereas SFKs with both myristate and palmitate modifications were preferentially distributed to the microdomain and required higher doses of protein expression to induce transformation. In contrast, disruption of the microdomain by depleting cholesterol could induce a robust transformation in Csk-deficient fibroblasts in which only a limited amount of activated SFKs was expressed. Conversely, the addition of cholesterol or recruitment of activated SFKs to the microdomain via a transmembrane adaptor, Cbp/PAG1, efficiently suppressed SFK-induced cell transformation. These findings suggest that the membrane microdomain spatially limits the transforming potential of SFKs by sequestering them away from the transforming pathways.
Collapse
|
28
|
Nag A, Monine MI, Faeder JR, Goldstein B. Aggregation of membrane proteins by cytosolic cross-linkers: theory and simulation of the LAT-Grb2-SOS1 system. Biophys J 2009; 96:2604-23. [PMID: 19348745 DOI: 10.1016/j.bpj.2009.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 01/12/2023] Open
Abstract
Ligand-induced receptor aggregation is a well-known mechanism for initiating intracellular signals but oligomerization of distal signaling molecules may also be required for signal propagation. Formation of complexes containing oligomers of the transmembrane adaptor protein, linker for the activation of T cells (LAT), has been identified as critical in mast cell and T cell activation mediated by immune response receptors. Cross-linking of LAT arises from the formation of a 2:1 complex between the adaptor Grb2 and the nucleotide exchange factor SOS1, which bridges two LAT molecules through the interaction of the Grb2 SH2 domain with a phosphotyrosine on LAT. We model this oligomerization and find that the valence of LAT for Grb2, which ranges from zero to three, is critical in determining the nature and extent of aggregation. A dramatic rise in oligomerization can occur when the valence switches from two to three. For valence three, an equilibrium theory predicts the possibility of forming a gel-like phase. This prediction is confirmed by stochastic simulations, which make additional predictions about the size of the gel and the kinetics of LAT oligomerization. We discuss the model predictions in light of recent experiments on RBL-2H3 and Jurkat E6.1 cells and suggest that the gel phase has been observed in activated mast cells.
Collapse
Affiliation(s)
- Ambarish Nag
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos, New Mexico, USA
| | | | | | | |
Collapse
|
29
|
Park I, Yun Y. Transmembrane adaptor proteins positively regulating the activation of lymphocytes. Immune Netw 2009; 9:53-7. [PMID: 20107544 PMCID: PMC2803307 DOI: 10.4110/in.2009.9.2.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 04/03/2009] [Indexed: 12/25/2022] Open
Abstract
Engagement of the immunoreceptors initiates signaling cascades resulting in lymphocyte activation and differentiation to effector cells, which are essential for the elimination of pathogens from the body. For the transduction of these immunoreceptor-mediated signals, several linker proteins termed transmembrane adaptor proteins (TRAPs) were shown to be required. TRAPs serve as platforms for the assembly and membrane targeting of the specific signaling proteins. Among seven TRAPs identified so far, LAT and LIME were shown to act as a positive regulator in TCR-mediated signaling pathways. In this review, we will discuss the functions of LAT and LIME in modulating T cell development, activation and differentiation.
Collapse
Affiliation(s)
- Inyoung Park
- Department of Life Science, Ewha Womans' University, Seoul 120-750, Korea
| | | |
Collapse
|
30
|
Shapiro MJ, Nguyen CT, Aghajanian H, Zhang W, Shapiro VS. Negative regulation of TCR signaling by linker for activation of X cells via phosphotyrosine-dependent and -independent mechanisms. THE JOURNAL OF IMMUNOLOGY 2008; 181:7055-61. [PMID: 18981125 DOI: 10.4049/jimmunol.181.10.7055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of T cells and the initiation of an immune response is tightly controlled through the crosstalk of both positive and negative regulators. Two adaptors that function as negative regulators of T cell activation are adaptor in lymphocytes of unknown function X (ALX) and linker for activation of X cell (LAX). Previously, we showed that T cells from mice deficient in ALX and LAX display similar hyperresponsiveness, with increased IL-2 production and proliferation upon TCR/CD28 stimulation, and that these adaptors physically associate. In this study, we analyze the nature of the association between ALX and LAX. We demonstrate that this association occurs in the absence of TCR/CD28 signaling via a mechanism independent of both tyrosine phosphorylation of LAX and the SH2 domain of ALX. Cotransfection of ALX with LAX resulted in LAX tyrosine phosphorylation in the absence of TCR/CD28 stimulation. ALX-mediated LAX phosphorylation depends upon the ALX SH2 domain, which functions to recruit Lck to LAX. We also show that LAX, like ALX, can inhibit RE/AP reporter activation. However, in contrast to its inhibition of NFAT, the inhibition of RE/AP by LAX is independent of its tyrosine phosphorylation. Therefore, it can be concluded that inhibition of signaling events involved in T cell activation by LAX occurs through mechanisms both dependent on and independent of its tyrosine phosphorylation.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Gotoh T, Ise W, Nonaka A, Hamaguchi S, Hachimura S, Kaminogawa S. Identification of the genes specifically expressed in orally tolerized T cells. Cytotechnology 2008; 43:73-80. [PMID: 19003210 DOI: 10.1023/b:cyto.0000039918.80472.0e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oral tolerance is the systemic immunological unresponsiveness that occurs after feeding protein antigens. Its physiological role is thought to be the prevention of hypersensitivity to food antigens, and its therapeutic use to treat inflammatory diseases has been suggested. Although it has been shown that CD4(+) T cells mediate oral tolerance, the precise molecular mechanisms remain unclear. In the present study, we employed suppression subtractive hybridization and identified 10 genes specifically expressed in orally tolerized T cells. These included genes that were interesting in terms of their putative functions in the negative regulation of T cell activation, e.g. Culin 1, LAX, and Zfhx1b, as well as four genes that encoded unknown proteins. We further investigated the expression of these genes in hyporesponsive T cells induced in vitro (in vitro anergized T cells). We found that six of the 10 genes were highly expressed in these cells, and kinetic studies suggested that one was associated with the induction of anergy, while the other five were associated with the maintenance of anergy. The remaining 4 genes that were not expressed in in vitro anergized T cells are also of interest as they may play a specific role in in vivo T cell tolerance. Functional analysis of these genes should help to understand the complex mechanisms underlying the induction and maintenance of oral tolerance, and moreover, in vivo immune tolerance in general.
Collapse
Affiliation(s)
- Takayasu Gotoh
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1, Yayoj, Bunkyoku, Tokyo, 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Liu Y, Zhang W. Identification of a new transmembrane adaptor protein that constitutively binds Grb2 in B cells. J Leukoc Biol 2008; 84:842-51. [PMID: 18559951 DOI: 10.1189/jlb.0208087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transmembrane adaptor proteins couple antigen receptor engagement to downstream signaling cascades in lymphocytes. One example of these proteins is the linker for activation of T cells (LAT), which plays an indispensable role in T cell activation and development. Here, we report identification of a new transmembrane adaptor molecule, namely growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT), which is expressed in B cells and myeloid cells. Similar to LAT, GAPT has an extracellular domain, a transmembrane domain, and a cytoplasmic tail with multiple Grb2-binding motifs. In contrast to other transmembrane adaptor proteins, GAPT is not phosphorylated upon BCR ligation but associates with Grb2 constitutively through its proline-rich region. Targeted disruption of the gapt gene in mice affects neither B cell development nor a nitrophenylacetyl-specific antibody response. However, in the absence of GAPT, B cell proliferation after BCR cross-linking is enhanced. In aged GAPT(-/-) mice, the number of marginal zone (MZ) B cells is increased, and other B cell subsets are normal. The serum concentrations of IgM, IgG2b, and IgG3 are also elevated in these mice. These data indicate that GAPT might play an important role in control of B cell activation and proper maintenance of MZ B cells.
Collapse
Affiliation(s)
- Yan Liu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
33
|
Sancho-Shimizu V, Khan R, Mostowy S, Larivière L, Wilkinson R, Riendeau N, Behr M, Malo D. Molecular genetic analysis of two loci (Ity2 and Ity3) involved in the host response to infection with Salmonella typhimurium using congenic mice and expression profiling. Genetics 2007; 177:1125-39. [PMID: 17660555 PMCID: PMC2034618 DOI: 10.1534/genetics.107.075523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Numerous genes have been identified to date that contribute to the host response to systemic Salmonella Typhimurium infection in mice. We have previously identified two loci, Ity2 and Ity3, that control survival to Salmonella infection in the wild-derived inbred MOLF/Ei mouse using a (C57BL/6J x MOLF/Ei)F(2)cross. We validated the existence of these two loci by creating congenic mice carrying each quantitative trait locus (QTL) in isolation. Subcongenic mice generated for each locus allowed us to define the critical intervals underlying Ity2 and Ity3. Furthermore, expression profiling was carried out with the aim of identifying differentially expressed genes within the critical intervals as potential candidate genes. Genomewide expression arrays were used to interrogate expression differences in the Ity2 congenics, leading to the identification of a new candidate gene (Havcr2, hepatitis A virus cellular receptor 2). Interval-specific oligonucleotide arrays were created for Ity3, identifying one potential candidate gene (Chi3l1, chitinase 3-like 1) to be pursued further. The combination of the use of congenics in QTL confirmation and fine mapping and in the identification of candidate genes by expression profiling has been successful and represents a step toward quantitative gene(s) identification.
Collapse
|
34
|
Zhu M, Koonpaew S, Liu Y, Shen S, Denning T, Dzhagalov I, Rhee I, Zhang W. Negative Regulation of T Cell Activation and Autoimmunity by the Transmembrane Adaptor Protein LAB. Immunity 2006; 25:757-68. [PMID: 17081783 DOI: 10.1016/j.immuni.2006.08.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/15/2006] [Accepted: 08/30/2006] [Indexed: 12/29/2022]
Abstract
LAB (linker for activation of B cells), also known as NTAL (non-T cell activation linker), is a LAT (linker for activation of T cells)-like adaptor protein that is expressed in B, NK, and mast cells. Its role in lymphocytes has not been clearly demonstrated. Here, we showed that aged LAB-deficient (Lat2(-/-)) mice developed an autoimmune syndrome. Lat2(-/-) T cells were hyperactivated and produced more cytokines than Lat2(+/+) T cells. Even though LAB was absent in naive T cells, LAB could be detected in activated Lat2(+/+) T cells. LAT-mediated signaling events were enhanced in Lat2(-/-) T cells; however, they were suppressed in T cells that overexpressed LAB. Mice with the Lat2 gene conditionally deleted from T cells also developed the autoimmune syndrome like Lat2(-/-) mice. Together, these data demonstrated an important role of LAB in limiting autoimmune response and exposed a mechanism regulating T cell activation.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dong S, Corre B, Foulon E, Dufour E, Veillette A, Acuto O, Michel F. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. ACTA ACUST UNITED AC 2006; 203:2509-18. [PMID: 17043143 PMCID: PMC2118126 DOI: 10.1084/jem.20060650] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain–containing inositol polyphosphate 5′-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Cell Line, Tumor
- DNA-Binding Proteins/physiology
- Down-Regulation/immunology
- Feedback, Physiological/immunology
- GRB2 Adaptor Protein/physiology
- Humans
- Inositol Polyphosphate 5-Phosphatases
- Jurkat Cells
- Ligands
- Lymphocyte Activation
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoproteins/physiology
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation
- RNA-Binding Proteins/physiology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Shen Dong
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Perchonock CE, Fernando MC, Quinn WJ, Nguyen CT, Sun J, Shapiro MJ, Shapiro VS. Negative regulation of interleukin-2 and p38 mitogen-activated protein kinase during T-cell activation by the adaptor ALX. Mol Cell Biol 2006; 26:6005-15. [PMID: 16880512 PMCID: PMC1592799 DOI: 10.1128/mcb.02067-05] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Activation of naïve T cells requires synergistic signals produced by the T-cell receptor (TCR) and by CD28. We previously identified the novel adaptor ALX, which, upon overexpression in Jurkat T cells, inhibited activation of the interleukin-2 (IL-2) promoter by TCR/CD28, suggesting that it is a negative regulator of T-cell activation. To further understand the physiological role of ALX, ALX-deficient mice were generated. Purified T cells from ALX-deficient mice demonstrated increased IL-2 production, CD25 expression, and proliferation in response to TCR/CD28 stimulation. Enhanced IL-2 production and proliferation were also observed when ALX-deficient mice were primed in vivo with ovalbumin-complete Freund's adjuvant and then restimulated ex vivo. Consistent with our initial overexpression studies, these data demonstrate that ALX is a negative regulator of T-cell activation. While TCR/CD28-mediated activations of phosphotyrosine induction, extracellular signal-regulated kinase 1/2, Jun N-terminal protein kinase, IkappaB kinase alpha/beta, and Akt were unaltered, constitutive activation of p38 mitogen-activated protein kinase and its upstream regulators MKK3/6 were observed for ALX-deficient splenocytes. The phenotype of ALX-deficient mice resembled the phenotype of those deficient in the transmembrane adaptor LAX, and an association between ALX and LAX proteins was demonstrated. These results suggest that ALX, in association with LAX, negatively regulates T-cell activation through inhibition of p38.
Collapse
Affiliation(s)
- Claire E Perchonock
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhu M, Rhee I, Liu Y, Zhang W. Negative Regulation of FcϵRI-mediated Signaling and Mast Cell Function by the Adaptor Protein LAX. J Biol Chem 2006; 281:18408-13. [PMID: 16672218 DOI: 10.1074/jbc.m601535200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
LAX is a transmembrane adaptor protein that is expressed in both T and B cells. Upon stimulation via the antigen receptors, it is tyrosine-phosphorylated and binds Grb2 and the p85 subunit of phosphatidylinositol 3-kinase. Disruption of the Lax gene causes hyperresponsiveness in T and B lymphocytes. Here, we showed that LAX was also expressed in mast cells. Upon engagement of the Fc epsilonRI, LAX was also phosphorylated and interacted with Grb2 and p85. LAX-deficient mast cells were hyperresponsive to stimulation via the Fc epsilonRI, as evidenced by enhanced degranulation, p38 MAPK, Akt, and phosphatidylinositol 3-kinase activation. This hyperresponsiveness was likely a consequence of reduced LAB expression after sensitization of mast cells with anti-dinitrophenyl IgE. In addition, Fc epsilonRI-mediated cytokine production and cell survival were also enhanced. These data suggested that LAX negatively regulates mast cell function.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
38
|
Kölsch U, Arndt B, Reinhold D, Lindquist JA, Jüling N, Kliche S, Pfeffer K, Bruyns E, Schraven B, Simeoni L. Normal T-cell development and immune functions in TRIM-deficient mice. Mol Cell Biol 2006; 26:3639-48. [PMID: 16612002 PMCID: PMC1447406 DOI: 10.1128/mcb.26.9.3639-3648.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transmembrane adaptor molecule TRIM is strongly expressed within thymus and in peripheral CD4(+) T cells. Previous studies suggested that TRIM is an integral component of the T-cell receptor (TCR)/CD3 complex and might be involved in regulating TCR cycling. To elucidate the in vivo function of TRIM, we generated TRIM-deficient mice by homologous recombination. TRIM(-/-) mice develop normally and are healthy and fertile. However, the animals show a mild reduction in body weight that appears to be due to a decrease in the size and/or cellularity of many organs. The morphology and anatomy of nonlymphoid as well as primary and secondary lymphoid organs is normal. The frequency of thymocyte and peripheral T-cell subsets does not differ from control littermates. In addition, a detailed analysis of lymphocyte development revealed that TRIM is not required for either positive or negative selection. Although TRIM(-/-) CD4(+) T cells showed an augmented phosphorylation of the serine/threonine kinase Akt, the in vitro characterization of peripheral T cells indicated that proliferation, survival, activation-induced cell death, migration, adhesion, TCR internalization and recycling, TCR-mediated calcium fluxes, tyrosine phosphorylation, and mitogen-activated protein family kinase activation are not affected in the absence of TRIM. Similarly, the in vivo immune response to T-dependent and T-independent antigens as well as the clinical course of experimental autoimmune encephalomyelitis, a complex Th1-mediated autoimmune model, is comparable to that of wild-type animals. Collectively, these results demonstrate that TRIM is dispensable for T-cell development and peripheral immune functions. The lack of an evident phenotype could indicate that TRIM shares redundant functions with other transmembrane adaptors involved in regulating the immune response.
Collapse
Affiliation(s)
- Uwe Kölsch
- Institute of Immunology, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Simeoni L, Posevitz V, Kölsch U, Meinert I, Bruyns E, Pfeffer K, Reinhold D, Schraven B. The transmembrane adapter protein SIT regulates thymic development and peripheral T-cell functions. Mol Cell Biol 2005; 25:7557-68. [PMID: 16107703 PMCID: PMC1190311 DOI: 10.1128/mcb.25.17.7557-7568.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SIT is a transmembrane adapter protein that modulates signals emanating from the T-cell receptor (TCR). Here, we have used gene-targeted mice to assess the role of SIT for T-cell development and peripheral T-cell functions. SIT(-/-) double-positive thymocytes show an upregulation of the activation markers CD5 and CD69, suggesting that SIT negatively regulates TCR-mediated signals at the CD4(+) CD8(+) stage of thymic development. This assumption is further supported by the observation that in female H-Y TCR transgenic mice, positive selection is enhanced and even converted to negative selection. Similarly, mature peripheral T cells are hyperresponsive towards TCR-mediated stimuli and produce larger amounts of T-helper 1 (TH1) cytokines, and SIT-deficient mice show an increased susceptibility to develop experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. These results demonstrate that SIT is a critical negative regulator of TCR-mediated signaling and finely tunes the signals required for thymic selection and peripheral T-cell activation.
Collapse
Affiliation(s)
- Luca Simeoni
- Otto von Guericke University, Institute of Immunology, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tedoldi S, Paterson JC, Hansmann ML, Natkunam Y, Rüdiger T, Angelisova P, Du MQ, Roberton H, Roncador G, Sanchez L, Pozzobon M, Masir N, Barry R, Pileri S, Mason DY, Marafioti T, Horejsí V. Transmembrane adaptor molecules: a new category of lymphoid-cell markers. Blood 2005; 107:213-21. [PMID: 16160011 DOI: 10.1182/blood-2005-06-2273] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transmembrane adaptor proteins (of which 7 have been identified so far) are involved in receptor signaling in immune cells. They have only a short extracellular region, with most of the molecule comprising a substantial intracytoplasmic region carrying multiple tyrosine residues that can be phosphorylated by Src- or Syk-family kinases. In this paper, we report an immunohistologic study of 6 of these molecules in normal and neoplastic human tissue sections and show that they are restricted to subpopulations of lymphoid cells, being present in either T cells (LAT, LIME, and TRIM), B cells (NTAL), or subsets of both cell types (PAG and SIT). Their expression in neoplastic lymphoid cells broadly reflects that of normal lymphoid tissue, including the positivity of plasma cells and myeloma/plasmacytoma for LIME, NTAL, PAG, and SIT. However, this study also revealed some reactions that may be of diagnostic/prognostic value. For example, lymphocytic lymphoma and mantle-cell lymphoma showed similar profiles but differed clearly from follicle-center lymphoma, whereas PAG tended to be selectively expressed in germinal center-derived subsets of diffuse large B-cell lymphoma. These molecules represent a potentially important addition to the panel of immunophenotypic markers detectable in routine biopsies that can be used in hematopathologic studies.
Collapse
Affiliation(s)
- Sara Tedoldi
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhu M, Granillo O, Wen R, Yang K, Dai X, Wang D, Zhang W. Negative regulation of lymphocyte activation by the adaptor protein LAX. THE JOURNAL OF IMMUNOLOGY 2005; 174:5612-9. [PMID: 15843560 DOI: 10.4049/jimmunol.174.9.5612] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/deficiency
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Targeting
- Humans
- Jurkat Cells
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Membrane Proteins/biosynthesis
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, B-Cell/physiology
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhu M, Shen S, Liu Y, Granillo O, Zhang W. Cutting Edge: Localization of Linker for Activation of T Cells to Lipid Rafts Is Not Essential in T Cell Activation and Development. THE JOURNAL OF IMMUNOLOGY 2004; 174:31-5. [PMID: 15611224 DOI: 10.4049/jimmunol.174.1.31] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.
Collapse
Affiliation(s)
- Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The negative regulation of lymphocyte activation and function is mediated by inhibition of signaling through antigen-receptor, co-stimulation receptor or cytokine receptor. The suppression of downstream signaling through antigen-receptor is mediated by negative regulators including adaptors and effectors such as phosphatases. "Inhibitory adaptors" exhibit their inhibitory function directly or indirectly by the localization to the vicinity of the antigen-receptor on the membrane. The strategy of inhibition by inhibitory adaptors includes the recruitment of inhibitory effector molecules, sequestration of positive regulators, internalization/degradation of receptor complexes, and the blockade of the dynamic movement of positive regulators.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | |
Collapse
|
44
|
Abstract
Transmembrane adapter proteins (TRAPs) represent a relatively new and unique group of signalling molecules in hematopoetic cells. They differ from other signalling proteins as they lack any enzymatic or transcriptional activity, instead they possesses multiple tyrosine-based signalling motifs (TBSMs). Triggering of immunoreceptors induces tyrosine phosphorylation of these motifs by members of the Src-, Syk- or Tec-family of protein tyrosine kinases thus enabling the TRAPs to recruit cytosolic adapter and/or effector molecules via their SH2-domains into close proximity to the immunoreceptors, a position from which they can coordinate and modulate signal transduction pathways important for lymphocyte function.
Collapse
Affiliation(s)
- Stefanie Kliche
- Institute of Immunology, Otto-von Guericke-University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
45
|
Malbec O, Malissen M, Isnardi I, Lesourne R, Mura AM, Fridman WH, Malissen B, Daëron M. Linker for activation of T cells integrates positive and negative signaling in mast cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:5086-94. [PMID: 15470052 DOI: 10.4049/jimmunol.173.8.5086] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transmembrane adapter linker for activation of T cells (LAT) is thought to couple immunoreceptors to intracellular signaling pathways. In mice, its intracytoplasmic domain contains nine tyrosines which, when phosphorylated upon receptor aggregation, recruit Src-homology 2 domain-containing cytosolic enzymes and adapters. The four distal tyrosines are critical for both TCR and FcepsilonRI signaling. Unexpectedly, knock-in mice expressing LAT with a point mutation of the first or of the last three of these tyrosines exhibited an abnormal T cell development characterized by a massive expansion of TH2-like alphabeta or gammadelta T cells, respectively. This phenotype suggests that, besides positive signals, LAT might support negative signals that normally regulate terminal T cell differentiation and proliferation. We investigated here whether LAT might similarly regulate mast cell activation, by generating not only positive but also negative signals, following FcR engagement. To this end, we examined IgE- and/or IgG-induced secretory and intracellular responses of mast cells derived from knock-in mice expressing LAT with combinations of tyrosine mutations (Y136F, Y(175, 195, 235)F, or Y(136, 175, 195, 235)F). A systematic comparison of pairs of mutants enabled us to dissect the respective roles played by the five proximal and the four distal tyrosines. We found that LAT tyrosines differentially contribute to exocytosis and cytokine secretion and differentially regulate biological responses of mucosal- and serosal-type mast cells. We also found that, indeed, both positive and negative signals may emanate from distinct tyrosines in LAT, whose integration modulates mast cell secretory responses.
Collapse
Affiliation(s)
- Odile Malbec
- Laboratoire d'Immunologie Cellulaire and Clinique, Institut National de la Santé et de la Recherche Médicale Unité 255, Institut Biomédical des Cordeliers, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Horejsí V, Zhang W, Schraven B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 2004; 4:603-16. [PMID: 15286727 DOI: 10.1038/nri1414] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
47
|
Janssen E, Zhu M, Craven B, Zhang W. Linker for Activation of B Cells: A Functional Equivalent of a Mutant Linker for Activation of T Cells Deficient in Phospholipase C-γ1 Binding. THE JOURNAL OF IMMUNOLOGY 2004; 172:6810-9. [PMID: 15153499 DOI: 10.4049/jimmunol.172.11.6810] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adaptor proteins have important functions in coupling stimulation through immunoreceptors with downstream events. The adaptor linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) is expressed in various immune cell types and has a similar domain structure as linker for activation of T cells (LAT). In this study we generated a LAB transgenic mouse to compare the functional differences between LAB and LAT. A LAB transgene expressed in LAT-deficient T cells was able to restore T cell development. However, these mice developed severe organomegaly with disorganized lymphoid tissues. Lymphocytes from these transgenic mice were hyperactivated, and T cells produced large amounts of type II cytokines. In addition, these activities appeared to be uncoupled from the TCR. An examination of the signaling capabilities of these T cells revealed that LAB resembled a LAT molecule unable to bind phospholipase C-gamma1.
Collapse
Affiliation(s)
- Erin Janssen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Adaptors are modular proteins implicated in the orchestration of intracellular signalling pathways. Studies of adaptors specifically expressed in immune cells have provided clear examples of the importance of adaptor molecules in normal mammalian biology. Moreover, they have led to the identification of naturally occurring mutations in adaptors that can be linked to human diseases. Lastly, they have highlighted the plasticity of protein-protein interaction modules, and have shed light onto the mechanisms dictating the specificity of adaptor-mediated signals.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada.
| |
Collapse
|
49
|
Horejsí V. Transmembrane adaptor proteins in membrane microdomains: important regulators of immunoreceptor signaling. Immunol Lett 2004; 92:43-9. [PMID: 15081526 DOI: 10.1016/j.imlet.2003.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Accepted: 10/10/2003] [Indexed: 11/26/2022]
Abstract
Membrane microdomains enriched in glycosphingolipids, cholesterol, glycosylphosphatidylinositol-anchored proteins and Src-family kinases (lipid rafts, GEMs) appear to play many important roles, especially in immunoreceptor signaling. Most transmembrane proteins are excluded from these specialized areas of membranes, notable exceptions being several palmitoylated proteins such as the T cell coreceptors CD4 and CD8, and several recently described transmembrane adaptor proteins, LAT, non-T cell activation linker (NTAL)/linker for activation of B cells (LAB), phosphoprotein associated with GEMs (PAG)/Csk-binding protein (Cbp) and LIME. All these molecules possess a very short N-terminal extracellular peptide (4-17 amino acids), transmembrane segment followed by a palmitoylation motif (CxxC) and cytoplasmic domain containing up to 10 tyrosine residues potentially phosphorylated by the Src- or Syk-family kinases. Tyrosine-phosphorylated transmembrane adaptors bind (directly via SH2 domains or indirectly) other signaling molecules such as several cytoplasmic adaptors and enzymes. LAT is indispensable for TCR signaling (and participates also at signal transduction initiated by some other receptors), NTAL/LAB appears to play a LAT-like role in signaling initiated by BCR and some Fc-receptors; PAG/Cbp cooperates with Csk, the cytoplasmic tyrosine kinase negatively regulating Src-family kinases. Additional transmembrane adaptors exist (TRIM, SIT, LAX) that are however not palmitoylated and therefore excluded from the lipid rafts; structurally and functionally, the zeta-chain family proteins tightly associated with immunoreceptors and activating NK-receptors may be also considered as transmembrane adaptors.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
50
|
Cho S, Velikovsky CA, Swaminathan CP, Houtman JCD, Samelson LE, Mariuzza RA. Structural basis for differential recognition of tyrosine-phosphorylated sites in the linker for activation of T cells (LAT) by the adaptor Gads. EMBO J 2004; 23:1441-51. [PMID: 15029250 PMCID: PMC391073 DOI: 10.1038/sj.emboj.7600168] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 02/19/2004] [Indexed: 11/09/2022] Open
Abstract
The transmembrane protein, linker for activation of T cells (LAT), is essential for T-cell activation and development. Phosphorylation of LAT at multiple tyrosines creates binding sites for the adaptors Gads and Grb2, leading to nucleation of multiprotein signaling complexes. Human LAT contains five potential binding sites for Gads, of which only those at Tyr171 and Tyr191 appear necessary for T-cell function. We asked whether Gads binds preferentially to these sites, as differential recognition could assist in assembling defined LAT-based complexes. Measured calorimetrically, Gads-SH2 binds LAT tyrosine phosphorylation sites 171 and 191 with higher affinities than the other sites, with the differences ranging from only several fold weaker binding to no detectable interaction. Crystal structures of Gads-SH2 complexed with phosphopeptides representing sites 171, 191 and 226 were determined to 1.8-1.9 A resolutions. The structures reveal the basis for preferential recognition of specific LAT sites by Gads, as well as for the relatively greater promiscuity of the related adaptor Grb2, whose binding also requires asparagine at position +2 C-terminal to the phosphorylated tyrosine.
Collapse
Affiliation(s)
- Sangwoo Cho
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
| | - C Alejandro Velikovsky
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
| | - Chittoor P Swaminathan
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
| | - Jon C D Houtman
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Roy A Mariuzza
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD, USA
- Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA. Tel.: +1 301 738 6243; Fax: +1 301 738 6255; E-mail:
| |
Collapse
|