1
|
Farinha CM, Santos L, Ferreira JF. Cell type-specific regulation of CFTR trafficking-on the verge of progress. Front Cell Dev Biol 2024; 12:1338892. [PMID: 38505263 PMCID: PMC10949533 DOI: 10.3389/fcell.2024.1338892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is a complex process that starts with its biosynthesis and folding in the endoplasmic reticulum. Exit from the endoplasmic reticulum (ER) is coupled with the acquisition of a compact structure that can be processed and traffic through the secretory pathway. Once reaching its final destination-the plasma membrane, CFTR stability is regulated through interaction with multiple protein partners that are involved in its post-translation modification, connecting the channel to several signaling pathways. The complexity of the process is further boosted when analyzed in the context of the airway epithelium. Recent advances have characterized in detail the different cell types that compose the surface epithelium and shifted the paradigm on which cells express CFTR and on their individual and combined contribution to the total expression (and function) of this chloride/bicarbonate channel. Here we review CFTR trafficking and its relationship with the knowledge on the different cell types of the airway epithelia. We explore the crosstalk between these two areas and discuss what is still to be clarified and how this can be used to develop more targeted therapies for CF.
Collapse
Affiliation(s)
- Carlos M. Farinha
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
2
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|
4
|
Fougere B, Barnes KR, Francis ME, Claus LN, Cozzi RRF, Marshall WS. Focal adhesion kinase and osmotic responses in ionocytes of Fundulus heteroclitus, a euryhaline teleost fish. Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110639. [PMID: 31863842 DOI: 10.1016/j.cbpa.2019.110639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022]
Abstract
Cystic Fibrosis Transmembrane conductance Regulator (CFTR) anion channels are the regulated exit pathway in Cl- secretion by teleost salt secreting ionocytes of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase Focal Adhesion Kinase (FAK) phosphorylated at Y407 (FAKpY407) and FAKpY397 are colocalized at the apical membrane and in subjacent membrane vesicles of ionocytes. Hypotonic shock and the α-2 adrenergic agonist clonidine rapidly and reversibly inhibit Cl- secretion by isolated opercular epithelia, simultaneous with dephosphorylation of FAKpY407 and increased FAKpY397, located in the apical membrane of ionocytes in the opercular epithelium. FAKpY407 is re-phosphorylated at the apical membrane of ionocytes and Cl- secretion rapidly restored by hypertonic shock, detectable at 2 min., maximum at 5 min and still elevated at 30 min. In isolated opercular epithelia, the FAK phosphorylation inhibitor Y15 and p38MAP kinase inhibitor SB203580 significantly blunted the recovery of short-circuit current (Isc, equal to Cl- secretion rate) after hypertonic shock. The cSRC inhibitor saracatinib dephosphorylated FAKpY861 seen near tight junctions of pavement cells, and reduced the increase in epithelial resistance normally seen with clonidine inhibition of ion transport, while FAKpY397 was unaffected. The results show rapid osmosensitive responses in teleost fish ionocytes involve phosphorylation of CFTR by FAKpY407, an opposing role for FAKpY397 and a possible role for FAKpY861 in tight junction dynamics.
Collapse
Affiliation(s)
- Breton Fougere
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Katelyn R Barnes
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Magen E Francis
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Lauren N Claus
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Regina R F Cozzi
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - William S Marshall
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada.
| |
Collapse
|
5
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
6
|
Farinha CM, Canato S. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. Cell Mol Life Sci 2017; 74:39-55. [PMID: 27699454 PMCID: PMC11107782 DOI: 10.1007/s00018-016-2387-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Sara Canato
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
7
|
Luz S, Cihil KM, Brautigan DL, Amaral MD, Farinha CM, Swiatecka-Urban A. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells. J Biol Chem 2014; 289:15080-93. [PMID: 24727471 PMCID: PMC4031558 DOI: 10.1074/jbc.m114.563742] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl−-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser737 in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl− secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser737 mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl− channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl− channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Simão Luz
- From the Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Kristine M Cihil
- the Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15201
| | - David L Brautigan
- the Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, and
| | - Margarida D Amaral
- From the Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Carlos M Farinha
- From the Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Agnieszka Swiatecka-Urban
- the Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15201, the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
8
|
Lam P, Xu S, Soroka CJ, Boyer JL. A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis. Hepatology 2012; 55:1901-11. [PMID: 22161577 PMCID: PMC3319652 DOI: 10.1002/hep.25523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED The liver-specific bile salt export pump (BSEP) is crucial for bile acid-dependent bile flow at the apical membrane. BSEP, a member of the family of structurally related adenosine triphosphate (ATP)-binding cassette (ABC) proteins, is composed of 12 transmembrane segments (TMS) and two large cytoplasmic nucleotide-binding domains (NBDs). The regulation of trafficking of BSEP to and from the cell surface is not well understood, but is believed to play an important role in cholestatic liver diseases such as primary familial intrahepatic cholestasis type 2 (PFIC2). To address this issue, BSEP endocytosis was studied by immunofluorescence and a cell surface enzyme-linked immunosorbent assay (ELISA) endocytosis reporter system using a chimera of the interleukin-2 receptor α (previously referred to as Tac) and the C-terminal tail of BSEP (TacCterm). An autonomous endocytosis motif in the carboxyl cytoplasmic terminus of BSEP was identified. We define this endocytic motif by site-directed mutagenesis as a canonical tyrosine-based motif (1310) YYKLV(1314) (YxxØ). When expressed in HEK293T cells, TacCterm is constitutively internalized via a dynamin- and clathrin-dependent pathway. Mutation of the Y(1310) Y(1311) amino acids in TacCterm and in full-length human BSEP blocks the internalization. Subsequent sequence analysis reveals this motif to be highly conserved between the closely related ABCB subfamily members that mediate ATP-dependent transport of broad substrate specificity. CONCLUSION Our results indicate that constitutive internalization of BSEP is clathrin-mediated and dependent on the tyrosine-based endocytic motif at the C-terminal end of BSEP.
Collapse
Affiliation(s)
- Ping Lam
- Liver Center, Yale University School of Medicine, New Haven, CT06520-8019, USA
| | | | | | | |
Collapse
|
9
|
Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator. Biochem J 2012; 441:633-43. [PMID: 21995445 DOI: 10.1042/bj20111566] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is expressed in the apical membrane of epithelial cells. Cell-surface CFTR levels are regulated by endocytosis and recycling. A number of adaptor proteins including AP-2 (μ2 subunit) and Dab2 (Disabled-2) have been proposed to modulate CFTR internalization. In the present study we have used siRNA (small interfering RNA)-mediated silencing of these adaptors to test their roles in the regulation of CFTR cell-surface trafficking and stability in human airway epithelial cells. The results indicate that μ2 and Dab2 performed partially overlapping, but divergent, functions. While μ2 depletion dramatically decreased CFTR endocytosis with little effect on the half-life of the CFTR protein, Dab2 depletion increased the CFTR half-life ~3-fold, in addition to inhibiting CFTR endocytosis. Furthermore, Dab2 depletion inhibited CFTR trafficking from the sorting endosome to the recycling compartment, as well as delivery of CFTR to the late endosome, thus providing a mechanistic explanation for increased CFTR expression and half-life. To test whether two E3 ligases were required for the endocytosis and/or down-regulation of surface CFTR, we siRNA-depleted CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and c-Cbl (casitas B-lineage lymphoma). We demonstrate that CHIP and c-Cbl depletion have no effect on CFTR endocytosis, but c-Cbl depletion modestly enhanced the half-life of CFTR. The results of the present study define a significant role for Dab2 both in the endocytosis and post-endocytic fate of CFTR.
Collapse
|
10
|
Bai M, Gad H, Turacchio G, Cocucci E, Yang JS, Li J, Beznoussenko GV, Nie Z, Luo R, Fu L, Collawn JF, Kirchhausen T, Luini A, Hsu VW. ARFGAP1 promotes AP-2-dependent endocytosis. Nat Cell Biol 2011; 13:559-67. [PMID: 21499258 PMCID: PMC3087831 DOI: 10.1038/ncb2221] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
Abstract
COPI (coat protein I) and the clathrin-AP-2 (adaptor protein 2) complex are well-characterized coat proteins, but a component that is common to these two coats has not been identified. The GTPase-activating protein (GAP) for ADP-ribosylation factor 1 (ARF1), ARFGAP1, is a known component of the COPI complex. Here, we show that distinct regions of ARFGAP1 interact with AP-2 and coatomer (components of the COPI complex). Selectively disrupting the interaction of ARFGAP1 with either of these two coat proteins leads to selective inhibition in the corresponding transport pathway. The role of ARFGAP1 in AP-2-regulated endocytosis has mechanistic parallels with its roles in COPI transport, as both its GAP activity and coat function contribute to promoting AP-2 transport.
Collapse
Affiliation(s)
- Ming Bai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Faria D, Dahimène S, Alessio L, Scott-Ward T, Schreiber R, Kunzelmann K, Amaral MD. Effect of Annexin A5 on CFTR: regulated traffic or scaffolding? Mol Membr Biol 2010; 28:14-29. [PMID: 21067452 DOI: 10.3109/09687688.2010.506264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies have implicated annexins in regulating ion channels and in particular annexin A5 (AnxA5) in the traffic of the cystic fibrosis transmembrane conductance regulator (CFTR). In the present study, we further investigated the role of AnxA5 in regulating CFTR function and intracellular trafficking in both Xenopus oocytes and mammalian cells. Although we could confirm the previously reported CFTR/AnnxA5 interaction, we found that in oocytes AnxA5 inhibits CFTR-mediated whole-cell membrane conductance presumably by a mechanism independent of PDZ-binding domain at the C-terminus of CFTR but protein kinase C (PKC)-dependent and results from either endocytosis activation and/or exocytosis block. In contrast, in human cells, co-expression of AnxA5 augmented CFTR whole-cell currents, an effect that was independent of CFTR PDZ-binding domain. We conclude that annexin A5 has multiple effects on CFTR, so that the net effect observed is cell system-dependent. Nevertheless, both effects observed here are consistent with the described role of annexins forming scaffolding platforms at cell membranes, thus contributing to a decrease in their dynamics. Finally, we could not confirm that AnxA5 overexpression rescues traffic/function of the most frequent disease-causing mutant F508del-CFTR, thus concluding that AnxA5 is not a promising tool for correction of the F508del-CFTR defect.
Collapse
Affiliation(s)
- Diana Faria
- Department of Physiology, University of Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Rowe SM, Pyle LC, Jurkevante A, Varga K, Collawn J, Sloane PA, Woodworth B, Mazur M, Fulton J, Fan L, Li Y, Fortenberry J, Sorscher EJ, Clancy JP. DeltaF508 CFTR processing correction and activity in polarized airway and non-airway cell monolayers. Pulm Pharmacol Ther 2010; 23:268-78. [PMID: 20226262 DOI: 10.1016/j.pupt.2010.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/13/2010] [Accepted: 02/17/2010] [Indexed: 12/21/2022]
Abstract
We examined the activity of DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) stably expressed in polarized cystic fibrosis bronchial epithelial cells (CFBE41o(-)) human airway cells and Fisher Rat Thyroid (FRT) cells following treatment with low temperature and a panel of small molecule correctors of DeltaF508 CFTR misprocessing. Corr-4a increased DeltaF508 CFTR-dependent Cl(-) conductance in both cell types, whereas treatment with VRT-325 or VRT-640 increased activity only in FRT cells. Total currents stimulated by forskolin and genistein demonstrated similar dose/response effects to Corr-4a treatment in each cell type. When examining the relative contribution of forskolin and genistein to total stimulated current, CFBE41o(-) cells had smaller forskolin-stimulated I(sc) following either low temperature or corr-4a treatment (10-30% of the total I(sc) produced by the combination of both CFTR agonists). In contrast, forskolin consistently contributed greater than 40% of total I(sc) in DeltaF508 CFTR-expressing FRT cells corrected with low temperature, and corr-4a treatment preferentially enhanced forskolin dependent currents only in FRT cells (60% of total I(sc)). DeltaF508 CFTR cDNA transcript levels, DeltaF508 CFTR C band levels, or cAMP signaling did not account for the reduced forskolin response in CFBE41o(-) cells. Treatment with non-specific inhibitors of phosphodiesterases (papaverine) or phosphatases (endothall) did not restore DeltaF508 CFTR activation by forskolin in CFBE41o(-) cells, indicating that the Cl(-) transport defect in airway cells is distal to cAMP or its metabolism. The results identify important differences in DeltaF508 CFTR activation in polarizing epithelial models of CF, and have important implications regarding detection of rescued of DeltaF508 CFTR in vivo.
Collapse
Affiliation(s)
- S M Rowe
- Department of Medicine, University of Alabama at Birmingham, 1530 3rd Ave. South, Birmingham, AL 35294-0005, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marshall WS, Watters KD, Hovdestad LR, Cozzi RRF, Katoh F. CFTR Cl- channel functional regulation by phosphorylation of focal adhesion kinase at tyrosine 407 in osmosensitive ion transporting mitochondria rich cells of euryhaline killifish. ACTA ACUST UNITED AC 2009; 212:2365-77. [PMID: 19617429 DOI: 10.1242/jeb.030015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) anion channels are the regulated exit pathway in Cl(-) secretion by teleost mitochondria rich salt secreting (MR) cells of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry, immunogold transmission electron microscopy (TEM), and co-immunoprecipitation, using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase focal adhesion kinase (FAK) phosphorylated at Y407 (FAK pY407) are colocalized in the apical membrane and in subjacent membrane vesicles of MR cells. We showed previously that basolateral FAK pY407, unlike other FAK phosphorylation sites, is osmosensitive and dephosphorylates during hypotonic shock of epithelial cells (Marshall et al., 2008). In the present study, we found that hypotonic shock and the alpha(2)-adrenergic agonist clonidine (neither of which affects cAMP levels) rapidly and reversibly inhibit Cl(-) secretion by isolated opercular membranes, simultaneous with dephosphorylation of FAK pY407, located in the apical membrane. FAK pY407 is rephosphorylated and Cl(-) secretion rapidly restored by hypertonic shock as well as by forskolin and isoproterenol, which operate via cAMP and protein kinase A. We conclude that hormone mediated, cAMP dependent and osmotically mediated, cAMP independent pathways converge on a mechanism to activate CFTR and Cl(-) secretion, possibly through tyrosine phosphorylation of CFTR by FAK.
Collapse
Affiliation(s)
- William S Marshall
- Department of Biology, St Francis Xavier University, PO Box 5000 Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | | | | | |
Collapse
|
14
|
Dynasore inhibits removal of wild-type and ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) from the plasma membrane. Biochem J 2009; 421:377-85. [DOI: 10.1042/bj20090389] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dynasore, a small molecule inhibitor of dynamin, was used to probe the role of dynamin in the endocytosis of wild-type and mutant CFTR (cystic fibrosis transmembrane conductance regulator). Internalization of both wild-type and ‘temperature-corrected’ ΔF508 CFTR was markedly inhibited by a short exposure to dynasore, implicating dynamin as a key element in the endocytic internalization of both wild-type and mutant CFTR. The inhibitory effect of dynasore was readily reversible upon washout of dynasore from the growth media. Corr-4 ({2-(5-chloro-2-methoxy-phenylamino)-4′-methyl-[4,5′]-bithiazolyl-2′-yl}-phenyl-methanonone), a pharmacological corrector of ΔF508 CFTR biosynthesis, caused a marked increase in the cell surface expression of mutant CFTR. Co-incubation of ΔF508 CFTR expressing cells with Corr-4 and dynasore caused a significantly greater level of cell surface CFTR than that observed in the presence of Corr-4 alone. These results argue that inhibiting the endocytic internalization of mutant CFTR provides a novel therapeutic target for augmenting the benefits of small molecule correctors of mutant CFTR biosynthesis.
Collapse
|
15
|
Tucker TA, Schwiebert LM. CD40 ligation decreases its protein half-life at the cell surface. Eur J Immunol 2008; 38:864-9. [PMID: 18253927 DOI: 10.1002/eji.200737828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CD40 is expressed on a variety of tumors; anti-CD40 agonists promote tumor cell apoptosis and subsequent tumor regression. Because the effectiveness of anti-CD40- agonists is dependent upon CD40 surface expression, the current study examined ligation-mediated changes in CD40 protein half-life (t(1/2))( )at the cell surface. This study utilized a CD40(+) epithelial cell line (9HTEo-), a CD40 null epithelial cell line (HT-29) engineered to express either wild-type (WT) or mutant (T254A, Q263A, E235A, Delta201) CD40, and the anti-CD40 antibody G28.5. Ligation of endogenous CD40 expressed on 9HTEo- cells decreased CD40 surface protein t(1/2 )from 13 to 4 h (p <0.05). Ligation of WT-, Q263A-, or T254A-CD40 expressed on engineered HT-29 cells decreased CD40 surface protein t(1/2) from an average of 8 to 4 h (p <0.05); T254A and Q263A contain mutated TNF receptor-associated factor (TRAF)2/3-binding sites. In contrast, ligation of E235A and Delta201-CD40 had no affect on its surface protein t(1/2) (p <0.05); E235A contains a mutated TRAF6-binding site while Delta201 lacks an intact cytoplasmic tail. These results suggest that anti-CD40 agonists decrease CD40 surface protein t(1/2) via a mechanism that involves TRAF6 but not TRAF2/3. The therapeutic implications for CD40-mediated tumor regression are discussed.
Collapse
Affiliation(s)
- Torry A Tucker
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
16
|
Enhanced cell-surface stability of rescued DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones. Biochem J 2008; 410:555-64. [PMID: 18052931 DOI: 10.1042/bj20071420] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Misfolded proteins destined for the cell surface are recognized and degraded by the ERAD [ER (endoplasmic reticulum) associated degradation] pathway. TS (temperature-sensitive) mutants at the permissive temperature escape ERAD and reach the cell surface. In this present paper, we examined a TS mutant of the CFTR [CF (cystic fibrosis) transmembrane conductance regulator], CFTR DeltaF508, and analysed its cell-surface trafficking after rescue [rDeltaF508 (rescued DeltaF508) CFTR]. We show that rDeltaF508 CFTR endocytosis is 6-fold more rapid (approximately 30% per 2.5 min) than WT (wild-type, approximately 5% per 2.5 min) CFTR at 37 degrees C in polarized airway epithelial cells (CFBE41o-). We also investigated rDeltaF508 CFTR endocytosis under two further conditions: in culture at the permissive temperature (27 degrees C) and following treatment with pharmacological chaperones. At low temperature, rDeltaF508 CFTR endocytosis slowed to WT rates (20% per 10 min), indicating that the cell-surface trafficking defect of rDeltaF508 CFTR is TS. Furthermore, rDeltaF508 CFTR is stabilized at the lower temperature; its half-life increases from <2 h at 37 degrees C to >8 h at 27 degrees C. Pharmacological chaperone treatment at 37 degrees C corrected the rDeltaF508 CFTR internalization defect, slowing endocytosis from approximately 30% per 2.5 min to approximately 5% per 2.5 min, and doubled DeltaF508 surface half-life from 2 to 4 h. These effects are DeltaF508 CFTR-specific, as pharmacological chaperones did not affect WT CFTR or transferrin receptor internalization rates. The results indicate that small molecular correctors may reproduce the effect of incubation at the permissive temperature, not only by rescuing DeltaF508 CFTR from ERAD, but also by enhancing its cell-surface stability.
Collapse
|
17
|
Hervé JC, Derangeon M, Bahbouhi B, Mesnil M, Sarrouilhe D. The connexin turnover, an important modulating factor of the level of cell-to-cell junctional communication: comparison with other integral membrane proteins. J Membr Biol 2007; 217:21-33. [PMID: 17673963 DOI: 10.1007/s00232-007-9054-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/04/2007] [Indexed: 12/25/2022]
Abstract
The constituent proteins of gap junctions, called "connexins" (Cxs) in chordates, are generally renewed several times a day, in approximately the same rate range as many other integral plasma membrane proteins and the proteins of other channels, other intercellular junctions or different membrane receptors. This permanent renewal turns on a fine-tuned balance among various processes, such as gene transcription, mRNA stability and processing, protein synthesis and oligomerization, posttranslational modifications, transport to the plasma membrane, anchoring to the cytoskeleton, connexon aggregation and docking, regulation of endocytosis and controlled degradations of the proteins. Subtle changes at one or some of these steps would represent an exquisite level of regulation that extends beyond the rapid channel opening and closure events associated with channel gating; membrane channels and receptors are constantly able to answer to physiological requirements to either up- or downregulate their activity. The Cx turnover rate thereby appears to be a key component in the regulation of any protein, particularly of gap junctional proteins. However, the physiological stimuli that control the assembly of Cxs into gap junctions and their degradation remain poorly understood.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Faculté des Sciences Fondamentales et Appliquées, UMR CNRS 6187, Université de Poitiers, 40, avenue du R Pineau, 86022, Poitiers, France.
| | | | | | | | | |
Collapse
|
18
|
Goldstein RF, Niraj A, Sanderson TP, Wilson LS, Rab A, Kim H, Bebok Z, Collawn JF. VCP/p97 AAA-ATPase does not interact with the endogenous wild-type cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol 2007; 36:706-14. [PMID: 17272822 PMCID: PMC1899338 DOI: 10.1165/rcmb.2006-0365oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis. The most common mutation, DeltaF508 CFTR, is retained in the endoplasmic reticulum, retrotranslocated into the cytosol, and degraded by the proteasome. In a proteomics screen to identify DeltaF508 CFTR interacting proteins, we found that valosin-containing protein (VCP)/p97, a Type II AAA ATPase that is a component of the retrotranslocation machinery, binds DeltaF508 CFTR, and this interaction is stabilized by proteasomal inhibition. Since wild-type (WT) CFTR has been reported to be inefficiently processed during biogenesis with as much as 75% of the newly synthesized protein degraded by the proteasome, we examined the VCP interaction in Calu-3, T-84, and 16HBE, three epithelial cell lines that endogenously express WT CFTR. The results indicate that when WT CFTR processing is efficient, as demonstrated in Calu-3 cells, VCP does not interact. Interestingly, overexpression of recombinant WT CFTR in Calu-3 cells results in inefficient processing and VCP interaction, demonstrating that CFTR processing efficiency and the VCP interaction are tightly coupled. Furthermore, induction of ER stress and activation of the unfolded protein response result in inefficient processing of WT CFTR in Calu-3 cells and promote the WT CFTR-VCP interaction. The results support the hypothesis that components of the retrotranslocation machinery such as VCP do not interact with CFTR in epithelial cells that endogenously express WT CFTR, since under normal conditions the processing of the WT protein is efficient.
Collapse
Affiliation(s)
- Rebecca F Goldstein
- Department of Cell Biology, Comprehensive Cancer Center, and Gregory Fleming James Cystic Fibrosis Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Thelin WR, Chen Y, Gentzsch M, Kreda SM, Sallee JL, Scarlett CO, Borchers CH, Jacobson K, Stutts MJ, Milgram SL. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR. J Clin Invest 2007; 117:364-74. [PMID: 17235394 PMCID: PMC1765518 DOI: 10.1172/jci30376] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 11/21/2006] [Indexed: 12/15/2022] Open
Abstract
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation.
Collapse
Affiliation(s)
- William R Thelin
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Broughman JR, Sun L, Umar S, Scott J, Sellin JH, Morris AP. Chronic PKC-beta activation in HT-29 Cl.19a colonocytes prevents cAMP-mediated ion secretion by inhibiting apical membrane current generation. Am J Physiol Gastrointest Liver Physiol 2006; 291:G318-30. [PMID: 16574993 DOI: 10.1152/ajpgi.00355.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the effects of PKC-stimulating 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA) and phorbol 12-myristate 13-acetate (PMA) phorbol esters on cAMP-dependent, forskolin (FSK)-stimulated, short-circuit Cl- current (ISC-cAMP) generation by colonocyte monolayers. These agonists elicited different actions depending on their dose and incubation time; PMA effects at the onset (<5 min) were independent of cAMP agonist and were characterized by transient anion-dependent transcellular and apical membrane ISC generation. DOPPA failed to elicit similar responses. Whereas chronic (24 h) exposure to both agents inhibited FSK-stimulated transcellular and apical membrane ISC-cAMP, the effects of DOPPA were more complex: this conventional PKC-beta-specific agonist also stimulated Ba2+-sensitive basolateral membrane-dependent facilitation of transcellular ISC-cAMP. PMA did not elicit a similar phenomenon. Prolonged exposure to high-dose PMA but not DOPPA led to apical membrane ISC-cAMP recovery. Changes in PKC alpha-, beta1-, gamma-, and epsilon-isoform membrane partitioning and expression correlated with these findings. PMA-induced transcellular ISC correlated with PKC-alpha membrane association, whereas low doses of both agents inhibited transcellular and apical membrane ISC-cAMP, increased PKC-beta1, decreased PKC-beta2 membrane association, and caused reciprocal changes in isoform mass. During the apical membrane ISC-cAMP recovery after prolonged high-dose PMA exposure, an almost-complete depletion of cellular PKC-beta1 and a significant reduction in PKC-epsilon mass occurred. Thus activated PKC-beta1 and/or PKC-epsilon prevented, whereas activated PKC-alpha facilitated, apical membrane ISC-cAMP. PKC-beta-dependent augmentation of transcellular ISC-cAMP at the level of the basolateral membrane demonstrated that transport events with geographically distinct subcellular membranes can be independently regulated by the PKC beta-isoform.
Collapse
Affiliation(s)
- James R Broughman
- Department of Integrative Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Malik B, Price SR, Mitch WE, Yue Q, Eaton DC. Regulation of epithelial sodium channels by the ubiquitin-proteasome proteolytic pathway. Am J Physiol Renal Physiol 2006; 290:F1285-94. [PMID: 16682484 DOI: 10.1152/ajprenal.00432.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amiloride-sensitive epithelial Na+channels (ENaC) play a crucial role in Na+transport and fluid reabsorption in the kidney, lung, and colon. The magnitude of ENaC-mediated Na+transport in epithelial cells depends on the average open probability of the channels and the number of channels on the apical surface of epithelial cells. The number of channels in the apical membrane, in turn, depends on a balance between the rate of ENaC insertion and the rate of removal from the apical membrane. ENaC is made up of three homologous subunits: α, β, and γ. The COOH-terminal domain of all three subunits is intracellular and contains a proline-rich motif (PPxY). Mutations or deletion of this PPxY motif in the β- and γ-subunits prevent the binding of one isoform of a specific ubiquitin ligase, neural precursor cell-expressed, developmentally downregulated protein (Nedd4–2), to the channel in vitro and in transfected cell systems, thereby impeding ubiquitin conjugation of the channel subunits. Ubiquitin conjugation would seem to imply that ENaC turnover is determined by the ubiquitin-proteasome system, but when Madin-Darby canine kidney cells are transfected with ENaC, ubiquitin conjugation apparently leads to lysosomal degradation. However, in untransfected renal cells (A6) expressing endogenous ENaC, ENaC is indeed degraded by the ubiquitin-proteasome system. Nonetheless, in both transfected and untransfected cells, the rate of ENaC degradation is apparently controlled by Nedd4–2 activity. In this review, we discuss the role of the ubiquitin conjugation and the alternative degradative pathways (lysosomal or proteasomal) in regulating the rate of ENaC turnover in untransfected renal cells and compare this regulation to that of transfected cell systems.
Collapse
Affiliation(s)
- B Malik
- Dept. of Physiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
22
|
Jurkuvenaite A, Varga K, Nowotarski K, Kirk KL, Sorscher EJ, Li Y, Clancy JP, Bebok Z, Collawn JF. Mutations in the Amino Terminus of the Cystic Fibrosis Transmembrane Conductance Regulator Enhance Endocytosis. J Biol Chem 2006; 281:3329-34. [PMID: 16339147 DOI: 10.1074/jbc.m508131200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator (CFTR) is mediated by a tyrosine-based internalization signal in the CFTR carboxyl-terminal tail 1424YDSI1427. In the present studies, two naturally occurring cystic fibrosis mutations in the amino terminus of CFTR, R31C, and R31L were examined. To determine the defect that these mutations cause, the Arg-31 mutants were expressed in COS-7 cells and their biogenesis and trafficking to the cell surface tested in metabolic pulse-chase and surface biotinylation assays, respectively. The results indicated that both Arg-31 mutants were processed to band C at approximately 50% the efficiency of the wild-type protein. However, once processed and delivered to the cell surface, their half-lives were the same as wild-type protein. Interestingly, indirect immunofluorescence and cell surface biotinylation indicated that the surface pool was much smaller than could be accounted for based on the biogenesis defect alone. Therefore, the Arg-31 mutants were tested in internalization assays and found to be internalized at 2x the rate of the wild-type protein. Patch clamp and 6-methoxy-N-(3-sulfopropyl)quinolinium analysis confirmed reduced amounts of functional Arg-31 channels at the cell surface. Together, the results suggest that both R31C and R31L mutations compromise biogenesis and enhance internalization of CFTR. These two additive effects contribute to the loss of surface expression and the associated defect in chloride conductance that is consistent with a disease phenotype.
Collapse
Affiliation(s)
- Asta Jurkuvenaite
- Department of Cell Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Frelet A, Klein M. Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Lett 2006; 580:1064-84. [PMID: 16442101 DOI: 10.1016/j.febslet.2006.01.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/21/2022]
Abstract
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.
Collapse
Affiliation(s)
- Annie Frelet
- Zurich Basel Plant Science Center, University of Zurich, Plant Biology, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
24
|
Bebok Z, Collawn JF, Wakefield J, Parker W, Li Y, Varga K, Sorscher EJ, Clancy JP. Failure of cAMP agonists to activate rescued deltaF508 CFTR in CFBE41o- airway epithelial monolayers. J Physiol 2005; 569:601-15. [PMID: 16210354 PMCID: PMC1464253 DOI: 10.1113/jphysiol.2005.096669] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-regulated chloride channel. Mutations in the CFTR gene result in cystic fibrosis (CF). The most common mutation, deltaF508, results in endoplasmic reticulum-associated degradation (ERAD) of CFTR. DeltaF508 CFTR has been described as a temperature-sensitive mutation that can be rescued following growth at 27 degrees C. In order to study the processing and function of wild-type and rescued deltaF508 CFTR at the cell surface under non-polarized and polarized conditions, we developed stable cell lines expressing deltaF508 or wild-type CFTR. CFBE41o- is a human airway epithelial cell line capable of forming high resistance, polarized monolayers when cultured on permeable supports, while HeLa cells are normally grown under non-polarizing conditions. Immunoprecipitation, cell surface biotinylation, immunofluorescence, and functional assays confirmed the presence of deltaF508 CFTR at the cell surface in both cell lines after incubating the cells for 48 h at 27 degrees C. However, stimulators of wild-type CFTR such as forskolin, beta2-adrenergic or A2B-adenosine receptor agonists failed to activate rescued deltaF508 CFTR in CFBE41o- monolayers. Rescued deltaF508 CFTR could be stimulated with genistein independent of pretreatment with cAMP signalling agonists. Interestingly, rescued deltaF508 CFTR in HeLa cells could be efficiently stimulated with either forskolin or genistein to promote Cl- transport. These results indicate that deltaF508 CFTR, when rescued in CFBE41o- human airway epithelial cells, is poorly responsive to signalling pathways known to regulate wild-type CFTR. Furthermore, the differences in rescue and activation of deltaF508 CFTR in the two cell lines suggest that cell-type specific differences in deltaF508 CFTR processing are likely to complicate efforts to identify potentiators and/or correctors of the deltaF508 defect.
Collapse
Affiliation(s)
- Zsuzsa Bebok
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
René C, Taulan M, Iral F, Doudement J, L'Honoré A, Gerbon C, Demaille J, Claustres M, Romey MC. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway. Nucleic Acids Res 2005; 33:5271-90. [PMID: 16170155 PMCID: PMC1216340 DOI: 10.1093/nar/gki837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells.
Collapse
Affiliation(s)
- Céline René
- Laboratoire de Génétique Moléculaire et Chromosomique, Institut Universitaire de Recherche Clinique, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Amaral MD. Processing of CFTR: traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis? Pediatr Pulmonol 2005; 39:479-91. [PMID: 15765539 DOI: 10.1002/ppul.20168] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biosynthesis of the cystic fibrosis transmembrane conductance regulator (CFTR), like other proteins aimed at the cell surface, involves transport through a series of membranous compartments, the first of which is the endoplasmic reticulum (ER), where CFTR encounters the appropriate environment for folding, oligomerization, maturation, and export from the ER. After exiting the ER, CFTR has to traffic through complex pathways until it reaches the cell surface. Although not yet fully understood, the fine details of these pathways are starting to emerge, partially through identification of an increasing number of CFTR-interacting proteins (CIPs) and the clarification of their roles in CFTR trafficking and function. These aspects of CFTR biogenesis/degradation and by membrane traffic and CIPs are discussed in this review. Following this description of complex pathways and multiple checkpoints to which CFTR is subjected in the cell, the basic question remains of how much CFTR has to overcome these barriers and be functionally expressed at the plasma membrane to avoid CF. This question is also discussed here.
Collapse
Affiliation(s)
- Margarida D Amaral
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, and Centre of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
27
|
Varga K, Jurkuvenaite A, Wakefield J, Hong JS, Guimbellot JS, Venglarik CJ, Niraj A, Mazur M, Sorscher EJ, Collawn JF, Bebök Z. Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J Biol Chem 2004; 279:22578-84. [PMID: 15066992 DOI: 10.1074/jbc.m401522200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase A-activated chloride channel that resides on the apical surface of epithelial cells. One unusual feature of this protein is that during biogenesis, approximately 75% of wild type CFTR is degraded by the endoplasmic reticulum (ER)-associated degradative (ERAD) pathway. Examining the biogenesis and structural instability of the molecule has been technically challenging due to the limited amount of CFTR expressed in epithelia. Consequently, investigators have employed heterologous overexpression systems. Based on recent results that epithelial specific factors regulate both CFTR biogenesis and function, we hypothesized that CFTR biogenesis in endogenous CFTR expressing epithelial cells may be more efficient. To test this, we compared CFTR biogenesis in two epithelial cell lines endogenously expressing CFTR (Calu-3 and T84) with two heterologous expression systems (COS-7 and HeLa). Consistent with previous reports, 20 and 35% of the newly synthesized CFTR were converted to maturely glycosylated CFTR in COS-7 and HeLa cells, respectively. In contrast, CFTR maturation was virtually 100% efficient in Calu-3 and T84 cells. Furthermore, inhibition of the proteasome had no effect on CFTR biogenesis in Calu-3 cells, whereas it stabilized the immature form of CFTR in HeLa cells. Quantitative reverse transcriptase-PCR indicated that CFTR message levels are approximately 4-fold lower in Calu-3 than HeLa cells, yet steady-state protein levels are comparable. Our results question the structural instability model of wild type CFTR and indicate that epithelial cells endogenously expressing CFTR efficiently process this protein to post-Golgi compartments.
Collapse
Affiliation(s)
- Károly Varga
- Department of Cell Biology, Genetics and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang XM, Wang XT, Yue H, Leung SW, Thibodeau PH, Thomas PJ, Guggino SE. Organic solutes rescue the functional defect in delta F508 cystic fibrosis transmembrane conductance regulator. J Biol Chem 2003; 278:51232-42. [PMID: 14532265 DOI: 10.1074/jbc.m309076200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common defect in cystic fibrosis, deletion of phenylalanine from position 508 of the cystic fibrosis transmembrane conductance regulator (Delta F508 CFTR), decreases the trafficking of this protein to the cell surface membrane. Previous studies have shown that low temperature and high concentrations of glycerol or trimethylamine N-oxide can partially counteract the processing defect of Delta F508 CFTR. The present study investigates whether physiologically relevant concentrations of organic solutes, accumulated by cotransporter proteins, can rescue the misprocessing of Delta F508 CFTR. Myoinositol alone or myoinositol, betaine, and taurine given sequentially increased the processing of core-glycosylated, endoplasmic reticulum-arrested Delta F508 CFTR into the fully glycosylated form of CFTR in IB3 cells or NIH 3T3 cells stably expressing Delta F508 CFTR. Pulse-chase experiments using transiently transfected COS7 cells demonstrated that organic solutes also increased the processing of the core-glycosylated form of green fluorescent protein-Delta F508 CFTR. Moreover, the prolonged half-life of the complex-glycosylated form of GFP-Delta F508 CFTR suggests that this treatment stabilized the mature form of the protein. In vitro studies of purified NBD1 stability and aggregation showed that myoinositol stabilized both the Delta F508 and wild type CFTR and inhibited Delta F508 misfolding. Most significantly, treatment of CF bronchial airway cells with these transportable organic solutes restores cAMP-stimulated single channel activity of both CFTR and outwardly rectifying chloride channel in the cell surface membrane and also restores a forskolin-stimulated macroscopic 36Cl- efflux. We conclude that organic solutes can repair CFTR functions by enhancing the processing of Delta F508 CFTR to the plasma membrane by stabilizing the complex-glycosylated form of Delta F508 CFTR.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ostedgaard LS, Randak C, Rokhlina T, Karp P, Vermeer D, Ashbourne Excoffon KJ, Welsh MJ. Effects of C-terminal deletions on cystic fibrosis transmembrane conductance regulator function in cystic fibrosis airway epithelia. Proc Natl Acad Sci U S A 2003; 100:1937-42. [PMID: 12578973 PMCID: PMC149937 DOI: 10.1073/pnas.2627982100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2002] [Indexed: 11/18/2022] Open
Abstract
To better understand the function of the conserved C terminus of the cystic fibrosis (CF) transmembrane conductance regulator, we studied constructs containing deletions in the C-terminal tail. When expressed in well differentiated CF airway epithelia, each construct localized predominantly to the apical membrane and generated transepithelial Cl(-) current. The results suggested that neither the C-terminal PSD-95/Discs-large/ZO-1 (PDZ)-interacting motif nor other C-terminal sequences were absolutely required for apical expression in airway epithelia. Surprisingly, deleting an acidic cluster near the C terminus reduced both channel opening rate and transepithelial Cl(-) transport, indicating that it influences channel gating. These results may help explain the relative paucity of CF-associated mutations in the C terminus.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|