1
|
Habelrih T, Augustin TL, Mauffette-Whyte F, Ferri B, Sawaya K, Côté F, Gallant M, Olson DM, Chemtob S. Inflammatory mechanisms of preterm labor and emerging anti-inflammatory interventions. Cytokine Growth Factor Rev 2024; 78:50-63. [PMID: 39048393 DOI: 10.1016/j.cytogfr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.
Collapse
Affiliation(s)
- Tiffany Habelrih
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Thalyssa-Lyn Augustin
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Félix Mauffette-Whyte
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Béatrice Ferri
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Kevin Sawaya
- Research Center, CHU Sainte-Justine, Montreal, QC, Canada; Programmes de cycles supérieurs en sciences biomédicales, Faculté de médecine, Université de Montréal, Montreal, QC, Canada
| | - France Côté
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Mathilde Gallant
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
2
|
Malhis M, Funke SA. Mirror-Image Phage Display for the Selection of D-Amino Acid Peptide Ligands as Potential Therapeutics. Curr Protoc 2024; 4:e957. [PMID: 38372457 DOI: 10.1002/cpz1.957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In neurodegenerative diseases like Alzheimer's disease (AD), endogenous proteins or peptides aggregate with themselves. These proteins may lose their function or aggregates and/or oligomers can obtain toxicity, causing injury or death to cells. Aggregation of two major proteins characterizes AD. Amyloid-β peptide (Aβ) is deposited in amyloid plaques within the extracellular space of the brain and Tau in so-called neurofibrillary tangles in neurons. Finding peptide ligands to halt protein aggregation is a promising therapeutical approach. Using mirror-image phage display with a commercially available, randomized 12-mer peptide library, we have selected D-amino acid peptides, which bind to the Tau protein and modulate its aggregation in vitro. Peptides can bind specifically and selectively to a target molecule, but natural L-amino acid peptides may have crucial disadvantages for in vivo applications, as they are sensitive to protease degradation and may elicit immune responses. One strategy to circumvent these disadvantages is the use of non-naturally occurring D-amino acid peptides as they exhibit increased protease resistance and generally do not activate the immune system. To perform mirror-image phage display, the target protein needs to be synthesized as D-amino acid version. If the target protein sequence is too long to be synthesized properly, smaller peptides derived from the full length protein can be used for the selection process. This also offers the possibility to influence the binding region of the selected D-peptides in the full-length target protein. Here we provide the protocols for mirror-image phage display selection on the PHF6* peptide of Tau, based on the commercially available Ph.D.™-12 Phage Display Peptide Library Kit, leading to D-peptides that also bind the full length Tau protein (Tau441), next to PHF6*. In addition, we provide protocols and data for the first characterization of those D-peptides that inhibit Tau aggregation in vitro. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mirror image phage display selection against D-PHF6* fibrils Support Protocol 1: Single phage ELISA Basic Protocol 2: Sequencing and D-peptide generation Basic Protocol 3: Thioflavin-T (ThT) test to control inhibition of Tau aggregation Support Protocol 2: Purification of full-length Tau protein Basic Protocol 4: ELISA to demonstrate the binding of the generated D-peptides to PHF6* and full-length Tau fibrils.
Collapse
Affiliation(s)
- Marwa Malhis
- Institut für Bioanalytik, Hochschule für Angewandte Wissenschaften, Coburg, Germany
| | - Susanne Aileen Funke
- Institut für Bioanalytik, Hochschule für Angewandte Wissenschaften, Coburg, Germany
| |
Collapse
|
3
|
Piccialli I, Greco F, Roviello G, Sisalli MJ, Tedeschi V, di Mola A, Borbone N, Oliviero G, De Feo V, Secondo A, Massa A, Pannaccione A. The 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) as a new molecule able to inhibit Amyloid β aggregation and neurotoxicity. Biomed Pharmacother 2023; 168:115745. [PMID: 37871561 DOI: 10.1016/j.biopha.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Amyloid β 1-42 (Aβ1-42) protein aggregation is considered one of the main triggers of Alzheimer's disease (AD). In this study, we examined the in vitro anti-amyloidogenic activity of the isoindolinone derivative 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) and its neuroprotective potential against the Aβ1-42 toxicity. By performing the Thioflavin T fluorescence assay, Western blotting analyses, and Circular Dichroism experiments, we found that ISOAC1 was able to reduce the Aβ1-42 aggregation and conformational transition towards β-sheet structures. Interestingly, in silico studies revealed that ISOAC1 was able to bind to both the monomer and a pentameric protofibril of Aβ1-42, establishing a hydrophobic interaction with the PHE19 residue of the Aβ1-42 KLVFF motif. In vitro analyses on primary cortical neurons showed that ISOAC1 counteracted the increase of intracellular Ca2+ levels and decreased the Aβ1-42-induced toxicity, in terms of mitochondrial activity reduction and increase of reactive oxygen species production. In addition, confocal microscopy analyses showed that ISOAC1 was able to reduce the Aβ1-42 intraneuronal accumulation. Collectively, our results clearly show that ISOAC1 exerts a neuroprotective effect by reducing the Aβ1-42 aggregation and toxicity, hence emerging as a promising compound for the development of new Aβ-targeting therapeutic strategies for AD treatment.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giovanni Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Naples, Italy
| | - Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonia di Mola
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy
| | - Nicola Borbone
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonio Massa
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy.
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
4
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
5
|
Wang C, Shao S, Li N, Zhang Z, Zhang H, Liu B. Advances in Alzheimer's Disease-Associated Aβ Therapy Based on Peptide. Int J Mol Sci 2023; 24:13110. [PMID: 37685916 PMCID: PMC10487952 DOI: 10.3390/ijms241713110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated β-amyloid (Aβ) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aβ fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aβ fibrosis or by computer aided drug design based on the structure of Aβ. These peptide-based therapies can inhibit Aβ fibrillation and reduce cytotoxicity induced by Aβ aggregation and some have been shown to relieve cognition in AD model mice and reduce Aβ plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aβ. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Aillaud I, Funke SA. Tau Aggregation Inhibiting Peptides as Potential Therapeutics for Alzheimer Disease. Cell Mol Neurobiol 2023; 43:951-961. [PMID: 35596819 PMCID: PMC10006036 DOI: 10.1007/s10571-022-01230-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer disease (AD) is the most common progressive neurodegenerative disorder. AD causes enormous personal and economic burden to society as currently only limited palliative therapeutic options are available. The pathological hallmarks of the disease are extracellular plaques, composed of fibrillar amyloid-β (Aβ), and neurofibrillary tangles inside neurons, composed of Tau protein. Until recently, the search for AD therapeutics was focussed more on the Aβ peptide and its pathology, but the results were unsatisfying. As an alternative, Tau might be a promising therapeutic target as its pathology is closely correlated to clinical symptoms. In addition, pathological Tau aggregation occurs in a large group of diseases, called Tauopathies, and in most of them Aβ aggregation does not play a role in disease pathogenesis. The formation of Tau aggregates is triggered by two hexapeptide motifs within Tau; PHF6* and PHF6. Both fragments are interesting targets for the development of Tau aggregation inhibitors (TAI). Peptides represent a unique class of pharmaceutical compounds and are reasonable alternatives to chemical substances or antibodies. They are attributed with high biological activity, valuable specificity and low toxicity, and often are developed as drug candidates to interrupt protein-protein interactions. The preparation of peptides is simple, controllable and the peptides can be easily modified. However, their application may also have disadvantages. Currently, a few peptide compounds acting as TAI are described in the literature, most of them developed by structure-based design or phage display. Here, we review the current state of research in this promising field of AD therapy development.
Collapse
Affiliation(s)
- Isabelle Aillaud
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany
| | - Susanne Aileen Funke
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany.
| |
Collapse
|
7
|
Roy R, Khan J, Pradhan K, Nayak P, Sarkar A, Nandi S, Ghosh S, Ram H, Ghosh S. Short Peptoid Evolved from the Key Hydrophobic Stretch of Amyloid-β42 Peptide Serves as a Potent Therapeutic Lead of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:246-260. [PMID: 36583718 DOI: 10.1021/acschemneuro.2c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amyloid-β 42(Aβ42), an enzymatically cleaved (1-42 amino acid long) toxic peptide remnant, has long been reported to play the key role in Alzheimer's disease (AD). Aβ42 also plays the key role in the onset of other AD-related factors including hyperphosphorylation of tau protein that forms intracellular neurofibrillary tangles, imbalances in the function of the neurotransmitter acetylcholine, and even generation of reactive oxygen species (ROS), disrupting the cytoskeleton and homeostasis of the cell. To address these issues, researchers have tried to construct several strategies to target multiple aspects of the disease but failed to produce any clinically successful therapeutic molecules. In this article, we report a new peptoid called RA-1 that was designed and constructed from the hydrophobic stretch of the Aβ42 peptide, 16KLVFFA21. This hydrophobic stretch is primarily responsible for the Aβ42 peptide aggregation. Experimental study showed that the RA-1 peptoid is stable under proteolytic conditions, can stabilize the microtubule, and can inhibit the formation of toxic Aβ42 aggregates by attenuating hydrophobic interactions between Aβ42 monomers. Furthermore, results from various intracellular assays showed that RA-1 inhibits Aβ42 fibril formation caused by the imbalance in AchE activity, reduces the production of cytotoxic reactive oxygen species (ROS), and promotes neurite outgrowth even in the toxic environment. Remarkably, we have also demonstrated that our peptoid has significant ability to improve the cognitive ability and memory impairment in in vivo rats exposed to AlCl3 and d-galactose (d-gal) dementia model. These findings are also validated with histological studies. Overall, our newly developed peptoid emerges as a multimodal potent therapeutic lead molecule against AD.
Collapse
Affiliation(s)
- Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Krishnangsu Pradhan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Basni, Phase II, Jodhpur, Rajasthan 342005, India
| | - Ankan Sarkar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Subhadra Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Surojit Ghosh
- Interdisciplinary Research Platform, Smart Health Care, Indian Institute of Technology Jodhpur, NH65, Nagaur Road, Karwar, Jodhpur 342037, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India.,Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Interdisciplinary Research Platform, Smart Health Care, Indian Institute of Technology Jodhpur, NH65, Nagaur Road, Karwar, Jodhpur 342037, India
| |
Collapse
|
8
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
9
|
Mirror-image streptavidin with specific binding to L-biotin, the unnatural enantiomer. Sci Rep 2022; 12:9568. [PMID: 35688934 PMCID: PMC9187662 DOI: 10.1038/s41598-022-13763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The streptavidin–biotin system is known to have a very high affinity and specificity and is widely used in biochemical immunoassays and diagnostics. However, this method is affected by endogenous D-biotin in serum sample measurements (biotin interference). While several efforts using alternative high-affinity binding systems (e.g., genetically modified streptavidin and biotin derivatives) have been attempted, these efforts have all led to reduction in affinity. To solve this interference issue, the enantiomer of streptavidin was synthesized, which enabled specific binding to L-biotin. We successfully obtained a functional streptavidin molecule by peptide synthesis using D-amino acids and an in vitro folding technique. Several characterizations, including size exclusion chromatography (SEC), circular dichroism spectra (CD), and heat denaturation experiments collectively confirmed the higher-order enantiomer of natural streptavidin had been formed with comparable stability to the natural protein. L-biotin specific binding of this novel molecule enabled us to avoid biotin interference in affinity measurements using the Biacore system and enzyme-linked immunosorbent assay (ELISA). We propose the enantiomer of streptavidin as a potential candidate to replace the natural streptavidin–biotin system, even for in vivo use.
Collapse
|
10
|
Aillaud I, Kaniyappan S, Chandupatla RR, Ramirez LM, Alkhashrom S, Eichler J, Horn AHC, Zweckstetter M, Mandelkow E, Sticht H, Funke SA. A novel D-amino acid peptide with therapeutic potential (ISAD1) inhibits aggregation of neurotoxic disease-relevant mutant Tau and prevents Tau toxicity in vitro. Alzheimers Res Ther 2022; 14:15. [PMID: 35063014 PMCID: PMC8783508 DOI: 10.1186/s13195-022-00959-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
Background Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that mainly affects older adults. One of the pathological hallmarks of AD is abnormally aggregated Tau protein that forms fibrillar deposits in the brain. In AD, Tau pathology correlates strongly with clinical symptoms, cognitive dysfunction, and neuronal death. Methods We aimed to develop novel therapeutic D-amino acid peptides as Tau fibrillization inhibitors. It has been previously demonstrated that D-amino acid peptides are protease stable and less immunogenic than L-peptides, and these characteristics may render them suitable for in vivo applications. Using a phage display procedure against wild type full-length Tau (TauFL), we selected a novel Tau binding L-peptide and synthesized its D-amino acid version ISAD1 and its retro inversed form, ISAD1rev, respectively. Results While ISAD1rev inhibited Tau aggregation only moderately, ISAD1 bound to Tau in the aggregation-prone PHF6 region and inhibited fibrillization of TauFL, disease-associated mutant full-length Tau (TauFLΔK, TauFL-A152T, TauFL-P301L), and pro-aggregant repeat domain Tau mutant (TauRDΔK). ISAD1 and ISAD1rev induced the formation of large high molecular weight TauFL and TauRDΔK oligomers that lack proper Thioflavin-positive β-sheet conformation even at lower concentrations. In silico modeling of ISAD1 Tau interaction at the PHF6 site revealed a binding mode similar to those known for other PHF6 binding peptides. Cell culture experiments demonstrated that ISAD1 and its inverse form are taken up by N2a-TauRDΔK cells efficiently and prevent cytotoxicity of externally added Tau fibrils as well as of internally expressed TauRDΔK. Conclusions ISAD1 and related peptides may be suitable for therapy development of AD by promoting off-pathway assembly of Tau, thus preventing its toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00959-z.
Collapse
Affiliation(s)
- Isabelle Aillaud
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany
| | - Senthilvelrajan Kaniyappan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | | | - Lisa Marie Ramirez
- Forschungsgruppe Translationale Strukturbiologie, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Sewar Alkhashrom
- Institut für Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jutta Eichler
- Institut für Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anselm H C Horn
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institut für Medizinische Genetik, Universität Zürich, Zürich, Switzerland
| | - Markus Zweckstetter
- Forschungsgruppe Translationale Strukturbiologie, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.,Abteilung für NMR-basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,CAESAR Research Center, Bonn, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Aileen Funke
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany.
| |
Collapse
|
11
|
Roy R, Paul S. hIAPP-Amyloid-Core Derived d-Peptide Prevents hIAPP Aggregation and Destabilizes Its Protofibrils. J Phys Chem B 2022; 126:822-839. [DOI: 10.1021/acs.jpcb.1c10395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| |
Collapse
|
12
|
Preetham HD, Muddegowda U, Sharath Kumar KS, Rangappa S, Rangappa KS. Identification of β-aminopyrrolidine containing peptides as β-amyloid aggregation inhibitors for Alzheimer's disease. J Pept Sci 2022; 28:e3386. [PMID: 34981876 DOI: 10.1002/psc.3386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is caused by a series of events initiated by the production and aggregation of the amyloid β-protein (Aβ). In the early stages of the disease, Aβ is released in a soluble form then progressively forms oligomeric, multimeric, and fibrillar aggregates, triggering neurodegeneration. Thus, development of inhibitors that initiate reverse Aβ aggregation is thought to be a logical approach in treating AD. In this context, we developed β-aminopyrrolidine containing 12 mer peptide 3 which is very potent in inhibiting the Aβ aggregation and also reducing Aβ(42)-induced cytotoxicity.
Collapse
Affiliation(s)
- Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Umashankara Muddegowda
- Department of Studies in Chemistry, Karnataka State Open University, Mysuru, Karnataka, India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya, Karnataka, India
| | | |
Collapse
|
13
|
Kalita S, Kalita S, Kawa AH, Shill S, Gupta A, Kumar S, Mandal B. Copper Chelating Cyclic Peptidomimetic Inhibits Aβ Fibrillogenesis. RSC Med Chem 2022; 13:761-774. [PMID: 35814930 PMCID: PMC9215124 DOI: 10.1039/d2md00019a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Misfolding of amyloid- peptide (A) and its subsequent aggregation into toxic oligomers is one of the leading causes of Alzheimer's disease (AD). As a therapeutic approach, cyclic peptides have been...
Collapse
|
14
|
Chang HW, Ma HI, Wu YS, Lee MC, Chung-Yueh Yuan E, Huang SJ, Cheng YS, Wu MH, Tu LH, Chan JCC. Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chem Sci 2022; 13:8526-8535. [PMID: 35974768 PMCID: PMC9337746 DOI: 10.1039/d2sc01555b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease. In this work, we are able to prepare oligomeric aggregates of Aβ with uniform size and monomorphic structure. Our experimental design is to incubate Aβ peptides in reverse micelles (RMs) so that the peptides could aggregate only through a single nucleation process and the size of the oligomers is confined by the physical dimension of the reverse micelles. The hence obtained Aβ oligomers (AβOs) are 23 nm in diameter and they belong to the category of high molecular-weight (MW) oligomers. The solid-state NMR data revealed that Aβ40Os adopt the structural motif of β-loop-β but the chemical shifts manifested that they may be structurally different from low-MW AβOs and mature fibrils. From the thioflavin-T results, we found that high-MW Aβ42Os can accelerate the fibrillization of Aβ40 monomers. Our protocol allows performing cross-seeding experiments among oligomeric species. By comparing the chemical shifts of Aβ40Os cross seeded by Aβ42Os and those of Aβ40Os prepared in the absence of Aβ42Os, we observed that the chemical states of E11, K16, and E22 were altered, whereas the backbone conformation of the β-sheet region near the C-terminus was structurally invariant. The use of reverse micelles allows hitherto the most detailed characterization of the structural variability of Aβ40Os. Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho-I. Ma
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Shan Wu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Eric Chung-Yueh Yuan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Sheng Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
15
|
Ye Z, Aparicio C. Interactions of two enantiomers of a designer antimicrobial peptide with structural components of the bacterial cell envelope. J Pept Sci 2022; 28:e3299. [PMID: 33496073 PMCID: PMC8310526 DOI: 10.1002/psc.3299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/03/2023]
Abstract
Antimicrobial peptides (AMPs) have great potential in treating multi-drug resistant bacterial infections. The antimicrobial activity of d-enantiomers is significantly higher than l-enantiomers and sometimes selectively enhanced against Gram-positive bacteria. Unlike phospholipids in the bacterial plasma membrane, the role of other bacterial cell envelop components is often overlooked in the mode of action of AMPs. In this work, we explored the structural interactions between the main different structural components in Gram-negative/Gram-positive bacteria and the two enantiomers of a designer AMP, GL13K. We observed that both l-GL13K and d-GL13K formed self-assembled amyloid-like nanofibrils when the peptides interacted with lipopolysaccharide and lipoteichoic acid, components of the outer membrane of Gram-negative bacteria and cell wall of Gram-positive bacteria, respectively. Another cell wall component, peptidoglycan, showed strong interactions exclusively with d-GL13K and formed distinct laminar structures. This specific interaction between peptidoglycans and d-GL13K might contribute to the enhanced activity of d-GL13K against Gram-positive bacteria as they have a much thicker peptidoglycan layer than Gram-negative bacteria. A better understanding of the specific role of bacterial cell envelop components in the AMPs mechanism of action can guide the design of more effective Gram-selective AMPs.
Collapse
|
16
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study. J Mol Model 2021; 27:356. [PMID: 34796404 DOI: 10.1007/s00894-021-04968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The amyloid-β peptide exists in the form of fibrils in the plaques found in the brains of patients with Alzheimer's disease. One of the therapeutic strategies is the design of molecules which can destabilize these fibrils. We present a designed peptide KLVFFP5 with two segments: the self-recognition sequence KLVFF and a β-sheet breaker proline pentamer. Molecular dynamics simulations and docking results showed that this peptide could bind to the protofibrils and destabilize them by establishing hydrophobic contacts and hydrogen bonds with a higher affinity than the KLVFF peptide. In the presence of the KLVFFP5 peptide, the β-sheet content of the protofibrils was reduced significantly; the hydrogen bonding network and the salt bridges were disrupted to a greater extent than the KLVFF peptide. Our results indicate that the KLVFFP5 peptide is an effective β-sheet disruptor which can be considered in the therapy of Alzheimer's disease.
Collapse
|
18
|
Malhis M, Kaniyappan S, Aillaud I, Chandupatla RR, Ramirez LM, Zweckstetter M, Horn AHC, Mandelkow E, Sticht H, Funke SA. Potent Tau Aggregation Inhibitor D-Peptides Selected against Tau-Repeat 2 Using Mirror Image Phage Display. Chembiochem 2021; 22:3049-3059. [PMID: 34375027 PMCID: PMC8596876 DOI: 10.1002/cbic.202100287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/07/2021] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease and other Tauopathies are associated with neurofibrillary tangles composed of Tau protein, as well as toxic Tau oligomers. Therefore, inhibitors of pathological Tau aggregation are potentially useful candidates for future therapies targeting Tauopathies. Two hexapeptides within Tau, designated PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-311), are known to promote Tau aggregation. Recently, the PHF6* segment has been described as the more potent driver of Tau aggregation. We therefore employed mirror-image phage display with a large peptide library to identify PHF6* fibril binding peptides consisting of D-enantiomeric amino acids. The suitability of D-enantiomeric peptides for in vivo applications, which are protease stable and less immunogenic than L-peptides, has already been demonstrated. The identified D-enantiomeric peptide MMD3 and its retro-inverso form, designated MMD3rev, inhibited in vitro fibrillization of the PHF6* peptide, the repeat domain of Tau as well as full-length Tau. Dynamic light scattering, pelleting assays and atomic force microscopy demonstrated that MMD3 prevents the formation of tau β-sheet-rich fibrils by diverting Tau into large amorphous aggregates. NMR data suggest that the D-enantiomeric peptides bound to Tau monomers with rather low affinity, but ELISA (enzyme-linked immunosorbent assay) data demonstrated binding to PHF6* and full length Tau fibrils. In addition, molecular insight into the binding mode of MMD3 to PHF6* fibrils were gained by in silico modelling. The identified PHF6*-targeting peptides were able to penetrate cells. The study establishes PHF6* fibril binding peptides consisting of D-enantiomeric amino acids as potential molecules for therapeutic and diagnostic applications in AD research.
Collapse
Affiliation(s)
- Marwa Malhis
- Institut für BioanalytikHochschule für angewandte WissenschaftenCoburgGermany
| | - Senthilvelrajan Kaniyappan
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity of BonnBonnGermany
| | - Isabelle Aillaud
- Institut für BioanalytikHochschule für angewandte WissenschaftenCoburgGermany
| | | | - Lisa Marie Ramirez
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | | | - Anselm H. C. Horn
- Institut für BiochemieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
- Institut für Medizinische GenetikUniversität Zürich SchlierenZürichSwitzerland
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity of BonnBonnGermany
- CAESAR Research CenterBonnGermany
| | - Heinrich Sticht
- Institut für BiochemieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
| | | |
Collapse
|
19
|
Breaker peptides against amyloid-β aggregation: a potential therapeutic strategy for Alzheimer's disease. Future Med Chem 2021; 13:1767-1794. [PMID: 34498978 DOI: 10.4155/fmc-2021-0184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which blocking the early steps of extracellular misfolded amyloid-β (Aβ) aggregation is a promising therapeutic approach. However, the pathological features of AD progression include the accumulation of intracellular tau protein, membrane-catalyzed cell death and the abnormal deposition of Aβ. Here, we focus on anti-amyloid breaker peptides derived from the Aβ sequence and non-Aβ-based peptides containing both natural and modified amino acids. Critical aspects of the breaker peptides include N-methylation, conformational restriction through cyclization, incorporation of unnatural amino acid, fluorinated molecules, polymeric nanoparticles and PEGylation. This review confers a general idea of such breaker peptides with in vitro and in vivo studies, which may advance our understanding of AD pathology and develop an effective treatment strategy against AD.
Collapse
|
20
|
Raskatov JA, Schneider JP, Nilsson BL. Defining the Landscape of the Pauling-Corey Rippled Sheet: An Orphaned Motif Finding New Homes. Acc Chem Res 2021; 54:2488-2501. [PMID: 33901396 PMCID: PMC8154201 DOI: 10.1021/acs.accounts.1c00084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
When peptides are mixed with their mirror images in an equimolar
ratio, two-dimensional periodic structural folds can form, in which
extended peptide strands are arrayed with alternating chirality. The
resultant topography class, termed the rippled β-sheet, was
introduced as a theoretical concept by Pauling and Corey in 1953.
Unlike other fundamental protein structural motifs identified around
that time, including the α-helix and the pleated β-sheet,
it took several decades before conclusive experimental data supporting
the proposed rippled β-sheet motif were gained. Much of the
key experimental evidence was provided over the course of the past
decade through the concurrent efforts of our three laboratories. Studies
that focused on developing new self-assembling hydrogel materials
have shown that certain amphiphilic peptides form fibrils and hydrogel
networks that are more rigid and have a higher thermodynamic stability
when made from racemic peptide mixtures as opposed to pure enantiomers.
Related interrogation of assemblies composed of mixtures of l- and d-amphiphilic peptides confirmed that the resulting
fibrils were composed of alternating l/d peptides
consistent with rippled β-sheets. It was also demonstrated that
mirror-image amyloid beta (Aβ) could act as a molecular chaperone
to promote oligomer-to-fibril conversion of the natural Aβ enantiomer,
which was found to reduce Aβ neurotoxicity against different
neuronal cell models. With a cross-disciplinary approach that combines
experiment and theory, our three laboratories have demonstrated the
unique biophysical, biochemical, and biological properties that arise
upon mixing of peptide enantiomers, in consequence of rippled β-sheet
formation. In this Account, we give an overview of the early history
of the rippled β-sheet and provide a detailed structural description/definition
of this motif relative to the pleated β-sheet. We then summarize
the key findings, obtained on three unique sets of aggregating mirror-image
peptide pairs through independent efforts of our three laboratories,
and use these results to delineate the landscape of the rippled β-sheet
structural motif to inspire future studies. Peptide sequence parameters
that favor rippled β-sheet assembly are described, along with
the accompanying kinetic and thermodynamic properties, as well as
the resulting emergent physical properties of the assemblies. The
Account then concludes with a brief overview of some key unresolved
challenges in this nascent field. There is much potential for future
applications of this unique supramolecular motif in the realm of materials
design and biomedical research. We hope this Account will stimulate
much-needed discussion of this fascinating structural class to eventually
produce a fully quantitative, rational framework for the molecular
engineering of rippled β-sheets in the future.
Collapse
Affiliation(s)
- Jevgenij A. Raskatov
- Department of Chemistry and Biochemistry, UCSC, 1156 High Street, Santa Cruz, California 95064, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Bradley L. Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
21
|
Gorantla N, Sunny LP, Rajasekhar K, Nagaraju PG, CG PP, Govindaraju T, Chinnathambi S. Amyloid-β-Derived Peptidomimetics Inhibits Tau Aggregation. ACS OMEGA 2021; 6:11131-11138. [PMID: 34056268 PMCID: PMC8153954 DOI: 10.1021/acsomega.9b03497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/18/2020] [Indexed: 05/08/2023]
Abstract
The aggregation of tau protein is one of the hallmarks for Alzheimer's disease, resulting in neurodegeneration. The peptidomimetics strategy to prevent tau aggregation is more specific over other small molecules. In the present study, we analyzed the effect of amyloid-β-derived peptidomimetics for inhibiting heparin-induced tau aggregation in vitro. These peptides and their derivatives were known to prevent aggregation of amyloid-β. KLVFF is a hydrophobic sequence of the pentapeptide that prevented tau aggregation as observed by thioflavin S fluorescence, transmission electron microscopy, and circular dichroism spectroscopy. P4 and P5 also prevented assembly of tau into aggregates and formed short fibrils. The β-sheet breaker LPFFD was however ineffective in preventing tau aggregation. The peptides further demonstrated reversal of tau-induced cytotoxicity in a dose-dependent manner. Our results suggested that these peptides can also be used to inhibit tau aggregation and also, toxicity induced by tau could be considered as potential molecules that have an effect on tau as well as amyloid-β.
Collapse
Affiliation(s)
- Nalini
V. Gorantla
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Lisni P. Sunny
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Kolla Rajasekhar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Pramod G. Nagaraju
- Department
of Molecular Nutrition, CSIR-CFTRI, 570020 Mysore, India
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Poornima Priyadarshini CG
- Department
of Molecular Nutrition, CSIR-CFTRI, 570020 Mysore, India
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Subashchandrabose Chinnathambi
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative Research (AcSIR), 411008 Pune, India
- . Phone: +91-20-25902232. Fax: +91-20-25902648
| |
Collapse
|
22
|
Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: a potential therapeutic strategy for Alzheimer's disease. Biochem J 2020; 477:2039-2054. [PMID: 32427336 PMCID: PMC7293109 DOI: 10.1042/bcj20200290] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Amyloid beta peptide (Aβ42) aggregation in the brain is thought to be responsible for the onset of Alzheimer's disease, an insidious condition without an effective treatment or cure. Hence, a strategy to prevent aggregation and subsequent toxicity is crucial. Bio-inspired peptide-based molecules are ideal candidates for the inhibition of Aβ42 aggregation, and are currently deemed to be a promising option for drug design. In this study, a hexapeptide containing a self-recognition component unique to Aβ42 was designed to mimic the β-strand hydrophobic core region of the Aβ peptide. The peptide is comprised exclusively of D-amino acids to enhance specificity towards Aβ42, in conjunction with a C-terminal disruption element to block the recruitment of Aβ42 monomers on to fibrils. The peptide was rationally designed to exploit the synergy between the recognition and disruption components, and incorporates features such as hydrophobicity, β-sheet propensity, and charge, that all play a critical role in the aggregation process. Fluorescence assays, native ion-mobility mass spectrometry (IM-MS) and cell viability assays were used to demonstrate that the peptide interacts with Aβ42 monomers and oligomers with high specificity, leading to almost complete inhibition of fibril formation, with essentially no cytotoxic effects. These data define the peptide-based inhibitor as a potentially potent anti-amyloid drug candidate for this hitherto incurable disease.
Collapse
|
23
|
Tavanti F, Pedone A, Menziani MC, Alexander-Katz A. Computational Insights into the Binding of Monolayer-Capped Gold Nanoparticles onto Amyloid-β Fibrils. ACS Chem Neurosci 2020; 11:3153-3160. [PMID: 32926781 DOI: 10.1021/acschemneuro.0c00497] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amyloids-β (Aβ) fibrils are involved in several neurodegenerative diseases. In this study, atomistic molecular dynamics simulations have been used to investigate how monolayer-protected gold nanoparticles interact with Aβ(1-40) and Aβ(1-42) fibrils. Our results show that small gold nanoparticles bind with the external side of amyloid-β fibrils that is involved in the fibrillation process. The binding affinity, studied for both kinds of fibrils as a function of the monolayer composition and the nanoparticle diameter, is modulated by hydrophobic interactions and ligand monolayer conformation. Our findings thus show that monolayer-protected nanoparticles are good candidates to prevent fibril aggregation and secondary nucleation or to deliver drugs to specific fibril regions.
Collapse
Affiliation(s)
- Francesco Tavanti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi, 103, I-41125 Modena, Italy
- CNR-NANO Istituto Nanoscienze, Centro S3, Via Campi 213/A, I-41125 Modena, Italy
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi, 103, I-41125 Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi, 103, I-41125 Modena, Italy
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Massachusetts Avenue, 77, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
24
|
Mitra A, Sarkar N. Sequence and structure-based peptides as potent amyloid inhibitors: A review. Arch Biochem Biophys 2020; 695:108614. [PMID: 33010227 DOI: 10.1016/j.abb.2020.108614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Misfolded and natively disordered globular proteins tend to aggregate together in an interwoven fashion to form fibrous, proteinaceous deposits referred to as amyloid fibrils. Formation and deposition of such insoluble fibrils are the characteristic features of a broad group of diseases, known as amyloidosis. Some of these proteins are known to cause several degenerative disorders in humans, such as Amyloid-Beta (Aβ) in Alzheimer's disease (AD), human Islet Amyloid Polypeptide (hIAPP, amylin) in type 2 diabetes, α-synuclein (α-syn) in Parkinson's disease (PD) and so on. The fact that these proteins do not share any significant sequence or structural homology in their native states make therapy quite challenging. However, it is observed that aggregation-prone proteins and peptides tend to adopt a similar type of secondary structure during the formation of fibrils. Rationally designed peptides can be a potent inhibitor that has been shown to disrupt the fibril structure by binding specifically to the amyloidogenic region(s) within a protein. The following review will analyze the inhibitory potency of both sequence-based and structure-based small peptides that have been shown to inhibit amyloidogenesis of proteins such as Aβ, human amylin, and α-synuclein.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
25
|
Tanaka F, Shibata K, Monobe Y, Akagi KI, Masuda Y. Design and synthesis of β-strand-fixed peptides inhibiting aggregation of amyloid β-protein. Bioorg Med Chem 2020; 28:115676. [DOI: 10.1016/j.bmc.2020.115676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
|
26
|
Raskatov JA. Conformational Selection as the Driving Force of Amyloid β Chiral Inactivation. Chembiochem 2020; 21:2945-2949. [PMID: 32424959 DOI: 10.1002/cbic.202000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Indexed: 12/19/2022]
Abstract
We recently introduced amyloid β chiral inactivation (Aβ-CI) as a molecular approach that uses mirror-image peptides to chaperone the natural Aβ stereoisomer into a less toxic state. The oligomer-to-fibril conversion mechanism remains the subject of active research. Perhaps the most striking feature of Aβ-CI is the virtual obliteration of the incubation/induction phase that is so characteristic of Aβ fibril formation kinetics. This qualitative change is indicative of the distinct mechanistic pathway Aβ-CI operates through. The current working model of Aβ-CI invokes the formation of "rippled" cross-β sheets, in which alternating l- and d-peptide strands form periodic networks. However, the assumption of rippled cross-β sheets does not per se explain the dramatic changes in reaction kinetics upon mixing of Aβ enantiomers. Herein, it is shown by DFT computational methods that the individual peptide strands in rippled cross-β networks are less conformationally strained than their pleated counterparts. This means that the adoption of fibril-seeding conformations is more probable for rippled cross-β. Conformational selection is thus suggested as the mechanistic rationale for the acceleration of fibril formation upon Aβ-CI.
Collapse
Affiliation(s)
- Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz Physical Science Building 356, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
27
|
Ryan P, Xu MM, Davey AK, Kassiou M, Mellick GD, Rudrawar S. O-GlcNAcylation of truncated NAC segment alters peptide-dependent effects on α-synuclein aggregation. Bioorg Chem 2020; 94:103389. [DOI: 10.1016/j.bioorg.2019.103389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
|
28
|
Khalili Samani E, Mofid MR, Malakoutikhah M. The effect of terminal groups and halogenation of KLVFF peptide on its activity as an inhibitor of β-amyloid aggregation. J Pept Sci 2019; 26:e3227. [PMID: 31845472 DOI: 10.1002/psc.3227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023]
Abstract
The aggregation of Aβ peptide into amyloid fibrils in the brain is associated with Alzheimer's disease (AD). Inhibition of Aβ aggregation seemed a potential treatment for AD. It was previously shown that a short fragment of Aβ peptide (KLVFF, 16-20) bound Aβ inhibited its aggregation. In this work, using KLVFF peptide, we synthesized two peptide families and then evaluated their inhibitory capacities by conventional assays such as thioflavin T (ThT) fluorescence spectroscopy, turbidity measurement, and the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). The effect of peptide terminal groups on its inhibitory activity was first studied. Subsequently, the influence of halogenated amino acids on peptide anti-aggregation properties was investigated. We found that iodinated peptide with amine in the N and amide in the C termini, respectively, was the best inhibitor of Aβ fibers formation. Halogenated peptides seemed to decrease the number of Aβ fibrils; however, they did not reduce Aβ cytotoxicity. The data obtained in this work seemed promising in developing potential peptide drugs for treatment of AD.
Collapse
Affiliation(s)
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry School of Pharmacy and Pharmaceutical Sciences, and Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
29
|
Specific keratinase derived designer peptides potently inhibit Aβ aggregation resulting in reduced neuronal toxicity and apoptosis. Biochem J 2019; 476:1817-1841. [DOI: 10.1042/bcj20190183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Compelling evidence implicates self-assembly of amyloid-β (Aβ1–42) peptides into soluble oligomers and fibrils as a major underlying event in Alzheimer's disease (AD) pathogenesis. Herein, we employed amyloid-degrading keratinase (kerA) enzyme as a key Aβ1–42-binding scaffold to identify five keratinase-guided peptides (KgPs) capable of interacting with and altering amyloidogenic conversion of Aβ1–42. The KgPs showed micromolar affinities with Aβ1–42 and abolished its sigmoidal amyloidogenic transition, resulting in abrogation of fibrillogenesis. Comprehensive assessment using dynamic light scattering (DLS), atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy showed that KgPs induced the formation of off-pathway oligomers comparatively larger than the native Aβ1–42 oligomers but with a significantly reduced cross-β signature. These off-pathway oligomers exhibited low immunoreactivity against oligomer-specific (A11) and fibril-specific (OC) antibodies and rescued neuronal cells from Aβ1–42 oligomer toxicity as well as neuronal apoptosis. Structural analysis using molecular docking and molecular dynamics (MD) simulations showed two preferred KgP binding sites (Lys16–Phe20 and Leu28–Val39) on the NMR ensembles of monomeric and fibrillar Aβ1–42, indicating an interruption of crucial hydrophobic and aromatic interactions. Overall, our results demonstrate a new approach for designing potential anti-amyloid molecules that could pave way for developing effective therapeutics against AD and other amyloid diseases.
Collapse
|
30
|
Effects of Single Amino Acid Substitutions on Aggregation and Cytotoxicity Properties of Amyloid β Peptide. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Benitez-Amaro A, Pallara C, Nasarre L, Rivas-Urbina A, Benitez S, Vea A, Bornachea O, de Gonzalo-Calvo D, Serra-Mir G, Villegas S, Prades R, Sanchez-Quesada JL, Chiva C, Sabido E, Tarragó T, Llorente-Cortés V. Molecular basis for the protective effects of low-density lipoprotein receptor-related protein 1 (LRP1)-derived peptides against LDL aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1302-1316. [PMID: 31077676 DOI: 10.1016/j.bbamem.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
Abstract
Aggregated LDL is the first ligand reported to interact with the cluster II CR9 domain of low-density lipoprotein receptor-related protein 1 (LRP1). In particular, the C-terminal half of domain CR9, comprising the region Gly1127-Cys1140 exclusively recognizes aggregated LDL and it is crucial for aggregated LDL binding. Our aim was to study the effect of the sequence Gly1127-Cys1140 (named peptide LP3 and its retro-enantio version, named peptide DP3) on the structural characteristics of sphingomyelinase- (SMase) and phospholipase 2 (PLA2)-modified LDL particles. Turbidimetry, gel filtration chromatography (GFC) and transmission electronic microscopy (TEM) analysis showed that LP3 and DP3 peptides strongly inhibited SMase- and PLA2-induced LDL aggregation. Nondenaturing polyacrylamide gradient gel electrophoresis (GGE), agarose gel electrophoresis and high-performance thin-layer chromatography (HPTLC) indicated that LP3 and DP3 prevented SMase-induced alterations in LDL particle size, electric charge and phospholipid content, respectively, but not those induced by PLA2. Western blot analysis showed that LP3 and DP3 counteracted changes in ApoB-100 conformation induced by the two enzymes. LDL proteomics (LDL trypsin digestion followed by mass spectroscopy) and computational modeling methods evidenced that peptides preserve ApoB-100 conformation due to their electrostatic interactions with a basic region of ApoB-100. These results demonstrate that LRP1-derived peptides are protective against LDL aggregation, even in conditions of extreme lipolysis, through their capacity to bind to ApoB-100 regions critical for ApoB-100 conformational preservation. These results suggests that these LRP1(CR9) derived peptides could be promising tools to prevent LDL aggregation induced by the main proteolytic enzymes acting in the arterial intima.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Chiara Pallara
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Laura Nasarre
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Angela Vea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Bornachea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - David de Gonzalo-Calvo
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain
| | - Gabriel Serra-Mir
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - José Luís Sanchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBER DIABETES y Enfermedades Metabólicas Asociadas (CIBERdem), Spain
| | - Cristina Chiva
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabido
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain.
| |
Collapse
|
32
|
Xi W, Hansmann UHE. The effect of retro-inverse D-amino acid Aβ-peptides on Aβ-fibril formation. J Chem Phys 2019; 150:095101. [PMID: 30849871 DOI: 10.1063/1.5082194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peptides build from D-amino acids resist enzymatic degradation. The resulting extended time of biological activity makes them prime candidates for the development of pharmaceuticals. Of special interest are D-retro-inverso (DRI) peptides where a reversed sequence of D-amino acids leads to molecules with almost the same structure, stability, and bioactivity as the parent L-peptides but increased resistance to proteolytic degradation. Here, we study the effect of DRI-Aβ40 and DRI-Aβ42 peptides on fibril formation. Using molecular dynamics simulations, we compare the stability of typical amyloid fibril models with such where the L-peptides are replaced by DRI-Aβ40 and DRI-Aβ42 peptides. We then explore the likelihood for cross fibrilization of Aβ L- and DRI-peptides by investigating how the presence of DRI peptides alters the elongation and stability of L-Aβ-fibrils. Our data suggest that full-length DRI-peptides may enhance the fibril formation and decrease the ratio of soluble toxic Aβ oligomers, pointing out potential for D-amino-acid-based drug design targeting Alzheimer's disease.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
33
|
Liu W, Dong X, Sun Y. d-Enantiomeric RTHLVFFARK-NH 2: A Potent Multifunctional Decapeptide Inhibiting Cu 2+-Mediated Amyloid β-Protein Aggregation and Remodeling Cu 2+-Mediated Amyloid β Aggregates. ACS Chem Neurosci 2019; 10:1390-1401. [PMID: 30650306 DOI: 10.1021/acschemneuro.8b00440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aggregation of amyloid β-protein (Aβ) into β-sheet-rich plaques is a general feature of Alzheimer's disease (AD). Homeostasis dysregulation of Cu2+ mediates Aβ to form high cytotoxic aggregates, which causes cell damage by generation of reactive oxygen species (ROS). To improve the inhibitory potency and explore the multifaceted functions of our previously designed decapeptide, RTHLVFFARK-NH2 (RK10), we have herein reformulated the decapeptide into its d-enantiomer, rk10, and the effects of chirality on Aβ aggregation, Cu2+-mediated Aβ aggregations, and aggregate-remodeling effects were investigated. The results revealed the following: (1) The d-enantiomer presented enhanced inhibitory potency on Aβ fibrillogenesis in comparison to RK10; rk10 and RK10 increased the cell viability from 60% to 91% and 71%, respectively, at an equimolar concentration to Aβ. (2) The enantiomers were chemically equivalent to Cu2+ chelation, ROS suppression and oxidative damage rescue. (3) The d-enantiomer exhibited higher performance to inhibit Cu2+-mediated Aβ aggregation, and more significantly attenuated the cytotoxicity caused by Aβ42-Cu2+ complex than RK10. Cell viability was rescued from 51% to 89% and 74% by coincubating with rk10 and RK10 at 50 μM, respectively. Intracellular ROS levels generated by Aβ42 and Aβ42-Cu2+ species were also remarkably decreased by treating with rk10. (4) The enantiomers could remodel mature Aβ42-Cu2+ aggregates by Cu2+ chelation, and rk10 showed higher performance than RK10, as evidenced by the enhanced cell viability from 57% to 86% by RK10 and to 96% by rk10. The d-enantiomer also showed higher ability than RK10 on protecting the disrupted species from reaggregation. Taken together, D-chiral derivatization of the decapeptide resulted in a potent multifunctional agent in inhibiting Cu2+-mediated Aβ aggregation and remodeling mature Aβ-Cu2+ species. To the best of our knowledge, this is the first investigation on the chirality effect of a multifunctional peptide inhibitor on Cu2+-mediated Aβ aggregation and on the remodeling effect of mature Aβ-Cu2+ aggregates. The work provides new insights into the critical role of chirality in the multifaceted functions of peptide inhibitors against amyloid formation and its toxicity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
34
|
Mehrazma B, Opare S, Petoyan A, Rauk A. d-Amino Acid Pseudopeptides as Potential Amyloid-Beta Aggregation Inhibitors. Molecules 2018; 23:E2387. [PMID: 30231520 PMCID: PMC6225248 DOI: 10.3390/molecules23092387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
A causative factor for neurotoxicity associated with Alzheimer's disease is the aggregation of the amyloid-β (Aβ) peptide into soluble oligomers. Two all d-amino acid pseudo-peptides, SGB1 and SGD1, were designed to stop the aggregation. Molecular dynamics (MD) simulations have been carried out to study the interaction of the pseudo-peptides with both Aβ13⁻23 (the core recognition site of Aβ) and full-length Aβ1⁻42. Umbrella sampling MD calculations have been used to estimate the free energy of binding, ∆G, of these peptides to Aβ13⁻23. The highest ∆Gbinding is found for SGB1. Each of the pseudo-peptides was also docked to Aβ1⁻42 and subjected up to seven microseconds of all atom molecular dynamics simulations. The resulting structures lend insight into how the dynamics of Aβ1⁻42 are altered by complexation with the pseudo-peptides and confirmed that SGB1 may be a better candidate for developing into a drug to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Stanley Opare
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Anahit Petoyan
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Arvi Rauk
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
35
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Baig MH, Ahmad K, Rabbani G, Choi I. Use of Peptides for the Management of Alzheimer's Disease: Diagnosis and Inhibition. Front Aging Neurosci 2018; 10:21. [PMID: 29467644 PMCID: PMC5808296 DOI: 10.3389/fnagi.2018.00021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a form of dementia and the most common progressive neurodegenerative disease (ND). The targeting of amyloid-beta (Aβ) aggregation is one of the most widely used strategies to manage AD, and efforts are being made globally to develop peptide-based compounds for the early diagnosis and treatment of AD. Here, we briefly discuss the use of peptide-based compounds for the early diagnosis and treatment of AD and the use of peptide-based inhibitors targeting various Aβ aggregation checkpoints. In addition, we briefly discuss recent applications of peptide-based inhibitors against various AD targets including amyloid beta, β-site amyloid precursor protein cleaving enzyme 1 (BACE1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), tyrosine phosphatase (TP) and potassium channel KV1.3.
Collapse
Affiliation(s)
- Mohammad H Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Gulam Rabbani
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
37
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Jha A, Kumar MG, Gopi HN, Paknikar KM. Inhibition of β-Amyloid Aggregation through a Designed β-Hairpin Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1591-1600. [PMID: 29284085 DOI: 10.1021/acs.langmuir.7b03617] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Designing peptide-based drugs to target the β-sheet-rich toxic intermediates during the aggregation of amyloid-β 1-42 (Aβ1-42) has been a major challenge. In general, β-sheet breaker peptides (BSBPs) are designed to complement the enthalpic interactions with the aggregating protein, and entropic effects are usually ignored. Here, we have developed a conformationally constrained cyclic BSBP by the use of an unnatural amino acid and a disulfide bond. We show that our peptide strongly inhibits the aggregation of Aβ1-42 in a concentration-dependent manner. It stabilizes the random coil conformation of Aβ1-42 monomers and inhibits the secondary structural transition to a β-sheet-rich conformation which allows Aβ1-42 to oligomerize in an ordered assembly during its aggregation. Our cyclic peptide also rescues the toxicity of soluble aggregates of Aβ1-42 toward neuronal cells. However, it significantly loses its potency in the conformationally relaxed acyclic form. It appears that limiting the loss of conformational entropy of the BSBP ligand can play a very important role in the attainment of conformations for precise and tight binding, making them a potent inhibitor for Aβ1-42 amyloidosis.
Collapse
Affiliation(s)
- Anjali Jha
- Nanobioscience Group, Agharkar Research Institute , G. G. Agarkar Road, Pune 411004, India
| | - Mothukuri Ganesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute , G. G. Agarkar Road, Pune 411004, India
| |
Collapse
|
39
|
Galati C, Spinella N, Renna L, Milardi D, Attanasio F, Sciacca MFM, Bongiorno C. Strategy to discover full-length amyloid-beta peptide ligands using high-efficiency microarray technology. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2446-2453. [PMID: 29234579 PMCID: PMC5704750 DOI: 10.3762/bjnano.8.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Although the formation of β-amyloid (Aβ) fibrils in neuronal tissues is a hallmark of Alzheimer disease (AD), small-sized Aβ oligomers rather than mature fibrils have been identified as the most neurotoxic species. Therefore, the design of new inhibitors, able to prevent the aggregation of Aβ, is believed to be a promising therapeutic approach to AD. Unfortunately, the short-lived intermediate structures that occur in a solution along the Aβ aggregation pathway escape conventional experimental investigations and there is urgent need of new tools aimed at the discovery of agents targeting monomeric Aβ and blocking the early steps of amyloid aggregation. Here, we show the combination of high-efficiency slides (HESs) with peptide microarrays as a promising tool for identifying small peptides that bind Aβ monomers. To this aim, HESs with two immobilized reference peptides, (i.e., KLVFF and Semax) with opposite behavior, were investigated for binding to fluorescently labeled Aβ peptide. Transmission electron microscopy was used to demonstrate Aβ fibrillar aggregates missing. The use of HESs was critical to ensure convenient output of the fluorescent microarrays. The resulting sensitivity, as well as the low sample consumption and the high potential for miniaturization, suggests that the proposed combination of peptide microarrays and highly efficient slides would be a very effective technology for molecule profiling in AD drug discovery.
Collapse
Affiliation(s)
- Clelia Galati
- STMicroelectronics, Stradale Primosole, 95121, Catania, Italy
| | | | - Lucio Renna
- STMicroelectronics, Stradale Primosole, 95121, Catania, Italy
| | - Danilo Milardi
- CNR-Istituto di Biostrutture e Bioimmagini, Catania, Italy
| | | | | | | |
Collapse
|
40
|
Jędrzejewska H, Szumna A. Making a Right or Left Choice: Chiral Self-Sorting as a Tool for the Formation of Discrete Complex Structures. Chem Rev 2017; 117:4863-4899. [PMID: 28277655 DOI: 10.1021/acs.chemrev.6b00745] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review discusses chiral self-sorting-the process of choosing an interaction partner with a given chirality from a complex mixture of many possible racemic partners. Chiral self-sorting (also known as chiral self-recognition or chiral self-discrimination) is fundamental for creating functional structures in nature and in the world of chemistry because interactions between molecules of the same or the opposite chirality are characterized by different interaction energies and intrinsically different resulting structures. However, due to the similarity between recognition sites of enantiomers and common conformational lability, high fidelity homochiral or heterochiral self-sorting poses a substantial challenge. Chiral self-sorting occurs among natural and synthetic molecules that leads to the amplification of discrete species. The review covers a variety of complex self-assembled structures ranging from aggregates made of natural and racemic peptides and DNA, through artificial functional receptors, macrocyles, and cages to catalytically active metal complexes and helix mimics. The examples involve a plethora of reversible interactions: electrostatic interactions, π-π stacking, hydrogen bonds, coordination bonds, and dynamic covalent bonds. A generalized view of the examples collected from different fields allows us to suggest suitable geometric models that enable a rationalization of the observed experimental preferences and establishment of the rules that can facilitate further design.
Collapse
Affiliation(s)
- Hanna Jędrzejewska
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
41
|
Goyal D, Shuaib S, Mann S, Goyal B. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease. ACS COMBINATORIAL SCIENCE 2017; 19:55-80. [PMID: 28045249 DOI: 10.1021/acscombsci.6b00116] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.
Collapse
Affiliation(s)
- Deepti Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| |
Collapse
|
42
|
Dammers C, Yolcu D, Kukuk L, Willbold D, Pickhardt M, Mandelkow E, Horn AHC, Sticht H, Malhis MN, Will N, Schuster J, Funke SA. Selection and Characterization of Tau Binding ᴅ-Enantiomeric Peptides with Potential for Therapy of Alzheimer Disease. PLoS One 2016; 11:e0167432. [PMID: 28006031 PMCID: PMC5179029 DOI: 10.1371/journal.pone.0167432] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022] Open
Abstract
A variety of neurodegenerative disorders, including Alzheimer disease (AD), are associated with neurofibrillary tangles composed of the tau protein, as well as toxic tau oligomers. Inhibitors of pathological tau aggregation, interrupting tau self-assembly, might be useful for the development of therapeutics. Employing mirror image phage display with a large peptide library (over 109 different peptides), we have identified tau fibril binding peptides consisting of d-enantiomeric amino acids. d-enantiomeric peptides are extremely protease stable and not or less immunogenic than l-peptides, and the suitability of d-peptides for in vivo applications have already been demonstrated. Phage display selections were performed using fibrils of the d-enantiomeric hexapeptide VQIVYK, representing residues 306 to 311 of the tau protein, as a target. VQIVYK has been demonstrated to be important for fibril formation of the full lengths protein and forms fibrils by itself. Here, we report on d-enantiomeric peptides, which bind to VQIVYK, tau isoforms like tau3RD (K19) as well as to full lengths tau fibrils, and modulate the aggregation of the respective tau form. The peptides are able to penetrate cells and might be interesting for therapeutic and diagnostic applications in AD research.
Collapse
Affiliation(s)
- Christina Dammers
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Deniz Yolcu
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Laura Kukuk
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Marcus Pickhardt
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- CAESAR Research Center, Bonn, Germany
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- CAESAR Research Center, Bonn, Germany
- Max Planck Institute for Metabolism Research, Köln, Germany
| | - Anselm H C Horn
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Nadja Will
- Bioanalytik, Hochschule für angewandte Wissenschaften, Coburg, Germany
| | - Judith Schuster
- Bioanalytik, Hochschule für angewandte Wissenschaften, Coburg, Germany
| | | |
Collapse
|
43
|
Auvynet C, Baudesson de Chanville C, Hermand P, Dorgham K, Piesse C, Pouchy C, Carlier L, Poupel L, Barthélémy S, Felouzis V, Lacombe C, Sagan S, Chemtob S, Quiniou C, Salomon B, Deterre P, Sennlaub F, Combadière C. ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2-dependent migration. FASEB J 2016; 30:2370-81. [PMID: 26979087 DOI: 10.1096/fj.201500116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/25/2016] [Indexed: 11/11/2022]
Abstract
CC chemokine receptor type 2 (CCR2) is a key molecule in inflammatory diseases and is an obvious drug target for the treatment of inflammation. A number of nonpeptidic, competitive CCR2 antagonists have been developed, but none has yet been approved for clinical use. Our aim was to identify a short peptide that showed allosteric antagonism against human and mouse CCR2. On the basis of sequence analysis and 3-dimensional modeling, we identified an original 7-d-amino acid peptidic CCR2 inhibitor that we have called extracellular loop 1 inverso (ECL1i), d(LGTFLKC). In vitro, ECL1i selectively and potently inhibits CC chemokine ligand type 2 (CCL2)-triggered chemotaxis (IC50, 2 µM) but no other conventional CCL2-associated events. We used the classic competitive CCR2 antagonist, BMS22 {2-[(isopropylaminocarbonyl)amino]-N-[2-[[cis-2-[[4-(methylthio)benzoyl]amino]cyclohexyl]amino]-2-oxoethyl]-5-(trifluoromethyl)benzamide}, as positive control and inhibited CCL2-dependent chemotaxis with an IC50 of 18 nM. As negative control, we used a peptide with the same composition as ECL1i, but in a different sequence, d(FKLTLCG). In vivo, ECL1i (4 mg/kg) interfered with CCR2-positive cell recruitment and attenuated disease progression in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. This study establishes ECL1i as the first allosteric inhibitor of CCR2 with functional selectivity. ECL1i is a promising new agent in therapeutic development, and it may, by its selective effect, increase our understanding of CCR2 signaling pathways and functions.-Auvynet, C., Baudesson de Chanville, C., Hermand, P., Dorgham, K., Piesse, C., Pouchy, C., Carlier, L., Poupel, L., Barthélémy, S., Felouzis, V., Lacombe, C., Sagan, S., Salomon, B., Deterre, P., Sennlaub, F., Combadière, C. ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2-dependent migration.
Collapse
Affiliation(s)
- Constance Auvynet
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Camille Baudesson de Chanville
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Patricia Hermand
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Karim Dorgham
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Christophe Piesse
- Sorbonne Universités, UPMC/Univ Paris 06, Institut de Biologie Paris-Seine (IBPS) 3631, CNRS, Service de Synthése Peptidique, Paris, France
| | - Charlotte Pouchy
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Ludovic Carlier
- Sorbonne Universités, UPMC/Univ Paris 06, CNRS, UMR 7203, Laboratoire des Biomolécules, Paris, France
| | - Lucie Poupel
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Sandrine Barthélémy
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Virginie Felouzis
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Claire Lacombe
- Sorbonne Universités, UPMC/Univ Paris 06, CNRS, UMR 7203, Laboratoire des Biomolécules, Paris, France; Ecole Normale Supérieure-Université de Recherche Paris Sciences et Lettres, Département de Chimie, Paris, France; Faculté des Sciences et Technologie, Université Paris Est Créteil-Val de Marne, Créteil, France
| | - Sandrine Sagan
- Sorbonne Universités, UPMC/Univ Paris 06, CNRS, UMR 7203, Laboratoire des Biomolécules, Paris, France
| | | | | | - Benoit Salomon
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Philippe Deterre
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Florian Sennlaub
- Sorbonne Universités, UPMC/ Univ Paris 06, UMRS 968, INSERM, U968, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-Direction des Hôpitaux et de l'Offre de Soins (DHOS), Centre d'Investigation Clinique 503, Paris, France
| | - Christophe Combadière
- *Sorbonne Universités, Université Pierre et Marie Curie (UPMC)/Univ Paris 06, Unité Mixte de Recherche Scientifique (UMRS) 1135, INSERM Unité 1135, Centre National de la Recherche Scientifique, Equipe de Recherche Labellisée (ERL) 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France;
| |
Collapse
|
44
|
Torbeev V, Grogg M, Ruiz J, Boehringer R, Schirer A, Hellwig P, Jeschke G, Hilvert D. Chiral recognition in amyloid fiber growth. J Pept Sci 2016; 22:290-304. [DOI: 10.1002/psc.2861] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Vladimir Torbeev
- Institut de Science et d'Ingénierie Supramoléculaires; International Center for Frontier Research in Chemistry, UMR 7006, Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Marcel Grogg
- Laboratory of Organic Chemistry, ETH Zurich; Vladimir-Prelog-Weg 1-5/10; Zürich CH-8093 Switzerland
| | - Jérémy Ruiz
- Institut de Science et d'Ingénierie Supramoléculaires; International Center for Frontier Research in Chemistry, UMR 7006, Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Régis Boehringer
- Institut de Science et d'Ingénierie Supramoléculaires; International Center for Frontier Research in Chemistry, UMR 7006, Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Alicia Schirer
- Laboratoire de Bioélectrochimie et Spectroscopie; Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg-CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie; Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg-CNRS; 1 rue Blaise Pascal 67070 Strasbourg France
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry; ETH Zurich, Vladimir-Prelog-Weg 1-5/10; Zürich CH-8093 Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich; Vladimir-Prelog-Weg 1-5/10; Zürich CH-8093 Switzerland
| |
Collapse
|
45
|
Pachahara SK, Adicherla H, Nagaraj R. Self-Assembly of Aβ40, Aβ42 and Aβ43 Peptides in Aqueous Mixtures of Fluorinated Alcohols. PLoS One 2015; 10:e0136567. [PMID: 26308214 PMCID: PMC4550328 DOI: 10.1371/journal.pone.0136567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/04/2015] [Indexed: 12/02/2022] Open
Abstract
Fluorinated alcohols such as hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE) have the ability to promote α-helix and β-hairpin structure in proteins and peptides. HFIP has been used extensively to dissolve various amyloidogenic proteins and peptides including Aβ, in order to ensure their monomeric status. In this paper, we have investigated the self-assembly of Aβ40, Aβ42, and Aβ43 in aqueous mixtures of fluorinated alcohols from freshly dissolved stock solutions in HFIP. We have observed that formation of fibrillar and non-fibrillar structures are dependent on the solvent composition. Peptides form fibrils with ease when reconstituted in deionized water from freshly dissolved HFIP stocks. In aqueous mixtures of fluorinated alcohols, either predominant fibrillar structures or clustered aggregates were observed. Aqueous mixtures of 20% HFIP are more favourable for Aβ fibril formation as compared to 20% TFE. When Aβ40, Aβ42, and Aβ43 stocks in HFIP are diluted in 50% aqueous mixtures in phosphate buffer or deionized water followed by slow evaporation of HFIP, Aβ peptides form fibrils in phosphate buffer and deionized water. The clustered structures could be off-pathway aggregates. Aβ40, Aβ42, and Aβ43 showed significant α-helical content in freshly dissolved HFIP stocks. The α-helical conformational intermediate in Aβ40, Aβ42, and Aβ43 could favour the formation of both fibrillar and non-fibrillar aggregates depending on solvent conditions and rate of α-helical to β-sheet transition.
Collapse
Affiliation(s)
| | - Harikrishna Adicherla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
- * E-mail:
| |
Collapse
|
46
|
Giuffrida ML, Tomasello MF, Pandini G, Caraci F, Battaglia G, Busceti C, Di Pietro P, Pappalardo G, Attanasio F, Chiechio S, Bagnoli S, Nacmias B, Sorbi S, Vigneri R, Rizzarelli E, Nicoletti F, Copani A. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons. Front Cell Neurosci 2015; 9:297. [PMID: 26300732 PMCID: PMC4528168 DOI: 10.3389/fncel.2015.00297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022] Open
Abstract
ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice.
Collapse
Affiliation(s)
- Maria L Giuffrida
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Marianna F Tomasello
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; PhD Program in Neuropharmacology, University of Catania Catania, Italy
| | - Giuseppe Pandini
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; Department of Clinical and Molecular Biomedicine, University of Catania Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania Catania, Italy ; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging Troina, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy
| | - Carla Busceti
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy
| | - Paola Di Pietro
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy
| | - Giuseppe Pappalardo
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Francesco Attanasio
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania Catania, Italy
| | | | | | - Sandro Sorbi
- NEUROFARBA, University of Florence Florence, Italy
| | - Riccardo Vigneri
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; Department of Clinical and Molecular Biomedicine, University of Catania Catania, Italy
| | - Enrico Rizzarelli
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy ; Department of Human Physiology and Pharmacology, University "La Sapienza" Rome, Italy
| | - Agata Copani
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; Department of Drug Sciences, University of Catania Catania, Italy
| |
Collapse
|
47
|
Shinoda K, Sohma Y, Kanai M. Synthesis of chemically-tethered amyloid-β segment trimer possessing amyloidogenic properties. Bioorg Med Chem Lett 2015; 25:2976-9. [DOI: 10.1016/j.bmcl.2015.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 11/15/2022]
|
48
|
Kumar J, Namsechi R, Sim VL. Structure-Based Peptide Design to Modulate Amyloid Beta Aggregation and Reduce Cytotoxicity. PLoS One 2015; 10:e0129087. [PMID: 26070139 PMCID: PMC4466325 DOI: 10.1371/journal.pone.0129087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/05/2015] [Indexed: 11/19/2022] Open
Abstract
The deposition of Aβ peptide in the brain is the key event in Alzheimer disease progression. Therefore, the prevention of Aβ self assembly into disease-associated oligomers is a logical strategy for treatment. π stacking is known to provide structural stability to many amyloids; two phenylalanine residues within the Aβ 14–23 self recognition element are in such an arrangement in many solved structures. Therefore, we targeted this structural stacking by substituting these two phenylalanine residues with their D-enantiomers. The resulting peptides were able to modulate Aβ aggregation in vitro and reduce Aβ cytotoxicity in primary neuronal cultures. Using kinetic analysis of fibril formation, electron microscopy and dynamic light scattering characterization of oligomer size distributions, we demonstrate that, in addition to altering fibril structural characteristics, these peptides can induce the formation of larger amorphous aggregates which are protective against toxic oligomers, possibly because they are able to sequester the toxic oligomers during co-incubation. Alternatively, they may alter the surface structure of the oligomers such that they can no longer interact with cells to induce toxic pathways.
Collapse
Affiliation(s)
- Jitendra Kumar
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Risa Namsechi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
- Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
49
|
Hamada Y, Miyamoto N, Kiso Y. Novel β-amyloid aggregation inhibitors possessing a turn mimic. Bioorg Med Chem Lett 2015; 25:1572-6. [DOI: 10.1016/j.bmcl.2015.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
50
|
Kumar J, Sim V. D-amino acid-based peptide inhibitors as early or preventative therapy in Alzheimer disease. Prion 2015; 8:119-24. [PMID: 24553069 DOI: 10.4161/pri.28220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Beta amyloid (Aβ) accumulation is recognized as a hallmark of Alzheimer disease (AD) pathology and the aggregation of Aβ peptide is hypothesized to drive pathogenesis. As such, Aβ is a logical target for therapeutic intervention and there have been many studies looking at diverse classes of drugs that target Aβ. Of concern is the recent failure of several clinical trials, highlighting the need for earlier, possibly preventative intervention, and raising the question of what form of Aβ is the best target. The Aβ oligomers are considered to be the toxic species, but many therapies, such as antibody therapies, target monomers, removing them as substrates for aggregation. Peptide inhibitors, in contrast, are able to interfere with the aggregation process itself. Designing peptide inhibitors requires some knowledge of Aβ structure; while there is structural information about the amyloid core of Aβ fibrils, the transient nature of oligomers makes them difficult to characterize. Fortunately, some interaction sites have been identified between monomers and oligomers of Aβ and these, plus known aggregation-prone sequences in Aβ, can serve as a basis for inhibitor design. In this mini-review we focus on D-amino acid based peptide inhibitors and discuss how their non-toxic and stable nature can be beneficial, while they specifically target aggregation-prone sequences within the Aβ peptide. Many peptide inhibitors have been designed using the LVFFA domain within Aβ to disrupt the self-assembly of Aβ peptide. While this may be sufficient to stop aggregation in vitro, other aggregation sites at the C-terminus may promote aggregation independently and the flexible N terminus may be a good target to induce clearance of aggregates. Ultimately, it may be a combination of targets that provides the best therapeutic strategy.
Collapse
|