1
|
Nguyen LH, Sharma M, Bordey A. 4E-BP1 expression in embryonic postmitotic neurons mitigates mTORC1-induced cortical malformations and behavioral seizure severity but does not prevent epilepsy in mice. Front Neurosci 2023; 17:1257056. [PMID: 37680968 PMCID: PMC10480503 DOI: 10.3389/fnins.2023.1257056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway during neurodevelopment leads to focal cortical malformations associated with intractable seizures. Recent evidence suggests that dysregulated cap-dependent translation downstream of mTORC1 contributes to cytoarchitectural abnormalities and seizure activity. Here, we examined whether reducing cap-dependent translation by expressing a constitutively active form of the translational repressor, 4E-BP1, downstream of mTORC1 would prevent the development of cortical malformations and seizures. 4E-BP1CA was expressed embryonically either in radial glia (neural progenitor cells) that generate cortical layer 2/3 pyramidal neurons or in migrating neurons destined to layer 2/3 using a conditional expression system. In both conditions, 4E-BP1CA expression reduced mTORC1-induced neuronal hypertrophy and alleviated cortical mislamination, but a subset of ectopic neurons persisted in the deep layers and the white matter. Despite the above improvements, 4E-BP1CA expression in radial glia had no effects on seizure frequency and further exacerbated behavioral seizure severity associated with mTORC1 hyperactivation. In contrast, conditional 4E-BP1CA expression in migratory neurons mitigated the severity of behavioral seizures but the seizure frequency remained unchanged. These findings advise against targeting 4E-BPs by 4E-BP1CA expression during embryonic development for seizure prevention and suggest the presence of a development-dependent role for 4E-BPs in mTORC1-induced epilepsy.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Manas Sharma
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, United States
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Nguyen LH, Xu Y, Mahadeo T, Zhang L, Lin TV, Born HA, Anderson AE, Bordey A. Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy. Brain 2022; 145:1310-1325. [PMID: 34849602 PMCID: PMC9128821 DOI: 10.1093/brain/awab390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperactivation of the mTOR pathway during foetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR signalling in the formation of focal malformation of cortical development and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics because these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient focal malformation of cortical development tissue and in a mouse model of focal malformation of cortical development. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by focal malformation of cortical development in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern and aberrant expression of HCN4 ion channels. Further, 4E-BP1 expression in juvenile focal malformation of cortical development mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat focal malformation of cortical development-related epilepsy during childhood with potentially long-lasting effects in adults.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Travorn Mahadeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tiffany V Lin
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heather A Born
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne E Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Zárybnický T, Heikkinen A, Kangas SM, Karikoski M, Martínez-Nieto GA, Salo MH, Uusimaa J, Vuolteenaho R, Hinttala R, Sipilä P, Kuure S. Modeling Rare Human Disorders in Mice: The Finnish Disease Heritage. Cells 2021; 10:cells10113158. [PMID: 34831381 PMCID: PMC8621025 DOI: 10.3390/cells10113158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
The modification of genes in animal models has evidently and comprehensively improved our knowledge on proteins and signaling pathways in human physiology and pathology. In this review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse models have greatly facilitated the understanding of the pathological manifestations of these diseases and how some of the diseases still lack proper models. We urge the establishment of subsequent international consortiums to cooperatively plan and carry out future human disease modeling strategies. Detailed information on disease mechanisms brings along broader understanding of the molecular pathways they act along both parallel and transverse to the proteins affected in rare diseases, therefore also aiding understanding of common disease pathologies.
Collapse
Affiliation(s)
- Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
| | - Anne Heikkinen
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
| | - Salla M. Kangas
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Marika Karikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
| | - Guillermo Antonio Martínez-Nieto
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Miia H. Salo
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Clinic for Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
| | - Reetta Vuolteenaho
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| |
Collapse
|
4
|
Morozumi Y, Hishinuma A, Furusawa S, Sofyantoro F, Tatebe H, Shiozaki K. Fission yeast TOR complex 1 phosphorylates Psk1 through an evolutionarily conserved interaction mediated by the TOS motif. J Cell Sci 2021; 134:272450. [PMID: 34499159 PMCID: PMC8542387 DOI: 10.1242/jcs.258865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
TOR complex 1 (TORC1) is a multi-subunit protein kinase complex that controls cellular growth in response to environmental cues. The regulatory subunits of mammalian TORC1 (mTORC1) include RAPTOR (also known as RPTOR), which recruits mTORC1 substrates, such as S6K1 (also known as RPS6KB1) and 4EBP1 (EIF4EBP1), by interacting with their TOR signaling (TOS) motif. Despite the evolutionary conservation of TORC1, no TOS motif has been described in lower eukaryotes. In the present study, we show that the fission yeast S6 kinase Psk1 contains a TOS motif that interacts with Mip1, a RAPTOR ortholog. The TOS motif in Psk1 resembles those in mammals, including the conserved phenylalanine and aspartic acid residues essential for the Mip1 interaction and TORC1-dependent phosphorylation of Psk1. The binding of the TOS motif to Mip1 is dependent on Mip1 Tyr-533, whose equivalent in RAPTOR is known to interact with the TOS motif in their co-crystals. Furthermore, we utilized the mip1-Y533A mutation to screen the known TORC1 substrates in fission yeast and successfully identified Atg13 as a novel TOS-motif-containing substrate. These results strongly suggest that the TOS motif represents an evolutionarily conserved mechanism of the substrate recognition by TORC1. Summary: By analyzing S6 kinase in fission yeast, we have demonstrated that the TOR signaling (TOS) motif-mediated substrate recognition by TOR complex 1 is conserved from yeast to humans.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ai Hishinuma
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, Daisen, Akita 019-2112, Japan
| | - Suguru Furusawa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Hisashi Tatebe
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Control of the eIF4E activity: structural insights and pharmacological implications. Cell Mol Life Sci 2021; 78:6869-6885. [PMID: 34541613 PMCID: PMC8558276 DOI: 10.1007/s00018-021-03938-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E–eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.
Collapse
|
6
|
Böhm R, Imseng S, Jakob RP, Hall MN, Maier T, Hiller S. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Mol Cell 2021; 81:2403-2416.e5. [PMID: 33852892 DOI: 10.1016/j.molcel.2021.03.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.
Collapse
Affiliation(s)
- Raphael Böhm
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Stefan Imseng
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | | |
Collapse
|
7
|
Azar WS, Njeim R, Fares AH, Azar NS, Azar ST, El Sayed M, Eid AA. COVID-19 and diabetes mellitus: how one pandemic worsens the other. Rev Endocr Metab Disord 2020; 21:451-463. [PMID: 32743793 PMCID: PMC7395898 DOI: 10.1007/s11154-020-09573-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In light of the most challenging public health crisis of modern history, COVID-19 mortality continues to rise at an alarming rate. Patients with co-morbidities such as hypertension, cardiovascular disease, and diabetes mellitus (DM) seem to be more prone to severe symptoms and appear to have a higher mortality rate. In this review, we elucidate suggested mechanisms underlying the increased susceptibility of patients with diabetes to infection with SARS-CoV-2 with a more severe COVID-19 disease. The worsened prognosis of COVID-19 patients with DM can be attributed to a facilitated viral uptake assisted by the host's receptor angiotensin-converting enzyme 2 (ACE2). It can also be associated with a higher basal level of pro-inflammatory cytokines present in patients with diabetes, which enables a hyperinflammatory "cytokine storm" in response to the virus. This review also suggests a link between elevated levels of IL-6 and AMPK/mTOR signaling pathway and their role in exacerbating diabetes-induced complications and insulin resistance. If further studied, these findings could help identify novel therapeutic intervention strategies for patients with diabetes comorbid with COVID-19.
Collapse
Affiliation(s)
- William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Rachel Njeim
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Angie H Fares
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Nadim S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Sami T Azar
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
- Department of Internal Medicine, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mazen El Sayed
- Department of Emergency Medicine, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon.
- AUB Diabetes, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
8
|
Aashaq S, Batool A, Andrabi KI. TAK1 mediates convergence of cellular signals for death and survival. Apoptosis 2020; 24:3-20. [PMID: 30288639 DOI: 10.1007/s10495-018-1490-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
TGF-β activated kinase 1, a MAPK kinase kinase family serine threonine kinase has been implicated in regulating diverse range of cellular processes that include embryonic development, differentiation, autophagy, apoptosis and cell survival. TAK1 along with its binding partners TAB1, TAB2 and TAB3 displays a complex pattern of regulation that includes serious crosstalk with major signaling pathways including the C-Jun N-terminal kinase (JNK), p38 MAPK, and I-kappa B kinase complex (IKK) involved in establishing cellular commitments for death and survival. This review also highlights how TAK1 orchestrates regulation of energy homeostasis via AMPK and its emerging role in influencing mTORC1 pathway to regulate death or survival in tandem.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Asiya Batool
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Khurshid I Andrabi
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| |
Collapse
|
9
|
Batool A, Majeed ST, Aashaq S, Majeed R, Bhat NN, Andrabi KI. Eukaryotic initiation factor 4E is a novel effector of mTORC1 signaling pathway in cross talk with Mnk1. Mol Cell Biochem 2019; 465:13-26. [DOI: 10.1007/s11010-019-03663-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
|
10
|
Choi S, Sadra A, Kang J, Ryu JR, Kim JH, Sun W, Huh SO. Farnesylation-defective Rheb Increases Axonal Length Independently of mTORC1 Activity in Embryonic Primary Neurons. Exp Neurobiol 2019; 28:172-182. [PMID: 31138988 PMCID: PMC6526111 DOI: 10.5607/en.2019.28.2.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/01/2023] Open
Abstract
Rheb (Ras homolog enriched in the brain) is a small GTPase protein that plays an important role in cell signaling for development of the neocortex through modulation of mTORC1 (mammalian-target-of-rapamycin-complex-1) activity. mTORC1 is known to control various biological processes including axonal growth in forming complexes at the lysosomal membrane compartment. As such, anchoring of Rheb on the lysosomal membrane via the farnesylation of Rheb at its cysteine residue (C180) is required for its promotion of mTOR activity. To test the significance of Rheb farnesylation, we overexpressed a farnesylation mutant form of Rheb, Rheb C180S, in primary rat hippocampal neurons and also in mouse embryonic neurons using in utero electroporation. Interestingly, we found that Rheb C180S maintained promotional effect of axonal elongation similar to the wild-type Rheb in both test systems. On the other hand, Rheb C180S failed to exhibit the multiple axon-promoting effect which is found in wild-type Rheb. The levels of phospho-4EBP1, a downstream target of mTORC1, were surprisingly increased in Rheb C180S transfected neurons, despite the levels of phosphorylated mTOR being significantly decreased compared to control vector transfectants. A specific mTORC1 inhibitor, rapamycin, also could not completely abolish axon elongation characteristics of Rheb C180S in transfected cells. Our data suggests that Rheb in a non-membrane compartment can promote the axonal elongation via phosphorylation of 4EBP1 and through an mTORC1-independent pathway.
Collapse
Affiliation(s)
- Seunghyuk Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - June Hoan Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
11
|
Normalizing translation through 4E-BP prevents mTOR-driven cortical mislamination and ameliorates aberrant neuron integration. Proc Natl Acad Sci U S A 2016; 113:11330-11335. [PMID: 27647922 DOI: 10.1073/pnas.1605740113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hyperactive mammalian target of rapamycin complex 1 (mTORC1) is a shared molecular hallmark in several neurodevelopmental disorders characterized by abnormal brain cytoarchitecture. The mechanisms downstream of mTORC1 that are responsible for these defects remain unclear. We show that focally increasing mTORC1 activity during late corticogenesis leads to ectopic placement of upper-layer cortical neurons that does not require altered signaling in radial glia and is accompanied by changes in layer-specific molecular identity. Importantly, we found that decreasing cap-dependent translation by expressing a constitutively active mutant of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) prevents neuronal misplacement and soma enlargement, while partially rescuing dendritic hypertrophy induced by hyperactive mTORC1. Furthermore, overactivation of translation alone through knockdown of 4E-BP2 was sufficient to induce neuronal misplacement. These data show that many aspects of abnormal brain cytoarchitecture can be prevented by manipulating a single intracellular process downstream of mTORC1, cap-dependent translation.
Collapse
|
12
|
Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation. Proc Natl Acad Sci U S A 2016; 113:8466-71. [PMID: 27402756 DOI: 10.1073/pnas.1607768113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin (mTOR)-directed eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation promotes cap-dependent translation and tumorigenesis. During mitosis, cyclin-dependent kinase 1 (CDK1) substitutes for mTOR and fully phosphorylates 4E-BP1 at canonical sites (T37, T46, S65, and T70) and the noncanonical S83 site, resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. Although S83 phosphorylation of 4E-BP1 does not affect general cap-dependent translation, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus small T antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain of function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.
Collapse
|
13
|
Gong X, Zhang L, Huang T, Lin TV, Miyares L, Wen J, Hsieh L, Bordey A. Activating the translational repressor 4E-BP or reducing S6K-GSK3β activity prevents accelerated axon growth induced by hyperactive mTOR in vivo. Hum Mol Genet 2015. [PMID: 26220974 DOI: 10.1093/hmg/ddv295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abnormal axonal connectivity and hyperactive mTOR complex 1 (mTORC1) are shared features of several neurological disorders. Hyperactive mTORC1 alters axon length and polarity of hippocampal neurons in vitro, but the impact of hyperactive mTORC1 on axon growth in vivo and the mechanisms underlying those effects remain unclear. Using in utero electroporation during corticogenesis, we show that increasing mTORC1 activity accelerates axon growth without multiple axon formation. This was prevented by counteracting mTORC1 signaling through p70S6Ks (S6K1/2) or eukaryotic initiation factor 4E-binding protein (4E-BP1/2), which both regulate translation. In addition to regulating translational targets, S6K1 indirectly signals through GSK3β, a regulator of axogenesis. Although blocking GSK3β activity did not alter axon growth under physiological conditions in vivo, blocking it using a dominant-negative mutant or lithium chloride prevented mTORC1-induced accelerated axon growth. These data reveal the contribution of translational and non-translational downstream effectors such as GSK3β to abnormal axon growth in neurodevelopmental mTORopathies and open new therapeutic options for restoring long-range connectivity.
Collapse
Affiliation(s)
- Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, 85 Xiangya Street, Changsha 410008, China, Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 85 Xiangya Street, Changsha 410008, China, Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Tianxiang Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 85 Xiangya Street, Changsha 410008, China, Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Tiffany V Lin
- Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Laura Miyares
- Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - John Wen
- Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Lawrence Hsieh
- Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Angélique Bordey
- Department of Neurosurgery and Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| |
Collapse
|
14
|
Sepulveda PV, Bush ED, Baar K. Pharmacology of manipulating lean body mass. Clin Exp Pharmacol Physiol 2015; 42:1-13. [PMID: 25311629 PMCID: PMC4383600 DOI: 10.1111/1440-1681.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
Abstract
Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts. Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health. With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development. The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader.
Collapse
Affiliation(s)
- Patricio V Sepulveda
- Department of Physiology, Monash University, Monash College Wellington Rd, Melbourne Victoria, Australia
| | - Ernest D Bush
- Akashi Therapeutics, Cambridge, MA, University of California Davis, Davis, CA, USA
| | - Keith Baar
- Departments of Neurobiology, Physiology and Behaviour and Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
15
|
mTOR Signaling in Protein Translation Regulation: Implications in Cancer Genesis and Therapeutic Interventions. Mol Biol Int 2014; 2014:686984. [PMID: 25505994 PMCID: PMC4258317 DOI: 10.1155/2014/686984] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022] Open
Abstract
mTOR is a central nutrient sensor that signals a cell to grow and proliferate. Through distinct protein complexes it regulates different levels of available cellular energy substrates required for cell growth. One of the important functions of the complex is to maintain available amino acid pool by regulating protein translation. Dysregulation of mTOR pathway leads to aberrant protein translation which manifests into various pathological states. Our review focuses on the role mTOR signaling plays in protein translation and its physiological role. It also throws some light on available data that show translation dysregulation as a cause of pathological complexities like cancer and the available drugs that target the pathway for cancer treatment.
Collapse
|
16
|
Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. Cell Rep 2013; 5:433-44. [PMID: 24139800 DOI: 10.1016/j.celrep.2013.09.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/14/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates signals important for cell growth, and its dysregulation in neural stem cells (NSCs) is implicated in several neurological disorders associated with abnormal neurogenesis and brain size. However, the function of mTORC1 on NSC self-renewal and the downstream regulatory mechanisms are ill defined. Here, we found that genetically decreasing mTORC1 activity in neonatal NSCs prevented their differentiation, resulting in reduced lineage expansion and aborted neuron production. Constitutive activation of the translational repressor 4E-BP1, which blocked cap-dependent translation, had similar effects and prevented hyperactive mTORC1 induction of NSC differentiation and promoted self-renewal. Although 4E-BP2 knockdown promoted NSC differentiation, p70 S6 kinase 1 and 2 (S6K1/S6K2) knockdown did not affect NSC differentiation but reduced NSC soma size and prevented hyperactive mTORC1-induced increase in soma size. These data demonstrate a crucial role of mTORC1 and 4E-BP for switching on and off cap-dependent translation in NSC differentiation.
Collapse
Affiliation(s)
- Nathaniel W Hartman
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA
| | | | | | | | | | | |
Collapse
|
17
|
Martineau Y, Azar R, Bousquet C, Pyronnet S. Anti-oncogenic potential of the eIF4E-binding proteins. Oncogene 2012; 32:671-7. [DOI: 10.1038/onc.2012.116] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Zhang Z, Zhang G, Xu X, Su W, Yu B. mTOR-rictor is the Ser473 kinase for AKT1 in mouse one-cell stage embryos. Mol Cell Biochem 2011; 361:249-57. [PMID: 22057724 DOI: 10.1007/s11010-011-1110-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/07/2011] [Indexed: 11/30/2022]
Abstract
Mammalian target of rapamycin (mTOR) controls cell growth and proliferation via the raptor-mTOR (TORC1) and rictor-mTOR (TORC2) protein complexes. The mTORC2 containing mTOR and rictor is thought to be rapamycin insensitive and it is recently shown that both rictor and mTORC2 are essential for the development of both embryonic and extra embryonic tissues. To explore rictor function in the early development of mouse embryos, we disrupted the expression of rictor, a specific component of mTORC2, in mouse fertilized eggs by using rictor shRNA. Our results showed that one-cell stage eggs that were lack of rictor could not enter into the two-cell stage normally. Recent biochemical studies suggests that TORC2 is the elusive PDK2 (3'-phosphoinositide-dependent kinase 2) for AKT/PKB Ser473 phosphorylation, which is deemed necessary for AKT function, so we microinjected AKT-S473A into mouse fertilized eggs to investigate whether AKT-S473A is downstream effector of mTOR.rictor to regulate the mitotic division. Our findings revealed that the rictor induced phosphorylation of AKT in Ser473 is required for TORC2 function in early development of mouse embryos.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Urology, No. 1 Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Abstract
The mammalian target of rapamycin (mTOR) is a central controller of cell growth and proliferation. mTOR forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is regulated by multiple signals such as growth factors, amino acids, and cellular energy and regulates numerous essential cellular processes including translation, transcription, and autophagy. The AMP-activated protein kinase (AMPK) is a cellular energy sensor and signal transducer that is regulated by a wide array of metabolic stresses. These two pathways serve as a signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth, and dysregulation of each pathway may contribute to the development of metabolic disorders such as obesity, type 2 diabetes, and cancer. This review focuses on our current understanding of the relationship between AMPK and mTORC1 signaling and discusses their roles in cellular and organismal energy homeostasis.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
20
|
Rapley J, Oshiro N, Ortiz-Vega S, Avruch J. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling. J Biol Chem 2011; 286:38043-38053. [PMID: 21914810 DOI: 10.1074/jbc.m111.245449] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insulin activation of mTOR complex 1 is accompanied by enhanced binding of substrates. We examined the mechanism and contribution of this enhancement to insulin activation of mTORC1 signaling in 293E and HeLa cells. In 293E, insulin increased the amount of mTORC1 retrieved by the transiently expressed nonphosphorylatable 4E-BP[5A] to an extent that varied inversely with the amount of PRAS40 bound to mTORC1. RNAi depletion of PRAS40 enhanced 4E-BP[5A] binding to ∼70% the extent of maximal insulin, and PRAS40 RNAi and insulin together did not increase 4E-BP[5A] binding beyond insulin alone, suggesting that removal of PRAS40 from mTORC1 is the predominant mechanism of an insulin-induced increase in substrate access. As regards the role of increased substrate access in mTORC1 signaling, RNAi depletion of PRAS40, although increasing 4E-BP[5A] binding, did not stimulate phosphorylation of endogenous mTORC1 substrates S6K1(Thr(389)) or 4E-BP (Thr(37)/Thr(46)), the latter already ∼70% of maximal in amino acid replete, serum-deprived 293E cells. In HeLa cells, insulin and PRAS40 RNAi also both enhanced the binding of 4E-BP[5A] to raptor but only insulin stimulated S6K1 and 4E-BP phosphorylation. Furthermore, Rheb overexpression in 293E activated mTORC1 signaling completely without causing PRAS40 release. In the presence of Rheb and insulin, PRAS40 release is abolished by Akt inhibition without diminishing mTORC1 signaling. In conclusion, dissociation of PRAS40 from mTORC1 and enhanced mTORC1 substrate binding results from Akt and mTORC1 activation and makes little or no contribution to mTORC1 signaling, which rather is determined by Rheb activation of mTOR catalytic activity, through mechanisms that remain to be fully elucidated.
Collapse
Affiliation(s)
- Joseph Rapley
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
| | - Noriko Oshiro
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
| | - Sara Ortiz-Vega
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
| | - Joseph Avruch
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114.
| |
Collapse
|
21
|
Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. J Virol 2011; 85:9369-76. [PMID: 21734039 DOI: 10.1128/jvi.05102-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is present in 2 functionally distinct complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). Active mTORC1 mediates phosphorylation of eIF4E-binding protein (4E-BP) and p70 S6 kinase (S6K), which is important for maintaining translation. During human cytomegalovirus (HCMV) infection, cellular stress responses are activated that normally inhibit mTORC1; however, previous data show that HCMV infection circumvents stress responses and maintains mTOR kinase activity. Amino acid deprivation is a stress response that normally inhibits mTORC1 activity. Amino acids can signal to mTORC1 through the Rag proteins, which promote the colocalization of mTORC1 with its activator Rheb-GTP in a perinuclear region, thereby inducing 4E-BP and S6K phosphorylation. As expected, our results show that amino acid depletion in mock-infected cells caused loss of mTORC1 activity and loss of the perinuclear localization; however, there was no loss of activity or perinuclear localization in HCMV-infected cells where the perinuclear localization of Rheb-GTP and mTOR coincided with the perinuclear assembly compartment (AC). This suggested that HCMV infection bypasses normal Rag-dependent amino acid signaling. This was demonstrated by short hairpin RNA (shRNA) depletion of Rag proteins, which had little effect on mTORC1 activity in infected cells but inhibited activity in mock-infected cells. Our data show that HCMV maintains mTORC1 activity in an amino acid- and Rag-independent manner through the colocalization of mTOR and Rheb-GTP, which occurs in association with the formation of the AC, thus bypassing inhibition that may result from lowered amino acid levels.
Collapse
|
22
|
mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol Cell Biol 2011; 31:2787-801. [PMID: 21576368 DOI: 10.1128/mcb.05437-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) functions as an environmental sensor to promote critical cellular processes such as protein synthesis, cell growth, and cell proliferation in response to growth factors and nutrients. While diverse stimuli regulate mTORC1 signaling, the direct molecular mechanisms by which mTORC1 senses and responds to these signals remain poorly defined. Here we investigated the role of mTOR phosphorylation in mTORC1 function. By employing mass spectrometry and phospho-specific antibodies, we demonstrated novel phosphorylation on S2159 and T2164 within the mTOR kinase domain. Mutational analysis of these phosphorylation sites indicates that dual S2159/T2164 phosphorylation cooperatively promotes mTORC1 signaling to S6K1 and 4EBP1. Mechanistically, S2159/T2164 phosphorylation modulates the mTOR-raptor and raptor-PRAS40 interactions and augments mTORC1-associated mTOR S2481 autophosphorylation. Moreover, mTOR S2159/T2164 phosphorylation promotes cell growth and cell cycle progression. We propose a model whereby mTOR kinase domain phosphorylation modulates the interaction of mTOR with regulatory partner proteins and augments intrinsic mTORC1 kinase activity to promote biochemical signaling, cell growth, and cell cycle progression.
Collapse
|
23
|
Rüegg MA, Glass DJ. Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol 2011; 51:373-95. [PMID: 20936944 DOI: 10.1146/annurev-pharmtox-010510-100537] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of muscle mass can be the consequence of pathological changes, as observed in muscular dystrophies; or it can be secondary to cachexia-inducing diseases that cause muscle atrophy, such as cancer, heart disease, or chronic obstructive pulmonary disease; or it can be a consequence of aging or simple disuse. Although muscular dystrophies are rare, muscle loss affects millions of people worldwide. We discuss the molecular mechanisms involved in muscular dystrophy and in muscle atrophy and present current strategies aimed at ameliorating these diseases. Finally, we discuss whether lessons learned from studying muscular dystrophies will also be helpful for halting muscle loss secondary to nondystrophic diseases and whether strategies to halt muscle atrophy have potential for the treatment of muscular dystrophies.
Collapse
|
24
|
PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 2011; 346:267-78. [PMID: 20593312 DOI: 10.1007/82_2010_78] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Activation of the PI3 kinase pathway can induce skeletal muscle hypertrophy, defined as an increase in skeletal muscle mass. In mammals, skeletal muscle hypertrophy occurs as a result of an increase in the size, as opposed to the number, of pre-existing skeletal muscle fibers. This pathway's effects on skeletal muscle have been implicated most prominently downstream of Insulin-like growth factor 1 signaling. IGF-1's pro-hypertrophy activity comes predominantly through its ability to activate the Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Akt is a serine-threonine protein kinase that can induce protein synthesis and block the transcriptional upregulation of key mediators of skeletal muscle atrophy, the E3 ubiquitin ligases MuRF1 and MAFbx (also called Atrogin-1), by phosphorylating and thereby inhibiting the nuclear translocation of the FOXO (also called "forkhead") family of transcription factors. Once phosphorylated by Akt, the FOXOs are excluded from the nucleus, and upregulation of MuRF1 and MAFbx is blocked. MuRF1 and MAFbx mediate atrophy by ubiquitinating particular protein substrates, causing them to undergo degradation by the proteasome. MuRF1's substrates include several components of the sarcomeric thick filament, including Myosin Heavy Chain (MyHC). Thus, by blocking MuRF1 activation, IGF-1 helps prevent the breakdown of the thick filament under atrophy conditions.IGF1/PI3K/Akt signaling also can dominantly inhibit the effects of a secreted protein called "myostatin," which is a member of the TGFβ family of proteins. Deletion or inhibition of myostatin causes an increase in skeletal muscle size, because myostatin acts both to inhibit myoblast differentiation and to block the Akt pathway. Thus by blocking myostatin, PI3K/Akt activation stimulates differentiation and protein synthesis by this distinct mechanism. Myostatin induces the phosphorylation and activation of the transcription factors of Smad2 and Smad3, downstream of the ActRII (Activin Receptor type II)/Alk (Activin Receptor-like kinase) receptor complex. Other TGFβ-like molecules can also block differentiation, including TGF-b1, GDF-11, activinA, BMP-2 and BMP-7. As mentioned, myostatin also downregulates the Akt/mTOR/p70S6 protein synthesis pathway, which mediates both differentiation in myoblasts and hypertrophy in myotubes. Blockade of the Akt/mTOR pathway, using siRNA to RAPTOR, a component of "TORC1" (TOR signaling Complex 1), increases myostatin-induced phosphorylation of Smad2; this establishes a "feed-forward mechanism," because myostatin can downregulates TORC1, and this downregulation in turn amplifies myostatin signaling. Blockade of RAPTOR also facilitates myostatin's inhibition of muscle differentiation. When added to post-differentiated myotubes, myostatin causes a decrease in their diameter - however, this does not happen through the normal "atrophy pathway." Rather than causing upregulation of the E3 ubiquitin ligases MuRF1 and MAFbx, previously shown to mediate skeletal muscle atrophy, myostatin decreases expression of these atrophy markers in differentiated myotubes, as well as other genes normally upregulated during differentiation, such as MyoD and myogenin. These findings show that myostatin signaling acts by blocking genes induced during differentiation, even in a myotube, as opposed to activating the distinct "atrophy program."
Collapse
|
25
|
Sun C, Southard C, Witonsky DB, Kittler R, Di Rienzo A. Allele-specific down-regulation of RPTOR expression induced by retinoids contributes to climate adaptations. PLoS Genet 2010; 6:e1001178. [PMID: 21060808 PMCID: PMC2965758 DOI: 10.1371/journal.pgen.1001178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022] Open
Abstract
The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation. Climate has exerted strong selective pressures in human populations during their dispersal, and signatures of these adaptations are still detectable in the geographic distribution of polymorphisms. RPTOR is a key component of the mechanistic target of rapamycin pathway, which regulates cell growth, metabolism, and immune response; and its deregulation is associated with human diseases, including cancer and diabetes. Previous studies showed that variation in RPTOR carry strong signatures of adaptations to different climates. Here, we used evolutionary genetics approaches coupled with transcription factor motif data mining to refine the location of the selection target. We then used functional assays to show that the selected polymorphism resides in a sequence element that regulates gene expression levels in response to retinoids. The derived allele at this SNP, which results in lower expression levels, increases in frequency with decreasing temperatures, consistent with the notion that it confers a selective advantage in colder climates possibly through its effects on energy metabolism or immune response. These results suggest a novel regulatory role for retinoids in MTOR signaling. Moreover, they support the proposal that evolutionary approaches can be informative for SNP functional annotation.
Collapse
Affiliation(s)
- Chang Sun
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Catherine Southard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Ralf Kittler
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
26
|
Dey N, Ghosh-Choudhury N, Das F, Li X, Venkatesan B, Barnes JL, Kasinath BS, Ghosh Choudhury G. PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy. J Cell Physiol 2010; 225:27-41. [PMID: 20629086 DOI: 10.1002/jcp.22186] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy manifests aberrant activation of TORC1, which senses key signals to modulate protein synthesis and renal hypertrophy. PRAS40 has recently been identified as a raptor-interacting protein and is a component and a constitutive inhibitor of TORC1. The mechanism by which high glucose stimulates TORC1 activity is not known. PRAS40 was identified in the mesangial cells in renal glomeruli and in tubulointerstitium of rat kidney. Streptozotocin-induced diabetic renal hypertrophy was associated with phosphorylation of PRAS40 in the cortex and glomeruli. In vitro, high glucose concentration increased PRAS40 phosphorylation in a PI 3 kinase- and Akt-dependent manner, resulting in dissociation of raptor-PRAS40 complex in mesangial cells. High glucose augmented the inactivating and activating phosphorylation of 4EBP-1 and S6 kinase, respectively, with concomitant induction of protein synthesis and hypertrophy. Expression of TORC1-nonphosphorylatable mutant of 4EBP-1 and dominant-negative S6 kinase significantly inhibited high glucose-induced protein synthesis and hypertrophy. PRAS40 knockdown mimicked the effect of high glucose on phosphorylation of 4EBP-1 and S6 kinase, protein synthesis, and hypertrophy. To elucidate the role of PRAS40 phosphorylation, we used phosphorylation-deficient mutant of PRAS40, which in contrast to PRAS40 knockdown inhibited phosphorylation of 4EBP-1 and S6 kinase, leading to reduced mesangial cell hypertrophy. Thus, our data identify high glucose-induced phosphorylation and inactivation of PRAS40 as a central node for mesangial cell hypertrophy in diabetic nephropathy.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci U S A 2010; 107:11823-8. [PMID: 20543138 DOI: 10.1073/pnas.1005188107] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Synthesis of tRNA and 5S rRNA by RNA polymerase (pol) III is regulated by the mTOR pathway in mammalian cells. The mTOR kinase localizes to tRNA and 5S rRNA genes, providing an opportunity for direct control. Its presence at these sites can be explained by interaction with TFIIIC, a DNA-binding factor that recognizes the promoters of these genes. TFIIIC contains a TOR signaling motif that facilitates its association with mTOR. Maf1, a repressor that binds and inhibits pol III, is phosphorylated in a mTOR-dependent manner both in vitro and in vivo at serine 75, a site that contributes to its function as a transcriptional inhibitor. Proximity ligation assays confirm the interaction of mTOR with Maf1 and TFIIIC in nuclei. In contrast to Maf1 regulation in yeast, no evidence is found for nuclear export of Maf1 in response to mTOR signaling in HeLa cells. We conclude that mTOR associates with TFIIIC, is recruited to pol III-transcribed genes, and relieves their repression by Maf1.
Collapse
|
28
|
Burgos SA, Cant JP. IGF-1 stimulates protein synthesis by enhanced signaling through mTORC1 in bovine mammary epithelial cells. Domest Anim Endocrinol 2010; 38:211-21. [PMID: 20163929 DOI: 10.1016/j.domaniend.2009.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/12/2009] [Accepted: 10/15/2009] [Indexed: 11/23/2022]
Abstract
Using the MAC-T cell line as a model, the effects of insulin-like growth factor (IGF)-1 on the regulation of protein synthesis through the mammalian target of rapamycin complex 1 (mTORC1) signaling in bovine mammary epithelial cells were evaluated. Global rates of protein synthesis increased by 47% within 30 min of IGF-1 treatment. The effect of IGF-1 on protein synthesis was associated with enhanced association of the eukaryotic initiation factor (eIF) 4E with eIF4G and a concomitant reduction of eIF4E association with eIF4E-binding protein-1 (4E-BP1). There was a progressive increase in the phosphorylation state of ribosomal protein S6 kinase-1, a downstream target of mTORC1 in response to IGF-1. In addition, IGF-1 stimulated mTORC1 kinase activity toward 4E-BP1 in vitro. Phosphorylation on Ser473 of Akt was induced by IGF-1 within 5 min and remained elevated throughout a 30-min time course. The effect of IGF-1 on Akt phosphorylation was also concentration dependent. Activation of Akt by IGF-1 led to increased phosphorylation of tuberous sclerosis complex 2 on Thr1426, without any change in its association with tuberous sclerosis complex 1. Phosphorylation of proline-rich Akt substrate of 40-kDa (PRAS40) at Thr246 was stimulated by IGF-1. The amount of PRAS40 associated with mTORC1 decreased in response to IGF-1, and PRAS40 binding to mTORC1 was inversely related to its phosphorylation level. Overall, these results suggest that activation of the PI3K-Akt pathway by IGF-1 stimulated global protein synthesis in bovine mammary epithelial cells through changes in the phosphorylation and association state of components of the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- S A Burgos
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
29
|
Bidinosti M, Ran I, Sanchez-Carbente MR, Martineau Y, Gingras AC, Gkogkas C, Raught B, Bramham CR, Sossin WS, Costa-Mattioli M, DesGroseillers L, Lacaille JC, Sonenberg N. Postnatal deamidation of 4E-BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission. Mol Cell 2010; 37:797-808. [PMID: 20347422 DOI: 10.1016/j.molcel.2010.02.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/06/2009] [Accepted: 02/21/2010] [Indexed: 10/19/2022]
Abstract
The eIF4E-binding proteins (4E-BPs) repress translation initiation by preventing eIF4F complex formation. Of the three mammalian 4E-BPs, only 4E-BP2 is enriched in the mammalian brain and plays an important role in synaptic plasticity and learning and memory formation. Here we describe asparagine deamidation as a brain-specific posttranslational modification of 4E-BP2. Deamidation is the spontaneous conversion of asparagines to aspartates. Two deamidation sites were mapped to an asparagine-rich sequence unique to 4E-BP2. Deamidated 4E-BP2 exhibits increased binding to the mammalian target of rapamycin (mTOR)-binding protein raptor, which effects its reduced association with eIF4E. 4E-BP2 deamidation occurs during postnatal development, concomitant with the attenuation of the activity of the PI3K-Akt-mTOR signaling pathway. Expression of deamidated 4E-BP2 in 4E-BP2(-/-) neurons yielded mEPSCs exhibiting increased charge transfer with slower rise and decay kinetics relative to the wild-type form. 4E-BP2 deamidation may represent a compensatory mechanism for the developmental reduction of PI3K-Akt-mTOR signaling.
Collapse
Affiliation(s)
- Michael Bidinosti
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010; 285:14071-7. [PMID: 20231296 DOI: 10.1074/jbc.r109.094003] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) protein kinase responds to diverse environmental cues to control a plethora of cellular processes. mTOR forms the catalytic core of at least two distinct signaling complexes known as mTOR complexes 1 and 2. Differing sensitivities to the mTOR inhibitor rapamycin, unique partner proteins, distinct substrates, and unique cellular functions distinguish the complexes. Here, we review recent progress in our understanding of the regulation and function of mTOR signaling networks in cellular physiology.
Collapse
Affiliation(s)
- Kathryn G Foster
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
31
|
Abstract
The mammalian target of rapamycin (mTOR) is responsive to numerous extracellular and intracellular cues and, through the formation of two physically and functionally distinct complexes, has a central role in the homeostatic control of cell growth, proliferation and survival. Through the aberrant activation of mTOR signaling, the perception of cellular growth signals becomes disconnected from the processes promoting cell growth, and this underlies the pathophysiology of a number of genetic tumor syndromes and cancers. Here, we review the oncogenes and tumor suppressors comprising the regulatory network upstream of mTOR, highlight the human cancers in which mTOR is activated and discuss how dysregulated mTOR signaling provides tumors a selective growth advantage. In addition, we discuss why activation of mTOR, as a consequence of distinct oncogenic events, results in diverse clinical outcomes, and how the complexity of the mTOR signaling network might dictate therapeutic approaches.
Collapse
|
32
|
Soliman GA, Acosta-Jaquez HA, Dunlop EA, Ekim B, Maj NE, Tee AR, Fingar DC. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J Biol Chem 2009; 285:7866-79. [PMID: 20022946 DOI: 10.1074/jbc.m109.096222] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) Ser/Thr kinase signals in at least two multiprotein complexes distinguished by their different partners and sensitivities to rapamycin. Acute rapamycin inhibits signaling by mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), which both promote cell growth, proliferation, and survival. Although mTORC2 regulation remains poorly defined, diverse cellular mitogens activate mTORC1 signaling in a manner that requires sufficient levels of amino acids and cellular energy. Before the identification of distinct mTOR complexes, mTOR was reported to autophosphorylate on Ser-2481 in vivo in a rapamycin- and amino acid-insensitive manner. These results suggested that modulation of mTOR intrinsic catalytic activity does not universally underlie mTOR regulation. Here we re-examine the regulation of mTOR Ser-2481 autophosphorylation (Ser(P)-2481) in vivo by studying mTORC-specific Ser(P)-2481 in mTORC1 and mTORC2, with a primary focus on mTORC1. In contrast to previous work, we find that acute rapamycin and amino acid withdrawal markedly attenuate mTORC1-associated mTOR Ser(P)-2481 in cycling cells. Although insulin stimulates both mTORC1- and mTORC2-associated mTOR Ser(P)-2481 in a phosphatidylinositol 3-kinase-dependent manner, rapamycin acutely inhibits insulin-stimulated mTOR Ser(P)-2481 in mTORC1 but not mTORC2. By interrogating diverse mTORC1 regulatory input, we find that without exception mTORC1-activating signals promote, whereas mTORC1-inhibitory signals decrease mTORC1-associated mTOR Ser(P)-2481. These data suggest that mTORC1- and likely mTORC2-associated mTOR Ser-2481 autophosphorylation directly monitors intrinsic mTORC-specific catalytic activity and reveal that rapamycin inhibits mTORC1 signaling in vivo by reducing mTORC1 catalytic activity.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Foster KG, Acosta-Jaquez HA, Romeo Y, Ekim B, Soliman GA, Carriere A, Roux PP, Ballif BA, Fingar DC. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J Biol Chem 2009; 285:80-94. [PMID: 19864431 DOI: 10.1074/jbc.m109.029637] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The rapamycin-sensitive mTOR complex 1 (mTORC1) promotes protein synthesis, cell growth, and cell proliferation in response to growth factors and nutritional cues. To elucidate the poorly defined mechanisms underlying mTORC1 regulation, we have studied the phosphorylation of raptor, an mTOR-interacting partner. We have identified six raptor phosphorylation sites that lie in two centrally localized clusters (cluster 1, Ser(696)/Thr(706) and cluster 2, Ser(855)/Ser(859)/Ser(863)/Ser(877)) using tandem mass spectrometry and generated phosphospecific antibodies for each of these sites. Here we focus primarily although not exclusively on raptor Ser(863) phosphorylation. We report that insulin promotes mTORC1-associated phosphorylation of raptor Ser(863) via the canonical PI3K/TSC/Rheb pathway in a rapamycin-sensitive manner. mTORC1 activation by other stimuli (e.g. amino acids, epidermal growth factor/MAPK signaling, and cellular energy) also promote raptor Ser(863) phosphorylation. Rheb overexpression increases phosphorylation on raptor Ser(863) as well as on the five other identified sites (e.g. Ser(859), Ser(855), Ser(877), Ser(696), and Thr(706)). Strikingly, raptor Ser(863) phosphorylation is absolutely required for raptor Ser(859) and Ser(855) phosphorylation. These data suggest that mTORC1 activation leads to raptor multisite phosphorylation and that raptor Ser(863) phosphorylation functions as a master biochemical switch that modulates hierarchical raptor phosphorylation (e.g. on Ser(859) and Ser(855)). Importantly, mTORC1 containing phosphorylation site-defective raptor exhibits reduced in vitro kinase activity toward the substrate 4EBP1, with a multisite raptor 6A mutant more strongly defective that single-site raptor S863A. Taken together, these data suggest that complex raptor phosphorylation functions as a biochemical rheostat that modulates mTORC1 signaling in accordance with environmental cues.
Collapse
Affiliation(s)
- Kathryn G Foster
- Department of Cell and Developmental Biology, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD, Schoenherr CJ, Chen J. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol 2009; 297:C1434-44. [PMID: 19794149 DOI: 10.1152/ajpcell.00248.2009] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rapamycin-sensitive signaling is required for skeletal muscle differentiation and remodeling. In cultured myoblasts, the mammalian target of rapamycin (mTOR) has been reported to regulate differentiation at different stages through distinct mechanisms, including one that is independent of mTOR kinase activity. However, the kinase-independent function of mTOR remains controversial, and no in vivo studies have examined those mTOR myogenic mechanisms previously identified in vitro. In this study, we find that rapamycin impairs injury-induced muscle regeneration. To validate the role of mTOR with genetic evidence and to probe the mechanism of mTOR function, we have generated and characterized transgenic mice expressing two mutants of mTOR under the control of human skeletal actin (HSA) promoter: rapamycin-resistant (RR) and RR/kinase-inactive (RR/KI). Our results show that muscle regeneration in rapamycin-administered mice is restored by RR-mTOR expression. In the RR/KI-mTOR mice, nascent myofiber formation during the early phase of regeneration proceeds in the presence of rapamycin, but growth of the regenerating myofibers is blocked by rapamycin. Igf2 mRNA levels increase drastically during early regeneration, which is sensitive to rapamycin in wild-type muscles but partially resistant to rapamycin in both RR- and RR/KI-mTOR muscles, consistent with mTOR regulation of Igf2 expression in a kinase-independent manner. Furthermore, systemic ablation of S6K1, a target of mTOR kinase, results in impaired muscle growth but normal nascent myofiber formation during regeneration. Therefore, mTOR regulates muscle regeneration through kinase-independent and kinase-dependent mechanisms at the stages of nascent myofiber formation and myofiber growth, respectively.
Collapse
Affiliation(s)
- Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Acosta-Jaquez HA, Keller JA, Foster KG, Ekim B, Soliman GA, Feener EP, Ballif BA, Fingar DC. Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol Cell Biol 2009; 29:4308-24. [PMID: 19487463 PMCID: PMC2715808 DOI: 10.1128/mcb.01665-08] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/15/2008] [Accepted: 05/22/2009] [Indexed: 11/20/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) functions as a rapamycin-sensitive environmental sensor that promotes cellular biosynthetic processes in response to growth factors and nutrients. While diverse physiological stimuli modulate mTORC1 signaling, the direct biochemical mechanisms underlying mTORC1 regulation remain poorly defined. Indeed, while three mTOR phosphorylation sites have been reported, a functional role for site-specific mTOR phosphorylation has not been demonstrated. Here we identify a new site of mTOR phosphorylation (S1261) by tandem mass spectrometry and demonstrate that insulin-phosphatidylinositol 3-kinase signaling promotes mTOR S1261 phosphorylation in both mTORC1 and mTORC2. Here we focus on mTORC1 and show that TSC/Rheb signaling promotes mTOR S1261 phosphorylation in an amino acid-dependent, rapamycin-insensitive, and autophosphorylation-independent manner. Our data reveal a functional role for mTOR S1261 phosphorylation in mTORC1 action, as S1261 phosphorylation promotes mTORC1-mediated substrate phosphorylation (e.g., p70 ribosomal protein S6 kinase 1 [S6K1] and eukaryotic initiation factor 4E binding protein 1) and cell growth to increased cell size. Moreover, Rheb-driven mTOR S2481 autophosphorylation and S6K1 phosphorylation require S1261 phosphorylation. These data provide the first evidence that site-specific mTOR phosphorylation regulates mTORC1 function and suggest a model whereby insulin-stimulated mTOR S1261 phosphorylation promotes mTORC1 autokinase activity, substrate phosphorylation, and cell growth.
Collapse
Affiliation(s)
- Hugo A Acosta-Jaquez
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tzatsos A. Raptor binds the SAIN (Shc and IRS-1 NPXY binding) domain of insulin receptor substrate-1 (IRS-1) and regulates the phosphorylation of IRS-1 at Ser-636/639 by mTOR. J Biol Chem 2009; 284:22525-34. [PMID: 19561084 DOI: 10.1074/jbc.m109.027748] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In normal physiological states mTOR phosphorylates and activates Akt. However, under diabetic-mimicking conditions mTOR inhibits phosphatidylinositol (PI) 3-kinase/Akt signaling by phosphorylating insulin receptor substrate-1 (IRS-1) at Ser-636/639. The molecular basis for the differential effect of mTOR signaling on Akt is poorly understood. Here, it has been shown that knockdown of mTOR, Raptor, and mLST8, but not Rictor and mSin1, suppresses insulin-stimulated phosphorylation of IRS-1 at Ser-636/639 and stabilizes IRS-1 after long term insulin stimulation. This phosphorylation depends on the PI 3-kinase/PDK1 axis but is Akt-independent. At the molecular level, Raptor binds the SAIN (Shc and IRS-1 NPXY binding) domain of IRS-1 and regulates the phosphorylation of IRS-1 at Ser-636/639 by mTOR. IRS-1 lacking the SAIN domain does not interact with Raptor, is not phosphorylated at Ser-636/639, and favorably interacts with PI 3-kinase. Overall, these data provide new insights in the molecular mechanisms by which mTORC1 inhibits PI 3-kinase/Akt signaling at the level of IRS-1 and suggest that mTOR signaling toward Akt is scaffold-dependent.
Collapse
Affiliation(s)
- Alexandros Tzatsos
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.
| |
Collapse
|
37
|
Abstract
The mammalian target of rapamycin (mTOR) plays an essential role in the regulation of cell growth, proliferation and apoptosis. Raptor, the regulatory associated protein of mTOR, is an important member in this signaling pathway. In the present report,we identified and characterized a novel splicing variant of this gene, RAPTOR v2, in which exons 14-17, 474 bp in total, are omitted from the mRNA. This deletion does not change the open reading frame, but causes a nearly complete absence of HEAT repeats, which were shown to be involved in the binding of mTOR substrates. Real time PCR performed on 48 different human tissues demonstrated the ubiquitous presence of this splice variant. Quantification of mRNA levels in lymphoblastoid cell lines (LCL) from 56 unrelated HapMap individuals revealed that the expression of this splicing form is quite variable. One synonymous SNP, rs2289759 in exon 14, was predicted by ESEfinder to cause a significant gain/loss of SRp55 and/or SF2/ASF binding sites, and thus potentially influence splicing. This prediction was confirmed by linear regression analysis between the ratio of RAPTOR v2 to total RAPTOR mRNA levels and the SNP genotype in the above 56 individuals (r=0.281 and P=0.036). Moreover, the functional evaluation indicated that this splicing isoform is expected to retain the ability to bind mTOR, but is unlikely to bind mTOR substrates, hence affecting signal transduction and further cell proliferation.
Collapse
Affiliation(s)
- Chang Sun
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
38
|
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284:8023-32. [PMID: 19150980 PMCID: PMC2658096 DOI: 10.1074/jbc.m900301200] [Citation(s) in RCA: 1438] [Impact Index Per Article: 89.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Indexed: 12/31/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is the catalytic subunit of two functionally distinct complexes, mTORC1 and mTORC2, that coordinately promote cell growth, proliferation, and survival. Rapamycin is a potent allosteric mTORC1 inhibitor with clinical applications as an immunosuppressant and anti-cancer agent. Here we find that Torin1, a highly potent and selective ATP-competitive mTOR inhibitor that directly inhibits both complexes, impairs cell growth and proliferation to a far greater degree than rapamycin. Surprisingly, these effects are independent of mTORC2 inhibition and are instead because of suppression of rapamycin-resistant functions of mTORC1 that are necessary for cap-dependent translation and suppression of autophagy. These effects are at least partly mediated by mTORC1-dependent and rapamycin-resistant phosphorylation of 4E-BP1. Our findings challenge the assumption that rapamycin completely inhibits mTORC1 and indicate that direct inhibitors of mTORC1 kinase activity may be more successful than rapamycin at inhibiting tumors that depend on mTORC1.
Collapse
Affiliation(s)
- Carson C Thoreen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Richter JD, Klann E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev 2009; 23:1-11. [PMID: 19136621 DOI: 10.1101/gad.1735809] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synaptic transmission in neurons is a measure of communication at synapses, the points of contact between axons and dendrites. The magnitude of synaptic transmission is a reflection of the strength of these synaptic connections, which in turn can be altered by the frequency with which the synapses are stimulated, the arrival of stimuli from other neurons in the appropriate temporal window, and by neurotrophic factors and neuromodulators. The ability of synapses to undergo lasting biochemical and morphological changes in response to these types of stimuli and neuromodulators is known as synaptic plasticity, which likely forms the cellular basis for learning and memory, although the relationship between any one form synaptic plasticity and a particular type of memory is unclear. RNA metabolism, particularly translational control at or near the synapse, is one process that controls long-lasting synaptic plasticity and, by extension, several types of memory formation and consolidation. Here, we review recent studies that reflect the importance and challenges of investigating the role of mRNA translation in synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine University of Massachusetts Medical School Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
40
|
A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr Purif 2008; 62:190-8. [DOI: 10.1016/j.pep.2008.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/01/2008] [Accepted: 09/04/2008] [Indexed: 11/21/2022]
|
41
|
The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem J 2008; 411:141-9. [PMID: 18215133 DOI: 10.1042/bj20071001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PRAS40 binds to the mTORC1 (mammalian target of rapamycin complex 1) and is released in response to insulin. It has been suggested that this effect is due to 14-3-3 binding and leads to activation of mTORC1 signalling. In a similar manner to insulin, phorbol esters also activate mTORC1 signalling, in this case via PKC (protein kinase C) and ERK (extracellular-signal-regulated kinase). However, phorbol esters do not induce phosphorylation of PRAS40 at Thr(246), binding of 14-3-3 proteins to PRAS40 or its release from mTORC1. Mutation of Thr(246) to a serine residue permits phorbol esters to induce phosphorylation and binding to 14-3-3 proteins. Such phosphorylation is apparently mediated by RSKs (ribosomal S6 kinases), which lie downstream of ERK. However, although the PRAS40(T246S) mutant binds to 14-3-3 better than wild-type PRAS40, each inhibits mTORC1 signalling to a similar extent. Our results show that activation of mTORC1 signalling by phorbol esters does not require PRAS40 to be phosphorylated at Thr(246), bind to 14-3-3 or be released from mTORC1. It is conceivable that phorbol esters activate mTORC1 by a distinct mechanism not involving PRAS40. Indeed, our results suggest that PRAS40 may not actually be involved in controlling mTORC1, but rather be a downstream target of mTORC1 that is regulated in response only to specific stimuli, such as insulin.
Collapse
|
42
|
Lee VHY, Healy T, Fonseca BD, Hayashi A, Proud CG. Analysis of the regulatory motifs in eukaryotic initiation factor 4E-binding protein 1. FEBS J 2008; 275:2185-99. [PMID: 18384376 DOI: 10.1111/j.1742-4658.2008.06372.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) phosphorylates proteins such as eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and the S6 kinases. These substrates contain short sequences, termed TOR signalling (TOS) motifs, which interact with the mTORC1 component raptor. Phosphorylation of 4E-BP1 requires an additional feature, termed the RAIP motif (Arg-Ala-Ile-Pro). We have analysed the interaction of 4E-BP1 with raptor and the amino acid residues required for functional RAIP and TOS motifs, as assessed by raptor binding and the phosphorylation of 4E-BP1 in human cells. Binding of 4E-BP1 to raptor strongly depends on an intact TOS motif, but the RAIP motif and additional C-terminal features of 4E-BP1 also contribute to this interaction. Mutational analysis of 4E-BP1 reveals that isoleucine is a key feature of the RAIP motif, that proline is also very important and that there is greater tolerance for substitution of the first two residues. Within the TOS motif, the first position (phenylalanine in the known motifs) is most critical, whereas a wider range of residues function in other positions (although an uncharged aliphatic residue is preferred at position three). These data provide important information on the structural requirements for efficient signalling downstream of mTORC1.
Collapse
Affiliation(s)
- Vivian H Y Lee
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
43
|
Koketsu Y, Sakoda H, Fujishiro M, Kushiyama A, Fukushima Y, Ono H, Anai M, Kikuchi T, Fukuda T, Kamata H, Horike N, Uchijima Y, Kurihara H, Asano T. Hepatic overexpression of a dominant negative form of raptor enhances Akt phosphorylation and restores insulin sensitivity in K/KAy mice. Am J Physiol Endocrinol Metab 2008; 294:E719-25. [PMID: 18270303 DOI: 10.1152/ajpendo.00253.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several serine/threonine kinases reportedly phosphorylate serine residues of IRS-1 and thereby induce insulin resistance. In this study, to investigate the effect of mTOR/raptor on insulin signaling and metabolism in K/KAy mice with genetic obesity-associated insulin resistance, a dominant negative raptor, COOH-terminally deleted raptor (raptor-DeltaC(T)), was overexpressed in the liver via injection of its adenovirus into the circulation. Hepatic raptor-DeltaC(T) expression levels were 1.5- to 4-fold that of endogenously expressed raptor. Glucose tolerance in raptor-DeltaC(T)-overexpressing mice improved significantly compared with that of LacZ-overexpressing mice. Insulin-induced activation of p70S6 kinase (p70(S6k)) was significantly suppressed in the livers of raptor-DeltaC(T) overexpressing mice. In addition, insulin-induced IRS-1, Ser(307), and Ser(636/639) phosphorylations were significantly suppressed in the raptor-DeltaC(T)-overexpressing liver, whereas tyrosine phosphorylation of IRS-1 was increased. PI 3-kinase activation in response to insulin stimulation was increased approximately twofold, and Akt phosphorylation was clearly enhanced under both basal and insulin-stimulated conditions in the livers of raptor-DeltaC(T) mice. Thus, our data indicate that suppression of the mTOR/p70(S6k) pathway leads to improved glucose tolerance in K/KAy mice. These observations may contribute to the development of novel antidiabetic agents.
Collapse
Affiliation(s)
- Yuko Koketsu
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang L, Harris TE, Lawrence JC. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 2008; 283:15619-27. [PMID: 18372248 DOI: 10.1074/jbc.m800723200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rapamycin-sensitive mammalian target of rapamycin (mTOR) complex 1 (mTORC1) contains mTOR, raptor, mLST8, and PRAS40 (proline-rich Akt substrate of 40 kDa). PRAS40 functions as a negative regulator when bound to mTORC1, and it dissociates from mTORC1 in response to insulin. PRAS40 has been demonstrated to be a substrate of mTORC1, and one phosphorylation site, Ser-183, has been identified. In this study, we used two-dimensional phosphopeptide mapping in conjunction with mutational analysis to show that in addition to Ser-183, mTORC1 also phosphorylates Ser-212 and Ser-221 in PRAS40 when assayed in vitro. Mutation of all three residues to Ala markedly reduces mTORC1-mediated phosphorylation of PRAS40 in vitro. All three sites were confirmed to be phosphorylated in vivo by [(32)P]orthophosphate labeling and peptide mapping. Phosphorylation of Ser-221 and Ser-183 but not Ser-212 is sensitive to rapamycin treatment. Furthermore, we demonstrate that mutation of Ser-221 to Ala reduces the interaction with 14-3-3 to the same extent as mutation of Thr-246, the Akt/protein kinase B-phosphorylated site. We also find that mutation of Ser-221 to Ala increases the inhibitory activity of PRAS40 toward mTORC1. We propose that after mTORC1 kinase activation by upstream regulators, PRAS40 is phosphorylated directly by mTOR, thus contributing to the relief of PRAS40-mediated substrate competition.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
45
|
Hanna SC, Heathcote SA, Kim WY. mTOR pathway in renal cell carcinoma. Expert Rev Anticancer Ther 2008; 8:283-92. [PMID: 18279068 DOI: 10.1586/14737140.8.2.283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After decades of therapeutic nihilism in the treatment of advanced renal cell carcinoma, remarkable therapeutic strides have been made over the last few years. Early forays into molecularly targeted therapy for this difficult-to-treat disease were based around the inhibition of gene products of the hypoxia-inducible factor (HIF) transcription factor (i.e., VEGF). Recent data suggest that inhibition of mTOR results in clinical benefit in patients with poor prognostic features, and in preclinical models this therapeutic effect involves downregulation of HIF. Intriguingly, patients with nonclear cell histology appeared to obtain clinical benefit when treated with mTOR inhibitors. This review will highlight the mTOR pathway, its relevance to both clear cell and nonclear cell renal cell carcinoma, and its place in the host of quickly expanding treatment options.
Collapse
Affiliation(s)
- Sara C Hanna
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
46
|
Wu AL, Kim JH, Zhang C, Unterman TG, Chen J. Forkhead box protein O1 negatively regulates skeletal myocyte differentiation through degradation of mammalian target of rapamycin pathway components. Endocrinology 2008; 149:1407-14. [PMID: 18079193 PMCID: PMC2275355 DOI: 10.1210/en.2007-1470] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The forkhead transcription factor forkhead box protein O1 (FoxO1), a downstream target of phosphatidylinositol 3-kinase/Akt signaling, has been reported to suppress skeletal myocyte differentiation, but the mechanism by which FoxO1 regulates myogenesis is not fully understood. We have previously demonstrated that a nutrient-sensing mammalian target of rapamycin (mTOR) pathway controls the autocrine production of IGF-II and the subsequent phosphatidylinositol 3-kinase/Akt signaling downstream of IGF-II in myogenesis. Here we report a regulatory loop connecting FoxO1 to the mTOR pathway. Inducible activation of a FoxO1 active mutant in the C2C12 mouse myoblasts blocks myogenic differentiation at an early stage and meanwhile leads to proteasome-dependent degradation of a specific subset of components in the mTOR signaling network, including mTOR, raptor, tuberous sclerosis complex 2, and S6 protein kinase 1. This function of FoxO1 requires new protein synthesis, consistent with the idea that a transcriptional target of FoxO1 may be responsible for the degradation of mTOR. We further show that active FoxO1 inhibits IGF-II expression at the transcriptional activation level, through the modulation of mTOR protein levels. Moreover, the addition of exogenous IGF-II fully rescues myocyte differentiation from FoxO inhibition. Taken together, we propose that the mTOR-IGF-II pathway is a major mediator of FoxO's inhibitory function in skeletal myogenesis.
Collapse
Affiliation(s)
- Ai-Luen Wu
- Department of Cell and Developmental Biology, 601 South Goodwin Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
47
|
Raptor-rictor axis in TGFbeta-induced protein synthesis. Cell Signal 2007; 20:409-23. [PMID: 18068336 DOI: 10.1016/j.cellsig.2007.10.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/30/2007] [Indexed: 11/23/2022]
Abstract
Transforming growth factor-beta (TGFbeta) stimulates pathological renal cell hypertrophy for which increased protein synthesis is critical. The mechanism of TGFbeta-induced protein synthesis is not known, but PI 3 kinase-dependent Akt kinase activity is necessary. We investigated the contribution of downstream effectors of Akt in TGFbeta-stimulated protein synthesis. TGFbeta increased inactivating phosphorylation of Akt substrate tuberin in a PI 3 kinase/Akt dependent manner, resulting in activation of mTOR kinase. mTOR activity increased phosphorylation of S6 kinase and the translation repressor 4EBP-1, which were sensitive to inhibition of both PI 3 kinase and Akt. mTOR inhibitor rapamycin and a dominant negative mutant of mTOR suppressed TGFbeta-induced phosphorylation of S6 kinase and 4EBP-1. PI 3 kinase/Akt and mTOR regulated dissociation of 4EBP-1 from eIF4E to make the latter available for binding to eIF4G. mTOR and 4EBP-1 modulated TGFbeta-induced protein synthesis. mTOR is present in two multi protein complexes, mTORC1 and mTORC2. Raptor and rictor are part of mTORC1 and mTORC2, respectively. shRNA-mediated downregulation of raptor inhibited TGFbeta-stimulated mTOR kinase activity, resulting in inhibition of phosphorylation of S6 kinase and 4EBP-1. Raptor shRNA also prevented protein synthesis in response to TGFbeta. Downregulation of rictor inhibited serine 473 phosphorylation of Akt without any effect on phosphorylation of its substrate, tuberin. Furthermore, rictor shRNA increased phosphorylation of S6 kinase and 4EBP-1 in TGFbeta-independent manner, resulting in increased protein synthesis. Thus mTORC1 function is essential for TGFbeta-induced protein synthesis. Our data also provide novel evidence that rictor negatively regulates TORC1 activity to control basal protein synthesis, thus conferring tight control on cellular hypertrophy.
Collapse
|
48
|
Klann E, Sweatt JD. Altered protein synthesis is a trigger for long-term memory formation. Neurobiol Learn Mem 2007; 89:247-59. [PMID: 17919940 DOI: 10.1016/j.nlm.2007.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 12/19/2022]
Abstract
There is ongoing debate concerning whether new protein synthesis is necessary for, or even contributes to, memory formation and storage. This review summarizes a contemporary model proposing a role for altered protein synthesis in memory formation and its subsequent stabilization. One defining aspect of the model is that altered protein synthesis serves as a trigger for memory consolidation. Thus, we propose that specific alterations in the pattern of neuronal protein translation serve as an initial event in long-term memory formation. These specific alterations in protein readout result in the formation of a protein complex that then serves as a nidus for subsequent perpetuating reinforcement by a positive feedback mechanism. The model proposes this scenario as a minimal but requisite component for long-term memory formation. Our description specifies three aspects of prevailing scenarios for the role of altered protein synthesis in memory that we feel will help clarify what, precisely, is typically proposed as the role for protein translation in memory formation. First, that a relatively short initial time window exists wherein specific alterations in the pattern of proteins translated (not overall protein synthesis) is involved in initializing the engram. Second, that a self-perpetuating positive feedback mechanism maintains the altered pattern of protein expression (synthesis or recruitment) locally. Third, that other than the formation and subsequent perpetuation of the unique initializing proteins, ongoing constitutive protein synthesis is all that is minimally necessary for formation and maintenance of the engram. We feel that a clear delineation of these three principles will assist in interpreting the available experimental data, and propose that the available data are consistent with a role for protein synthesis in memory.
Collapse
Affiliation(s)
- Eric Klann
- Center for Neural Science, New York University, New York, NY, USA.
| | | |
Collapse
|
49
|
Wang L, Harris TE, Roth RA, Lawrence JC. PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding. J Biol Chem 2007; 282:20036-44. [PMID: 17510057 DOI: 10.1074/jbc.m702376200] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) functions in two distinct signaling complexes, mTORC1 and mTORC2. In response to insulin and nutrients, mTORC1, consisting of mTOR, raptor (regulatory-associated protein of mTOR), and mLST8, is activated and phosphorylates eukaryotic initiation factor 4E-binding protein (4EBP) and p70 S6 kinase to promote protein synthesis and cell size. Previously we found that activation of mTOR kinase in response to insulin was associated with increased 4EBP1 binding to raptor. Here we identify prolinerich Akt substrate 40 (PRAS40) as a binding partner for mTORC1. A putative TOR signaling motif, FVMDE, is identified in PRAS40 and shown to be required for interaction with raptor. Insulin stimulation markedly decreases the level of PRAS40 bound by mTORC1. Recombinant PRAS40 inhibits mTORC1 kinase activity in vivo and in vitro, and this inhibition depends on PRAS40 association with raptor. Furthermore, decreasing PRAS40 expression by short hairpin RNA enhances 4E-BP1 binding to raptor, and recombinant PRAS40 competes with 4E-BP1 binding to raptor. We, therefore, propose that PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
50
|
Oshiro N, Takahashi R, Yoshino KI, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282:20329-39. [PMID: 17517883 PMCID: PMC3199301 DOI: 10.1074/jbc.m702636200] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The proline-rich Akt substrate of 40 kilodaltons (PRAS40) was identified as a raptor-binding protein that is phosphorylated directly by mammalian target of rapamycin (mTOR) complex 1 (mTORC1) but not mTORC2 in vitro, predominantly at PRAS40 (Ser(183)). The binding of S6K1 and 4E-BP1 to raptor requires a TOR signaling (TOS) motif, which contains an essential Phe followed by four alternating acidic and small hydrophobic amino acids. PRAS40 binding to raptor was severely inhibited by mutation of PRAS40 (Phe(129) to Ala). Immediately carboxyl-terminal to Phe(129) are two small hydrophobic amino acid followed by two acidic residues. PRAS40 binding to raptor was also abolished by mutation of the major mTORC1 phosphorylation site, Ser(183), to Asp. PRAS40 (Ser(183)) was phosphorylated in intact cells; this phosphorylation was inhibited by rapamycin, by 2-deoxyglucose, and by overexpression of the tuberous sclerosis complex heterodimer. PRAS40 (Ser(183)) phosphorylation was also inhibited reversibly by withdrawal of all or of only the branched chain amino acids; this inhibition was reversed by overexpression of the Rheb GTPase. Overexpressed PRAS40 suppressed the phosphorylation of S6K1 and 4E-BP1 at their rapamycin-sensitive phosphorylation sites, and reciprocally, overexpression of S6K1 or 4E-BP1 suppressed phosphorylation of PRAS40 (Ser(183)) and its binding to raptor. RNA interference-induced depletion of PRAS40 enhanced the amino acid-stimulated phosphorylation of both S6K1 and 4E-BP1. These results establish PRAS40 as a physiological mTORC1 substrate that contains a variant TOS motif. Moreover, they indicate that the ability of raptor to bind endogenous substrates is limiting for the activity of mTORC1 in vivo and is therefore a potential locus of regulation.
Collapse
Affiliation(s)
- Noriko Oshiro
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|