1
|
Erdélyi LS, Hunyady L, Balla A. V2 vasopressin receptor mutations: future personalized therapy based on individual molecular biology. Front Endocrinol (Lausanne) 2023; 14:1173601. [PMID: 37293495 PMCID: PMC10244717 DOI: 10.3389/fendo.2023.1173601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
The diluting and concentrating function of the kidney plays a crucial role in regulating the water homeostasis of the body. This function is regulated by the antidiuretic hormone, arginine vasopressin through the type 2 vasopressin receptor (V2R), allowing the body to adapt to periods of water load or water restriction. Loss-of-function mutations of the V2R cause X-linked nephrogenic diabetes insipidus (XNDI), which is characterized by polyuria, polydipsia, and hyposthenuria. Gain-of-function mutations of the V2R lead to nephrogenic syndrome of inappropriate antidiuresis disease (NSIAD), which results in hyponatremia. Various mechanisms may be responsible for the impaired receptor functions, and this review provides an overview of recent findings about the potential therapeutic interventions in the light of the current experimental data.
Collapse
Affiliation(s)
- László Sándor Erdélyi
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
2
|
Szalai L, Sziráki A, Erdélyi LS, Kovács KB, Tóth M, Tóth AD, Turu G, Bonnet D, Mouillac B, Hunyady L, Balla A. Functional Rescue of a Nephrogenic Diabetes Insipidus Causing Mutation in the V2 Vasopressin Receptor by Specific Antagonist and Agonist Pharmacochaperones. Front Pharmacol 2022; 13:811836. [PMID: 35153784 PMCID: PMC8829706 DOI: 10.3389/fphar.2022.811836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
The urine concentrating function of the kidney is essential to maintain the water homeostasis of the human body. It is mainly regulated by the arginine-vasopressin (AVP), which targets the type 2 vasopressin receptor (V2R) in the kidney. The inability of V2R to respond to AVP stimulation leads to decreased urine concentration and congenital nephrogenic diabetes insipidus (NDI). NDI is characterized by polyuria, polydipsia, and hyposthenuria. In this study, we identified a point mutation (S127F) in the AVPR2 gene of an NDI patient, and we characterized the impaired function of the V2R mutant in HEK293 cells. Based on our data, the S127F-V2R mutant is almost exclusively located intracellularly in the endoplasmic reticulum (ER), and very few receptors were detected at the cell surface, where the receptor can bind to AVP. The overexpressed S127F-V2R mutant receptor has negligible cAMP generation capability compared to the wild-type receptor in response to AVP stimulation. Since certain misfolded mutant proteins, that are retained in the ER, can be rescued by pharmacological chaperones, we examined the potential rescue effects of two pharmacochaperones on the S127F-V2R. We found that pretreatment with both tolvaptan (an established V2R inverse agonist) and MCF14 compound (a cell-permeable high-affinity agonist for the V2R) were capable of partially restoring the cAMP generating function of the receptor in response to vasopressin stimulation. According to our data, both cell permeant agonists and antagonists can function as pharmacochaperones, and serve as the starting compounds to develop medicines for patients carrying the S127F mutation.
Collapse
Affiliation(s)
- Laura Szalai
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - András Sziráki
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | | | - Miklós Tóth
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Dominique Bonnet
- Laboratoire D'Innovation Thérapeutique, Strasbourg Drug Discovery and Development Institute (IMS), UMR7200 CNRS, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - László Hunyady
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- *Correspondence: László Hunyady, ; András Balla,
| | - András Balla
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
- *Correspondence: László Hunyady, ; András Balla,
| |
Collapse
|
3
|
Wang L, Guo W, Fang C, Feng W, Huang Y, Zhang X, Liu M, Cui J. Functional characterization of a loss-of-function mutant I324M of arginine vasopressin receptor 2 in X-linked nephrogenic diabetes insipidus. Sci Rep 2021; 11:11057. [PMID: 34040143 PMCID: PMC8154955 DOI: 10.1038/s41598-021-90736-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
X-linked nephrogenic diabetes insipidus (X-linked NDI) is a rare inherited disease mainly caused by lost-of-function mutations in human AVPR2 gene encoding arginine vasopressin receptor 2 (V2R). Our focus of the current study is on exploration of the functional and biochemical properties of Ile324Met (I324M) mutation identified in a pedigree showing as typical recessive X-linked NDI. We demonstrated that I324M mutation interfered with the conformation of complex glycosylation of V2R. Moreover, almost all of the I324M-V2R failed to express on the cell surface due to being captured by the endoplasmic reticulum control system. We further examined the signaling activity of DDAVP-medicated cAMP and ERK1/2 pathways and the results revealed that the mutant receptor lost the ability in response to DDAVP stimulation contributed to the failure of accumulation of cAMP and phosphorylated ERK1/2. Based on the characteristics of molecular defects of I324M mutant, we selected two reagents (SR49059 and alvespimycin) to determine whether the functions of I324M-V2R can be restored and we found that both compounds can significantly “rescue” I324M mutation. Our findings may provide further insights for understanding the pathogenic mechanism of AVPR2 gene mutations and may offer some implications on development of promising treatments for patients with X-linked NDI.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Weihong Guo
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunyun Fang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaona Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
4
|
Yadav K, Yadav A, Vashistha P, Pandey VP, Dwivedi UN. Protein Misfolding Diseases and Therapeutic Approaches. Curr Protein Pept Sci 2020; 20:1226-1245. [PMID: 31187709 DOI: 10.2174/1389203720666190610092840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Protein folding is the process by which a polypeptide chain acquires its functional, native 3D structure. Protein misfolding, on the other hand, is a process in which protein fails to fold into its native functional conformation. This misfolding of proteins may lead to precipitation of a number of serious diseases such as Cystic Fibrosis (CF), Alzheimer's Disease (AD), Parkinson's Disease (PD), and Amyotrophic Lateral Sclerosis (ALS) etc. Protein Quality-control (PQC) systems, consisting of molecular chaperones, proteases and regulatory factors, help in protein folding and prevent its aggregation. At the same time, PQC systems also do sorting and removal of improperly folded polypeptides. Among the major types of PQC systems involved in protein homeostasis are cytosolic, Endoplasmic Reticulum (ER) and mitochondrial ones. The cytosol PQC system includes a large number of component chaperones, such as Nascent-polypeptide-associated Complex (NAC), Hsp40, Hsp70, prefoldin and T Complex Protein-1 (TCP-1) Ring Complex (TRiC). Protein misfolding diseases caused due to defective cytosolic PQC system include diseases involving keratin/collagen proteins, cardiomyopathies, phenylketonuria, PD and ALS. The components of PQC system of Endoplasmic Reticulum (ER) include Binding immunoglobulin Protein (BiP), Calnexin (CNX), Calreticulin (CRT), Glucose-regulated Protein GRP94, the thiol-disulphide oxidoreductases, Protein Disulphide Isomerase (PDI) and ERp57. ER-linked misfolding diseases include CF and Familial Neurohypophyseal Diabetes Insipidus (FNDI). The components of mitochondrial PQC system include mitochondrial chaperones such as the Hsp70, the Hsp60/Hsp10 and a set of proteases having AAA+ domains similar to the proteasome that are situated in the matrix or the inner membrane. Protein misfolding diseases caused due to defective mitochondrial PQC system include medium-chain acyl-CoA dehydrogenase (MCAD)/Short-chain Acyl-CoA Dehydrogenase (SCAD) deficiency diseases, hereditary spastic paraplegia. Among therapeutic approaches towards the treatment of various protein misfolding diseases, chaperones have been suggested as potential therapeutic molecules for target based treatment. Chaperones have been advantageous because of their efficient entry and distribution inside the cells, including specific cellular compartments, in therapeutic concentrations. Based on the chemical nature of the chaperones used for therapeutic purposes, molecular, chemical and pharmacological classes of chaperones have been discussed.
Collapse
Affiliation(s)
- Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Sciences and Humanities, Sardar Krushinagar Dantiwada Agricultural University, Banaskantha, Gujarat, India
| | | | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India.,Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, U.P., India
| |
Collapse
|
5
|
Mouillac B, Mendre C. Pharmacological Chaperones as Potential Therapeutic Strategies for Misfolded Mutant Vasopressin Receptors. Handb Exp Pharmacol 2018; 245:63-83. [PMID: 28939971 DOI: 10.1007/164_2017_50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pharmacological chaperones recently opened new possibilities in G protein-coupled receptor drug discovery. Even more interestingly, some unique ligands combine pharmacological chaperoning and biased agonism properties, boosting their therapeutic interest in many human diseases resulting from G protein-coupled receptor mutation and misfolding. These compounds displaying dual characteristics would constitute a perfect treatment for congenital Nephrogenic Diabetes Insipidus, a typical conformational disease. This X-linked genetic pathology is mostly associated with inactivating mutations of the renal arginine-vasopressin V2 receptor leading to misfolding and intracellular retention of the receptor, causing the inability of patients to concentrate their urine in response to the antidiuretic hormone. Cell-permeable pharmacological chaperones have been successfully challenged to restore plasma membrane localization of many V2 receptor mutants. In addition, different classes of specific ligands such as antagonists, agonists as well as biased agonists of the V2 receptor have proven their usefulness in rescuing mutant receptor function. This is particularly relevant for small-molecule biased agonists which only trigger Gs protein activation and cyclic adenosine monophosphate production, the V2-induced signaling pathway responsible for water reabsorption. In parallel, high-throughput screening assays based on receptor trafficking rescue approaches have been developed to discover novel V2 pharmacological chaperone molecules from different chemical libraries. These new hit compounds, which still need to be pharmacologically characterized and functionally tested in vivo, represent promising candidates for the treatment of congenital Nephrogenic Diabetes Insipidus.
Collapse
Affiliation(s)
- Bernard Mouillac
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 141 rue de la cardonille, 34094, Montpellier Cedex 05, France.
| | - Christiane Mendre
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 141 rue de la cardonille, 34094, Montpellier Cedex 05, France
| |
Collapse
|
6
|
Yasuda D, Imura Y, Ishii S, Shimizu T, Nakamura M. The atypical N-glycosylation motif, Asn-Cys-Cys, in human GPR109A is required for normal cell surface expression and intracellular signaling. FASEB J 2015; 29:2412-22. [PMID: 25690651 DOI: 10.1096/fj.14-267096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 01/31/2023]
Abstract
Asparagine-linked glycosylation (N-glycosylation) is necessary for the proper folding of secreted and membrane proteins, including GPCRs. Thus, many GPCRs possess the N-glycosylation motif Asn-X-Ser/Thr at their N-termini and/or extracellular loops. We found that human GPR109A (hGPR109A) has an N-glycosylation site at Asn(17) in the N-terminal atypical motif, Asn(17)-Cys(18)-Cys(19). Why does hGPR109A require the atypical motif, rather than the typical sequence? Here we show that Asn(17)-Cys(18)-Cys(19) sequence of hGPR109A possesses 2 biologic roles. First, Asn(17)-X-Cys(19) contributed to hGPR109A N-glycosylation by acting as an atypical motif. This modification is required for the normal surface expression of hGPR109A, as evidenced by the reduced surface expression of the nonglycosylated mutants, hGPR109A/N17A, and the finding that hGPR109A/C19S and hGPR109A/C19T, which are N-glycosylated at Asn(17), exhibited expression similar to the wild-type receptor. Second, the X-Cys(18)-Cys(19) dicysteine is indispensable for hGPR109A function. Substitution of Cys(18) or Cys(19) residue to Ala impaired Gi-mediated signaling via hGPR109A. We propose the disulfide bond formations of these residues with other Cys existed in the extracellular loops for the proper folding. Together, these results suggest that the atypical motif Asn(17)-Cys(18)-Cys(19) is crucial for the normal surface trafficking and function of hGPR109A.
Collapse
Affiliation(s)
- Daisuke Yasuda
- *Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Immunology, Faculty of Medicine, Akita University, Akita, Japan; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan; and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Yuki Imura
- *Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Immunology, Faculty of Medicine, Akita University, Akita, Japan; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan; and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Satoshi Ishii
- *Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Immunology, Faculty of Medicine, Akita University, Akita, Japan; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan; and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Takao Shimizu
- *Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Immunology, Faculty of Medicine, Akita University, Akita, Japan; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan; and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Motonao Nakamura
- *Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Immunology, Faculty of Medicine, Akita University, Akita, Japan; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan; and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
7
|
Petäjä-Repo UE, Lackman JJ. Targeting opioid receptors with pharmacological chaperones. Pharmacol Res 2013; 83:52-62. [PMID: 24355364 DOI: 10.1016/j.phrs.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) are polytopic membrane proteins that have a pivotal role in cellular signaling. Like other membrane proteins, they fold in the endoplasmic reticulum (ER) before they are transported to the plasma membrane. The ER quality control monitors the folding process and misfolded proteins and slowly folding intermediates are targeted to degradation in the cytosol via the ubiquitin-proteasome pathway. The high efficiency of the quality control machinery may lead to the disposal of potentially functional receptors. This is the major underlying course for loss-of-function conformational diseases, such as retinitis pigmentosa, nephrogenic diabetes insipidus and early onset obesity, which involve mutant GPCRs. During the past decade, it has become increasingly evident that small-molecular lipophilic and pharmacologically selective receptor ligands, called pharmacological chaperones (PCs), can rescue these mutant receptors from degradation by stabilizing newly synthesized receptors in the ER and enhancing their transport to the cell surface. This has raised the interesting prospect that PCs might have therapeutic value for the treatment of conformational diseases. At the same time, accumulating evidence has indicated that wild-type receptors might also be targeted by PCs, widening their therapeutic potential. This review focuses on one GPCR subfamily, opioid receptors that have been useful models to unravel the mechanism of action of PCs. In contrast to most other GPCRs, compounds that act as PCs for opioid receptors, including widely used opioid drugs, target wild-type receptors and their common natural variants.
Collapse
Affiliation(s)
- Ulla E Petäjä-Repo
- Department of Anatomy and Cell Biology and Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland.
| | - Jarkko J Lackman
- Department of Anatomy and Cell Biology and Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
8
|
Mouillac B, Mendre C. Vasopressin receptors and pharmacological chaperones: from functional rescue to promising therapeutic strategies. Pharmacol Res 2013; 83:74-8. [PMID: 24239889 DOI: 10.1016/j.phrs.2013.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 02/04/2023]
Abstract
Conformational diseases result from protein misfolding and/or aggregation and constitute a major public health problem. Congenital Nephrogenic Diabetes Insipidus is a typical conformational disease. In most of the cases, it is associated to inactivating mutations of the renal arginine-vasopressin V2 receptor gene leading to misfolding and intracellular retention of the receptor, causing the inability of patients to concentrate their urine in response to the antidiuretic hormone. Cell-permeable pharmacological chaperones have been successfully challenged to restore plasma membrane localization of the receptor mutants and to rescue their function. Interestingly, different classes of specific ligands such as antagonists (vaptans), agonists as well as biased agonists of the V2 receptor have proven their usefulness as efficient pharmacochaperones. These compounds represent a potential therapeutic treatment of this X-linked genetic pathology.
Collapse
Affiliation(s)
- Bernard Mouillac
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France; INSERM U661, F-34000 Montpellier, France; Universités de Montpellier 1 and 2, F-34000 Montpellier, France.
| | - Christiane Mendre
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France; INSERM U661, F-34000 Montpellier, France; Universités de Montpellier 1 and 2, F-34000 Montpellier, France
| |
Collapse
|
9
|
Sampson HM, Lam H, Chen PC, Zhang D, Mottillo C, Mirza M, Qasim K, Shrier A, Shyng SL, Hanrahan JW, Thomas DY. Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines. Orphanet J Rare Dis 2013; 8:11. [PMID: 23316740 PMCID: PMC3558398 DOI: 10.1186/1750-1172-8-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/01/2013] [Indexed: 11/12/2022] Open
Abstract
Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR. Most of these correctors do not act directly as ligands of CFTR, but indirectly on other pathways to promote folding and correction. We hypothesize that these proteostasis regulators may also correct other protein trafficking diseases. Methods To test our hypothesis, we used stable cell lines or transient transfection to express 2 well-studied trafficking disease mutations in each of 3 different proteins: the arginine-vasopressin receptor 2 (AVPR2, also known as V2R), the human ether-a-go-go-related gene (KCNH2, also known as hERG), and finally the sulfonylurea receptor 1 (ABCC8, also known as SUR1). We treated cells expressing these mutant proteins with 9 structurally diverse F508del-CFTR correctors that function through different cellular mechanisms and assessed whether correction occurred via immunoblotting and functional assays. Results were deemed significantly different from controls by a one-way ANOVA (p < 0.05). Results Here we show that F508del-CFTR correctors RDR1, KM60 and KM57 also correct some mutant alleles of other protein trafficking diseases. We also show that one corrector, the cardiac glycoside ouabain, was found to alter the glycosylation of all mutant alleles tested. Conclusions Correctors of F508del-CFTR trafficking might have broader applications to other protein trafficking diseases.
Collapse
Affiliation(s)
- Heidi M Sampson
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, McIntyre Medical Building, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Use of Kikume green-red fusions to study the influence of pharmacological chaperones on trafficking of G protein-coupled receptors. FEBS Lett 2012; 586:784-91. [DOI: 10.1016/j.febslet.2012.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 11/22/2022]
|
11
|
Moriyama K, Sitkovsky MV. Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem 2010; 285:39271-88. [PMID: 20926384 PMCID: PMC2998132 DOI: 10.1074/jbc.m109.098293] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 10/05/2010] [Indexed: 11/06/2022] Open
Abstract
The A2A and A2B adenosine receptors (A2AR and A2BR) are implicated in many physiological processes. However, the mechanisms of their intracellular maturation and trafficking are poorly understood. In comparative studies of A2AR versus A2BR expression in transfected cells, we noticed that the levels of cell surface expression of A2BR were significantly lower than those of A2AR. A large portion of the A2BR was degraded by the proteasome. Studies of cell surface expression of A2BR chimeric molecules in transfectants suggested that A2BR does not have the dominant forward transport signal for export from the endoplasmic reticulum to the cell surface. A2BR surface expression was increased in A2BR chimeras where the A2BR carboxyl terminus (CT) was replaced or fused with the A2AR CT. Co-transfection of A2AR with A2BR enhanced surface expression of A2BR though the F(X)(6)LL motif in the A2AR CT. The requirements of A2AR expression for better A2BR cell surface expression was not only established in transfectants but also confirmed by observations of much lower levels of A2BR-induced intracellular cAMP accumulation in response to A2BR-activating ligand in splenocytes from A2AR(-/-) mice than in wild type mice. The results of mechanistic studies suggested that poor A2BR expression at the cell surface might be accounted for mainly by the lack of a dominant forward transport signal from the endoplasmic reticulum to the plasma membrane; it is likely that A2BR forms a hetero-oligomer complex for better function.
Collapse
Affiliation(s)
- Kengo Moriyama
- From the New England Inflammation and Tissue Protection Institute, Departments of Pharmaceutical Science and Biology, Northeastern University, Boston, Massachusetts 02115
| | - Michail V. Sitkovsky
- From the New England Inflammation and Tissue Protection Institute, Departments of Pharmaceutical Science and Biology, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
12
|
Ryan S, Verghese S, Cianciola NL, Cotton CU, Carlin CR. Autosomal recessive polycystic kidney disease epithelial cell model reveals multiple basolateral epidermal growth factor receptor sorting pathways. Mol Biol Cell 2010; 21:2732-45. [PMID: 20519437 PMCID: PMC2912358 DOI: 10.1091/mbc.e09-12-1059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have discovered that multiple basolateral pathways mediate EGF receptor sorting in renal epithelial cells. The polycystic kidney disease allele in the BPK mouse model, Bicc1, interferes with one specific EGF receptor pathway, causing nonpolar delivery of the receptor without affecting overall cell polarity. Sorting and maintenance of the EGF receptor on the basolateral surface of renal epithelial cells is perturbed in polycystic kidney disease and apical expression of receptors contributes to severity of disease. The goal of these studies was to understand the molecular basis for EGF receptor missorting using a well-established mouse model for the autosomal recessive form of the disease. We have discovered that multiple basolateral pathways mediate EGF receptor sorting in renal epithelial cells. The polycystic kidney disease allele in this model, Bicc1, interferes with one specific EGF receptor pathway without affecting overall cell polarity. Furthermore one of the pathways is regulated by a latent basolateral sorting signal that restores EGF receptor polarity in cystic renal epithelial cells via passage through a Rab11-positive subapical compartment. These studies give new insights to possible therapies to reconstitute EGF receptor polarity and function in order to curb disease progression. They also indicate for the first time that the Bicc1 gene that is defective in the mouse model used in these studies regulates cargo-specific protein sorting mediated by the epithelial cell specific clathrin adaptor AP-1B.
Collapse
Affiliation(s)
- Sean Ryan
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | |
Collapse
|
13
|
Los EL, Deen PMT, Robben JH. Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol 2010; 22:393-9. [PMID: 20163515 DOI: 10.1111/j.1365-2826.2010.01983.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to the body's need, water is reabsorbed from the pro-urine that is formed by ultrafiltration in the kidney. This process is regulated by the antidiuretic hormone arginine-vasopressin (AVP), which binds to its type 2 receptor (V2R) in the kidney. Mutations in the gene encoding the V2R often lead to the X-linked inheritable form of nephrogenic diabetes insipidus (NDI), a disorder in which patients are unable to concentrate their urine despite the presence of AVP. Many of these mutations are missense mutations that do not interfere with the intrinsic functionality of V2R, but cause its retention in the endoplasmic reticulum (ER), making it unavailable for AVP binding. Because the current treatments for NDI relieve its symptoms to some extent, but do not cure the disorder, cell-permeable antagonists (pharmacological chaperones) have been successfully used to stabilise the mutant receptors and restore their plasma membrane localisation. Recently, cell-permeable agonists also were shown to rescue ER-retained V2R mutants, leading to increased cAMP levels and translocation of aquaporin-2 to the apical membrane. This makes V2R-specific cell-permeable agonists very promising therapeutics for NDI as a result of misfolded V2R receptors.
Collapse
Affiliation(s)
- E L Los
- Department of physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
14
|
Hirota N, Yasuda D, Hashidate T, Yamamoto T, Yamaguchi S, Nagamune T, Nagase T, Shimizu T, Nakamura M. Amino acid residues critical for endoplasmic reticulum export and trafficking of platelet-activating factor receptor. J Biol Chem 2009; 285:5931-40. [PMID: 20007715 DOI: 10.1074/jbc.m109.066282] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several residues are conserved in the transmembrane domains (TMs) of G-protein coupled receptors. Here we demonstrate that a conserved proline, Pro(247), in TM6 of platelet-activating factor receptor (PAFR) is required for endoplasmic reticulum (ER) export and trafficking after agonist-induced internalization. Alanine-substituted mutants of the conserved residues of PAFRs, including P247A, were retained in the ER. Because a PAFR antagonist, Y-24180, acted as a pharmacological chaperone to rescue ER retention, this retention is due to misfolding of PAFR. Methylcarbamyl (mc)-PAF, a PAFR agonist, did not increase the cell surface expression of P247A, even though another ER-retained mutant, D63A, was effectively trafficked. Signaling and accumulation of the receptors in the early endosomes were observed in the mc-PAF-treated P247A-expressing cells, suggesting that P247A was trafficked to the cell surface by mc-PAF, and thereafter disappeared from the surface due to aberrant trafficking, e.g. enhanced internalization, deficiency in recycling, and/or accelerated degradation. The aberrant trafficking was confirmed with a sortase-A-mediated method for labeling cell surface proteins. These results demonstrate that the conserved proline in TM6 is crucial for intracellular trafficking of PAFR.
Collapse
Affiliation(s)
- Nobuaki Hirota
- Department of Biochemistry and Molecular Biology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
16
|
Jean-Alphonse F, Perkovska S, Frantz MC, Durroux T, Méjean C, Morin D, Loison S, Bonnet D, Hibert M, Mouillac B, Mendre C. Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 2009; 20:2190-203. [PMID: 19729439 DOI: 10.1681/asn.2008121289] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
X-linked congenital nephrogenic diabetes insipidus (cNDI) results from inactivating mutations of the human arginine vasopressin (AVP) V2 receptor (hV(2)R). Most of these mutations lead to intracellular retention of the hV(2)R, preventing its interaction with AVP and thereby limiting water reabsorption and concentration of urine. Because the majority of cNDI-hV(2)Rs exhibit protein misfolding, molecular chaperones hold promise as therapeutic agents; therefore, we sought to identify pharmacochaperones for hV(2)R that also acted as agonists. Here, we describe high-affinity nonpeptide compounds that promoted maturation and membrane rescue of L44P, A294P, and R337X cNDI mutants and restored a functional AVP-dependent cAMP signal. Contrary to pharmacochaperone antagonists, these compounds directly activated a cAMP signal upon binding to several cNDI mutants. In addition, these molecules displayed original functionally selective properties (biased agonism) toward the hV(2)R, being unable to recruit arrestin, trigger receptor internalization, or stimulate mitogen-activated protein kinases. These characteristics make these hV(2)R agonist pharmacochaperones promising therapeutic candidates for cNDI.
Collapse
Affiliation(s)
- Frédéric Jean-Alphonse
- CNRS UMR 5203, Institut de Génomique fonctionnelle, INSERM U661, and Université Montpellier I and II, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci U S A 2009; 106:12195-200. [PMID: 19587238 DOI: 10.1073/pnas.0900130106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of the peptide hormone vasopressin to its type-2 receptor (V2R) in kidney triggers a cAMP-mediated translocation of Aquaporin-2 water channels to the apical membrane, resulting in water reabsorption and thereby preventing dehydration. Mutations in the V2R gene lead to Nephrogenic Diabetes Insipidus (NDI), a disorder in which this process is disturbed, because the encoded, often intrinsically functional mutant V2 receptors are misfolded and retained in the endoplasmic reticulum (ER). Since plasma membrane expression is thought to be essential for V2R activation, cell permeable V2R antagonists have been used to induce maturation and rescue cell surface expression of V2R mutants, after which they need to be displaced by vasopressin for activation. Here, however, we show that 3 novel nonpeptide V2R agonists, but not vasopressin, activate NDI-causing V2R mutants at their intracellular location, without changing their maturation and at a sufficient level to induce the translocation of aquaporin-2 to the apical membrane. Moreover, in contrast to plasma membrane V2R, degradation of intracellular V2R mutants is not increased by their activation. Our data reveal that G protein-coupled receptors (GPCRs) normally active at the plasma membrane can be activated intracellularly and that intracellular activation does not induce their degradation; the data also indicate that nonpeptide agonists constitute highly promising therapeutics for diseases caused by misfolded GPCRs in general, and NDI in particular.
Collapse
|
18
|
Duvernay MT, Dong C, Zhang X, Robitaille M, Hébert TE, Wu G. A single conserved leucine residue on the first intracellular loop regulates ER export of G protein-coupled receptors. Traffic 2009; 10:552-66. [PMID: 19220814 DOI: 10.1111/j.1600-0854.2009.00890.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intrinsic structural determinants for export trafficking of G protein-coupled receptors (GPCRs) have been mainly identified in the termini of the receptors. In this report, we determined the role of the first intracellular loop (ICL1) in the transport from the endoplasmic reticulum (ER) to the cell surface of GPCRs. The alpha(2B)-adrenergic receptor (AR) mutant lacking the ICL1 is unable to traffic to the cell surface and to initiate signaling measured as ERK1/2 activation. Mutagenesis studies identify a single Leu48 residue in the ICL1 modulates alpha(2B)-AR export from the ER. The ER export function of the Leu48 residue can be substituted by Phe, but not Ile, Val, Tyr and Trp, and is unlikely involved in correct folding or dimerization of alpha(2B)-AR in the ER. Importantly, the isolated Leu residue is remarkably conserved in the center of the ICL1s among the family A GPCRs and is also required for the export to the cell surface of beta(2)-AR, alpha(1B)-AR and angiotensin II type 1 receptor. These data indicate a crucial role for a single Leu residue within the ICL1 in ER export of GPCRs.
Collapse
Affiliation(s)
- Matthew T Duvernay
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yasuda D, Okuno T, Yokomizo T, Hori T, Hirota N, Hashidate T, Miyano M, Shimizu T, Nakamura M. Helix 8 of leukotriene B4type‐2 receptor is required for the folding to pass the quality control in the endoplasmic reticulum. FASEB J 2009; 23:1470-81. [DOI: 10.1096/fj.08-125385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daisuke Yasuda
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Toshiaki Okuno
- Department of Medical BiochemistryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takehiko Yokomizo
- Department of Medical BiochemistryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tetsuya Hori
- Structural Biophysics LaboratoryRIKEN Harima Institute at SpringHyogo8Japan
| | - Nobuaki Hirota
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Tomomi Hashidate
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Masashi Miyano
- Structural Biophysics LaboratoryRIKEN Harima Institute at SpringHyogo8Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| | - Motonao Nakamura
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
20
|
Nathanson NM. Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 2008; 119:33-43. [PMID: 18558434 DOI: 10.1016/j.pharmthera.2008.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/28/2008] [Indexed: 12/27/2022]
Abstract
Muscarinic acetylcholine receptors are members of the G-protein coupled receptor superfamily that are expressed in and regulate the function of neurons, cardiac and smooth muscle, glands, and many other cell types and tissues. The correct trafficking of membrane proteins to the cell surface and their subsequent localization at appropriate sites in polarized cells are required for normal cellular signaling and physiological responses. This review will summarize work on the synthesis and trafficking of muscarinic receptors to the plasma membrane and their localization at the cell surface.
Collapse
Affiliation(s)
- Neil M Nathanson
- Department of Pharmacology, School of Medicine, University of Washington, Box 357750, Seattle, WA 98195-7750, USA.
| |
Collapse
|
21
|
Dong C, Zhou F, Fugetta EK, Filipeanu CM, Wu G. Endoplasmic reticulum export of adrenergic and angiotensin II receptors is differentially regulated by Sar1 GTPase. Cell Signal 2008; 20:1035-43. [PMID: 18378118 DOI: 10.1016/j.cellsig.2008.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 01/03/2008] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
The molecular mechanism underlying the export of G protein-coupled receptors (GPCRs) from the endoplasmic reticulum (ER) remains largely unknown. In this manuscript, we investigated the role of Sar1 GTPase, which coordinates the assembly and budding of COPII-coated vesicles, in the cell-surface targeting, signaling and ER export of alpha(2B)-adrenergic (alpha(2B)-AR), beta(2)-AR and angiotensin II type 1 receptors (AT1R). The cell-surface expression of alpha(2B)-AR, beta(2)-AR and AT1R, and receptor-mediated ERK1/2 activation were significantly attenuated by the GTP-bound mutant Sar1H79G, suggesting that export from the ER of these receptors is mediated through the Sar1-dependent COPII-coated vesicles. Interestingly, subcellular distribution analyses showed that alpha(2B)-AR and AT1R were highly concentrated at discrete locations near the nucleus in cells expressing Sar1H79G, whereas beta(2)-AR exhibited an ER distribution. These data indicate that Sar1-catalyzed efficient GTP hydrolysis differentially regulates ER export of adrenergic and angiotensin II receptors. These data provide the first evidence indicating distinct mechanisms for the recruitment of different GPCRs into the COPII vesicles on the ER membrane.
Collapse
Affiliation(s)
- Chunmin Dong
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, United States
| | | | | | | | | |
Collapse
|
22
|
Robben JH, Deen PMT. Pharmacological chaperones in nephrogenic diabetes insipidus: possibilities for clinical application. BioDrugs 2007; 21:157-66. [PMID: 17516711 DOI: 10.2165/00063030-200721030-00003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The antidiuretic hormone arginine-vasopressin regulates water homeostasis in the human body by binding to its vasopressin type 2 receptor (V2R). Mutations in AVPR2, the gene encoding V2R, lead to the X-linked congenital form of nephrogenic diabetes insipidus (NDI), a disease characterized by the inability to concentrate urine in response to vasopressin; often this involves missense mutations or deletion of one or a few amino acids. In vitro V2R expression studies revealed that the function of most of these receptors is not disturbed, but due to their misfolding, the quality control mechanism of the endoplasmic reticulum (ER) retains these receptors inside the cell, thereby preventing their functioning at the plasma membrane. This review summarizes our current knowledge on ER retention of V2R mutants, and describes the different approaches that have been undertaken to restore the plasma membrane expression and function of V2R mutants in NDI in vitro and in vivo. The use of cell permeable receptor ligands (called 'pharmacological chaperones') appears promising for the treatment of NDI in a subset of patients.
Collapse
Affiliation(s)
- Joris H Robben
- Molecular Pharmacology Group, Institute for Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
23
|
Abstract
Proteins that are exported from the cell, or targeted to the cell surface or other organelles, are synthesised and assembled in the endoplasmic reticulum and then delivered to their destinations. Point mutations – the most common cause of human genetic diseases – can inhibit folding and assembly of the protein in the endoplasmic reticulum. The unstable or partially folded mutant protein does not undergo trafficking and is usually rapidly degraded. A potential therapy for protein misfolding is to correct defective protein folding and trafficking using pharmacological chaperones. Pharmacological chaperones are substrates or modulators that appear to function by directly binding to the partially folded biosynthetic intermediate to stabilise the protein and allow it to complete the folding process to yield a functional protein. Initial clinical studies with pharmacological chaperones have successfully reduced clinical symptoms of disease. Therefore, pharmacological chaperones show great promise as a new class of therapeutic agents that can be specifically tailored for a particular genetic disease.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
24
|
Leskelä TT, Markkanen PMH, Pietilä EM, Tuusa JT, Petäjä-Repo UE. Opioid receptor pharmacological chaperones act by binding and stabilizing newly synthesized receptors in the endoplasmic reticulum. J Biol Chem 2007; 282:23171-83. [PMID: 17550902 DOI: 10.1074/jbc.m610896200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has indicated that membrane-permeable G protein-coupled receptor ligands can enhance cell surface targeting of their cognate wild-type and mutant receptors. This pharmacological chaperoning was thought to result from ligand-mediated stabilization of immature receptors in the endoplasmic reticulum (ER). In the present study, we directly tested this hypothesis using wild-type and mutant forms of the human delta-opioid receptor as models. ER-localized receptors were isolated by expressing the receptors in HEK293 cells under tightly controlled tetracycline induction and blocking their ER export with brefeldin A. The ER-retained delta-opioid receptor precursors were able to bind [(3)H]diprenorphine with high affinity, and treatment of cells with an opioid antagonist naltrexone led to a 2-fold increase in the number of binding sites. After removing the transport block, the antagonist-mediated increase in the number of receptors was detectable at the cell surface by flow cytometry and cell surface biotinylation assay. Importantly, opioid ligands, both antagonists and agonists, were found to stabilize the ER-retained receptor precursors in an in vitro heat inactivation assay and the treatment enhanced dissociation of receptor precursors from the molecular chaperone calnexin. Thus, we conclude that pharmacological chaperones facilitate plasma membrane targeting of delta-opioid receptors by binding and stabilizing receptor precursors, thereby promoting their release from the stringent ER quality control.
Collapse
Affiliation(s)
- Tarja T Leskelä
- Biocenter Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
25
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
26
|
Kondo Y, Morimoto T, Nishio T, Aslanova UF, Nishino M, Farajov EI, Sugawara N, Kumagai N, Ohsaga A, Maruyama Y, Takahashi S. Phylogenetic, ontogenetic, and pathological aspects of the urine-concentrating mechanism. Clin Exp Nephrol 2006; 10:165-74. [PMID: 17009073 DOI: 10.1007/s10157-006-0429-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/09/2006] [Indexed: 12/21/2022]
Abstract
The urine-concentrating mechanism is one of the most fundamental functions of avian and mammalian kidneys. This particular function of the kidneys developed as a system to accumulate NaCl in birds and as a system to accumulate NaCl and urea in mammals. Based on phylogenetic evidence, the mammalian urine-concentrating mechanism may have evolved as a modification of the renal medulla's NaCl accumulating system that is observed in birds. This qualitative conversion of the urine-concentrating mechanism in the mammalian inner medulla of the kidneys may occur during the neonatal period. Human kidneys have several suboptimal features caused by the neonatal conversion of the urine-concentrating mechanism. The urine-concentrating mechanism is composed of various functional molecules, including water channels, solute transporters, and vasopressin receptors. Abnormalities in water channels aquaporin (AQP)1 and AQP2, as well as in the vasopressin receptor V2R, are known to cause nephrogenic diabetes insipidus. An analysis of the pathological mechanism involved in nephrogenic diabetes insipidus suggests that molecular chaperones may improve the intracellular trafficking of AQP2 and V2R, and, in the near future, such chaperones may become a new clinical tool for treating nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Yoshiaki Kondo
- Department of Medical Informatics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dong C, Filipeanu CM, Duvernay MT, Wu G. Regulation of G protein-coupled receptor export trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:853-70. [PMID: 17074298 PMCID: PMC1885203 DOI: 10.1016/j.bbamem.2006.09.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.
Collapse
Affiliation(s)
| | | | | | - Guangyu Wu
- * Corresponding author. Tel: +1 504 568 2236; Fax: +1 504 568 2361. E-mail address: (G. Wu)
| |
Collapse
|
28
|
Robben JH, Knoers NVAM, Deen PMT. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2006; 291:F257-70. [PMID: 16825342 DOI: 10.1152/ajprenal.00491.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the renal collecting duct, water reabsorption is regulated by the antidiuretic hormone vasopressin (AVP). Binding of this hormone to the vasopressin V2 receptor (V2R) leads to insertion of aquaporin-2 (AQP2) water channels in the apical membrane, thereby allowing water reabsorption from the pro-urine to the interstitium. The disorder nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate pro-urine in response to AVP, which is mostly acquired due to electrolyte disturbances or lithium therapy. Alternatively, NDI is inherited in an X-linked or autosomal fashion due to mutations in the genes encoding V2R or AQP2, respectively. This review describes the current knowledge of the cell biological causes of NDI and how these defects may explain the patients' phenotypes. Also, the increased understanding of these cellular defects in NDI has opened exciting initiatives in the development of novel therapies for NDI, which are extensively discussed in this review.
Collapse
MESH Headings
- Amino Acid Sequence
- Aquaporin 2/genetics
- Aquaporin 2/physiology
- DNA/genetics
- Diabetes Insipidus, Nephrogenic/etiology
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/physiopathology
- Diabetes Insipidus, Nephrogenic/therapy
- Gene Expression Regulation/physiology
- Genetic Diseases, X-Linked/etiology
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/physiopathology
- Genetic Diseases, X-Linked/therapy
- Humans
- Molecular Sequence Data
- Mutation/genetics
- Mutation/physiology
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/physiology
- Vasopressins/physiology
Collapse
Affiliation(s)
- Joris H Robben
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences and Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
29
|
Robben JH, Sze M, Knoers NVAM, Deen PMT. Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2006; 292:F253-60. [PMID: 16926443 DOI: 10.1152/ajprenal.00247.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular retention of a functional vasopressin V2 receptor (V2R) is a major cause of congenital nephrogenic diabetes insipidus (NDI) and rescue of V2R mutants by nonpeptide antagonists may restore their basolateral membrane (BM) localization and function. However, the criteria for efficient functional rescue of G protein-coupled receptor (GPCR) mutants at clinically feasible antagonist concentrations are unknown. We found that the four nonpeptide antagonists SR49059, OPC31260, OPC41061, and SR121463B induced maturation and rescued the BM expression of eight of nine different V2R mutants, stably expressed in physiologically relevant polarized cells. The extent of maturation and rescued BM expression correlated with the antagonists' concentration and affinity for the V2R. Displacement of the antagonists by AVP and subsequent cAMP generation inversely correlated with the antagonists' affinities for the V2R but is partially influenced by antagonist-specific aspects. Despite limited increases in maturation and cell-surface expression of V2R mutants, the low-affinity SR49059 optimally induced functional rescue at high concentrations, due to its easy displacement by vasopressin. At clinically feasible antagonist concentrations, however, only the high-affinity antagonists OPC31260 and OPC41061 induced functional rescue, as at these concentrations the extent of BM expression became limited. In conclusion, functional rescue of mutant V2Rs at clinically feasible concentrations is most effective with high-affinity antagonists. As OPC31260 and OPC41061 are clinically safe, they are promising candidates to relieve NDI. Moreover, as numerous other diseases are caused by endoplasmic reticulum-retained GPCRs for which cell-permeable antagonists become available, our finding that high-affinity antagonists are superior is anticipated to be important for pharmacotherapy development of these diseases.
Collapse
Affiliation(s)
- J H Robben
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, The Netherlands
| | | | | | | |
Collapse
|
30
|
Madziva MT, Birnbaumer M. A Role for ADP-ribosylation Factor 6 in the Processing of G-protein-coupled Receptors. J Biol Chem 2006; 281:12178-86. [PMID: 16497672 DOI: 10.1074/jbc.m601357200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After agonist-induced internalization, the vasopressin V2 receptor (V2R) does not recycle to the plasma membrane. The ADP-ribosylation factor (ARF) proteins initiate vesicular intracellular traffic by promoting the recruitment of adaptor proteins; thus, we sought to determine whether ARF6 could promote V2R recycling. Neither the agonist-induced internalization nor the recycling of the V2R was regulated by ARF6, but a constitutively active mutant of ARF6 reduced cell-surface V2Rs 10-fold in the absence of agonist treatment. Visualization of the ARF6 mutant-expressing cells revealed a vacuolar-staining pattern of the V2R instead of the normal plasma membrane expression. Analysis of V2R maturation revealed that reduced cell-surface expression was due to the diminished ability of the newly synthesized receptor to migrate from the endoplasmic reticulum to the Golgi network. The same mechanism affected processing of the V1aR and acetylcholine M2 receptors. Therefore, ARF6 controls the exit of the V2 and other receptors from the endoplasmic reticulum in addition to its established role in the trafficking of plasma-membrane-derived vesicles.
Collapse
Affiliation(s)
- Michael T Madziva
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
31
|
Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, Hunziker W. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 2006; 116:878-91. [PMID: 16528408 PMCID: PMC1395478 DOI: 10.1172/jci26323] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/10/2006] [Indexed: 12/20/2022] Open
Abstract
Claudin-16 (Cldn16) is selectively expressed at tight junctions (TJs) of renal epithelial cells of the thick ascending limb of Henle's loop, where it plays a central role in the reabsorption of divalent cations. Over 20 different mutations in the CLDN16 gene have been identified in patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), a disease of excessive renal Mg2+ and Ca2+ excretion. Here we show that disease-causing mutations can lead to the intracellular retention of Cldn16 or affect its capacity to facilitate paracellular Mg2+ transport. Nine of the 21 Cldn16 mutants we characterized were retained in the endoplasmic reticulum, where they underwent proteasomal degradation. Three mutants accumulated in the Golgi complex. Two mutants were efficiently delivered to lysosomes, one via clathrin-mediated endocytosis following transport to the cell surface and the other without appearing on the plasma membrane. The remaining 7 mutants localized to TJs, and 4 were found to be defective in paracellular Mg2+ transport. We demonstrate that pharmacological chaperones rescued surface expression of several retained Cldn16 mutants. We conclude that FHHNC can result from mutations in Cldn16 that affect intracellular trafficking or paracellular Mg2+ permeability. Knowledge of the molecular defects associated with disease-causing Cldn16 mutations may open new venues for therapeutic intervention.
Collapse
Affiliation(s)
- P. Jaya Kausalya
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Salah Amasheh
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dorothee Günzel
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Henrik Wurps
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dominik Müller
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Michael Fromm
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| |
Collapse
|
32
|
Abstract
An increasing number of studies indicate that low-molecular-weight compounds can help correct conformational diseases by inhibiting the aggregation or enable the mutant proteins to escape the quality control systems, and thus their function can be rescued. The small molecules were named chemical chaperones and it is thought that they nonselectively stabilize the mutant proteins and facilitate their folding. Chemical chaperones are usually osmotically active, such as DMSO, glycerol, or deuterated water, but other compounds, such as 4-phenylbutiric acid, are also members of the chemical chaperone group. More recently, compounds such as receptor ligands or enzyme inhibitors, which selectively recognize the mutant proteins, were also found to rescue conformational mutants and were termed pharmacological chaperones. An increasing amount of evidence suggests that the action of pharmacological chaperones could be generalized to a large number of misfolded proteins, representing new therapeutic possibilities for the treatment of conformational diseases. A new and exciting strategy has recently been developed, leading to the new chemical group called folding agonist. These small molecules are designed to bind proteins and thus restore their native conformation.
Collapse
Affiliation(s)
- E Papp
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
33
|
Bernier V, Morello JP, Zarruk A, Debrand N, Salahpour A, Lonergan M, Arthus MF, Laperrière A, Brouard R, Bouvier M, Bichet DG. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 2005; 17:232-43. [PMID: 16319185 DOI: 10.1681/asn.2005080854] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In many mendelian diseases, some mutations result in the synthesis of misfolded proteins that cannot reach a transport-competent conformation. In X-linked nephrogenic diabetes insipidus, most of the mutant vasopressin 2 (V2) receptors are trapped in the endoplasmic reticulum and degraded. They are unable to reach the plasma membrane and promote water reabsorption through the principal cells of the collecting ducts. Herein is reported two types of experiments: In vivo studies to assess clinically a short-term treatment with a nonpeptide V1a receptor antagonist (SR49059) and in vitro studies in cultured cell systems. In patients, SR49059 decreased 24- h urine volume (11.9 +/- 2.3 to 8.2 +/- 2.0 L; P = 0.005) and water intake (10.7 +/- 1.9 to 7.2 +/- 1.6 L; P < 0.05). Maximum increase in urine osmolality was observed on day 3 (98 +/- 22 to 170 +/- 52 mOsm/kg; P = 0.05). Sodium, potassium, and creatinine excretions and plasma sodium were constant throughout the study. In vitro studies indicate that the nonpeptide V1a receptor antagonist SR49059 and the V1a/V2 receptor antagonist YM087 (Conivaptan) rescued cell surface expression and function of mutant V2 receptors. Mutant V2 receptors with nonsense mutations were not affected by the treatment. Misfolded V2 receptor mutants were rescued in vitro and also in vivo by nonpeptide antagonists. This therapeutic approach could be applied to the treatment of several hereditary diseases that result from errors in protein folding and kinesis.
Collapse
Affiliation(s)
- Virginie Bernier
- Department of Biochemistry, Groupe de recherche universitaire sur le médicament, Hôpital du Sacré-Coeur de Montréal, 5400 boulevard Gouin Ouest, Montréal, Québec, H4J 1C5 Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Robben JH, Knoers NVAM, Deen PMT. Characterization of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus in a polarized cell model. Am J Physiol Renal Physiol 2005; 289:F265-72. [PMID: 16006591 DOI: 10.1152/ajprenal.00404.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
X-linked nephrogenic diabetes insipidus (NDI) is caused by mutations in the gene encoding the vasopressin V2 receptor (V2R). For the development of a tailored therapy for NDI, knowledge of the cellular fate of V2R mutants is needed. It would be useful when this fate could be predicted from the location and type of mutation. To identify similarities and differences in localization, maturation, stability, and degradation of COOH-terminal GFP-tagged V2R mutants, we stably expressed nine mutants in polarized Madin-Darby canine kidney cells. The mutants V2R-L44P, -Delta62-64, -I130F, -S167T, -S167L, and -V206D were mainly expressed in the endoplasmic reticulum (ER) as immature proteins. These mutants had relatively short half-lives due to proteasomal degradation, except for V2R-Delta62-64. In contrast, V2R-R113W, -G201D, and -T204N were expressed in the ER and in the basolateral membrane as immature, high-mannose glycosylated, and mature complex-glycosylated proteins. The immature forms of V2R-R113W and -T204N, but not V2R-G201D, were rapidly degraded. The mature forms varied extensively in their stability and were degraded by only lysosomes (V2R-T204N and wild-type V2R) or lysosomes and proteasomes (V2R-G201D, -R113W). These data reveal that most missense V2R mutations lead to retention in the ER and suggest that mutations that likely distort a transmembrane domain or introduce a charged amino acid close to it make a V2R mutant more prone to ER retention. Because six of the mutants tested showed significant increases in intracellular cAMP levels on transient expression in COS cells, activation of these six receptors following rescue of cell-surface expression might provide a cure for NDI patients.
Collapse
Affiliation(s)
- J H Robben
- Department of Physiology, Nijmegen Centre Molecular Life Sciences, The Netherlands
| | | | | |
Collapse
|
36
|
Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM. Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 2005; 5:821-37. [PMID: 15479448 DOI: 10.1111/j.1600-0854.2004.00232.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The process of quality control in the endoplasmic reticulum involves a variety of mechanisms which ensure that only correctly folded proteins enter the secretory pathway. Among these are conformation-screening mechanisms performed by molecular chaperones that assist in protein folding and prevent non-native (or misfolded) proteins from interacting with other misfolded proteins. Chaperones play a central role in the triage of newly formed proteins prior to their entry into the secretion, retention, and degradation pathways. Despite this stringent quality control mechanism, gain- or loss-of-function mutations that affect protein folding in the endoplasmic reticulum can manifest themselves as profound effects on the health of an organism. Understanding the molecular, cellular, and energetic mechanisms of protein routing could prevent or correct the structural abnormalities associated with disease-causing misfolded proteins. Rescue of misfolded, "trafficking-defective", but otherwise functional, proteins is achieved by a variety of physical, chemical, genetic, and pharmacological approaches. Pharmacologic chaperones (or "pharmacoperones") are template molecules that may potentially arrest or reverse diseases by inducing mutant proteins to adopt native-type-like conformations instead of improperly folded ones. Such restructuring leads to a normal pattern of cellular localization and function. This review focuses on protein misfolding and misrouting related to various disease states and describes promising approaches to overcoming such defects. Special attention is paid to the gonadotropin-releasing hormone receptor, since there is a great deal of information about this receptor, which has recently emerged as a particularly instructive model.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | |
Collapse
|
37
|
Wüller S, Wiesner B, Löffler A, Furkert J, Krause G, Hermosilla R, Schaefer M, Schülein R, Rosenthal W, Oksche A. Pharmacochaperones Post-translationally Enhance Cell Surface Expression by Increasing Conformational Stability of Wild-type and Mutant Vasopressin V2 Receptors. J Biol Chem 2004; 279:47254-63. [PMID: 15319430 DOI: 10.1074/jbc.m408154200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some membrane-permeable antagonists restore cell surface expression of misfolded receptors retained in the endoplasmic reticulum (ER) and are therefore termed pharmacochaperones. Whether pharmacochaperones increase protein stability, thereby preventing rapid degradation, or assist folding via direct receptor interactions or interfere with quality control components remains elusive. We now show that the cell surface expression and function (binding of the agonist) of the mainly ER-retained wild-type murine vasopressin V2 receptor GFP fusion protein (mV2R.GFP) is restored by the vasopressin receptor antagonists SR49059 and SR121463B with EC50 values similar to their KD values. This effect was preserved when protein synthesis was abolished. In addition, SR121463B rescued eight mutant human V2Rs (hV2Rs, three are responsible for nephrogenic diabetes insipidus) characterized by amino acid exchanges at the C-terminal end of transmembrane helix TM I and TM VII. In contrast, mutants with amino acid exchanges at the interface of TM II and IV were not rescued by either antagonist. The mechanisms involved in successful rescue of cell surface delivery are explained in a three-dimensional homology model of the antagonist-bound hV2R.
Collapse
Affiliation(s)
- Stefan Wüller
- Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nickols HH, Shah VN, Chazin WJ, Limbird LE. Calmodulin interacts with the V2 vasopressin receptor: elimination of binding to the C terminus also eliminates arginine vasopressin-stimulated elevation of intracellular calcium. J Biol Chem 2004; 279:46969-80. [PMID: 15319442 DOI: 10.1074/jbc.m407351200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify molecules that might contribute to V2 vasopressin receptor (V2R) trafficking or signaling, we searched for novel interacting proteins with this receptor. Preliminary data, using the V2R C terminus as bait in a yeast two-hybrid screen, revealed calmodulin as a binding partner. Because calmodulin interacts with other G protein-coupled receptors, we explored this interaction and its possible functional relevance in greater detail. A Ca2+ -dependent interaction occurs between calmodulin-linked agarose and the holo-V2R as well as the V2R C terminus. Truncation and site-directed mutagenesis of the V2R C terminus revealed an involvement of an RGR sequence in this interaction. NMR studies showed that a peptide fragment of the V2R C terminus containing the RGR sequence binds to calmodulin in a Ca2+ -dependent manner with a Kd < or =1.5 microm; concentration-dependent binding of the V2R C terminus to calmodulin-agarose was used to estimate a Kd value of approximately 200 nm for this entire C-terminal sequence as expressed in mammalian cells. Madin-Darby canine kidney II cells stably expressing either wild type or a mutant V2R, in which the RGR C-terminal sequence was mutated to alanines (AAA V2R), revealed that the steady-state localization and agonist-induced internalization of the AAA V2R resembled that of the wild type V2R in polarized Madin-Darby canine kidney II cells. V2R binding of agonist similarly was unchanged in the AAA V2R, as was the concentration response for arginine vasopressin (AVP)-stimulated cAMP accumulation. Most interestingly, AVP-induced increases in intracellular Ca2+ observed for the wild type V2R were virtually eliminated for the AAA V2R. Taken together, the data suggest that a C-terminal region of the V2R important for calmodulin interaction is also important in modulation of V2R elevation of intracellular Ca2+, a prerequisite for AVP-induced fusion of aquaporin-containing vesicles with the apical surface of renal epithelial cells.
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | |
Collapse
|
39
|
Bernier V, Lagacé M, Bichet DG, Bouvier M. Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 2004; 15:222-8. [PMID: 15223052 DOI: 10.1016/j.tem.2004.05.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Increasing numbers of inherited diseases are found to result from mutations that lead to misfolded proteins. In many cases, the changes in conformation are relatively modest and the function of the protein would not be predicted to be affected. Yet, these proteins are recognized as "misfolded" and degraded prematurely. Recently, small molecules known as chemical and pharmacological chaperones were found to stabilize such mutant proteins and facilitate their trafficking to their site of action. Here, we review the recent published evidence suggesting that pharmacological chaperones represent promising avenues for the treatment of endocrine and metabolic diseases such as hyperinsulinemic hypoglycemia, hypogonadotropic hypogonadism and nephrogenic diabetes insipidus, and might become a general therapeutic strategy for the treatment of conformational diseases.
Collapse
Affiliation(s)
- Virginie Bernier
- Département de Biochimie and Le Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, H3T 1J4, Canada
| | | | | | | |
Collapse
|
40
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Membrane receptors that couple to guanine nucleotide binding protein (GPCRs) represent one of the largest families of proteins in the genome. Because of their universal distribution and multiple actions, genetic variations of GPCRs are associated with various human diseases. For instance, the clinical phenotype of congenital nephrogenic diabetes insipidus has been linked to more than 155 loss-of-function putative mutations of the arginine vasopressin (AVP) V(2) receptor, which span each and every segment of this seven-transmembrane domain receptor. These mutant receptors, which are mostly trapped in the endoplasmic reticulum, can be rescued by membrane-permeant nonpeptidic AVP receptor antagonists. An overexpression of V(1)-vascular and V(3)-pituitary AVP receptors has been observed in some endocrine tumors. The single nucleotide polymorphism of AVP receptors in the context of complex genetic traits is currently being investigated, and preliminary findings have been reported in arterial hypertension and autism.
Collapse
Affiliation(s)
- Marc Thibonnier
- Division of Clinical and Molecular Endocrinology, Department of Medicine, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4951, USA.
| |
Collapse
|