1
|
Figiel M, Krepl M, Poznanski J, Golab A, Šponer J, Nowotny M. Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Nucleic Acids Res 2017; 45:3341-3352. [PMID: 28108662 PMCID: PMC5389522 DOI: 10.1093/nar/gkx004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Abstract
Replication of human immunodeficiency virus 1 (HIV-1) involves conversion of its single-stranded RNA genome to double-stranded DNA, which is integrated into the genome of the host. This conversion is catalyzed by reverse transcriptase (RT), which possesses DNA polymerase and RNase H domains. The available crystal structures suggest that at any given time the RNA/DNA substrate interacts with only one active site of the two domains of HIV-1 RT. Unknown is whether a simultaneous interaction of the substrate with polymerase and RNase H active sites is possible. Therefore, the mechanism of the coordination of the two activities is not fully understood. We performed molecular dynamics simulations to obtain a conformation of the complex in which the unwound RNA/DNA substrate simultaneously interacts with the polymerase and RNase H active sites. When the RNA/DNA hybrid was immobilized at the polymerase active site, RNase H cleavage occurred, experimentally verifying that the substrate can simultaneously interact with both active sites. These findings demonstrate the existence of a transient conformation of the HIV-1 RT substrate complex, which is important for modulating and coordinating the enzymatic activities of HIV-1 RT.
Collapse
Affiliation(s)
- Malgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Golab
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jirí Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
2
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
3
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
4
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
5
|
The HIV-1 nucleocapsid protein recruits negatively charged lipids to ensure its optimal binding to lipid membranes. J Virol 2014; 89:1756-67. [PMID: 25410868 DOI: 10.1128/jvi.02931-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The HIV-1 Gag polyprotein precursor composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains orchestrates virus assembly via interactions between MA and the cell plasma membrane (PM) on one hand and NC and the genomic RNA on the other hand. As the Gag precursor can adopt a bent conformation, a potential interaction of the NC domain with the PM cannot be excluded during Gag assembly at the PM. To investigate the possible interaction of NC with lipid membranes in the absence of any interference from the other domains of Gag, we quantitatively characterized by fluorescence spectroscopy the binding of the mature NC protein to large unilamellar vesicles (LUVs) used as membrane models. We found that NC, either in its free form or bound to an oligonucleotide, was binding with high affinity (∼ 10(7) M(-1)) to negatively charged LUVs. The number of NC binding sites, but not the binding constant, was observed to decrease with the percentage of negatively charged lipids in the LUV composition, suggesting that NC and NC/oligonucleotide complexes were able to recruit negatively charged lipids to ensure optimal binding. However, in contrast to MA, NC did not exhibit a preference for phosphatidylinositol-(4,5)-bisphosphate. These results lead us to propose a modified Gag assembly model where the NC domain contributes to the initial binding of the bent form of Gag to the PM. IMPORTANCE The NC protein is a highly conserved nucleic acid binding protein that plays numerous key roles in HIV-1 replication. While accumulating evidence shows that NC either as a mature protein or as a domain of the Gag precursor also interacts with host proteins, only a few data are available on the possible interaction of NC with lipid membranes. Interestingly, during HIV-1 assembly, the Gag precursor is thought to adopt a bent conformation where the NC domain may interact with the plasma membrane. In this context, we quantitatively characterized the binding of NC, as a free protein or as a complex with nucleic acids, to lipid membranes and showed that the latter constitute a binding platform for NC. Taken together, our data suggest that the NC domain may play a role in the initial binding events of Gag to the plasma membrane during HIV-1 assembly.
Collapse
|
6
|
Chamontin C, Yu B, Racine PJ, Darlix JL, Mougel M. MoMuLV and HIV-1 nucleocapsid proteins have a common role in genomic RNA packaging but different in late reverse transcription. PLoS One 2012; 7:e51534. [PMID: 23236513 PMCID: PMC3517543 DOI: 10.1371/journal.pone.0051534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022] Open
Abstract
Retroviral nucleocapsid proteins harbor nucleic acid chaperoning activities that mostly rely on the N-terminal basic residues and the CCHC zinc finger motif. Such chaperoning is essential for virus replication, notably for genomic RNA selection and packaging in virions, and for reverse transcription of genomic RNA into DNA. Recent data revealed that HIV-1 nucleocapsid restricts reverse transcription during virus assembly--a process called late reverse transcription--suggesting a regulation between RNA packaging and late reverse transcription. Indeed, mutating the HIV-1 nucleocapsid basic residues or the two zinc fingers caused a reduction in RNA incorporated and an increase in newly made viral DNA in the mutant virions. MoMuLV nucleocapsid has an N-terminal basic region similar to HIV-1 nucleocapsid but a unique zinc finger. This prompted us to investigate whether the N-terminal basic residues and the zinc finger of MoMuLV and HIV-1 nucleocapsids play a similar role in genomic RNA packaging and late reverse transcription. To this end, we analyzed the genomic RNA and viral DNA contents of virions produced by cells transfected with MoMuLV molecular clones where the zinc finger was mutated or completely deleted or with a deletion of the N-terminal basic residues of nucleocapsid. All mutant virions showed a strong defect in genomic RNA content indicating that the basic residues and zinc finger are important for genomic RNA packaging. In contrast to HIV-1 nucleocapsid-mutants, the level of viral DNA in mutant MoMuLV virions was only slightly increased. These results confirm that the N-terminal basic residues and zinc finger of MoMuLV nucleocapsid are critical for genomic RNA packaging but, in contrast to HIV-1 nucleocapsid, they most probably do not play a role in the control of late reverse transcription. In addition, these results suggest that virus formation and late reverse transcription proceed according to distinct mechanisms for MuLV and HIV-1.
Collapse
Affiliation(s)
| | - Bing Yu
- UMR5236 CNRS, UM1,UM2, CPBS, Montpellier, France
| | | | - Jena-Luc Darlix
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
7
|
Sztuba-Solińska J, Fanning SW, Horn JR, Bujarski JJ. Mutations in the coat protein-binding cis-acting RNA motifs debilitate RNA recombination of Brome mosaic virus. Virus Res 2012; 170:138-49. [PMID: 23079110 PMCID: PMC7114393 DOI: 10.1016/j.virusres.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
We have previously described the efficient homologous recombination system between 5' subgenomic RNA3a (sgRNA3a) and genomic RNA3 of Brome mosaic virus (BMV) in barley protoplasts (Sztuba-Solińska et al., 2011a). Here, we demonstrated that sequence alterations in the coat protein (CP)-binding cis-acting RNA motifs, the Bbox region (in the intercistronic RNA3 sequence) and the RNA3 packaging element (PE, in the movement protein ORF), reduced crossover frequencies in protoplasts. Additionally, the modification of Bbox-like element in the 5' UTR region strongly debilitated crossovers. Along the lines of these observations, RNA3 mutants not expressing CP or expressing mutated CPs also reduced recombination. A series of reciprocal transfections demonstrated a functional crosstalk between the Bbox and PE elements. Altogether, our data imply the role of CP in sgRNA3a-directed recombination by either facilitating the interaction of the RNA substrates and/or by creating roadblocks for the viral replicase.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
8
|
Altered strand transfer activity of a multiple-drug-resistant human immunodeficiency virus type 1 reverse transcriptase mutant with a dipeptide fingers domain insertion. J Mol Biol 2011; 415:248-62. [PMID: 22100453 DOI: 10.1016/j.jmb.2011.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 11/23/2022]
Abstract
Prolonged highly active anti-retroviral therapy with multiple nucleoside reverse transcriptase inhibitors for the treatment of patients infected with human immunodeficiency virus type 1 (HIV-1) can induce the development of an HIV-1 reverse transcriptase (RT) harboring a dipeptide insertion at the RT fingers domain with a background thymidine analog mutation. This mutation renders viral resistance to multiple nucleoside reverse transcriptase inhibitors. We investigated the effect of the dipeptide fingers domain insertion mutation on strand transfer activity using two clinical RT variants isolated during the pre-treatment and post-treatment of an infected patient, termed pre-drug RT without dipeptide insertion and post-drug RT with Ser-Gly insertion, respectively. First, the post-drug RT displayed elevated strand transfer activity compared to the pre-drug RT, with two different RNA templates. Second, the post-drug RT exhibited less RNA template degradation than the pre-drug RT but higher polymerization-dependent RNase H activity. Third, the post-drug RT had a faster association rate (k(on)) for template binding and a lower equilibrium binding constant K(d) for the template, leading to a template binding affinity tighter than that of the pre-drug RT. The k(off) values for the pre-drug RT and the post-drug RT were similar. Finally, the removal of the dipeptide insertion from the post-drug RT abolished the elevated strand transfer activity and RNase H activity, in addition to the loss of azidothymidine resistance. These biochemical data suggest that the dipeptide insertion elevates strand transfer activity by increasing the interaction of the RT with the RNA donor template, promoting cleavage that generates more invasion sites for the acceptor template during DNA synthesis.
Collapse
|
9
|
Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 2011; 3:1650-1680. [PMID: 21994801 PMCID: PMC3187697 DOI: 10.3390/v3091650] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.
Collapse
Affiliation(s)
- Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Andrea Galli
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Olga Nikolaitchik
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
| | - Helene Mens
- Department of Epidemic Diseases, Rigshospitalet, København 2100, Denmark; E-Mail:
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1250; Fax: +1-301-846-6013
| |
Collapse
|
10
|
Shen W, Gorelick RJ, Bambara RA. HIV-1 nucleocapsid protein increases strand transfer recombination by promoting dimeric G-quartet formation. J Biol Chem 2011; 286:29838-47. [PMID: 21737842 PMCID: PMC3191025 DOI: 10.1074/jbc.m111.262352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
A preferred site for HIV-1 recombination was identified in vivo and in vitro surrounding the beginning of the HIV-1 gag gene. This G-rich gag hotspot for recombination contains three evenly spaced G-runs that stalled reverse transcriptase. Disruption of the G-runs suppressed both the associated pausing and strand transfer in vitro. Significantly, this same gag sequence was able to fold into a G-quartet monomer, dimer, and tetramer, depending on the cations employed. The pause band at the G-run (nucleotide (nt) 405-409), which was predicted to be involved in forming a G-quartet monomer, diminished with increased HIV-1 nucleocapsid (NC) protein. More NC induced stronger pauses at other G-runs (nt 363-367 and nt 382-384), a region that forms a G-quartet dimer, adhering the two RNA templates. We hypothesized that NC induces the unfolding of the monomeric G-quartet but stabilizes the dimeric interaction. We tested this by inserting a known G-quartet formation sequence, 5'-(UGGGGU)(4)-3', into a relatively structure-free template from the HIV-1 pol gene. Strand transfer assays were performed with cations that either encourage (K(+)) or discourage (Li(+)) G-quartet formation with or without NC. Strikingly, a G-quartet monomer was observed without NC, whereas a G-quartet dimer was observed with NC, both only in the presence of K(+). Moreover, the transfer efficiency of the dimerized template (with K(+) and NC) reached about 90%, approximately 2.5-fold of that of the non-dimerized template. Evidently, template dimerization induced by NC creates a proximity effect, leading to the unique high peak of transfer at the gag recombination hotspot.
Collapse
Affiliation(s)
- Wen Shen
- From the Department of Biochemistry and Biophysics and the Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Robert J. Gorelick
- the AIDS and Cancer Virus Program, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland 21702-1201
| | - Robert A. Bambara
- From the Department of Biochemistry and Biophysics and the Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
11
|
Schneider IC, Eckhardt M, Brynza J, Collins MK, Cichutek K, Buchholz CJ. Escape from R-peptide deletion in a γ-retrovirus. Virology 2011; 418:85-92. [PMID: 21835422 DOI: 10.1016/j.virol.2011.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/17/2011] [Accepted: 07/15/2011] [Indexed: 11/15/2022]
Abstract
The R peptide in the cytoplasmic tail (C-tail) of γ-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in γ-retrovirus infected cells.
Collapse
Affiliation(s)
- Irene C Schneider
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Single Molecule Detection of One, Two and Multiplex Proteins Involved in DNA/RNA Transaction. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Grigorov B, Bocquin A, Gabus C, Avilov S, Mély Y, Agopian A, Divita G, Gottikh M, Witvrouw M, Darlix JL. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex. Nucleic Acids Res 2011; 39:5586-96. [PMID: 21447560 PMCID: PMC3141241 DOI: 10.1093/nar/gkr117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.
Collapse
Affiliation(s)
- Boyan Grigorov
- Laboretro, INSERM #758, ENS Lyon, 46 allée d'Italie, 69364 Lyon, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasboug, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu H, Rouzina I, Williams MC. Single-molecule stretching studies of RNA chaperones. RNA Biol 2010; 7:712-23. [PMID: 21045548 PMCID: PMC3073330 DOI: 10.4161/rna.7.6.13776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/25/2023] Open
Abstract
RNA chaperone proteins play significant roles in diverse biological contexts. The most widely studied RNA chaperones are the retroviral nucleocapsid proteins (NC), also referred to as nucleic acid (NA) chaperones. Surprisingly, the biophysical properties of the NC proteins vary significantly for different viruses, and it appears that HIV-1 NC has optimal NA chaperone activity. In this review we discuss the physical nature of the NA chaperone activity of NC. We conclude that the optimal NA chaperone must saturate NA binding, leading to strong NA aggregation and slight destabilization of all NA duplexes. Finally, rapid kinetics of the chaperone protein interaction with NA is another primary component of its NA chaperone activity. We discuss these characteristics of HIV-1 NC and compare them with those of other NA binding proteins and ligands that exhibit only some characteristics of NA chaperone activity, as studied by single molecule DNA stretching.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
15
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
16
|
Song M, Balakrishnan M, Gorelick RJ, Bambara RA. A succession of mechanisms stimulate efficient reconstituted HIV-1 minus strand strong stop DNA transfer. Biochemistry 2010; 48:1810-9. [PMID: 19192967 DOI: 10.1021/bi802149j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Donor-acceptor template systems in vitro were designed to test mechanisms of minus strand transfer of human immunodeficiency virus 1 (HIV-1). Donor RNA D199, extending from the 5' end of the HIV-1 genome to the primer binding site (PBS), promoted transfer to only 35% with an acceptor RNA representing the 3' terminal 97 nucleotides, whereas donor RNA D520, including an additional 321 nucleotides 3' of PBS, exhibited 75% transfer. Both donors transferred through an invasion-driven pathway, but transfer was stimulated by the folding structure resulting from the extra segment in D520. In this study, the significance of interaction between the tRNA(lys3) primer and U3 was examined. Measurements utilizing acceptors having or lacking the U3 region complementary with tRNA(lys3) indicated that a tRNA(lys3)-U3 interaction compensated for inefficient acceptor invasion observed with D199. Stimulation presumably occurred because binding to tRNA(lys3) increased the proximity of the acceptor to elongated cDNA, improving transfer to 78% efficiency with D199, and even higher to 85% with D520. The stimulation did not require natural viral sequences but could be achieved by substituting the original U3 sequence with an equal length sequence that binds a different region of tRNA(lys3). Comparison between acceptors sharing the natural region for tRNA(lys3)-U3 interaction but having or lacking the acceptor invasion site demonstrated that tRNA(lys3)-U3 interaction and acceptor invasion cooperate for maximal stimulation. Overall, observations suggest that both proximity and invasion mechanisms are applied successively by HIV-1 for efficient minus strand transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
17
|
A sequence similar to tRNA 3 Lys gene is embedded in HIV-1 U3-R and promotes minus-strand transfer. Nat Struct Mol Biol 2009; 17:83-9. [PMID: 19966801 PMCID: PMC2802660 DOI: 10.1038/nsmb.1687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/04/2009] [Indexed: 11/21/2022]
Abstract
We identified a sequence embedded in the U3/R region of HIV-1 RNA that is highly complementary to human tRNA3Lys. The free energy of annealing to tRNA3Lys is significantly lower for this sequence and the primer-binding site than for other similar length viral sequences. The only interruption in complementarity is a 29-nucleotide segment inserted where a tRNA intron would be expected. The insert contains the TATA box for viral RNA transcription. The embedded sequence includes a nine-nucleotide segment previously reported to aid minus strand transfer by binding the primer tRNA3Lys. Reconstituting transfer in vitro, we show that including segments from the embedded sequence in the acceptor template, beyond the nine nucleotides, further increases transfer efficiency. We propose that a tRNA3Lys gene was incorporated during HIV-1 evolution and retained largely intact because of its roles in transcription and strand transfer.
Collapse
|
18
|
Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates. J Mol Biol 2009; 395:995-1006. [PMID: 19968999 DOI: 10.1016/j.jmb.2009.11.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/12/2009] [Accepted: 11/30/2009] [Indexed: 11/20/2022]
Abstract
HIV-1 RT (human immunodeficiency virus-1 reverse transcriptase) is a multifunctional polymerase responsible for reverse transcription of the HIV genome, including DNA replication on both RNA and DNA templates. During reverse transcription in vivo, HIV-1 RT replicates through various secondary structures on RNA and single-stranded DNA (ssDNA) templates without the need for a nucleic acid unwinding protein, such as a helicase. In order to understand the mechanism of polymerization through secondary structures, we investigated the DNA polymerization activity of HIV-1 RT on long ssDNA templates using a multiplexed single-molecule DNA flow-stretching assay. We observed that HIV-1 RT performs fast primer extension DNA synthesis on single-stranded regions of DNA (18.7 nt/s) and switches its activity to slow strand displacement synthesis at DNA hairpin locations (2.3 nt/s). Furthermore, we found that the rate of strand displacement synthesis is dependent on the GC content in hairpin stems and template stretching force. This indicates that the strand displacement synthesis occurs through a mechanism that is neither completely active nor passive: that is, the opening of the DNA hairpin is driven by a combination of free energy released during dNTP (deoxyribonucleotide triphosphate) hydrolysis and thermal fraying of base pairs. Our experimental observations provide new insight into the interchanging modes of DNA replication by HIV-1 RT on long ssDNA templates.
Collapse
|
19
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
20
|
Rigby ST, Van Nostrand KP, Rose AE, Gorelick RJ, Mathews DH, Bambara RA. Factors that determine the efficiency of HIV-1 strand transfer initiated at a specific site. J Mol Biol 2009; 394:694-707. [PMID: 19853618 DOI: 10.1016/j.jmb.2009.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/01/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Human immunodeficiency virus-1 employs strand transfer for recombination between two viral genomes. We have previously provided evidence that strand transfer proceeds by an invasion-mediated mechanism in which a DNA segment on the original RNA template is invaded by a second RNA template at a gap site. The initial RNA-DNA hybrid then expands until the DNA is fully transferred. Ribonuclease H (RNase H) cleavages and nucleocapsid protein (NC) were required for long-distance propagation of the hybrid. Evaluation was performed on a unique substrate, with a short gap serving as a precreated invasion site. In our current work, this substrate provided an opportunity for us to test what factors influence a specific invasion site to support transfer, and to distinguish factors that influence invasion site creation from those that impact later steps. RNase H can act in a polymerization-dependent or polymerization-independent mode. Polymerization-dependent and polymerization-independent RNase H were found to be important in creating efficiently used invasion sites in the primer-donor complex, with or without NC. Propagation and terminus transfer steps, emanating from a precreated invasion site in the presence of NC, were stimulated by polymerization-dependent, but not polymerization-independent, RNase H. RNase H can carry out primary and secondary cleavages during synthesis. While both modes of cleavage promoted invasion, only primary cleavage promoted propagation in the presence of NC in our system. These observations suggest that once invasion is initiated at a short gap, it can propagate through an adjacent region interrupted only by nicks, with help by NC. We considered the possibility that propagation solely by strand exchange was a significant contributor to transfers. However, it did not promote transfer even if synthetic progress of reverse transcriptase was intentionally slowed, consistent with strand exchange by random walk in which rate declines precipitously with distance.
Collapse
Affiliation(s)
- Sean T Rigby
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
21
|
A polymerase-site-jumping model for strand transfer during DNA synthesis by reverse transcriptase. Virus Res 2009; 144:65-73. [PMID: 19427048 DOI: 10.1016/j.virusres.2009.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Accepted: 03/28/2009] [Indexed: 11/23/2022]
Abstract
During reverse transcription, besides the obligatory strand transfers associated with replication at the ends of the viral genome, multiple strand transfers often occur associated with replication within internal regions. Here, based on previous structural and biochemical studies, a model is proposed for processive DNA synthesis along a single template mediated by reverse transcriptase and, based on this model, the mechanism of inter- or intramolecular strand transfers during minus DNA synthesis is presented. A strand-transfer event involves two steps, with the first one being the annealing of the nascent DNA with acceptor RNA at the upstream position of the reverse transcriptase while the second one being the jumping of the polymerase active site to the acceptor. Using the model, the promotion of strand transfer by pausing and high frequent deletions induced by strand transfers can be well explained. We present analytical studies of the efficiency of single strand-transfer event and of the efficiency of multiple-strand-transfer events, with which the high negative interference can be well explained. The dependence of strand-transfer efficiency on the ratio between polymerase and RNase H rates, the role of the polymerase-dependent and polymerase-independent cleavages in strand transfers and the efficiency of nonhomologous strand transfer are analytically studied. The theoretical results are in agreement with the available experimental data. Moreover, some predicted results of the dependence of negative interference on the ratio of polymerase over RNase H rates are presented.
Collapse
|
22
|
Mougel M, Houzet L, Darlix JL. When is it time for reverse transcription to start and go? Retrovirology 2009; 6:24. [PMID: 19261185 PMCID: PMC2656454 DOI: 10.1186/1742-4690-6-24] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/04/2009] [Indexed: 11/25/2022] Open
Abstract
Upon cell infection by a retrovirus, the viral DNA polymerase, called reverse transcriptase (RT), copies the genomic RNA to generate the proviral DNA flanked by two long terminal repeats (LTR). A discovery twenty years ago demonstrated that the structural viral nucleocapsid protein (NC) encoded by Gag is an essential cofactor of reverse transcription, chaperoning RT during viral DNA synthesis. However, it is only recently that NC was found to exert a control on the timing of reverse transcription, in a spatio-temporal manner. This brief review summarizes findings on the timing of reverse transcription in wild type HIV-1 and in nucleopcapsid (NC) mutants where virions contain a large amount of newly made viral DNA. This brief review also proposes some explanations of how NC may control late reverse transcription during Gag assembly in virus producer cells.
Collapse
Affiliation(s)
- Marylène Mougel
- LaboRetro, Unité de virologie humaine INSERM U758, IFR128, ENS, 46 allée d'Italie, Lyon, France.
| | | | | |
Collapse
|
23
|
Mechanism analysis indicates that recombination events in HIV-1 initiate and complete over short distances, explaining why recombination frequencies are similar in different sections of the genome. J Mol Biol 2009; 388:30-47. [PMID: 19233203 DOI: 10.1016/j.jmb.2009.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/20/2022]
Abstract
Strand transfer drives recombination between the co-packaged genomes of HIV-1, a process that allows rapid viral evolution. The proposed invasion-mediated mechanism of strand transfer during HIV-1 reverse transcription has three steps: (1) invasion of the initial or donor primer template by the second or acceptor template; (2) propagation of the primer-acceptor hybrid; and (3) primer terminus transfer. Invasion occurs at a site at which the reverse transcriptase ribonuclease H (RNase H) has created a nick or short gap in the donor template. We used biochemical reconstitution to determine the distance over which a single invasion site can promote transfer. The DNA-primed RNA donor template used had a single-stranded pre-created invasion site (PCIS). Results showed that the PCIS could influence transfer by 20 or more nucleotides in the direction of synthesis. This influence was augmented by viral nucleocapsid protein and additional reverse transcriptase-RNase H cleavage. Strand-exchange assays were performed specifically to assess the distance over which a hybrid interaction initiated at the PCIS could propagate to achieve transfer. Propagation by simple branch migration of strands was limited to 24-32 nt. Additional RNase H cuts in the donor RNA allowed propagation to a maximum distance of 32-64 nt. Overall, results indicate that a specific invasion site has a limited range of influence on strand transfer. Evidently, a series of invasion sites cannot collaborate over a long distance to promote transfer. This result explains why the frequency of recombination events does not increase with increasing distance from the start of synthesis, a characteristic that supports effective mixing of viral mutations.
Collapse
|
24
|
Paar M, Klein D, Salmons B, Günzburg WH, Renner M, Portsmouth D. Influence of vector design and host cell on the mechanism of recombination and emergence of mutant subpopulations of replicating retroviral vectors. BMC Mol Biol 2009; 10:8. [PMID: 19203366 PMCID: PMC2645402 DOI: 10.1186/1471-2199-10-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 02/09/2009] [Indexed: 12/22/2022] Open
Abstract
Background The recent advent of murine leukaemia virus (MLV)-based replication-competent retroviral (RCR) vector technology has provided exciting new tools for gene delivery, albeit the advances in vector efficiency which have been realized are also accompanied by a set of fresh challenges. The expression of additional transgene sequences, for example, increases the length of the viral genome, which can lead to reductions in replication efficiency and in turn to vector genome instability. This necessitates efforts to analyse the rate and mechanism of recombinant emergence during the replication of such vectors to provide data which should contribute to improvements in RCR vector design. Results In this study, we have performed detailed molecular analyses on packaged vector genomes and proviral DNA following propagation of MLV-based RCR vectors both in cell culture and in pre-formed subcutaneous tumours in vivo. The effects of strain of MLV, transgene position and host cell type on the rate of emergence of vector recombinants were quantitatively analysed by applying real-time PCR and real-time RT-PCR assays. Individual mutants were further characterized by PCR, and nucleotide sequence and structural motifs associated with these mutants were determined by sequencing. Our data indicate that virus strain, vector design and host cell influence the rate of emergence of predominating vector mutants, but not the underlying recombination mechanisms in vitro. In contrast, however, differences in the RNA secondary structural motifs associated with sequenced mutants emerging in cell culture and in solid tumours in vivo were observed. Conclusion Our data provide further evidence that MLV-based RCR vectors based on the Moloney strain of MLV and containing the transgene cassette in the 3' UTR region are superior to those based on Akv-MLV and/or containing the transgene cassette in the U3 region of the LTR. The observed discrepancies between the data obtained in solid tumours in vivo and our own and previously published data from infected cells in vitro demonstrates the importance of evaluating vectors designed for use in cancer gene therapy in vivo as well as in vitro.
Collapse
Affiliation(s)
- Matthias Paar
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
25
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. Effect of Mg(2+) and Na(+) on the nucleic acid chaperone activity of HIV-1 nucleocapsid protein: implications for reverse transcription. J Mol Biol 2009; 386:773-88. [PMID: 19154740 DOI: 10.1016/j.jmb.2008.12.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/20/2008] [Accepted: 12/29/2008] [Indexed: 11/18/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is an essential protein for retroviral replication. Among its numerous functions, NC is a nucleic acid (NA) chaperone protein that catalyzes NA rearrangements leading to the formation of thermodynamically more stable conformations. In vitro, NC chaperone activity is typically assayed under conditions of low or no Mg(2+), even though reverse transcription requires the presence of divalent cations. Here, the chaperone activity of HIV-1 NC was studied as a function of varying Na(+) and Mg(2+) concentrations by investigating the annealing of complementary DNA and RNA hairpins derived from the trans-activation response domain of the HIV genome. This reaction mimics the annealing step of the minus-strand transfer process in reverse transcription. Gel-shift annealing and sedimentation assays were used to monitor the annealing kinetics and aggregation activity of NC, respectively. In the absence of protein, a limited ability of Na(+) and Mg(2+) cations to facilitate hairpin annealing was observed, whereas NC stimulated the annealing 10(3)- to 10(5)-fold. The major effect of either NC or the cations is on the rate of bimolecular association of the hairpins. This effect is especially strong under conditions wherein NC induces NA aggregation. Titration with NC and NC/Mg(2+) competition studies showed that the annealing kinetics depends only on the level of NA saturation with NC. NC competes with Mg(2+) or Na(+) for sequence-nonspecific NA binding similar to a simple trivalent cation. Upon saturation, NC induces attraction between NA molecules corresponding to approximately 0.3 kcal/mol/nucleotide, in agreement with an electrostatic mechanism of NC-induced NA aggregation. These data provide insights into the variable effects of NC's chaperone activity observed during in vitro studies of divalent metal-dependent reverse transcription reactions and suggest the feasibility of NC-facilitated proviral DNA synthesis within the mature capsid core.
Collapse
Affiliation(s)
- My-Nuong Vo
- Department of Chemistry and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
26
|
Grohmann D, Godet J, Mély Y, Darlix JL, Restle T. HIV-1 nucleocapsid traps reverse transcriptase on nucleic acid substrates. Biochemistry 2008; 47:12230-40. [PMID: 18947237 DOI: 10.1021/bi801386r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conversion of the genomic RNA of human immunodeficiency virus (HIV) into full-length viral DNA is a complex multistep reaction catalyzed by the reverse transcriptase (RT). Numerous studies have shown that the viral nucleocapsid (NC) protein has a vital impact on various steps during reverse transcription, which is crucial for virus infection. However, the exact molecular details are poorly defined. Here, we analyzed the effect of NC on RT-catalyzed single-turnover, single-nucleotide incorporation using different nucleic acid substrates. In the presence of NC, we observed an increase in the amplitude of primer extension of up to 3-fold, whereas the transient rate of nucleotide incorporation ( k pol) dropped by up to 50-fold. To unravel the underlying molecular mechanism, we carefully analyzed the effect of NC on RT-nucleic acid substrate dissociation. The studies revealed that NC considerably enhances the stability of RT-substrate complexes by reducing the observed dissociation rate constants, which more than compensates for the observed drop in k pol. In conclusion, our data strongly support the concept that NC not only indirectly assists the reverse transcription process by its nucleic acid chaperoning activity but also positively affects the RT-catalyzed nucleotide incorporation reaction by increasing polymerase processivity presumably via a physical interaction of the two viral proteins.
Collapse
Affiliation(s)
- Dina Grohmann
- Institut Gilbert Laustriat, Photophysique des interactions moleculaires, UMR 7175 CNRS, Faculte de Pharmacie, Universite Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch, France
| | | | | | | | | |
Collapse
|
27
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Hizi A, Herschhorn A. Retroviral reverse transcriptases (other than those of HIV-1 and murine leukemia virus): a comparison of their molecular and biochemical properties. Virus Res 2008; 134:203-20. [PMID: 18291546 DOI: 10.1016/j.virusres.2007.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/16/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
This chapter reviews most of the biochemical data on reverse transcriptases (RTs) of retroviruses, other than those of HIV-1 and murine leukemia virus (MLV) that are covered in detail in other reviews of this special edition devoted to reverse transcriptases. The various RTs mentioned are grouped according to their retroviral origins and include the RTs of the alpharetroviruses, lentiviruses (both primate, other than HIV-1, and non-primate lentiviruses), betaretroviruses, deltaretroviruses and spumaretroviruses. For each RT group, the processing, molecular organization as well as the enzymatic activities and biochemical properties are described. Several RTs function as dimers, primarily as heterodimers, while the others are active as monomeric proteins. The comparisons between the diverse properties of the various RTs show the common traits that characterize the RTs from all retroviral subfamilies. In addition, the unique features of the specific RTs groups are also discussed.
Collapse
Affiliation(s)
- Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
29
|
Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
|
30
|
Strand transfer events during HIV-1 reverse transcription. Virus Res 2008; 134:19-38. [PMID: 18279992 DOI: 10.1016/j.virusres.2007.12.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses replicate through reverse transcription, a process in which the single stranded RNA of the viral genome is converted to a double stranded DNA. The virally encoded reverse transcriptase (RT) mediates reverse transcription through DNA polymerase and RNase H activities. Conversion of the plus strand RNA to plus/minus strand RNA/DNA hybrid involves a transfer of the growing DNA strand from one site on the genomic RNA to another. This is called minus strong-stop DNA transfer. Later synthesis of the second or plus DNA strand involves a second strand transfer, involving a similar mechanism as the minus strand transfer. A basic feature of the strand transfer mechanism is the use of the RT RNase H to remove segments of the RNA template strand from the growing DNA strand, freeing a single stranded region to anneal to the second site. Viral nucleocapsid protein (NC) functions to promote transfer by facilitating this strand exchange process. Two copies of the RNA genomes, sometimes non-identical, are co-packaged in the genomes of retroviruses. The properties of the reverse transcriptase allow a transfer of the growing DNA strand between these genomes to occur occasionally at any point during reverse transcription, producing recombinant viral progeny. Recombination promotes structural diversity of the virus that helps it to survive host immunity and drug therapy. Recombination strand transfer can be forced by a break in the template, or can occur at sites where folding structure of the template pauses the RT, allowing a concentration of RNase H cleavages that promote transfers. Transfer can be a simple one-step process, or can proceed by a complex multi-step invasion mechanism. In this latter process, the second RNA template interacts with the growing DNA strand well behind the DNA 3'-terminus. The newly formed RNA-DNA hybrid expands by branch migration and eventually catches the elongating DNA primer 3'-terminus to complete the transfer. Transfers are also promoted by interactions between the two RNA templates, which accelerate transfer by a proximity effect. Other details of the role of strand transfers in reverse transcription and the biochemical features of the transfer reaction are discussed.
Collapse
|
31
|
Schultz SJ, Champoux JJ. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008; 134:86-103. [PMID: 18261820 DOI: 10.1016/j.virusres.2007.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023]
Abstract
This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3' end-directed, and RNA 5' end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5' end-directed and DNA 3' end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance.
Collapse
Affiliation(s)
- Sharon J Schultz
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
32
|
Song M, Basu VP, Hanson MN, Roques BP, Bambara RA. Proximity and branch migration mechanisms in HIV-1 minus strand strong stop DNA transfer. J Biol Chem 2007; 283:3141-3150. [PMID: 18073206 DOI: 10.1074/jbc.m707343200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 minus strand transfer was measured using a genomic donor-acceptor template system in vitro. Donor RNA D199, having the minimum region required for minus strong stop DNA synthesis, was previously shown to transfer with 35% efficiency to an acceptor RNA representing the 3' repeat region. Donor D520, having an additional 321-nucleotide segment extending into gag, transferred at 75% efficiency. In this study each transfer step was analyzed to account for the difference. Measurement of terminal transfer indicated that the 3' terminus of the cDNA generated using D520 is more accessible for transfer than that of D199. Nevertheless, acceptor competition experiments demonstrated that D520 has a greater preference for invasion-driven versus terminal transfer than D199. Competition mapping showed that the base of the transactivation response element is the primary invasion site for D520, important for efficient acceptor invasion. Acceptors complementary to the invasion and terminal transfer sites, but not the region between, allowed assessment of the significance of hybrid propagation by branch migration. These bipartite acceptors showed that with D520, invasion raises the local concentration of the acceptor for efficient terminal transfer by a proximity effect. However, with D199, invasion is relatively inefficient, and the cDNA 3' terminus is not very accessible. For most transfers that occurred, the acceptor accessed the cDNA 3' end by branch migration. Results suggest that both proximity and branch migration mechanisms contribute to transfers, with the proportion determined by donor-cDNA structure. D520 transfers better because it has greater accessibility for both invasion and terminus transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Vandana P Basu
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Mark N Hanson
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Bernard P Roques
- Departement de Pharmacochimie Moleculaire et Structurale, INSERM U266, CNRS UMR 8600, Faculte de Pharmacie, 4, Avenue De l'Observatoire, 75270 Paris Cedex 06, France
| | - Robert A Bambara
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642.
| |
Collapse
|
33
|
Li XY, Guo F, Zhang L, Kleiman L, Cen S. APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 2007; 282:32065-74. [PMID: 17855362 DOI: 10.1074/jbc.m703423200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human APOBEC3G (hA3G) has been identified as an anti-HIV-1 host factor. The presence of hA3G in HIV-1 strongly inhibits the ability of the virus to produce new viral DNA upon infection. In this report, we demonstrate that the reduction of late viral DNA synthesis is due to the inhibition by hA3G of the strand transfer steps that occur during reverse transcription. Analysis of viral cDNA intermediates in vivo reveals that hA3G causes an inhibition of the minus and plus strand transfers, without having a significant impact on DNA elongation. Using an in vitro system to measure minus strand transfer similarly shows a dose-dependent reduction of strand transfer by hA3G. This inhibition of strand transfer occurs independently the editing activity of hA3G and is correlated with its ability to prevent RNaseH degradation of the template RNA.
Collapse
Affiliation(s)
- Xiao-Yu Li
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
34
|
Pratico ED, Silverman SK. Ty1 reverse transcriptase does not read through the proposed 2',5'-branched retrotransposition intermediate in vitro. RNA (NEW YORK, N.Y.) 2007; 13:1528-36. [PMID: 17652136 PMCID: PMC1950764 DOI: 10.1261/rna.629607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
2',5'-branched RNA was recently proposed as a key Ty1 retrotransposition intermediate, for which cleavage by lariat debranching enzyme (Dbr1p) enables reverse transcription to continue synthesizing the complete Ty1 cDNA. Because dbr1 cells can produce substantial Ty1 cDNA despite lacking Dbr1p, the obligatory intermediacy of branched RNA would require that Ty1 reverse transcriptase (RT) can read through the proposed branch site with considerable efficiency. Here we have used deoxyribozyme-synthesized 2',5'-branched RNA corresponding exactly to the proposed Ty1 branch site for a direct test of this read-through ability. Using an in vitro assay that incorporates all components known to be required for Ty1 cDNA synthesis (including the TyA chaperone protein), Ty1 RT can elongate up to the branch site. Strand transfer from the 2'-arm to the 3'-arm of the branch is observed when the Ty1 RT is RNase H+ (i.e., wild-type) but not when the Ty1 RT is RNase H-. When elongating from either the 2'-arm or the 3'-arm, Ty1 RT reads through the branch site with <or=0.3% efficiency. This is at least 60-fold lower than would be necessary to explain in vivo Ty1 cDNA synthesis in dbr1 cells, because others have reported 18% cDNA synthesis relative to wild-type cells. Our finding that Ty1 RT cannot efficiently read through the proposed Ty1 branch site is inconsistent with the hypothesis that branched RNA is an obligatory Ty1 retrotransposition intermediate. This suggests that Dbr1p acts as other than a 2',5'-phosphodiesterase during Ty1 retrotransposition.
Collapse
Affiliation(s)
- Elizabeth D Pratico
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
35
|
Wu T, Heilman-Miller SL, Levin JG. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2007; 35:3974-87. [PMID: 17553835 PMCID: PMC1919501 DOI: 10.1093/nar/gkm375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (−) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop structure at the 5′ end of the transactivation response element (TAR) in a 70-nt RNA acceptor (RNA 70) appears to be the major nucleation pathway. Using a mutational approach, we show that when the acceptor has a weak local structure, NC has little or no effect. In this case, the efficiencies of both annealing and strand transfer reactions are similar. However, when NC is required to destabilize local structure in acceptor RNA, the efficiency of annealing is significantly higher than that of strand transfer. Consistent with this result, we find that Mg2+ (required for RT activity) inhibits NC-catalyzed annealing. This suggests that Mg2+ competes with NC for binding to the nucleic acid substrates. Collectively, our findings provide new insights into the mechanism of NC-dependent and -independent minus-strand transfer.
Collapse
Affiliation(s)
| | | | - Judith G. Levin
- *To whom correspondence should be addressed. +1 301 496 1970+1 301 496 0243
| |
Collapse
|
36
|
Purohit V, Roques BP, Kim B, Bambara RA. Mechanisms that prevent template inactivation by HIV-1 reverse transcriptase RNase H cleavages. J Biol Chem 2007; 282:12598-609. [PMID: 17337733 DOI: 10.1074/jbc.m700043200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNase H activity of human immunodeficiency virus, type 1 (HIV-1) reverse transcriptase (RT) cleaves the viral genome concomitant with minus strand synthesis. We previously analyzed RT-mediated pausing and RNase H cleavage on a hairpin-containing RNA template system and reported that RT generated 3' end-directed primary and secondary cuts while paused at the base of the hairpin during synthesis. Here, we report that all of the prominent cleavage products observed during primer extension on this template correlated with pause induced cuts. Products that persisted throughout the reaction corresponded to secondary cuts, about eight nucleotides in from the DNA primer terminus. This distance allows little overlap of intact template with the primer terminus. We considered whether secondary cuts could inactivate further synthesis by promoting dissociation of the primer from the template. As anticipated, 3' end-directed secondary cuts decreased primer extendibility. This provides a plausible mechanism to explain the persistence of secondary cut products in our hairpin template system. Improving the efficiency of synthesis by increasing the concentration of dNTPs or addition of nucleocapsid protein (NC) reduced pausing and the generation of pause related secondary cuts on this template. Further studies reveal that 3' end-directed primary and secondary cleavages were also generated when synthesis was stalled by the presence of 3'-azido-3'-deoxythymidine at the primer terminus, possibly contributing to 3'-azido-3'-deoxythymidine inhibition. Considered together, the data reveal a role for NC and other factors that enhance DNA synthesis in the prevention of RNase H cleavages that could be detrimental to viral replication.
Collapse
Affiliation(s)
- Vandana Purohit
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
37
|
Gao L, Balakrishnan M, Roques BP, Bambara RA. Insights into the multiple roles of pausing in HIV-1 reverse transcriptase-promoted strand transfers. J Biol Chem 2007; 282:6222-31. [PMID: 17204480 DOI: 10.1074/jbc.m610056200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously analyzed the role of pausing induced by hairpin structures within RNA templates in facilitating strand transfer by HIV-1 RT (reverse transcriptase). We proposed a multistep transfer mechanism in which pause-induced RNase H cuts within the initial RNA template (donor) expose regions of cDNA. A second homologous RNA template (acceptor) can interact with the cDNA at such sites, initiating transfer. The acceptor-cDNA hybrid is thought to then propagate by branch-migration, eventually catching up with the primer terminus and completing the transfer. The prominent pause site in the template system facilitated acceptor invasion; however, very few of the transfers terminated at this pause. To examine the effects of homology on pause-promoted transfer, we increased template homology before the pause site, from 19 nucleotides (nt) in the initial template system to 52 nt in the new system. Significantly, the increased homology enhanced transfers 3-fold, with 32% of the transfers now terminating at the pause site. Additionally, the acceptor cleavage profile indicated the creation of a new invasion site in the added region of homology. NC (nucleocapsid) increased the strand transfer throughout the whole template. However, the prominent hot spot for internal transfer remained, which was still at the pause site. We interpret the new results to mean that pause sites can also serve to stall DNA synthesis, allowing acceptor invasions initiated earlier in the template to catch up with the primer terminus.
Collapse
Affiliation(s)
- Lu Gao
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
38
|
Matskevich AA, Ziogas A, Heinrich J, Quast SA, Moelling K. Short partially double-stranded oligodeoxynucleotide induces reverse transcriptase/RNase H-mediated cleavage of HIV RNA and contributes to abrogation of infectivity of virions. AIDS Res Hum Retroviruses 2006; 22:1220-30. [PMID: 17209763 DOI: 10.1089/aid.2006.22.1220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a novel mechanism of viral RNA eradication by an oligodeoxynucleotide A (ODN A) directly in HIV virions. The ODN A consists of an antisense and a passenger strand, and was designed to target the polyp-urine tract (PPT) of HIV-1, a conserved region of the viral genome. It leads to HIV reverse transcriptase/ribonuclease H (RT/RNase H)-dependent degradation of the RNA in viral particles. Illimaquinone, a specific inhibitor of RNase H, activity of HIV RT/RNase H, prevents RNA cleavage. The effect of the ODN A is sequence-specific and the passenger strand is important, since a lack or alteration of this strand reduces the antiviral activity of the ODN. ODN A has a stronger antiviral effect compared to a control ODN CO, targeted to a site outside of the PPT. The pretreatment with ODN A strongly reduced the infectivity of virions in cell culture in the absence of any DNA carriers or detergents.
Collapse
Affiliation(s)
- Alexey A Matskevich
- Institute of Medical Virology, University of Zurich, CH-8006 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Katzenstein D. Diversity, drug resistance, and the epidemic of subtype C HIV-1 in Africa. J Infect Dis 2006; 194 Suppl 1:S45-50. [PMID: 16921472 DOI: 10.1086/505353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS) epidemic has grown from a handful of sentinel observations in New York and California, nearly 25 years ago, to an epidemic that has claimed 500,000 lives in the United States and >20 million worldwide. Tom Merigan's scientific career led him to focus on viral pathogenesis as translational "bench-to-bedside" research, aimed squarely at the development of antiretroviral treatment. As a founder and leader of the AIDS Clinical Trials Group, Tom played a pivotal role in the national response to HIV. He led the development of a succession of antiretroviral drugs, their combined use, and the introduction of new methods for monitoring HIV infection. The current response to the global epidemic and the tools now coming to bear on diagnosis, treatment, and monitoring owe much to Tom's relentless pursuit of excellence in research and the training he offered generations of clinical virologists and infectious disease physicians.
Collapse
Affiliation(s)
- David Katzenstein
- Center for AIDS Research, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Hanson MN, Balakrishnan M, Roques BP, Bambara RA. Evidence that creation of invasion sites determines the rate of strand transfer mediated by HIV-1 reverse transcriptase. J Mol Biol 2006; 363:878-90. [PMID: 16997325 DOI: 10.1016/j.jmb.2006.08.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Strand transfer during reverse transcription can produce genetic recombination in human immunodeficiency virus type 1 (HIV-1) when two genomic RNAs, that are not identical, are co-packaged in the virus. Strand transfer was measured in vitro, in reactions involving primer switching from a donor to acceptor RNA template. The transfer product appeared with much slower kinetics than full-length synthesis on the donor template. The goal of this study was to learn more about the transfer mechanism by defining the steps that limit its rate. We previously proposed transfer to include the steps of acceptor invasion, hybrid propagation, terminus transfer, and re-initiation of synthesis on the acceptor template. Unexpectedly, with our templates increasing acceptor concentration increased the transfer efficiency but had no effect on the rate of transfer. Templates with a short region of homology limiting hybrid propagation exhibited a slow accumulation of transfer products, suggesting that for tested long homology templates hybrid propagation was not rate limiting. Substituting a DNA acceptor and adding Klenow polymerase accelerated re-initiation and extension exclusively on the DNA acceptor. This lead to a small rate increase due to faster extension on the acceptor, suggesting re-initiation of synthesis on the tested RNA acceptors was not rate limiting. A substrate was designed in which the 5' end of the primer was single stranded, and complimentary to the acceptor, i.e. having a pre-made invasion site. With this substrate, increasing concentrations of acceptor increased the rate of transfer. Together these data suggest that RNase H cleavage, and dissociation of RNA fragments creating an invasion site was rate limiting on most tested templates. When an accessible invasion site was present, acceptor interaction at that site influence the rate.
Collapse
Affiliation(s)
- Mark Nils Hanson
- Department of Biochemistry and Biophysics, Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
41
|
Operario DJ, Balakrishnan M, Bambara RA, Kim B. Reduced dNTP interaction of human immunodeficiency virus type 1 reverse transcriptase promotes strand transfer. J Biol Chem 2006; 281:32113-21. [PMID: 16926150 DOI: 10.1074/jbc.m604665200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently demonstrated that HIV-1 RT mutants characterized by low dNTP binding affinity display significantly reduced dNTP incorporation kinetics in comparison to wild-type RT. This defect is particularly emphasized at low dNTP concentrations where WT RT remains capable of efficient synthesis. Kinetic interference in DNA synthesis can induce RT pausing and slow down the synthesis rate. RT stalling and slow synthesis rate can enhance RNA template cleavage by RT-RNase H, facilitating transfer of the primer to a homologous template. We therefore hypothesized that reduced dNTP binding RT mutants can promote template switching during minus strand synthesis more efficiently than WT HIV-1 RT at low dNTP concentrations. To test this hypothesis, we employed two dNTP binding HIV-1 RT mutants, Q151N and V148I. Indeed, as the dNTP concentration was decreased, the template switching frequency progressively increased for both WT and mutant RTs. However, as predicted, the RT mutants promoted more transfers compared with WT RT. The WT and mutant RTs were similar in their intrinsic RNase H activity, supporting that the elevated template switching efficiency of the mutants was not the result of the mutations enhancing RNase H activity. Rather, kinetic interference leading to stalled DNA synthesis likely enhanced transfers. These results suggest that the RT-dNTP substrate interaction mechanistically influences strand transfer and recombination of HIV-1 RT.
Collapse
Affiliation(s)
- Darwin J Operario
- Departments of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
42
|
Song M, Balakrishnan M, Chen Y, Roques BP, Bambara RA. Stimulation of HIV-1 minus strand strong stop DNA transfer by genomic sequences 3' of the primer binding site. J Biol Chem 2006; 281:24227-35. [PMID: 16782713 DOI: 10.1074/jbc.m603097200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) minus strand transfer was examined using a genomic RNA sequence-based donor-acceptor template system. The donor RNA, D199, was a 199-nucleotide sequence from the 5'-end of the genome to the primer binding site (PBS) and shared 97 nucleotides of homology with the acceptor RNA. To investigate the influence of RNA structure on transfer, a second donor RNA, D520, was generated by extending the 3'-end of D199 to include an additional 321 nucleotides of the genome. The position of priming, length of homology with the acceptor, and length of cDNA synthesized were identical with the two donors. Interestingly, at 200% NC coating, donor D520 yielded a transfer efficiency of about 75% compared with about 35% with D199. A large proportion of the D520 promoted transfers occurred after the donor RNA was copied to the end. Analysis of donor RNA cleavage, the acceptor invasion site and R homology requirements indicated that transfers with D520 involved a similar but more efficient acceptor invasion mechanism compared with D199. RNA structure probing by RNase T1 and the RT pause profile during synthesis indicated conformational differences between D199 and D520 in the starting structure, and in dynamic structures formed during synthesis within the R region. Overall observations suggest that regions 3' of the primer binding site influence the conformation of the R region of D520 to facilitate steps that promote strand transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
43
|
Lanciault C, Champoux JJ. Pausing during reverse transcription increases the rate of retroviral recombination. J Virol 2006; 80:2483-94. [PMID: 16474155 PMCID: PMC1369041 DOI: 10.1128/jvi.80.5.2483-2494.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses package two copies of genomic RNA into viral particles. During the minus-sense DNA synthesis step of reverse transcription, the nascent DNA can transfer multiple times between the two copies of the genome, resulting in recombination. The mechanism for this process is similar to the process of obligate strand transfers mediated by the repeat and primer binding site sequences. The location at which the DNA 3' terminus completely transfers to the second RNA strand defines the point of crossover. Previous work in vitro demonstrated that reverse transcriptase pausing has a significant impact on the location of the crossover, with a proportion of complete transfer events occurring very close to pause sites. The role of pausing in vivo, however, is not clearly understood. By employing a murine leukemia virus-based single-cycle infection assay, strong pausing was shown to increase the probability of recombination, as reflected in the reconstitution of green fluorescent protein expression. The infection assay results were directly correlated with the presence of strong pause sites in reverse transcriptase primer extension assays in vitro. Conversely, when pausing was diminished in vitro, without changing the sequence of the RNA template involved in recombination, there was a significant reduction in recombination in vivo. Together, these data demonstrate that reverse transcriptase pausing, as observed in vitro, directly correlates with recombination during minus-sense DNA synthesis in vivo.
Collapse
Affiliation(s)
- Christian Lanciault
- Department of Microbiology, University of Washington, Seattle, 98195-7242, USA
| | | |
Collapse
|
44
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
Godet J, de Rocquigny H, Raja C, Glasser N, Ficheux D, Darlix JL, Mély Y. During the early phase of HIV-1 DNA synthesis, nucleocapsid protein directs hybridization of the TAR complementary sequences via the ends of their double-stranded stem. J Mol Biol 2005; 356:1180-92. [PMID: 16406407 DOI: 10.1016/j.jmb.2005.12.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/07/2005] [Accepted: 12/12/2005] [Indexed: 11/22/2022]
Abstract
Reverse transcription of HIV-1 genomic RNA requires two obligatory strand transfers. During the first strand transfer reaction, the minus strand strong-stop DNA (ss-cDNA) is transferred by hybridization of complementary sequences located at the 3' ends of the ss-cDNA and genomic template, respectively. In HIV-1, the major components of ss-cDNA transfer are the terminally redundant structured TAR elements and the nucleocapsid protein NCp7, which actively chaperones the hybridization of cTAR DNA to TAR. In the present study, we investigated the annealing kinetics of TAR with fluorescently labelled cTAR derivatives both in the absence and in the presence of NC(12-55), a peptide that contains the finger and C-terminal domains of NCp7. The annealing of TAR with cTAR involves two second-order kinetic components that are activated by at least two orders of magnitude by NC(12-55). The NC-promoted activation of cTAR-TAR annealing was correlated with its ability to destabilize the lower half of TAR stem, in order to generate the single-stranded complementary regions for nucleating the duplex structures. The two kinetics components have been assigned to two different pathways. The rapid one does not lead to extended duplex formation but is associated with a limited annealing of the terminal bases of cTAR to TAR. On the other hand, extended duplex formation follows a slower pathway that is limited kinetically by the nucleation of residues located mainly within the central double-stranded segment of both cTAR and TAR stems. An alternative mechanism involving an interaction through TAR and cTAR loops has been observed but is a minor pathway in the present conditions.
Collapse
Affiliation(s)
- Julien Godet
- Photophysique des interactions moléculaires, UMR 7175 CNRS, Institut Gilbert Laustriat, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Heras SR, López MC, García-Pérez JL, Martin SL, Thomas MC. The L1Tc C-terminal domain from Trypanosoma cruzi non-long terminal repeat retrotransposon codes for a protein that bears two C2H2 zinc finger motifs and is endowed with nucleic acid chaperone activity. Mol Cell Biol 2005; 25:9209-20. [PMID: 16227574 PMCID: PMC1265797 DOI: 10.1128/mcb.25.21.9209-9220.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
L1Tc, a non-long terminal repeat retrotransposon from Trypanosoma cruzi, is a 4.9-kb actively transcribed element which contains a single open reading frame coding for the machinery necessary for its autonomous retrotransposition. In this paper, we analyze the protein encoded by the L1Tc 3' region, termed C2-L1Tc, which contains two zinc finger motifs similar to those present in the TFIIIA transcription factor family. C2-L1Tc binds nucleic acids with different affinities, such that RNA > tRNA > single-stranded DNA > double-stranded DNA, without any evidence for sequence specificity. C2-L1Tc also exhibits nucleic acid chaperone activity on different DNA templates that may participate in the mechanism of retrotransposition of the element. C2-L1Tc promotes annealing of complementary oligonucleotides, prevents melting of perfect DNA duplexes, and facilitates the strand exchange between DNAs to form the most stable duplex DNA in competitive displacement assays. Mapping of regions of C2-L1Tc using specific peptides showed that nucleic acid chaperone activity required a short basic sequence accompanied by a zinc finger motif or by another basic region such as RRR. Thus, a short basic polypeptide containing the two C(2)H(2) motifs promotes formation of the most stable duplex DNA at a concentration only three times higher than that required for C2-L1Tc.
Collapse
Affiliation(s)
- Sara R Heras
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, Avda del Conocimiento s/n, 18100 Granada, Spain
| | | | | | | | | |
Collapse
|
47
|
Purohit V, Balakrishnan M, Kim B, Bambara RA. Evidence that HIV-1 reverse transcriptase employs the DNA 3' end-directed primary/secondary RNase H cleavage mechanism during synthesis and strand transfer. J Biol Chem 2005; 280:40534-43. [PMID: 16221683 DOI: 10.1074/jbc.m507839200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously analyzed strand transfers catalyzed by human immunodeficiency virus, type 1 reverse transcriptase (RT) in a hairpin-containing RNA template system. In this system, RT produces a series of adjacent RNase H cuts before the hairpin base on the first, or donor template that clears a region of the donor, facilitating invasion by the second, or acceptor RNA. Here we analyze characteristics of the prominent cuts before the hairpin base and their role in strand transfers. Analysis of the template cleavage pattern during synthesis suggested that the RT performs DNA 3' end-directed primary and secondary cuts while paused at the hairpin base and that these cuts contribute to creation of the invasion site. RT catalyzed similar cleavages on a substrate representing a paused cDNA-template intermediate. DNA 3' end-directed secondary cuts, which require positioning of the polymerase active site downstream of the primer terminus, had previously not been specifically identified during synthesis. Our findings indicate that during synthesis DNA 3' end-directed primary and secondary cuts occur at pause sites. RT mutants with substitutions at the His(539) residue in the RNase H active site were defective in secondary cleavages. Analysis of the template cleavage pattern generated by the His(539) mutants during synthesis revealed inefficient cleavage at the invasion site, correlating with defects in strand transfer. Overall, results indicate RT can catalyze pause-associated DNA 3' end-directed primary and secondary cuts during synthesis and these cuts can contribute to strand transfer by creation of an invasion site.
Collapse
Affiliation(s)
- Vandana Purohit
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
48
|
Zhang CY, Wei JF, He SH. The key role for local base order in the generation of multiple forms of China HIV-1 B'/C intersubtype recombinants. BMC Evol Biol 2005; 5:53. [PMID: 16212658 PMCID: PMC1274309 DOI: 10.1186/1471-2148-5-53] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022] Open
Abstract
Background HIV-1 is a retrovirus with high rate of recombination. Increasing experimental studies in vitro indicated that local hairpin structure of RNA was associated with recombination by favoring RT pausing and promoting strand transfer. A method to estimate the potential to form stem-loop structure by calculating the folding of randomized sequence difference (FORS-D) has been used to investigate the relationship between secondary structure and evolutionary pressure in some genome. It showed that gene regions under strong positive "Darwinian" selection were associated with positive FORS-D values. In the present study, the sequences of HIV-1 subtypes B' and C, both of which represent the parent strains of CRF07_BC, CRF08_BC and China URFs, were selected to investigate the relationship between natural recombination and secondary structure by calculating the FORS-D values. Results The apparent higher negative FORS-D value region appeared in the gag-pol gene region (nucleotide 0–3000) of HIV-1 subtypes B' and C. Thirteen (86.7 %) of 15 mosaic fragments and 17 (81 %) of 21 recombination breakpoints occurred in this higher negative FORS-D region. This strongly suggested that natural recombination did not occur randomly throughout the HIV genome, and that there might be preferred (or hot) regions or sites for recombination. The FORS-D analysis of breakpoints showed that most breakpoints of recombinants were located in regions with higher negative FORS-D values (P = 0.0053), and appeared to have a higher negative average FORS-D value than the whole genome (P = 0.0007). The regression analysis also indicated that FORS-D values correlated negatively with breakpoint overlap. Conclusion High negative FORS-D values represent high, base order determined stem-loop potentials and influence mainly the formation of stem-loop structures. Therefore, the present results suggested for the first time that occurrence of natural recombination was associated with high base order-determined stem-loop potential, and that local base order might play a key role in the initiation of natural recombination by favoring the formation of stable stem-loop structures.
Collapse
Affiliation(s)
- Chi-Yu Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medical Technology, Zhenjiang, Jiangsu 212001, China
- Allergy and Inflammation Research Institute, the Medical College of Shantou University, Shantou, Guangdong, 515031, China
| | - Ji-Fu Wei
- Allergy and Inflammation Research Institute, the Medical College of Shantou University, Shantou, Guangdong, 515031, China
| | - Shao-Heng He
- Allergy and Inflammation Research Institute, the Medical College of Shantou University, Shantou, Guangdong, 515031, China
| |
Collapse
|
49
|
Hanson MN, Balakrishnan M, Roques BP, Bambara RA. Effects of donor and acceptor RNA structures on the mechanism of strand transfer by HIV-1 reverse transcriptase. J Mol Biol 2005; 353:772-87. [PMID: 16216274 DOI: 10.1016/j.jmb.2005.08.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/17/2005] [Accepted: 08/26/2005] [Indexed: 11/19/2022]
Abstract
Template switching during reverse transcription contributes to recombination in human immunodeficiency virus type 1 (HIV-1). Our recent studies suggest that the process can occur through a multi-step mechanism involving RNase H cleavage, acceptor invasion, branch migration, and finally primer terminus transfer. In this study, we analyzed the effects of reverse transcriptase (RT)-pausing, RNase H cleavages and template structure on the transfer process. We designed a series of donor and acceptor template pairs with either minimal pause sites or with pause sites at various locations along the template. Restriction sites within the region of homology allowed efficient mapping of the location of primer terminus transfer. Blocking oligomers were used to probe the acceptor invasion site. Introduction of strong pause sites in the donor increased transfer efficiency. However, the new pauses were not necessarily associated with effective invasion. In this system, the primary invasion occurred at a region of donor cleavage associated with weak pausing. These results together with acceptor structure predictions indicated that a potential invasion site is used only in conjunction with a favorable acceptor structure. Stabilizing acceptor structure at the predicted invasion region lowered the transfer efficiency, supporting this conclusion. Differing from previous studies, terminus transfer occurred at a short distance from the invasion site. Introduction of structure into the acceptor template shifted the location of terminus transfer. Nucleocapsid protein, which can improve cDNA-acceptor interactions, increased transfer efficiency with some shift of terminus transfer closer to the invasion site. Overall results support that the acceptor structure has a major influence on the efficiency and position of the invasion and terminus transfer steps.
Collapse
Affiliation(s)
- Mark Nils Hanson
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
50
|
Kanevsky I, Chaminade F, Ficheux D, Moumen A, Gorelick R, Negroni M, Darlix JL, Fossé P. Specific Interactions Between HIV-1 Nucleocapsid Protein and the TAR Element. J Mol Biol 2005; 348:1059-77. [PMID: 15854644 DOI: 10.1016/j.jmb.2005.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
During retroviral reverse transcription, the minus-strand strong-stop DNA (ss-cDNA) is transferred to the 3' end of the genomic RNA and this requires the repeat (R) sequences present at both ends of the genome. In vitro, the human immunodeficiency virus type 1 (HIV-1) R sequence can promote DNA strand transfer when present in ectopic internal positions. Using HIV-1 model systems, the R sequences and nucleocapsid protein (NC) were found to be key determinants of ss-cDNA transfer. To gain insights into specific interactions between HIV-1 NC and RNA and the influence of NC on R folding, we investigated the secondary structures of R in two natural contexts, namely at the 5' or 3' end of RNAs representing the terminal regions of the genome, and in two ectopic internal positions that also support efficient minus-strand transfer. To investigate the roles of NC zinc fingers and flanking basic domains in the NC/RNA interactions, we used NC mutants. Analyses of the viral RNA/NC complexes by chemical and enzymatic probings, and gel retardation assays were performed under conditions allowing ss-cDNA transfer by reverse transcriptase. We report that NC binds the TAR apical loop specifically in the four genetic contexts without changing the folding of the TAR hairpin and R region significantly, and this requires the NC zinc fingers. In addition, we show that efficient annealing of cTAR DNA to the 3' R relies on sequence complementarities between TAR and cTAR terminal loops. These findings suggest that the TAR apical loop in the acceptor RNA is the initiation site for the annealing reaction that is chaperoned by NC during the minus-strand transfer.
Collapse
Affiliation(s)
- Igor Kanevsky
- CNRS UMR8113, LBPA-Alembert, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | | | | | | | | | | | | | | |
Collapse
|