1
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
2
|
Yang GM, Xu L, Wang RM, Tao X, Zheng ZW, Chang S, Ma D, Zhao C, Dong Y, Wu S, Guo J, Wu ZY. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep 2023; 42:112417. [PMID: 37074913 DOI: 10.1016/j.celrep.2023.112417] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
The P-type ATPase ATP7B exports cytosolic copper and plays an essential role in the regulation of cellular copper homeostasis. Mutants of ATP7B cause Wilson disease (WD), an autosomal recessive disorder of copper metabolism. Here, we present cryoelectron microscopy (cryo-EM) structures of human ATP7B in the E1 state in the apo, the putative copper-bound, and the putative cisplatin-bound forms. In ATP7B, the N-terminal sixth metal-binding domain (MBD6) binds at the cytosolic copper entry site of the transmembrane domain (TMD), facilitating the delivery of copper from the MBD6 to the TMD. The sulfur-containing residues in the TMD of ATP7B mark the copper transport pathway. By comparing structures of the E1 state human ATP7B and E2-Pi state frog ATP7B, we propose the ATP-driving copper transport model of ATP7B. These structures not only advance our understanding of the mechanisms of ATP7B-mediated copper export but can also guide the development of therapeutics for the treatment of WD.
Collapse
Affiliation(s)
- Guo-Min Yang
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lingyi Xu
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Rou-Min Wang
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zi-Wei Zheng
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shenghai Chang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Demin Ma
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Zhao
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
3
|
Orädd F, Steffen JH, Gourdon P, Andersson M. Copper binding leads to increased dynamics in the regulatory N-terminal domain of full-length human copper transporter ATP7B. PLoS Comput Biol 2022; 18:e1010074. [PMID: 36070320 PMCID: PMC9484656 DOI: 10.1371/journal.pcbi.1010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/19/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
ATP7B is a human copper-transporting P1B-type ATPase that is involved in copper homeostasis and resistance to platinum drugs in cancer cells. ATP7B consists of a copper-transporting core and a regulatory N-terminal tail that contains six metal-binding domains (MBD1-6) connected by linker regions. The MBDs can bind copper, which changes the dynamics of the regulatory domain and activates the protein, but the underlying mechanism remains unknown. To identify possible copper-specific structural dynamics involved in transport regulation, we constructed a model of ATP7B spanning the N-terminal tail and core catalytic domains and performed molecular dynamics (MD) simulations with (holo) and without (apo) copper ions bound to the MBDs. In the holo protein, MBD2, MBD3 and MBD5 showed enhanced mobilities, which resulted in a more extended N-terminal regulatory region. The observed separation of MBD2 and MBD3 from the core protein supports a mechanism where copper binding activates the ATP7B protein by reducing interactions among MBD1-3 and between MBD1-3 and the core protein. We also observed an increased interaction between MBD5 and the core protein that brought the copper-binding site of MBD5 closer to the high-affinity internal copper-binding site in the core protein. The simulation results assign specific, mechanistic roles to the metal-binding domains involved in ATP7B regulation that are testable in experimental settings. Living organisms depend upon active transport against gradients across biological membranes for survival. Such transport can be accomplished by ATP-dependent membrane protein transporters for which the activity must be regulated to maintain optimal concentrations in the cellular compartments. The regulatory mechanisms often involve structural responses inherent to the protein structure, which because of their dynamic nature can be hard to assess experimentally. A prime example is regulation of cellular copper levels by a copper-binding tail in the human copper transporter ATP7B. Dysregulation can cause severe diseases, for example the copper metabolism disorder Wilson’s disease, which is caused by mutations in ATP7B regulation machinery. Due to the practical difficulties in working with membrane proteins, most studies of ATP7B have been conducted in the absence of the membrane-bound protein core. Here, we used computer simulations of full-length ATP7B to study how structural dynamics in the regulatory tail differ between copper-bound and copper-free states. Copper induced increased dynamics in the tail, resulting in an overall movement towards the ion-binding site in the protein core. The simulations identified several, hitherto not reported, interactions between the regulatory tail and the protein core that can be targeted experimentally to enhance our understanding of this medically relevant regulatory mechanism.
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
4
|
Bitter RM, Oh S, Deng Z, Rahman S, Hite RK, Yuan P. Structure of the Wilson disease copper transporter ATP7B. SCIENCE ADVANCES 2022; 8:eabl5508. [PMID: 35245129 PMCID: PMC8896786 DOI: 10.1126/sciadv.abl5508] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 05/31/2023]
Abstract
ATP7A and ATP7B, two homologous copper-transporting P1B-type ATPases, play crucial roles in cellular copper homeostasis, and mutations cause Menkes and Wilson diseases, respectively. ATP7A/B contains a P-type ATPase core consisting of a membrane transport domain and three cytoplasmic domains, the A, P, and N domains, and a unique amino terminus comprising six consecutive metal-binding domains. Here, we present a cryo-electron microscopy structure of frog ATP7B in a copper-free state. Interacting with both the A and P domains, the metal-binding domains are poised to exert copper-dependent regulation of ATP hydrolysis coupled to transmembrane copper transport. A ring of negatively charged residues lines the cytoplasmic copper entrance that is presumably gated by a conserved basic residue sitting at the center. Within the membrane, a network of copper-coordinating ligands delineates a stepwise copper transport pathway. This work provides the first glimpse into the structure and function of ATP7 proteins and facilitates understanding of disease mechanisms and development of rational therapies.
Collapse
Affiliation(s)
- Ryan M. Bitter
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - SeCheol Oh
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suhaila Rahman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Uhlemann EME, Lee W, Tonelli M, Dmitriev OY. At sixes and sevens: cryptic domain in the metal binding chain of the human copper transporter ATP7A. Biophys J 2021; 120:4600-4607. [PMID: 34461106 DOI: 10.1016/j.bpj.2021.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
ATP7A and ATP7B are structurally similar but functionally distinct active copper transporters that regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. Both proteins have a chain of six cytosolic metal-binding domains (MBDs) believed to be involved in the copper-dependent regulation of the activity and intracellular localization of these enzymes. Although all the MBDs are quite similar in structure, their spacing differs markedly between ATP7A and ATP7B. We show by NMR that the long polypeptide between MBD1 and MBD2 of ATP7A forms an additional seventh metastable domain, which we called HMA1A (heavy metal associated domain 1A). The structure of HMA1A resembles the MBDs but contains no copper-binding site. The HMA1A domain, which is unique to ATP7A, may modulate regulatory interactions between MBD1-3, contributing to the distinct functional properties of ATP7A and ATP7B.
Collapse
Affiliation(s)
- Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Woonghee Lee
- Department of Chemistry, University of Colorado, Denver, Colorado
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin
| | - Oleg Y Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
6
|
Andrei A, Di Renzo MA, Öztürk Y, Meisner A, Daum N, Frank F, Rauch J, Daldal F, Andrade SLA, Koch HG. The CopA2-Type P 1B-Type ATPase CcoI Serves as Central Hub for cbb 3-Type Cytochrome Oxidase Biogenesis. Front Microbiol 2021; 12:712465. [PMID: 34589071 PMCID: PMC8475189 DOI: 10.3389/fmicb.2021.712465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maria Agostina Di Renzo
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Alexandra Meisner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fabian Frank
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Susana L A Andrade
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
8
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
9
|
Leng Y, Li P, Zhou L, Xiao L, Liu Y, Zheng Z, Qin F, Hao Q, Xu H, Yao S, Dong B. Long-Term Correction of Copper Metabolism in Wilson's Disease Mice with AAV8 Vector Delivering Truncated ATP7B. Hum Gene Ther 2020; 30:1494-1504. [PMID: 31668086 DOI: 10.1089/hum.2019.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene encoding a liver active copper transport enzyme. Gene therapy with adeno-associated virus (AAV) carrying full-length ATP7B, which is about 4.4 kb, was shown to rescue copper metabolism disorder in WD mouse model. However, due to its relatively large size, the AAV vector containing full-length ATP7B could be oversized for its packaging capacity, which could lead to inefficient packaging. To this purpose, we engineered a truncated ATP7B mutant (tATP7B) that is about 3.3 kb in length and used for AAV gene therapy for WD mice. In vitro test showed that the excretion of copper outside the cells could be achieved with tATP7B as efficient as the full-length ATP7B. In vivo delivery of tATP7B to WD mice by AAV8 vectors corrected their copper metabolisms and significantly rescued copper accumulation-related syndromes, including reduced urinary copper excretion, increased serum ceruloplasmin, and improved liver damages. Thus, our study demonstrated that AAV gene therapy based on truncated ATP7B is a promising strategy in the treatment of WD.
Collapse
Affiliation(s)
- Yingying Leng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lifang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyue Zheng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiukui Hao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Tang N, Sandahl TD, Ott P, Kepp KP. Computing the Pathogenicity of Wilson's Disease ATP7B Mutations: Implications for Disease Prevalence. J Chem Inf Model 2019; 59:5230-5243. [PMID: 31751128 DOI: 10.1021/acs.jcim.9b00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic variations in the gene encoding the copper-transport protein ATP7B are the primary cause of Wilson's disease. Controversially, clinical prevalence seems much smaller than the prevalence estimated by genetic screening tools, causing fear that many people are undiagnosed, although early diagnosis and treatment is essential. To address this issue, we benchmarked 16 state-of-the-art computational disease-prediction methods against established data of missense ATP7B mutations. Our results show that the quality of the methods varies widely. We show the importance of optimizing the threshold of the methods used to distinguish pathogenic from nonpathogenic mutations against data of clinically confirmed pathogenic and nonpathogenic mutations. We find that most methods use thresholds that predict too many ATP7B mutations to be pathogenic. Thus, our findings explain the current controversy on Wilson's disease prevalence because meta-analysis and text search methods include many computational estimates that lead to higher disease prevalence than clinically observed. As proteins and diseases differ widely, a one-size-fits-all threshold cannot distinguish pathogenic and nonpathogenic mutations efficiently, as shown here. We also show that amino acid changes with small evolutionary substitution probability, mainly due to amino acid volume, are more associated with the disease, implying a pathological effect on the conformational state of the protein, which could affect copper transport or adenosine triphosphate recognition and hydrolysis. These findings may be a first step toward a more quantitative genotype-phenotype relationship of Wilson's disease.
Collapse
Affiliation(s)
- Ning Tang
- DTU Chemistry , Technical University of Denmark , Kemitorvet 206 , 2800 Kongens Lyngby , Denmark
| | - Thomas D Sandahl
- Department of Hepatology and Gastroenterology , Aarhus University Hospital , 8200 Aarhus , Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology , Aarhus University Hospital , 8200 Aarhus , Denmark
| | - Kasper P Kepp
- DTU Chemistry , Technical University of Denmark , Kemitorvet 206 , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
11
|
Murillo O, Moreno D, Gazquez C, Barberia M, Cenzano I, Navarro I, Uriarte I, Sebastian V, Arruebo M, Ferrer V, Bénichou B, Combal JP, Prieto J, Hernandez-Alcoceba R, Gonzalez Aseguinolaza G. Liver Expression of a MiniATP7B Gene Results in Long-Term Restoration of Copper Homeostasis in a Wilson Disease Model in Mice. Hepatology 2019; 70:108-126. [PMID: 30706949 DOI: 10.1002/hep.30535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022]
Abstract
Gene therapy with an adeno-associated vector (AAV) serotype 8 encoding the human ATPase copper-transporting beta polypeptide (ATP7B) complementary DNA (cDNA; AAV8-ATP7B) is able to provide long-term copper metabolism correction in 6-week-old male Wilson disease (WD) mice. However, the size of the genome (5.2 kilobases [kb]) surpasses the optimal packaging capacity of the vector, which resulted in low-yield production; in addition, further analyses in WD female mice and in animals with a more advanced disease revealed reduced therapeutic efficacy, as compared to younger males. To improve efficacy of the treatment, an optimized shorter AAV vector was generated, in which four out of six metal-binding domains (MBDs) were deleted from the ATP7B coding sequence, giving rise to the miniATP7B protein (Δ57-486-ATP7B). In contrast to AAV8-ATP7B, AAV8-miniATP7B could be produced at high titers and was able to restore copper homeostasis in 6- and 12-week-old male and female WD mice. In addition, a recently developed synthetic AAV vector, AAVAnc80, carrying the miniATP7B gene was similarly effective at preventing liver damage, restoring copper homeostasis, and improving survival 1 year after treatment. Transduction of approximately 20% of hepatocytes was sufficient to normalize copper homeostasis, suggesting that corrected hepatocytes are acting as a sink to eliminate excess of copper. Importantly, administration of AAVAnc80-miniATP7B was safe in healthy mice and did not result in copper deficiency. Conclusion: In summary, gene therapy using an optimized therapeutic cassette in different AAV systems provides long-term correction of copper metabolism regardless of sex or stage of disease in a clinically relevant WD mouse model. These results pave the way for the implementation of gene therapy in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Itziar Cenzano
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Iñigo Navarro
- Department of Chemistry and Soil Sciences, University of Navarra, IdisNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, FIMA, University of Navarra, IdisNA, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Pamplona, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | | | | | | | - Jesus Prieto
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Gloria Gonzalez Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain.,Vivet Therapeutics SAS, Paris, France
| |
Collapse
|
12
|
Autzen HE, Koldsø H, Stansfeld PJ, Gourdon P, Sansom MSP, Nissen P. Interactions of a Bacterial Cu(I)-ATPase with a Complex Lipid Environment. Biochemistry 2018; 57:4063-4073. [DOI: 10.1021/acs.biochem.8b00326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Henriette E. Autzen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, 8000 Aarhus C, Denmark
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, 8000 Aarhus C, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Gupta A, Das S, Ray K. A glimpse into the regulation of the Wilson disease protein, ATP7B, sheds light on the complexity of mammalian apical trafficking pathways. Metallomics 2018; 10:378-387. [PMID: 29473088 DOI: 10.1039/c7mt00314e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wilson disease (WD), a Mendelian disorder of copper metabolism caused by mutations in the ATP7B gene, manifests a large spectrum of phenotypic variability. This phenomenon of extensive symptom variation is not frequently associated with a monogenic disorder. We hypothesize that the phenotypic variability in WD is primarily driven by the variations in interacting proteins that regulate the ATP7B function and localization in the cell. Based on existing literature, we delineated a potential molecular mechanism for ATP7B mediated copper transport in the milieu of its interactome, its dysfunction in WD and the resulting variability in the phenotypic manifestation. Understanding the copper-induced apical trafficking of ATP7B also significantly contributes to the appreciation of the complexities of the ligand-induced transport pathway. We believe that this holistic view of WD will pave the way for a better opportunity for rational drug design and therapeutics.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata (IISER K), Mohanpur 741246, West Bengal, India.
| | - Kunal Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR - HRDC Campus, Ghaziabad, Uttar Pradesh - 201002, India
| |
Collapse
|
14
|
The Structure of Metal Binding Domain 1 of the Copper Transporter ATP7B Reveals Mechanism of a Singular Wilson Disease Mutation. Sci Rep 2018; 8:581. [PMID: 29330485 PMCID: PMC5766562 DOI: 10.1038/s41598-017-18951-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
Copper-transporter ATP7B maintains copper homeostasis in the human cells and delivers copper to the biosynthetic pathways for incorporation into the newly synthesized copper-containing proteins. ATP7B is a target of several hundred mutations that lead to Wilson disease, a chronic copper toxicosis. ATP7B contains a chain of six cytosolic metal-binding domains (MBDs), the first four of which (MBD1-4) are believed to be regulatory, and the last two (MBD5-6) are required for enzyme activity. We report the NMR structure of MBD1, the last unsolved metal-binding domain of ATP7B. The structure reveals the disruptive mechanism of G85V mutation, one of the very few disease causing missense mutations in the MBD1-4 region of ATP7B.
Collapse
|
15
|
Ariöz C, Li Y, Wittung-Stafshede P. The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals 2017; 30:823-840. [PMID: 29063292 PMCID: PMC5684295 DOI: 10.1007/s10534-017-0058-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022]
Abstract
Wilson Disease (WD) is a hereditary genetic disorder, which coincides with a dysfunctional copper (Cu) metabolism caused by mutations in ATP7B, a membrane-bound P1B-type ATPase responsible for Cu export from hepatic cells. The N-terminal part (~ 600 residues) of the multi-domain 1400-residue ATP7B constitutes six metal binding domains (MBDs), each of which can bind a copper ion, interact with other ATP7B domains as well as with different proteins. Although the ATP7B's MBDs have been investigated in vitro and in vivo intensively, it remains unclear how these domains modulate overall structure, dynamics, stability and function of ATP7B. The presence of six MBDs is unique to mammalian ATP7B homologs, and many WD causing missense mutations are found in these domains. Here, we have summarized previously reported in vitro biophysical data on the MBDs of ATP7B and WD point mutations located in these domains. Besides the demonstration of where the research field stands today, this review showcasts the need for further biophysical investigation about the roles of MBDs in ATP7B function. Molecular mechanisms of ATP7B are important not only in the development of new WD treatment but also for other aspects of human physiology where Cu transport plays a role.
Collapse
Affiliation(s)
- Candan Ariöz
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, Kemihuset A, Linnaeus väg 10, 901 87 Umeå, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| |
Collapse
|
16
|
Drees SL, Klinkert B, Helling S, Beyer DF, Marcus K, Narberhaus F, Lübben M. One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting inEscherichia coli. Mol Microbiol 2017; 106:635-645. [DOI: 10.1111/mmi.13841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Steffen L. Drees
- Department of Biophysics; Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
- Institute for Molecular Microbiology and Biotechnology; University of Münster; Germany
| | - Birgit Klinkert
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Stefan Helling
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Dominik F. Beyer
- Department of Biophysics; Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| | - Mathias Lübben
- Department of Biophysics; Ruhr University Bochum, Universitätsstr. 150; Bochum D-44801 Germany
| |
Collapse
|
17
|
Yu CH, Yang N, Bothe J, Tonelli M, Nokhrin S, Dolgova NV, Braiterman L, Lutsenko S, Dmitriev OY. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. J Biol Chem 2017; 292:18169-18177. [PMID: 28900031 DOI: 10.1074/jbc.m117.811752] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/01/2017] [Indexed: 01/28/2023] Open
Abstract
The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo-Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions.
Collapse
Affiliation(s)
- Corey H Yu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nan Yang
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Jameson Bothe
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin 53706
| | - Sergiy Nokhrin
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Natalia V Dolgova
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Lelita Braiterman
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Svetlana Lutsenko
- the Department of Physiology, Johns Hopkins Medical University, Baltimore, Maryland 21205, and
| | - Oleg Y Dmitriev
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| |
Collapse
|
18
|
Yu CH, Dolgova NV, Dmitriev OY. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A. IUBMB Life 2017; 69:226-235. [DOI: 10.1002/iub.1611] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Corey H. Yu
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Natalia V. Dolgova
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| | - Oleg Y. Dmitriev
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|
19
|
Inesi G. Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life 2016; 69:211-217. [PMID: 27896900 DOI: 10.1002/iub.1590] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 11/06/2022]
Abstract
Copper has a wide and important role in biological systems, determining conformation and activity of many metalloproteins and enzymes, such as cytochrome oxidase and superoxide dismutase . Furthermore, due to its possible reactivity with nonspecific proteins and toxic effects, elaborate systems of absorption, concentration buffering, delivery to specific protein sites and elimination, require a complex system including small carriers, chaperones and active transporters. The P-type copper ATPases ATP7A and ATP7B provide an important system for acquisition, active transport, distribution and elimination of copper. Relevance of copper metabolism to human diseases and therapy is already known. It is quite certain that further studies will reveal detailed and useful information on biochemical mechanisms and relevance to diseases. © 2016 IUBMB Life, 69(4):211-217, 2017.
Collapse
Affiliation(s)
- Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| |
Collapse
|
20
|
Migocka M, Posyniak E, Maciaszczyk-Dziubinska E, Papierniak A, Kosieradzaka A. Functional and Biochemical Characterization of Cucumber Genes Encoding Two Copper ATPases CsHMA5.1 and CsHMA5.2. J Biol Chem 2015; 290:15717-15729. [PMID: 25963145 PMCID: PMC4505482 DOI: 10.1074/jbc.m114.618355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu(+) (Km ∼1 or 0.5 μM, respectively) and similar affinity to Ag(+) (Km ∼2.5 μM). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu(+) transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.
Collapse
Affiliation(s)
- Magdalena Migocka
- Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Ewelina Posyniak
- Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Anna Papierniak
- Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | | |
Collapse
|
21
|
Sautron E, Mayerhofer H, Giustini C, Pro D, Crouzy S, Ravaud S, Pebay-Peyroula E, Rolland N, Catty P, Seigneurin-Berny D. HMA6 and HMA8 are two chloroplast Cu+-ATPases with different enzymatic properties. Biosci Rep 2015; 35:e00201. [PMID: 26182363 PMCID: PMC4613667 DOI: 10.1042/bsr20150065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/01/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
Copper (Cu) plays a key role in the photosynthetic process as cofactor of the plastocyanin (PC), an essential component of the chloroplast photosynthetic electron transfer chain. Encoded by the nuclear genome, PC is translocated in its apo-form into the chloroplast and the lumen of thylakoids where it is processed to its mature form and acquires Cu. In Arabidopsis, Cu delivery into the thylakoids involves two transporters of the PIB-1 ATPases family, heavy metal associated protein 6 (HMA6) located at the chloroplast envelope and HMA8 at the thylakoid membrane. To gain further insight into the way Cu is delivered to PC, we analysed the enzymatic properties of HMA8 and compared them with HMA6 ones using in vitro phosphorylation assays and phenotypic tests in yeast. These experiments reveal that HMA6 and HMA8 display different enzymatic properties: HMA8 has a higher apparent affinity for Cu(+) but a slower dephosphorylation kinetics than HMA6. Modelling experiments suggest that these differences could be explained by the electrostatic properties of the Cu(+) releasing cavities of the two transporters and/or by the different nature of their cognate Cu(+) acceptors (metallochaperone/PC).
Collapse
Affiliation(s)
- Emeline Sautron
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Hubert Mayerhofer
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, UMR5075, 71, avenue des Martyrs, F-38044 Grenoble, France
| | - Cécile Giustini
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Danièle Pro
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Serge Crouzy
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- *CNRS, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Stéphanie Ravaud
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, UMR5075, 71, avenue des Martyrs, F-38044 Grenoble, France
| | - Eva Pebay-Peyroula
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, UMR5075, 71, avenue des Martyrs, F-38044 Grenoble, France
| | - Norbert Rolland
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Patrice Catty
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- *CNRS, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Daphné Seigneurin-Berny
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
22
|
Wu F, Wang J, Pu C, Qiao L, Jiang C. Wilson's disease: a comprehensive review of the molecular mechanisms. Int J Mol Sci 2015; 16:6419-31. [PMID: 25803104 PMCID: PMC4394540 DOI: 10.3390/ijms16036419] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023] Open
Abstract
Wilson’s disease (WD), also known as hepatolenticular degeneration, is an autosomal recessive inherited disorder resulting from abnormal copper metabolism. Reduced copper excretion causes an excessive deposition of the copper in many organs such as the liver, central nervous system (CNS), cornea, kidney, joints, and cardiac muscle where the physiological functions of the affected organs are impaired. The underlying molecular mechanisms for WD have been extensively studied. It is now believed that a defect in P-type adenosine triphosphatase (ATP7B), the gene encoding the copper transporting P-type ATPase, is responsible for hepatic copper accumulation. Deposited copper in the liver produces toxic effects via modulating several molecular pathways. WD can be a lethal disease if left untreated. A better understanding of the molecular mechanisms causing the aberrant copper deposition and organ damage is the key to developing effective management approaches.
Collapse
Affiliation(s)
- Fei Wu
- Department of imaging, the Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China.
| | - Jing Wang
- Department of Internal Medicine, the Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China.
| | - Chunwen Pu
- Department of Biobank, the Sixth People's Hospital of Dalian, 269 Luganghuibai Road, Ganjingzi District, Dalian 116031, Liaoning, China.
| | - Liang Qiao
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, Faculty of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Chunmeng Jiang
- Department of Internal Medicine, the Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China.
| |
Collapse
|
23
|
Braiterman LT, Gupta A, Chaerkady R, Cole RN, Hubbard AL. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B). J Biol Chem 2015; 290:8803-19. [PMID: 25666620 DOI: 10.1074/jbc.m114.627414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated ("hyperphosphorylated") in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration.
Collapse
Affiliation(s)
| | | | - Raghothama Chaerkady
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N Cole
- the Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
24
|
Abstract
Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper.
Collapse
|
25
|
Blackburn NJ, Yan N, Lutsenko S. Copper in Eukaryotes. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Copper is essential for normal growth and development of eukaryotic organisms. Numerous physiological processes rely on sufficient availability of copper: from indispensable reactions such as mitochondrial respiration to more highly specialized processes such as pigment development in a skin. Copper misbalance has been linked to a variety of metabolic and neurodegenerative disorders in humans. Complex cellular machinery has evolved to mediate copper uptake, compartmentalization and incorporation into target proteins. Extensive studies revealed a predominant utilization of methionines and histidines by copper handling molecules for copper capture at the extracellular surface and delivery to cuproenzymes in the lumen of cellular compartments, respectively. Cu(I) is a predominant form within the cell, and copper binding and distribution inside the cell at the cytosolic sites relies heavily on cysteines. The selectivity and directionality of copper transfer reactions is determined by thermodynamic and kinetic factors as well as spatial distribution of copper donors and acceptors. In this chapter, we review current structural and mechanistic data on copper transport and distribution in yeast and mammalian cells and highlight important issues and questions for future studies.
Collapse
Affiliation(s)
- Ninian J. Blackburn
- Institute of Environmental Health, Oregon Health and Sciences University Portland, OR 97239 USA
| | - Nan Yan
- Department of Physiology, The Johns Hopkins University School of Medicine Baltimore, MD 21205 USA
| | - Svetlana Lutsenko
- Department of Physiology, The Johns Hopkins University School of Medicine Baltimore, MD 21205 USA
| |
Collapse
|
26
|
Li H, Fan R, Li L, Wei B, Li G, Gu L, Wang X, Zhang X. Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. PLANT, CELL & ENVIRONMENT 2014; 37:1561-1573. [PMID: 24372025 DOI: 10.1111/pce.12263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/08/2013] [Indexed: 06/03/2023]
Abstract
Copper is an essential micronutrient for plant growth and development, and copper transporter plays a pivotal role for keeping copper homeostasis. However, little is known about copper transporters in wheat. Here, we report a novel copper transporter gene family, TaCT1, in common wheat. Three TaCT1 homoeologous genes were isolated and assigned to group 5 chromosomes. Each of the TaCT1 genes (TaCT1-5A, -5B or -5D) possesses 12 transmembrane domains. TaCT1 genes exhibited higher transcript levels in leaf than in root, culm and spikelet. Excess copper down-regulated the transcript levels of TaCT1 and copper deficiency-induced TaCT1 expression. Subcellular experiments localized the TaCT1 to the Golgi apparatus. Yeast expression experiments and virus-induced gene silencing analysis indicated that the TaCT1 functioned in copper transport. Site-directed mutagenesis demonstrated that three amino acid residues, Met(35), Met(38) and Cys(365), are required for TaCT1 function. Phylogenetic and functional analyses suggested that homologous genes shared high similarity with TaCT1 may exist exclusively in monocot plants. Our work reveals a novel wheat gene family encoding major facilitator superfamily (MFS)-type copper transporters, and provides evidence for their functional involvement in promoting copper uptake and keeping copper homeostasis in common wheat.
Collapse
Affiliation(s)
- Haoxun Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, The State Key Laboratory of Plant Cell and Chromosome Engineering, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Center for Plant Gene Research (Beijing), Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Safaei R, Adams PL, Mathews RA, Manorek G, Howell SB. The role of metal binding and phosphorylation domains in the regulation of cisplatin-induced trafficking of ATP7B. Metallomics 2014; 5:964-72. [PMID: 23803742 DOI: 10.1039/c3mt00131h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper (Cu) exporter ATP7B mediates cellular resistance to cisplatin (cDDP) by increasing drug efflux. ATP7B binds and sequesters cDDP in into secretory vesicles. Upon cDDP exposure ATP7B traffics from the trans-Golgi network (TGN) to the periphery of the cell in a manner that requires the cysteine residues in its metal binding domains (MBD). To elucidate the role of the various domains of ATP7B in its cDDP-induced trafficking we expressed a series of mCherry-tagged variants of ATP7B in HEK293T cells and analyzed their subcellular localization in basal media and after a 1 h exposure to 30 μM cDDP. The wild type ATP7B and a variant in which the cysteines in the CXXC motifs of MBD 1-5 were converted to serines trafficked out of the trans-Golgi (TGN) when exposed to cDDP. Conversion of the cysteines in all 6 of the CXXC motifs to serines, or in only the sixth MBD, rendered ATP7B incapable of trafficking on exposure to cDDP. Truncation of MBD1-5 or MBD1-6 resulted in the loss of TGN localization. Addition of the first 63 amino acids of ATP7B to these variants restored TGN localization to a great extent and enabled the MBD1-5 variant to undergo cDDP-induced trafficking. A variant of ATP7B in which the aspartate 1027 residue in the phosphorylation domain was converted to glutamine localized to the TGN but was incapable of cDDP-induced trafficking. These results demonstrate that the CXXC motif in the sixth MBD and the catalytic activity of ATP7B are required for cDDP-induced trafficking as they are for Cu-induced redistribution of ATP7B; this provides further evidence that cDDP mimics Cu with respect to the molecular mechanisms by they control the subcellular distribution of ATP7B.
Collapse
Affiliation(s)
- Roohangiz Safaei
- Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | | | | | | | | |
Collapse
|
28
|
Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Inesi G, Galliani A, Sinisi M, Losacco M, Natile G, Arnesano F. Translocation of platinum anticancer drugs by human copper ATPases ATP7A and ATP7B. Angew Chem Int Ed Engl 2014; 53:1297-301. [PMID: 24375922 PMCID: PMC3937162 DOI: 10.1002/anie.201307718] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/10/2013] [Indexed: 11/08/2022]
Abstract
Cisplatin, carboplatin, and oxaliplatin are widely used anticancer drugs. Their efficacy is strongly reduced by development of cell resistance. Down-regulation of CTR1 and up-regulation of the Cu-ATPases, ATP7A and ATP7B, have been associated to augmented drug resistance. To gain information on translocation of Pt drugs by human Cu-ATPases, we performed electrical measurements on the COS-1 cell microsomal fraction, enriched with recombinant ATP7A, ATP7B, and selected mutants, and adsorbed on a solid supported membrane. The experimental results indicate that Pt drugs activate Cu-ATPases and undergo ATP-dependent translocation in a fashion similar to that of Cu. We then used NMR spectroscopy and ESI-MS to determine the binding mode of these drugs to the first N-terminal metal-binding domain of ATP7A (Mnk1).
Collapse
Affiliation(s)
- Francesco Tadini-Buoninsegni
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
| | - Gianluca Bartolommei
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
| | - Maria Rosa Moncelli
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
| | - Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Angela Galliani
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Marilù Sinisi
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Maurizio Losacco
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Giovanni Natile
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Fabio Arnesano
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| |
Collapse
|
29
|
Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Inesi G, Galliani A, Sinisi M, Losacco M, Natile G, Arnesano F. Translocation of Platinum Anticancer Drugs by Human Copper ATPases ATP7A and ATP7B. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
In silico investigation of the ATP7B gene: insights from functional prediction of non-synonymous substitution to protein structure. Biometals 2013; 27:53-64. [PMID: 24253677 DOI: 10.1007/s10534-013-9686-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/07/2013] [Indexed: 01/22/2023]
Abstract
ATP7B is a copper-transporting ATPase that plays a key role in the regulation of copper homeostasis. Mutations in the ATP7B gene are causative for Wilson's disease, and recent reports have suggested that genetic variants are associated with susceptibility to Alzheimer's disease. Unfortunately, it is difficult to profile experimentally novel genetic variants in the ATP7B gene, because the human protein X-ray structure is not yet entirely understood. In order to investigate ATP7B non-synonymous substitutions, we used an in silico amino acid sequence-based approach. Specifically, we analyzed 337 ATP7B non-synonymous substitutions, which included Wilson's disease-causing mutations (DVs) and non Wilson's disease-causing variants (NDVs), with an algorithm that estimated a combined probability (cPdel) of an amino acidic change to be deleterious for the protein function. This approach appeared to reliably indentify the probability of DVs and NDVs to be deleterious and to profile still unknown gene variants. Specifically, after analyzing ATP7B protein domains with the cPdel method, we found results in line with the predicted-modeled domains and some new suggestions. In conclusion, a functional survey of amino acid changes in the ATP7B protein is provided herein, and we suggest that this bioinformatic method can furnish information about novel ATP7B mutations. Furthermore, the same approach can be applied to other uncharacterized proteins.
Collapse
|
31
|
Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification. Biochem J 2013; 454:147-56. [PMID: 23751120 DOI: 10.1042/bj20121656] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human copper transporters ATP7B (Wilson's disease protein) and ATP7A (Menkes' disease protein) have been implicated in tumour resistance to cisplatin, a widely used anticancer drug. Cisplatin binds to the copper-binding sites in the N-terminal domain of ATP7B, and this binding may be an essential step of cisplatin detoxification involving copper ATPases. In the present study, we demonstrate that cisplatin and a related platinum drug carboplatin produce the same adduct following reaction with MBD2 [metal-binding domain (repeat) 2], where platinum is bound to the side chains of the cysteine residues in the CxxC copper-binding motif. This suggests the same mechanism for detoxification of both drugs by ATP7B. Platinum can also be transferred to MBD2 from copper chaperone Atox1, which was shown previously to bind cisplatin. Binding of the free cisplatin and reaction with the cisplatin-loaded Atox1 produce the same protein-bound platinum intermediate. Transfer of platinum along the copper-transport pathways in the cell may serve as a mechanism of drug delivery to its target in the cell nucleus, and explain tumour-cell resistance to cisplatin associated with the overexpression of copper transporters ATP7B and ATP7A.
Collapse
|
32
|
Hatori Y, Lutsenko S. An expanding range of functions for the copper chaperone/antioxidant protein Atox1. Antioxid Redox Signal 2013; 19:945-57. [PMID: 23249252 PMCID: PMC3763234 DOI: 10.1089/ars.2012.5086] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Antioxidant protein 1 (Atox1 in human cells) is a copper chaperone for the copper export pathway with an essential role in cellular copper distribution. In vitro, Atox1 binds and transfers copper to the copper-transporting ATPases, stimulating their catalytic activity. Inactivation of Atox1 in cells inhibits maturation of secreted cuproenzymes as well as copper export from cells. RECENT ADVANCES Accumulating data suggest that cellular functions of Atox1 are not limited to its copper-trafficking role and may include storage of labile copper, modulation of transcription, and antioxidant defense. The conserved metal binding site of Atox1, CxGC, differs from the metal-binding sites of copper-transporting ATPases and has a physiologically relevant redox potential that equilibrates with the GSH:GSSG pair. CRITICAL ISSUES Tight relationship appears to exist between intracellular copper levels and glutathione (GSH) homeostasis. The biochemical properties of Atox1 place it at the intersection of cellular networks that regulate copper distribution and cellular redox balance. Mechanisms through which Atox1 facilitates copper export and contributes to oxidative defense are not fully understood. FUTURE DIRECTIONS The current picture of cellular redox homeostasis and copper physiology will be enhanced by further mechanistic studies of functional interactions between the GSH:GSSG pair and copper-trafficking machinery.
Collapse
Affiliation(s)
- Yuta Hatori
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
33
|
Nilsson L, Ådén J, Niemiec MS, Nam K, Wittung-Stafshede P. Small pH and Salt Variations Radically Alter the Thermal Stability of Metal-Binding Domains in the Copper Transporter, Wilson Disease Protein. J Phys Chem B 2013; 117:13038-50. [DOI: 10.1021/jp402415y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lina Nilsson
- Chemistry
Department and ‡Computational Life Science Center (CLiC), Umeå University, 90187 Umeå, Sweden
| | - Jörgen Ådén
- Chemistry
Department and ‡Computational Life Science Center (CLiC), Umeå University, 90187 Umeå, Sweden
| | - Moritz S. Niemiec
- Chemistry
Department and ‡Computational Life Science Center (CLiC), Umeå University, 90187 Umeå, Sweden
| | - Kwangho Nam
- Chemistry
Department and ‡Computational Life Science Center (CLiC), Umeå University, 90187 Umeå, Sweden
| | | |
Collapse
|
34
|
Mattle D, Sitsel O, Autzen HE, Meloni G, Gourdon P, Nissen P. On allosteric modulation of P-type Cu(+)-ATPases. J Mol Biol 2013; 425:2299-308. [PMID: 23500486 DOI: 10.1016/j.jmb.2013.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
Abstract
P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass-specific sequence motifs and structural elements that are linked to transport specificity and mechanistic modulation. Here we provide an overview of the Cu(+)-transporting ATPases (of subclass PIB) and compare them to the well-studied sarco(endo)plasmic reticulum Ca(2+)-ATPase (of subclass PIIA). Cu(+) ions in the cell are delivered by soluble chaperones to Cu(+)-ATPases, which expose a putative "docking platform" at the intracellular interface. Cu(+)-ATPases also contain heavy-metal binding domains providing a basis for allosteric control of pump activity. Database analysis of Cu(+) ligating residues questions a two-site model of intramembranous Cu(+) binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably different properties.
Collapse
Affiliation(s)
- Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Gupta A, Lutsenko S. Evolution of copper transporting ATPases in eukaryotic organisms. Curr Genomics 2012; 13:124-33. [PMID: 23024604 PMCID: PMC3308323 DOI: 10.2174/138920212799860661] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/22/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022] Open
Abstract
Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
36
|
Ueki T, Nakagawa T, Michibata H. Metal-binding domains and the metal selectivity of the vanadium(IV)-binding protein VBP-129 in blood plasma. J Inorg Biochem 2012; 116:70-6. [PMID: 23010332 DOI: 10.1016/j.jinorgbio.2012.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/30/2012] [Accepted: 08/11/2012] [Indexed: 11/16/2022]
Abstract
Ascidians are well known to accumulate extremely high levels of vanadium in their blood cells. Several key proteins related to vanadium accumulation and physiological function have been isolated from vanadium-rich ascidians. Of these, vanadium(IV)-binding protein-129 (VBP-129) is a unique protein that has been identified from the blood plasma of an ascidian Ascidia sydneiensis samea, but its metal binding domains are not known. In this study, several deletion and point mutants of VBP-129 were generated, and their metal binding abilities were assessed by immobilized metal ion affinity chromatography (IMAC) and electron spin resonance spectroscopy (ESR). The internal partial protein, VBP-Int41, did not bind to V(IV), but the two constructs, VBP-N52 and VBP-Int55, added with additional 11 or 14 neighboring amino acids bound to V(IV). Mutations for cysteine-47 and lysine-50 in VBP-Int55 diminished V(IV)-binding in VBP-Int55, suggesting that these amino acid residues play important roles in binding V(IV). ESR titration analysis revealed that VBP-129, VBP-N52 and VBP-Int55 could bind to 6, 3 and 2 V(IV) ions, respectively. ESR spectrum analysis indicated a N(2)O(2) coordination geometry, which is similar to vanabins. The cysteines may contribute to the maintenance of the three-dimensional structure that is necessary for binding V(IV) ions. VBP-129 did not have a V(V)-reductase activity, as expected from its tissue localization in blood plasma. This study provided the evidences that VBP-129 possesses V(IV)-binding domains that make a similar coordination to V(IV) as those by vanabins but VBP-129 acts solely as a V(IV)-chaperon in blood plasma.
Collapse
Affiliation(s)
- Tatsuya Ueki
- Molecular Physiology Laboratory, Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | | | | |
Collapse
|
37
|
Huster D, Kühne A, Bhattacharjee A, Raines L, Jantsch V, Noe J, Schirrmeister W, Sommerer I, Sabri O, Berr F, Mössner J, Stieger B, Caca K, Lutsenko S. Diverse functional properties of Wilson disease ATP7B variants. Gastroenterology 2012; 142:947-956.e5. [PMID: 22240481 PMCID: PMC3461965 DOI: 10.1053/j.gastro.2011.12.048] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 12/19/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper ((64)Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein's transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype-phenotype correlation and mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Dominik Huster
- Department of Medicine, Dermatology and Neurology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany.
| | - Angelika Kühne
- Department of Medicine, Dermatology and Neurology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | | | - Lily Raines
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland
| | - Vanessa Jantsch
- Department of Medicine, Dermatology and Neurology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Johannes Noe
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Wiebke Schirrmeister
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany,Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ines Sommerer
- Department of Medicine, Dermatology and Neurology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Frieder Berr
- Department of Medicine, Dermatology and Neurology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany,Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Joachim Mössner
- Department of Medicine, Dermatology and Neurology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Karel Caca
- Department of Medicine, Dermatology and Neurology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany,Department of Gastroenterology, Medizinische Klinik I, Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
38
|
Safaei R, Adams PL, Maktabi MH, Mathews RA, Howell SB. The CXXC motifs in the metal binding domains are required for ATP7B to mediate resistance to cisplatin. J Inorg Biochem 2012; 110:8-17. [PMID: 22459168 DOI: 10.1016/j.jinorgbio.2012.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/01/2012] [Accepted: 02/20/2012] [Indexed: 01/01/2023]
Abstract
The copper (Cu) exporter ATP7B mediates resistance to cisplatin (cDDP) but details of the mechanism are unknown. We explored the role of the CXXC motifs in the metal binding domains (MBDs) of ATP7B by investigating binding of cDDP to the sixth metal binding domain (MBD6) or a variant in which the CXXC motif was converted to SXXS. Platinum measurement showed that cDDP bound to wild type MBD6 but not to the SXXS variant. Wild type ATP7B rendered ovarian 2008 cells resistant to cDDP. In 2008 and in HEK293T cells, wild type ATP7B trafficked from TGN to peripheral locations in response to Cu or cDDP. A variant in which the CXXC motifs in all 6 MBDs were converted to SXXS localized correctly to the TGN but failed to traffic when exposed to either Cu or cDDP. Deletion of either the first 5 MBDs or all 6 MBDs resulted in failure to localize to the TGN. Neither the SXXS variant nor the deletion variant was able to mediate resistance to cDDP. We conclude that cDDP binds to the CXXC motifs of ATP7B and that this interaction is essential to the trafficking of ATP7B and to its ability to mediate resistance to cDDP.
Collapse
Affiliation(s)
- Roohangiz Safaei
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0819, USA.
| | | | | | | | | |
Collapse
|
39
|
Rosenzweig AC, Argüello JM. Toward a molecular understanding of metal transport by P(1B)-type ATPases. CURRENT TOPICS IN MEMBRANES 2012; 69:113-36. [PMID: 23046649 DOI: 10.1016/b978-0-12-394390-3.00005-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P(1B) family of P-type ATPases couples the transport of cytoplasmic transition metals across biological membranes to the hydrolysis of ATP. These ubiquitous transporters function in maintaining cytoplasmic metal quotas and in the assembly of metalloproteins, and have been classified into subfamilies (P(1B-1)-P(1B-5)) on the basis of their transported substrates (Cu(+), Zn(2+), Cu(2+), and Co(2+)) and signature sequences in their transmembrane segments. In addition, each subgroup presents a characteristic membrane topology and specific regulatory cytoplasmic metal-binding domains. In recent years, significant major aspects of their transport mechanism have been described, including the stoichiometry of transport and the delivery of substrates to transport sites by metallochaperones. Toward understanding their structure, the metal coordination by transport sites has been characterized for Cu(+) and Zn(2+)-ATPases. In addition, atomic resolution structures have been determined, providing key insight into the elements that enable transition metal transport. Because the Cu(+)-transporting ATPases are found in humans and are linked to disease, this subfamily has been the focus of intense study. As a result, significant progress has been made toward understanding Cu(+)-ATPase function on the molecular level, using both the human proteins and the bacterial homologs, most notably the CopA proteins from Archaeoglobus fulgidus, Bacillus subtilis, and Thermotoga maritima. This chapter thus focuses on the mechanistic and structural information obtained by studying these latter Cu(+)-ATPases, with some consideration of how these aspects might differ for the other subfamilies of P(1B)-ATPases.
Collapse
Affiliation(s)
- Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | | |
Collapse
|
40
|
The Role of the Golgi-Resident SPCA Ca2+/Mn2+ Pump in Ionic Homeostasis and Neural Function. Neurochem Res 2011; 37:455-68. [DOI: 10.1007/s11064-011-0644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 12/23/2022]
|
41
|
Allen GS, Wu CC, Cardozo T, Stokes DL. The architecture of CopA from Archeaoglobus fulgidus studied by cryo-electron microscopy and computational docking. Structure 2011; 19:1219-32. [PMID: 21820315 DOI: 10.1016/j.str.2011.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 10/17/2022]
Abstract
CopA uses ATP to pump Cu(+) across cell membranes. X-ray crystallography has defined atomic structures of several related P-type ATPases. We have determined a structure of CopA at 10 Å resolution by cryo-electron microscopy of a new crystal form and used computational molecular docking to study the interactions between the N-terminal metal-binding domain (NMBD) and other elements of the molecule. We found that the shorter-chain lipids used to produce these crystals are associated with movements of the cytoplasmic domains, with a novel dimer interface and with disordering of the NMBD, thus offering evidence for the transience of its interaction with the other cytoplasmic domains. Docking identified a binding site that matched the location of the NMBD in our previous structure by cryo-electron microscopy, allowing a more detailed view of its binding configuration and further support for its role in autoinhibition.
Collapse
Affiliation(s)
- Gregory S Allen
- Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
42
|
Dmitriev OY. Mechanism of tumor resistance to cisplatin mediated by the copper transporter ATP7B. Biochem Cell Biol 2011; 89:138-47. [PMID: 21455266 DOI: 10.1139/o10-150] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Wilson disease protein (ATP7B) is a copper-transporting ATPase that is responsible for regulating copper homeostasis in human tissues. ATP7B is associated with cancer resistance to cisplatin, one of the most widely used anticancer drugs. This minireview discusses the possible mechanisms of tumor resistance to cisplatin mediated by ATP7B. Cisplatin binds to the N-terminal cytosolic domain of ATP7B, which contains multiple copper-binding sites. Active platinum efflux catalyzed by ATP7B is unlikely to significantly contribute to cisplatin resistance in vivo. Transient platinum sequestration in the metal-binding domain followed by transfer to an acceptor protein or a low molecular weight compound is proposed as an alternative mechanism of cisplatin detoxification in the cell.
Collapse
Affiliation(s)
- Oleg Y Dmitriev
- Department of Biochemistry, University of Saskatchewan, SK, Canada.
| |
Collapse
|
43
|
Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 2011; 1:1125-42. [PMID: 20454597 DOI: 10.4155/fmc.09.84] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Normal copper homeostasis is essential for human growth and development. Copper deficiency, caused by genetic mutations, inadequate diet or surgical interventions, may lead to cardiac hypertrophy, poor neuronal myelination, blood vessel abnormalities and impaired immune response. Copper overload is associated with morphological and metabolic changes in tissues and, if untreated, eventual death. Recent reports also indicate that changes in the expression of copper transporters alter the sensitivity of cancer cells to major chemotherapeutic drugs, such as cisplatin, although the mechanism behind this important phenomenon remains unclear. This review summarizes current information on the molecular characteristics of copper transporters CTR1, CTR2, ATP7A and ATP7B, their roles in mammalian copper homeostasis and the physiological consequences of their inactivation. The mechanisms through which copper transporters may influence cell sensitivity to cisplatin are discussed. Regulation of human copper homeostasis has significant therapeutic potential and requires the detailed understanding of copper transport mechanisms.
Collapse
|
44
|
Benítez JJ, Keller AM, Huffman DL, Yatsunyk LA, Rosenzweig AC, Chen P. Relating dynamic protein interactions of metallochaperones with metal transfer at the single-molecule level. Faraday Discuss 2011; 148:71-82; discussion 97-108. [PMID: 21322478 DOI: 10.1039/c004913a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metallochaperones undertake specific interactions with their target proteins to deliver metal ions inside cells. Understanding how these protein interactions are coupled with the underlying metal transfer process is important, but challenging because they are weak and dynamic. Here we use a nanovesicle trapping scheme to enable single-molecule FRET measurements of the weak, dynamic interactions between the copper chaperone Hahl and the fourth metal binding domain (MBD4) of WDP. By monitoring the behaviors of single interacting pairs, we visualize their interactions in real time in both the absence and the presence of various equivalents of Cu(1+). Regardless of the proteins' metallation state, we observe multiple, interconverting interaction complexes between Hah1 and MBD4. Within our experimental limit, the overall interaction geometries of these complexes appear invariable, but their stabilities are dependent on the proteins' metallation state. In apo-holo Hah1-MBD4 interactions, the complexes are stabilized relative to that observed in the apo-apo interactions. This stabilization is indiscernible when Hah1's Cu(1+)-binding is eliminated or when both proteins have Cu(1+) loaded. The nature of this Cu(1+)-induced complex stabilization and of the interaction complexes are discussed. These Cu(1+)-induced effects on the Hah1-MBD4 interactions provide a step toward understanding how the dynamic protein interactions of copper chaperones are coupled with their metal transfer function.
Collapse
Affiliation(s)
- Jaime J Benítez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
45
|
In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding. Biometals 2011; 24:477-87. [DOI: 10.1007/s10534-011-9410-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/06/2011] [Indexed: 12/17/2022]
|
46
|
Shoshan MS, Tshuva EY. The MXCXXC class of metallochaperone proteins: model studies. Chem Soc Rev 2011; 40:5282-92. [DOI: 10.1039/c1cs15086c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S, Wang Y, Muend S, Kenny PA, Sukumar S, Roberts-Thomson SJ, Monteith GR, Rao R. Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 2010; 143:84-98. [PMID: 20887894 DOI: 10.1016/j.cell.2010.08.040] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 06/03/2010] [Accepted: 08/24/2010] [Indexed: 12/22/2022]
Abstract
Ca(2+) is an essential and ubiquitous second messenger. Changes in cytosolic Ca(2+) trigger events critical for tumorigenesis, such as cellular motility, proliferation, and apoptosis. We show that an isoform of Secretory Pathway Ca(2+)-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuates basal Ca(2+) levels and tumorigenicity. Contrary to its conventional role in Golgi Ca(2+) sequestration, expression of SPCA2 increased Ca(2+) influx by a mechanism dependent on the store-operated Ca(2+) channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER Ca(2+) stores or STIM1 and STIM2 sensors and uncoupled from Ca(2+)-ATPase activity of SPCA2. Binding of the SPCA2 amino terminus to Orai1 enabled access of its carboxyl terminus to Orai1 and activation of Ca(2+) influx. Our findings reveal a signaling pathway in which the Orai1-SPCA2 complex elicits constitutive store-independent Ca(2+) signaling that promotes tumorigenesis.
Collapse
Affiliation(s)
- Mingye Feng
- Department of Physiology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 2010; 67:2563-89. [PMID: 20333435 PMCID: PMC11115773 DOI: 10.1007/s00018-010-0330-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/22/2010] [Indexed: 01/01/2023]
Abstract
Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Ivano Bertini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Cantini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
49
|
Chen P, Andoy NM, Benítez JJ, Keller AM, Panda D, Gao F. Tackling metal regulation and transport at the single-molecule level. Nat Prod Rep 2010; 27:757-67. [PMID: 20442963 PMCID: PMC2992825 DOI: 10.1039/b906691h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To maintain normal metal metabolism, organisms utilize dynamic cooperation of many biomacromolecules for regulating metal ion concentrations and bioavailability. How these biomacromolecules work together to achieve their functions is largely unclear. For example, how do metalloregulators and DNA interact dynamically to control gene expression to maintain healthy cellular metal level? And how do metal transporters collaborate dynamically to deliver metal ions? Here we review recent advances in studying the dynamic interactions of macromolecular machineries for metal regulation and transport at the single-molecule level: (1) The development of engineered DNA Holliday junctions as single-molecule reporters for metalloregulator-DNA interactions, focusing onMerR-family regulators. And (2) The development of nanovesicle trapping coupled with single molecule fluorescence resonance energy transfer (smFRET) for studying weak, transient interactions between the copper chaperone Hah1 and the Wilson disease protein. We describe the methodologies,the information content of the single-molecule results, and the insights into the biological functions of the involved biomacromolecules for metal regulation and transport. We also discuss remaining challenges from our perspective.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
50
|
van den Berghe PVE, Klomp LWJ. Posttranslational regulation of copper transporters. J Biol Inorg Chem 2009; 15:37-46. [DOI: 10.1007/s00775-009-0592-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/10/2009] [Indexed: 12/15/2022]
|