1
|
Farghaly TA, Pashameah RA, Bayazeed A, Al-Soliemy AM, Alsaedi AMR, Harras MF. Design and Synthesis of New bis-oxindole and Spiro(triazole-oxindole) as CDK4 Inhibitors with Potent Anti-breast Cancer Activity. Med Chem 2024; 20:63-77. [PMID: 37723960 DOI: 10.2174/1573406419666230810124855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development. METHODS In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride. RESULTS The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 μM) and MDA-MB-231 (IC50 = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 μM) compared to palbociclib (IC50 = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation. CONCLUSION According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Rami A Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abrar Bayazeed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amerah M Al-Soliemy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amani M R Alsaedi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Fuller AM, DeVine A, Murazzi I, Mason NJ, Weber K, Eisinger-Mathason TSK. Comparative oncology reveals DNMT3B as a molecular vulnerability in undifferentiated pleomorphic sarcoma. Cell Oncol (Dordr) 2022; 45:1277-1295. [PMID: 36181640 PMCID: PMC9772002 DOI: 10.1007/s13402-022-00717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Undifferentiated pleomorphic sarcoma (UPS), an aggressive subtype of soft-tissue sarcoma (STS), is exceedingly rare in humans and lacks effective, well-tolerated therapies. In contrast, STS are relatively common in canine companion animals. Thus, incorporation of veterinary patients into studies of UPS offers an exciting opportunity to develop novel therapeutic strategies for this rare human disease. Genome-wide studies have demonstrated that UPS is characterized by aberrant patterns of DNA methylation. However, the mechanisms and impact of this epigenetic modification on UPS biology and clinical behavior are poorly understood. METHODS DNA methylation in mammalian cells is catalyzed by the canonical DNA methyltransferases DNMT1, DNMT3A and DNMT3B. Therefore, we leveraged cell lines and tissue specimens from human and canine patients, together with an orthotopic murine model, to probe the functional and clinical significance of DNMTs in UPS. RESULTS We found that the DNA methyltransferase DNMT3B is overexpressed in UPS relative to normal mesenchymal tissues and is associated with a poor prognosis. Consistent with these findings, genetic DNMT3B depletion strongly inhibited UPS cell proliferation and tumor progression. However, existing hypomethylating agents, including the clinically approved drug 5-aza-2'-deoxycytidine (DAC) and the DNMT3B-inhibiting tool compound nanaomycin A, were ineffective in UPS due to cellular uptake and toxicity issues. CONCLUSIONS DNMT3B represents a promising molecular susceptibility in UPS, but further development of DNMT3B-targeting strategies for these patients is required.
Collapse
Affiliation(s)
- Ashley M Fuller
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann DeVine
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ileana Murazzi
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristy Weber
- Penn Sarcoma Program, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Protein Kinase C as a Therapeutic Target in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22115527. [PMID: 34073823 PMCID: PMC8197251 DOI: 10.3390/ijms22115527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.
Collapse
|
4
|
In Silico and In Vitro Analysis of lncRNA XIST Reveals a Panel of Possible Lung Cancer Regulators and a Five-Gene Diagnostic Signature. Cancers (Basel) 2020; 12:cancers12123499. [PMID: 33255394 PMCID: PMC7760781 DOI: 10.3390/cancers12123499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNA) have been associated with a number of diseases including cancer. A well-studied lncRNA called XIST (X-inactive specific transcript) acts as a major effector of the X-inactivation process. It is expressed on the inactive X chromosome providing a dosage equivalence between males and females. Recently XIST has been implicated in the development of lung cancer. Using a bioinformatics approach, we demonstrate the XIST is over-expressed in female patients compared to males. When XIST gene was silenced in two different cell lines (of male and female origin), a number of genes were differentially expressed; playing a role in signal transduction pathways, energy balance and metabolism, thus providing a better insight of the role of this lncRNA in cancer. Finally, we showed that expression of XIST with another 4 genes provided a strong diagnostic potential to discriminate lung cancer from healthy controls. Abstract Long non-coding RNAs (lncRNAs) perform a wide functional repertoire of roles in cell biology, ranging from RNA editing to gene regulation, as well as tumour genesis and tumour progression. The lncRNA X-inactive specific transcript (XIST) is involved in the aetiopathogenesis of non-small cell lung cancer (NSCLC). However, its role at the molecular level is not fully elucidated. The expression of XIST and co-regulated genes TSIX, hnRNPu, Bcl-2, and BRCA1 analyses in lung cancer (LC) and controls were performed in silico. Differentially expressed genes (DEGs) were determined using RNA-seq in H1975 and A549 NSCLC cell lines following siRNA for XIST. XIST exhibited sexual dimorphism, being up-regulated in females compared to males in both control and LC patient cohorts. RNA-seq revealed 944 and 751 DEGs for A549 and H1975 cell lines, respectively. These DEGs are involved in signal transduction, cell communication, energy pathways, and nucleic acid metabolism. XIST expression associated with TSIX, hnRNPu, Bcl-2, and BRCA1 provided a strong collective feature to discriminate between controls and LC, implying a diagnostic potential. There is a much more complex role for XIST in lung cancer. Further studies should concentrate on sex-specific changes and investigate the signalling pathways of the DEGs following silencing of this lncRNA.
Collapse
|
5
|
Ye C, Ho DJ, Neri M, Yang C, Kulkarni T, Randhawa R, Henault M, Mostacci N, Farmer P, Renner S, Ihry R, Mansur L, Keller CG, McAllister G, Hild M, Jenkins J, Kaykas A. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat Commun 2018; 9:4307. [PMID: 30333485 PMCID: PMC6192987 DOI: 10.1038/s41467-018-06500-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
Here we report Digital RNA with pertUrbation of Genes (DRUG-seq), a high-throughput platform for drug discovery. Pharmaceutical discovery relies on high-throughput screening, yet current platforms have limited readouts. RNA-seq is a powerful tool to investigate drug effects using transcriptome changes as a proxy, yet standard library construction is costly. DRUG-seq captures transcriptional changes detected in standard RNA-seq at 1/100th the cost. In proof-of-concept experiments profiling 433 compounds across 8 doses, transcription profiles generated from DRUG-seq successfully grouped compounds into functional clusters by mechanism of actions (MoAs) based on their intended targets. Perturbation differences reflected in transcriptome changes were detected for compounds engaging the same target, demonstrating the value of using DRUG-seq for understanding on and off-target activities. We demonstrate DRUG-seq captures common mechanisms, as well as differences between compound treatment and CRISPR on the same target. DRUG-seq provides a powerful tool for comprehensive transcriptome readout in a high-throughput screening environment. RNA-seq is a powerful tool to investigate how drugs affect the transcriptome but library construction can be costly. Here the authors introduce DRUG-seq, an automated platform for high-throughput transcriptome profiling.
Collapse
Affiliation(s)
- Chaoyang Ye
- Neuroscience Research, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA.,Blueprint Medicines, 45 Sidney St, Cambridge, MA, 02139, USA
| | - Daniel J Ho
- Neuroscience Research, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Marilisa Neri
- Chemical Biology & Therapeutics Informatics, Novartis Institutes for Biomedical Research, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Chian Yang
- Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Tripti Kulkarni
- Scientific Computing, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Ranjit Randhawa
- Neuroscience Research, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Martin Henault
- Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Nadezda Mostacci
- Chemical Biology & Therapeutics Informatics, Novartis Institutes for Biomedical Research, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Pierre Farmer
- Chemical Biology & Therapeutics Informatics, Novartis Institutes for Biomedical Research, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Steffen Renner
- Chemical Biology & Therapeutics Informatics, Novartis Institutes for Biomedical Research, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Robert Ihry
- Neuroscience Research, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Leandra Mansur
- Analytical Sciences & Imaging, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Caroline Gubser Keller
- Chemical Biology & Therapeutics Informatics, Novartis Institutes for Biomedical Research, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Gregory McAllister
- Chemical Biology & Therapeutics Informatics, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Marc Hild
- Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Jeremy Jenkins
- Chemical Biology & Therapeutics Informatics, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA
| | - Ajamete Kaykas
- Neuroscience Research, Novartis Institutes for Biomedical Research, 250 Massachusetts, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Chae M, Jung JY, Bae IH, Kim HJ, Lee TR, Shin DW. Lipin-1 expression is critical for keratinocyte differentiation. J Lipid Res 2015; 57:563-73. [PMID: 26658689 DOI: 10.1194/jlr.m062588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Indexed: 12/19/2022] Open
Abstract
Lipin-1 is an Mg(2+)-dependent phosphatidate phosphatase that facilitates the dephosphorylation of phosphatidic acid to generate diacylglycerol. Little is known about the expression and function of lipin-1 in normal human epidermal keratinocytes (NHEKs). Here, we demonstrate that lipin-1 is present in basal and spinous layers of the normal human epidermis, and lipin-1 expression is gradually downregulated during NHEK differentiation. Interestingly, lipin-1 knockdown (KD) inhibited keratinocyte differentiation and caused G1 arrest by upregulating p21 expression. Cell cycle arrest by p21 is required for commitment of keratinocytes to differentiation, but must be downregulated for the progress of keratinocyte differentiation. Therefore, reduced keratinocyte differentiation results from sustained upregulation of p21 by lipin-1 KD. Lipin-1 KD also decreased the phosphorylation/activation of protein kinase C (PKC)α, whereas lipin-1 overexpression increased PKCα phosphorylation. Treatment with PKCα inhibitors, like lipin-1 KD, stimulated p21 expression, while lipin-1 overexpression reduced p21 expression, implicating PKCα in lipin-1-induced regulation of p21 expression. Taken together, these results suggest that lipin-1-mediated downregulation of p21 is critical for the progress of keratinocyte differentiation after the initial commitment of keratinocytes to differentiation induced by p21, and that PKCα is involved in p21 expression regulation by lipin-1.
Collapse
Affiliation(s)
- Minjung Chae
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji-Yong Jung
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Il-Hong Bae
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Porwal M, Cohen S, Snoussi K, Popa-Wagner R, Anderson F, Dugot-Senant N, Wodrich H, Dinsart C, Kleinschmidt JA, Panté N, Kann M. Parvoviruses cause nuclear envelope breakdown by activating key enzymes of mitosis. PLoS Pathog 2013; 9:e1003671. [PMID: 24204256 PMCID: PMC3814971 DOI: 10.1371/journal.ppat.1003671] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/16/2013] [Indexed: 11/18/2022] Open
Abstract
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. Parvoviruses are small non-enveloped DNA viruses successfully used in gene therapy. Their nuclear replication requires transit of the nuclear envelope. Analyzing the interaction between parvoviruses and the nucleus, we showed that despite their small size, they did not traverse the nuclear pore, but attached directly to proteins of the nuclear pore complex. We observed that this binding induced structural changes of the parvoviruses and that the structural rearrangement was essential for triggering a signal cascade resulting in disintegration of the nuclear envelope. Physiologically such nuclear envelope breakdown occurs late during prophase of mitosis. Our finding that the parvovirus-mediated nuclear envelope breakdown also occurred in the absence of soluble cytosolic factors allowed us to decipher the intra nuclear pathways involved in nuclear envelope destabilization. Consistently with the physiological disintegration we found that key enzymes of mitosis were essential and we further identified Ca++ as the initial trigger. Thus our data not only show a unique pathway of how a DNA virus interacts with the nucleus but also describes a virus-based system allowing the first time to analyze selectively the intranuclear pathways leading to nuclear envelope disintegration.
Collapse
Affiliation(s)
- Manvi Porwal
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Sarah Cohen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenza Snoussi
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Fenja Anderson
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Harald Wodrich
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | | | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Kann
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
8
|
Michalczyk I, Sikorski AF, Kotula L, Junghans RP, Dubielecka PM. The emerging role of protein kinase Cθ in cytoskeletal signaling. J Leukoc Biol 2012. [PMID: 23192428 DOI: 10.1189/jlb.0812371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal rearrangements often occur as the result of transduction of signals from the extracellular environment. Efficient awakening of this powerful machinery requires multiple activation and deactivation steps, which usually involve phosphorylation or dephosphorylation of different signaling units by kinases and phosphatases, respectively. In this review, we discuss the signaling characteristics of one of the nPKC isoforms, PKCθ, focusing on PKCθ-mediated signal transduction to cytoskeletal elements, which results in cellular rearrangements critical for cell type-specific responses to stimuli. PKCθ is the major PKC isoform present in hematopoietic and skeletal muscle cells. PKCθ plays roles in T cell signaling through the IS, survival responses in adult T cells, and T cell FasL-mediated apoptosis, all of which involve cytoskeletal rearrangements and relocation of this enzyme. PKCθ has been linked to the regulation of cell migration, lymphoid cell motility, and insulin signaling and resistance in skeletal muscle cells. Additional roles were suggested for PKCθ in mitosis and cell-cycle regulation. Comprehensive understanding of cytoskeletal regulation and the cellular "modus operandi" of PKCθ holds promise for improving current therapeutic applications aimed at autoimmune diseases.
Collapse
Affiliation(s)
- Izabela Michalczyk
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
9
|
Zhang L, Wang JN, Tang JM, Kong X, Yang JY, Zheng F, Guo LY, Huang YZ, Zhang L, Tian L, Cao SF, Tuo CH, Guo HL, Chen SY. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol Biol Rep 2011; 39:5085-93. [PMID: 22161247 DOI: 10.1007/s11033-011-1304-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF induces new vessel formation and tumor growth by inducing mitogenesis and chemotaxis of normal endothelial cells and increasing vascular permeability. However, little is known about VEGF function in the proliferation, survival or migration of hepatocellular carcinoma cells (HCC). In the present study, we have found that VEGF receptors are expressed in HCC line BEL7402 and human HCC specimens. Importantly, VEGF receptor expression correlates with the development of the carcinoma. By using a comprehensive approaches including TUNEL assay, transwell and wound healing assays, migration and invasion assays, adhesion assay, western blot and quantitative RT-PCR, we have shown that knockdown of VEGF165 expression by shRNA inhibits the proliferation, migration, survival and adhesion ability of BEL7402. Knockdown of VEGF165 decreased the expression of NF-κB p65 and PKCα while increased the expression of p53 signaling molecules, suggesting that VEGF functions in HCC proliferation and migration are mediated by P65, PKCα and/or p53.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in oral squamous cell carcinoma. Hum Pathol 2011; 43:276-81. [PMID: 21840039 DOI: 10.1016/j.humpath.2011.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/22/2022]
Abstract
Protein kinase Cs play important roles in many biological processes and tumorigenesis. This study examined the expression of protein kinase Cθ and assessed its significance in patients with oral squamous cell carcinoma. Immunohistochemical staining was carried out to investigate the expression of protein kinase Cθ in 59 cases of oral squamous cell carcinoma. The results were correlated with clinical characteristics and outcome of patients. Diffuse cytoplasmic protein kinase Cθ was identified in 53 (89.8%) of the 59 oral squamous cell carcinoma cases, and the expression was not statistically associated with any clinicopathologic parameter. Twenty (40.7%) of the 59 oral squamous cell carcinoma cases exhibited nuclear expression of protein kinase Cθ with different grade of intensity. χ(2) analysis indicated that high nuclear protein kinase Cθ expression correlated significantly with shorter 24-month survival (P = .043) and disease recurrence (P = .019). The Kaplan-Meier method also showed that high nuclear expression of protein kinase Cθ was significantly associated with poor overall survival (P = .034) and shorter time to recurrence (P = .003). Univariate analysis revealed that high nuclear protein kinase Cθ expression (P = .046; hazard ratio, 2.2), tumor size less than 2 cm (P = .049; hazard ratio, 4.7), lymph node metastasis (P = .003; hazard ratio, 3.0), and higher stage (P = .002; hazard ratio, 8.7) were each associated with shorter overall survival. We identified the aberrant nuclear expression of protein kinase Cθ in oral squamous cell carcinoma. High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in patients with oral squamous cell carcinoma.
Collapse
|
11
|
Nicotine overrides DNA damage-induced G1/S restriction in lung cells. PLoS One 2011; 6:e18619. [PMID: 21559516 PMCID: PMC3084701 DOI: 10.1371/journal.pone.0018619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis) and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP) and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G(1) arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users.
Collapse
|
12
|
Latini FRM, Hemerly JP, Freitas BCG, Oler G, Riggins GJ, Cerutti JM. ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence. BMC Cancer 2011; 11:11. [PMID: 21223585 PMCID: PMC3032749 DOI: 10.1186/1471-2407-11-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 01/11/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mounting evidence has indicated that ABI3 (ABI family member 3) function as a tumor suppressor gene, although the molecular mechanism by which ABI3 acts remains largely unknown. METHODS The present study investigated ABI3 expression in a large panel of benign and malignant thyroid tumors and explored a correlation between the expression of ABI3 and its potential partner ABI3-binding protein (ABI3BP). We next explored the biological effects of ABI3 ectopic expression in thyroid and colon carcinoma cell lines, in which its expression was reduced or absent. RESULTS We not only observed that ABI3 expression is reduced or lost in most carcinomas but also that there is a positive correlation between ABI3 and ABI3BP expression. Ectopic expression of ABI3 was sufficient to lead to a lower transforming activity, reduced tumor in vitro growth properties, suppressed in vitro anchorage-independent growth and in vivo tumor formation while, cellular senescence increased. These responses were accompanied by the up-regulation of the cell cycle inhibitor p21 WAF1 and reduced ERK phosphorylation and E2F1 expression. CONCLUSIONS Our result links ABI3 to the pathogenesis and progression of some cancers and suggests that ABI3 or its pathway might have interest as therapeutic target. These results also suggest that the pathways through which ABI3 works should be further characterized.
Collapse
Affiliation(s)
- Flavia R M Latini
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics and Division of Endocrinology, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Molecular targets of apigenin in colorectal cancer cells: involvement of p21, NAG-1 and p53. Eur J Cancer 2010; 46:3365-74. [PMID: 20709524 DOI: 10.1016/j.ejca.2010.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/31/2022]
Abstract
Persuasive epidemiological and experimental evidence suggests that dietary flavonoids have anti-cancer activity. Since conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of most cancer types, including colorectal neoplasia, there is an urgent need to develop alternative approaches for the management of cancer. We sought to develop the best flavonoids for the inhibition of cell growth, and apigenin (flavone) proved to be the most promising compound in colorectal cancer cell growth arrest. Subsequently, we found that pro-apoptotic proteins (NAG-1 and p53) and cell cycle inhibitor (p21) were induced in the presence of apigenin, and kinase pathways, including PKCδ and ataxia telangiectasia mutated (ATM), play an important role in activating these proteins. The data generated by in vitro experiments were confirmed in an animal study using APC(MIN+) mice. Apigenin is able to reduce polyp numbers, accompanied by increasing p53 activation through phosphorylation in animal models. Our data suggest apparent beneficial effects of apigenin on colon cancer.
Collapse
|
14
|
Song H, Hur I, Park HJ, Nam J, Park GB, Kong KH, Hwang YM, Kim YS, Cho DH, Lee WJ, Hur DY. Selenium Inhibits Metastasis of Murine Melanoma Cells through the Induction of Cell Cycle Arrest and Cell Death. Immune Netw 2009; 9:236-42. [PMID: 20157610 PMCID: PMC2816956 DOI: 10.4110/in.2009.9.6.236] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 12/01/2022] Open
Abstract
Background Melanoma is the most fatal form of skin cancer due to its rapid metastasis. Recently, several studies reported that selenium can induce apoptosis in melanoma cells. However, the precise mechanism remains to be elucidated. In this study, we investigated the effect of selenium on cell proliferation in murine melanoma and on tumor growth and metastasis in C57BL/6 mice. Methods Cell proliferation was measured by MTT assay in selenium-treated melanoma cells. Cell cycle distribution was analysized by staining DNA with propidum iodide (PI). mRNA and protein expression related to cell cycle arrest was measured by reverse transcription PCR and western blot. Tumor growth and metastasis was measured by in vivo model. Results Selenium was suppressed the proliferation of melanoma cells in a dose dependent manner. The growth inhibition of melanoma by selenium was associated with an arrest of cell cycle distribution at G0/G1 stage. The mRNA and protein level of CDK2/CDK4 was suppressed by treatment with selenium in a time-dependent manner. In vivo, tumor growth was not suppressed by selenium; however tumor metastasis was suppressed by selenium in mouse model. Conclusion These results suggest that selenium might be a potent agent to inhibit proliferative activity of melanoma cells.
Collapse
Affiliation(s)
- Hyunkeun Song
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Passalacqua M, Pedrazzi M, Sparatore B, Patrone M, Pontremoli S, Melloni E. Functional role of the charge at the T538 residue in the control of protein kinase Cθ. Arch Biochem Biophys 2009; 481:202-9. [DOI: 10.1016/j.abb.2008.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
16
|
Guo J, Ibaragi S, Zhu T, Luo LY, Hu GF, Huppi PS, Chen CY. Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase C and CDC42. Cancer Res 2008; 68:8473-81. [PMID: 18922921 DOI: 10.1158/0008-5472.can-08-0131] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotine, one of the major components in tobacco, is at high concentrations in the bloodstream of cigarette smokers. However, the mechanisms of how nicotine affects tumor development and whether nicotine is a potential carcinogen for malignancies induced by secondhand smoking are not fully understood yet. Here, we investigate the signaling pathways by which nicotine potentiates tumorigenesis in human mammary epithelial-like MCF10A or cancerous MCF7 cells. We show that human MCF10A and MCF7 cells both express four subunits of nicotine acetylcholine receptor (nAChR). The treatment of these cells with nicotine enhances the activity of protein kinase C (PKC) alpha without altering the expression level of this kinase. Nicotine also stimulates [(3)H]thymidine incorporation into the genome of these cells as well as forces serum-starved cells to enter S phase of the cell cycle, resulting in growth promotion. Importantly, on nicotine treatment, the mobility of MCF10A and MCF7 cells is enhanced, which can be blocked by the addition of nAChR or PKC inhibitor. Experiments using small interfering RNA knockdown or ectopic expression of cdc42 showed that cdc42 functions as a downstream effector of PKC and is crucial in the regulation of nicotine-mediated migratory activity in the cells. Together, our findings suggest that nicotine, through interacting with its receptor, initiates a signaling cascade that involves PKC and cdc42 and consequently promotes migration in mammary epithelial or tumor cells.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ou WB, Zhu MJ, Demetri GD, Fletcher CDM, Fletcher JA. Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors. Oncogene 2008; 27:5624-34. [PMID: 18521081 DOI: 10.1038/onc.2008.177] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oncogenic KIT or PDGFRA receptor tyrosine kinase mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GISTs), and the KIT/PDGFRA kinase inhibitor, imatinib, is standard of care for patients with metastatic GIST. However, most of these patients eventually develop clinical resistance to imatinib and other KIT/PDGFRA kinase inhibitors and there is an urgent need to identify novel therapeutic strategies. We reported previously that protein kinase C-theta (PKCtheta) is activated in GIST, irrespective of KIT or PDGFRA mutational status, and is expressed at levels unprecedented in other mesenchymal tumors, therefore serving as a diagnostic marker of GIST. Herein, we characterize biological functions of PKCtheta in imatinib-sensitive and imatinib-resistant GISTs, showing that lentivirus-mediated PKCtheta knockdown is accompanied by inhibition of KIT expression in three KIT+/PKCtheta+ GIST cell lines, but not in a comparator KIT+/PKCtheta- Ewing's sarcoma cell line. PKCtheta knockdown in the KIT+ GISTs was associated with inhibition of the phosphatidylinositol-3-kinase/AKT signaling pathway, upregulation of the cyclin-dependent kinase inhibitors p21 and p27, antiproliferative effects due to G(1) arrest and induction of apoptosis, comparable to the effects seen after direct knockdown of KIT expression by KIT short-hairpin RNA. These novel findings highlight that PKCtheta warrants clinical evaluation as a potential therapeutic target in GISTs, including those cases containing mutations that confer resistance to KIT/PDGFRA kinase inhibitors.
Collapse
Affiliation(s)
- W-b Ou
- 1Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
18
|
Wu TT, Hsieh YH, Hsieh YS, Liu JY. Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. J Cell Biochem 2008; 103:9-20. [PMID: 17486587 DOI: 10.1002/jcb.21378] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein kinase C (PKC) superfamily play key regulatory roles on the development of cancer. However, the exact role of these enzymes in human hepatocellular carcinoma (HCC) has not been well established. Using the RT-PCR and Western blotting to analyze the levels of PKC isoforms mRNA and protein in the five different differentiated hepatoma cell lines, we found that PKC alpha was highly expressed in the poor-differentiated HCC cell lines (SK-Hep-1 and HA22T/VGH) as compared with that in the well-differentiated HCC cell lines (PLC/PRF/5, Hep3B, and HepG2). When treated with PKC alpha antisense oligonucleotides (ODN), both HA22T/VGH and SK-Hep-1 cells lines showed the reduction of PKC alpha expression, as well as a deceleration in the growth rate and in the level of cyclin D1, but the increase in the levels of p53 and p21(WAF1/CIP1). Moreover, the reduction of PKC alpha expression also inhibited the migratory and invasive potential of both HA22T/VGH and SK-Hep-1 cells lines, and revealed a down-regulation of several migration/invasion-related genes (MMP-1, u-PA, u-PAR, and FAK). These phenomenon were also confirmed by DNA-based small interfering RNA (siRNA) PKC alpha and PKC alpha/beta specific inhibitor Go6976. Thus, the results indicated that PKC alpha may be associated with regulation of cell proliferation/migration/invasion in human poorly differentiated HCC cells, suggesting a role for the PKC alpha in the malignant progression of human HCC.
Collapse
Affiliation(s)
- Trang-Tiau Wu
- Department of Surgery, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
19
|
Mirzayans R, Scott A, Andrais B, Pollock S, Murray D. Ultraviolet light exposure triggers nuclear accumulation of p21(WAF1) and accelerated senescence in human normal and nucleotide excision repair-deficient fibroblast strains. J Cell Physiol 2008; 215:55-67. [PMID: 17894409 DOI: 10.1002/jcp.21284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Induction of the p21(WAF1) protein (hereafter called p21) following genotoxic stress is known to inhibit proliferating cell nuclear antigen (PCNA)-dependent DNA repair, downregulate apoptosis, and trigger a sustained growth-arrested phenotype called accelerated senescence. Studies with immortalized human and murine cell lines have revealed that exposure to ultraviolet light (UVC; 254 nm) results in the degradation of p21 to facilitate DNA repair and promote cell survival, or may lead to apoptotic cell death. The objective of the present study was to determine whether exposure of non-transformed human fibroblast strains to relatively low fluences of UVC (i.e., fluences typically used in the clonogenic survival assay) might induce sustained nuclear accumulation of p21, leading to accelerated senescence. We have evaluated the responses of normal human fibroblast (NHF) strains and nucleotide excision repair (NER)-deficient fibroblast strains representing xeroderma pigmentosum (XP) complementation groups A and G and Cockayne syndrome (CS) complementation groups A and B. We report that exposure of NHFs to < or =15 J/m(2) of UVC, and NER-deficient fibroblasts to < or =5 J/m(2) of UVC, results in sustained nuclear accumulation of p21 and growth arrest through accelerated senescence. With each fibroblast strain examined, exposure to UVC fluences that resulted in approximately 90% loss of clonogenic potential triggered significant (>60%) accelerated senescence, but only marginal (<5%) apoptosis. We conclude that nuclear accumulation of p21 accompanied by accelerated senescence may be an integral component of the response of human fibroblasts to UVC-induced DNA damage, irrespective of their DNA repair capabilities.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | | | |
Collapse
|
20
|
Bae KM, Wang H, Jiang G, Chen MG, Lu L, Xiao L. Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res 2007; 67:6053-63. [PMID: 17616661 DOI: 10.1158/0008-5472.can-06-4037] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinase C (PKC) family of proteins plays important roles in growth regulation and is implicated in tumorigenesis. It has become clear that the role of PKC in tumorigenesis is cell context dependent and/or isoform specific. In this study, we showed for the first time by immunohistochemistry that overexpression of PKC epsilon was detected in the vast majority (>90%) of primary human non-small cell lung cancers (NSCLC) compared with normal lung epithelium. Inhibition of the PKC epsilon pathway using a kinase-inactive, dominant-negative PKC epsilon, PKC epsilon(KR), led to a significant inhibition of proliferation and anchorage-independent growth of human NSCLC cells in a p53-independent manner. This was accompanied by a specific induction of the cyclin-dependent kinase (cdk) inhibitor p21/Cip1 but not p27/Kip1. In response to serum stimulation, PKC epsilon(KR)-expressing cells showed a prolonged G(1)-S transition and delayed and reduced activation of cdk2 complexes, which was likely attributed to the increased binding of p21/Cip1 to cdk2. Furthermore, inhibition of PKC epsilon function either by expressing PKC epsilon(KR) or by small interfering RNA (siRNA)-mediated gene knockdown resulted in c-Myc down-regulation, which, in turn, regulated p21/Cip1 expression. Knockdown of PKC epsilon or c-Myc expression using siRNA led to induction of p21/Cip1 and attenuation of G(1)-S transition in NSCLC cells. Using p21(+/+) and p21(-/-) HCT116 isogenic cell lines, we further showed that growth inhibition by PKC epsilon(KR) required the function of p21/Cip1. Collectively, these results reveal an important role for PKC epsilon signaling in lung cancer and suggest that one potential mechanism by which PKC epsilon exerts its oncogenic activity is through deregulation of the cell cycle via a p21/Cip1-dependent mechanism.
Collapse
Affiliation(s)
- Kyung-Mi Bae
- University of Florida Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610-3633, USA
| | | | | | | | | | | |
Collapse
|
21
|
Iiizumi M, Mohinta S, Bandyopadhyay S, Watabe K. Tumor-endothelial cell interactions: therapeutic potential. Microvasc Res 2007; 74:114-20. [PMID: 17498748 DOI: 10.1016/j.mvr.2007.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 12/30/2022]
Abstract
Metastasis is the primary cause of death in cancer patients. However, the molecular mechanism of the metastatic process is poorly understood because it involves multiple steps with a high degree of complexity. A critical step for successful establishment of secondary colonization is the hematogenous dissemination of malignant cells. During this process, the attachment of cancer cells to the endothelial cells on microvasculature is considered to be an essential step and many adhesion molecules as well as chemokines have been found to be involved in this process. This interaction of cancer-endothelial cell is considered not only to determine the physical site of metastasis, but also to provide the necessary anchorage to facilitate tumor cell extravasation. However, recent evidence indicates that this interaction also serves as a host defense mechanism and hinders the process of metastasis. The tumor metastases suppressor gene, KAI1, has been known to block metastatic process without affecting the primary tumor growth, and this protein has been found to be able to bind to the chemokine receptor, Duffy antigen receptor for chemokines (DARC), which is expressed on endothelial cells. Importantly, this interaction markedly induces senescence of tumor cells. This novel finding is not only significant in the context of molecular dissection of metastatic process but also in the therapeutic implication to develop drugs inhibiting metastasis.
Collapse
Affiliation(s)
- Megumi Iiizumi
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, 801 N. Rutledge St., P.O. Box 19626, Springfield, IL 62794-9626, USA
| | | | | | | |
Collapse
|
22
|
Iiizumi M, Bandyopadhyay S, Watabe K. Interaction of Duffy Antigen Receptor for Chemokines and KAI1: A Critical Step in Metastasis Suppression: Figure 1. Cancer Res 2007; 67:1411-4. [PMID: 17308076 DOI: 10.1158/0008-5472.can-06-3801] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor metastases suppressor protein KAI1/CD82 is capable of blocking the tumor metastases without affecting the primary tumor formation, and its expression is significantly down-regulated in many types of human cancers. However, the exact molecular mechanism of the suppressor function of KAI1 remains elusive. Evidence from our laboratory supports a model in which tumor cells dislodge from the primary tumor and intravasate into the blood or lymphatic vessels followed by attachment to the endothelial cell surface whereby KAI1 interacts with the Duffy antigen receptor for chemokines (DARC) protein. This interaction transmits a senescent signal to cancer cells expressing KAI1, whereas cells that lost KAI1 expression can proliferate, potentially giving rise to metastases. Our model of the mechanism of action of KAI1 shows that metastasis suppressor activity can be dependent on interaction with host tissue and explains how KAI1 suppresses metastasis without affecting primary tumor formation. Taken together, in vitro and in vivo studies identify the KAI1-DARC interaction as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Megumi Iiizumi
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, 801 North Rutledge Street, Springfield, IL 62794, USA
| | | | | |
Collapse
|
23
|
Etemad-Moghadam S, Baghaee F, Tirgary F, Motahhary P, Khalili M, Eshghyar N, Alaedini M, Eslami M. Expression of p21WAF in salivary gland mucoepidermoid carcinoma and its relation to histologic grade. Int J Surg Pathol 2007; 15:6-13. [PMID: 17172491 DOI: 10.1177/1066896906295915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The biologic behavior and factors influencing the development of salivary gland mucoepidermoid carcinoma are not fully understood. Alteration of the cyclin-dependant kinase inhibitor p21(WAF) could cause uncontrolled proliferation leading to cancer. Thirty-five mucoepidermoid carcinomas were graded and immunohistochemically stained for p21(WAF). The percentage of positive tumor cells was determined using an eyepiece graticule and a computer-assisted image analyzer, which revealed 8.6% and 22.9% of the cases to be positive for p21(WAF), respectively. A statistically significant correlation was not observed between p21(WAF) and grading. Considering the absence of p21(WAF) expression in most mucoepidermoid carcinomas, it appears that the inhibitory effect of p21(WAF) on cell growth is removed in most cases. Given the lack of correlation with tumor grade, it is possible that the impact of p21(WAF) is in the earlier stages of tumorigenesis. A p53-independent pathway of p21(WAF) induction may exist for the small proportion of tumors that showed positivity.
Collapse
|
24
|
|
25
|
Yokoyama G, Fujii T, Tayama K, Yamana H, Kuwano M, Shirouzu K. PKCdelta and MAPK mediate G(1) arrest induced by PMA in SKBR-3 breast cancer cells. Biochem Biophys Res Commun 2005; 327:720-6. [PMID: 15649406 DOI: 10.1016/j.bbrc.2004.12.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Indexed: 10/26/2022]
Abstract
The effects of activating endogenous protein kinase C (PKC) on cell proliferation and the cell cycle were investigated by treating the breast cancer cell line SKBR-3 with phorbol 12-myristate 13 acetate (PMA). This inhibited cell growth in a concentration-dependent manner, causing a marked arrest of cells in G(1). Pre-treatment with GF109203X completely blocked the antiproliferative effect of PMA, and pre-treatment with the PKCdelta inhibitor rottlerin partially blocked it. Infecting SKBR-3 cells with an adenovirus vector containing wild-type PKCdelta, WTPKCdeltaAdV, had similar effects on PMA. Infecting the cells with a dominant-negative PKCdeltaAdV construct blocked the growth inhibition induced by PMA. Downstream of PKC, PMA treatment inhibited extracellular signal-regulated kinase mitogen-activated protein kinase phosphorylation, up-regulated c-jun NH(2)-terminal kinase phosphorylation, and inhibited retinoblastoma (Rb) phosphorylation. These results strongly implicated PKC (mainly PKCdelta) in the G(1) arrest induced by PMA and suggested PKC as a target for breast cancer treatment.
Collapse
Affiliation(s)
- Goro Yokoyama
- Department of Surgery, Kurume University School of Medicine, 67 Asahimachi, Fukuoka 830-0011, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Liu K, Lei XZ, Zhao LS, Tang H, Liu L, Feng P, Lei BJ. Tissue microarray for high-throughput analysis of gene expression profiles in hepatocellular carcinoma. World J Gastroenterol 2005; 11:1369-72. [PMID: 15761978 PMCID: PMC4250687 DOI: 10.3748/wjg.v11.i9.1369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression profiles of HBsAg, HBcAg, p21WAF1/CIP1 (p21), Rb genes in hepatocellular carcinoma (HCC) and to investigate their roles in the hepatocar-cinogenesis.
METHODS: HCC tissue microarray containing 120-min tissues of 40 HCC cases was constructed. HBsAg, HBcAg, p21 and Rb proteins were immunohistochemically stained by streptavidin-peroxidase conjugated method (S-P). The expression loss of these genes in cancerous, para-cancerous tissues and adjacent normal liver tissues of 40 HCCs were comparatively examined.
RESULTS: The positive rate of HBsAg expression in cancerous tissues of 40 HCCs was 7.5%, which was lower than that in para-cancerous and adjacent normal liver tissues (χ2 =12.774, P<0.01; χ2 = 18.442, P<0.01). The positive rate of HBcAg expression in cancerous tissues of 40 HCCs was 20.0%, which was also lower than that in para-cancerous and adjacent normal liver tissues (χ2 = 9.482, P<0.01; χ2 = 14.645, P<0.01). p21 protein deletion rate in cancerous tissues of 40 HCCs was 27.5%, which was higher than that in para-cancerous and adjacent normal liver tissues (χ2 = 7.439, P<0.01; χ2 = 11.174, P<0.01). p21 protein deletion correlated remarkably with the pathological grade of HCC (χ2 = 0.072, P<0.05). Rb protein deletion rate in cancerous tissues of 40 HCCs was 42.5%, which was also higher than that in para-cancerous and adjacent normal liver tissues (χ2 = 10.551, P<0.01; χ2 = 18.353, P<0.01). Rb protein deletion rate did not correlate remarkably with tumor size or pathological grade of HCC (χ2 = 0.014, P>0.05; χ2 = 0.017, P>0.05).
CONCLUSION: Expression deletion of HBsAg, HBcAg, p21 and Rb proteins in HCCs may play important roles in the carcinogenesis of HCC. Tissue microarray is an effective high-throughput technique platform for cancer research.
Collapse
Affiliation(s)
- Kai Liu
- Division of Molecular Biology of Infectious Diseases, Key Laboratory of Biotherapy of Human Disease, Ministry of Education, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Chou S, Clegg M, Momma T, Niles B, Duffy J, Daston G, Keen C. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death. Biochem J 2005; 383:63-71. [PMID: 15198639 PMCID: PMC1134044 DOI: 10.1042/bj20040074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 06/10/2004] [Accepted: 06/15/2004] [Indexed: 11/17/2022]
Abstract
Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.
Collapse
Affiliation(s)
- Susan S. Chou
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Michael S. Clegg
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Tony Y. Momma
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Brad J. Niles
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Jodie Y. Duffy
- †Division of Pediatric Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, U.S.A
| | - George P. Daston
- ‡Procter and Gamble Company, Miami Valley Laboratories, Cincinnati, OH 45239-8707, U.S.A
| | - Carl L. Keen
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
- §Department of Internal Medicine, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Duensing A, Joseph NE, Medeiros F, Smith F, Hornick JL, Heinrich MC, Corless CL, Demetri GD, Fletcher CDM, Fletcher JA. Protein Kinase C theta (PKCtheta) expression and constitutive activation in gastrointestinal stromal tumors (GISTs). Cancer Res 2004; 64:5127-31. [PMID: 15289315 DOI: 10.1158/0008-5472.can-04-0559] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KIT expression is a key diagnostic feature of gastrointestinal stromal tumors (GISTs), and virtually all of the GISTs express oncogenic forms of the KIT or PDGFRA receptor tyrosine kinase proteins, which serve as therapeutic targets of imatinib mesylate (Gleevec; Novartis, Basel, Switzerland). However, KIT expression can be low in PDGFRA-mutant GISTs, increasing the likelihood of misdiagnosis as other types of sarcoma. We report that the signaling intermediate protein kinase C theta (PKCtheta) is a diagnostic marker in GISTs, including those that lack KIT expression and/or contain PDGFRA mutations. PKCtheta is strongly activated in most GISTs and hence may serve, along with KIT/PDGFRA, as a novel therapeutic target.
Collapse
Affiliation(s)
- Anette Duensing
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Cell cycle is one of the most complex processes in the life of a dividing cell. It involves numerous regulatory proteins, which direct the cell through a specific sequence of events for the production of two daughter cells. Cyclin-dependent kinases (cdks), which complex with the cyclin proteins, are the main players in the cell cycle. They can regulate the progression of the cells through different stages regulated by several proteins including p53, p21(WAF1), p19, p16, and cdc25. Downstream targets of cyclin-cdk complexes include pRB and E2F. A cell cycle can be altered to the advantage of many viral agents, most notably polyomaviruses, papillomaviruses, adenoviruses, and retroviruses. In addition, viral protein R (Vpr) is a protein encoded by the human immunodeficiency virus type 1 (HIV-1). HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), is a member of the lentivirus class of retroviruses. This accessory protein plays an important role in the regulation of the cell cycle by causing G(2) arrest and affecting cell cycle regulators. Vpr prevents infected cells from proliferating, and collaborates with the matrix protein (MA) to enable HIV-1 to enter the nucleus of nondividing cells. Studies from different labs including ours showed that Vpr affects the functions of cell cycle proteins, including p53 and p21(WAF1). Thus, the replication of HIV-1, and ultimately its pathogenesis, are intrinsically tied to cell-cycle control.
Collapse
Affiliation(s)
- Shohreh Amini
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | |
Collapse
|