1
|
Inderwiedenstraße L, Kienitz MC. Angiotensin receptors and α 1B-adrenergic receptors regulate native IK (ACh) and phosphorylation-deficient GIRK4 (S418A) channels through different PKC isoforms. Pflugers Arch 2024; 476:1041-1064. [PMID: 38658400 DOI: 10.1007/s00424-024-02966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Signaling of G protein-activated inwardly rectifying K+ (GIRK) channels is an important mechanism of the parasympathetic regulation of the heart rate and cardiac excitability. GIRK channels are inhibited during stimulation of Gq-coupled receptors (GqPCRs) by depletion of phosphatidyl-4,5-bisphosphate (PIP2) and/or channel phosphorylation by protein kinase C (PKC). The GqPCR-dependent modulation of GIRK currents in terms of specific PKC isoform activation was analyzed in voltage-clamp experiments in rat atrial myocytes and in CHO or HEK 293 cells. By using specific PKC inhibitors, we identified the receptor-activated PKC isoforms that contribute to phenylephrine- and angiotensin-induced GIRK channel inhibition. We demonstrate that the cPKC isoform PKCα significantly contributes to GIRK inhibition during stimulation of wildtype α1B-adrenergic receptors (α1B-ARs). Deletion of the α1B-AR serine residues S396 and S400 results in a preferential regulation of GIRK activity by PKCβ. As a novel finding, we report that the AT1-receptor-induced GIRK inhibition depends on the activation of the nPKC isoform PKCε whereas PKCα and PKCβ do not mainly participate in the angiotensin-mediated GIRK reduction. Expression of the dominant negative (DN) PKCε prolonged the onset of GIRK inhibition and significantly reduced AT1-R desensitization, indicating that PKCε regulates both GIRK channel activity and the strength of the receptor signal via a negative feedback mechanism. The serine residue S418 represents an important phosphorylation site for PKCε in the GIRK4 subunit. To analyze the functional impact of this PKC phosphorylation site for receptor-specific GIRK channel modulation, we monitored the activity of a phosphorylation-deficient (GIRK4 (S418A)) GIRK4 channel mutant during stimulation of α1B-ARs or AT1-receptors. Mutation of S418 did not impede α1B-AR-mediated GIRK inhibition, suggesting that S418 within the GIRK4 subunit is not subject to PKCα-induced phosphorylation. Furthermore, activation of angiotensin receptors induced pronounced GIRK4 (S418A) channel inhibition, excluding that this phosphorylation site contributes to the AT1-R-induced GIRK reduction. Instead, phosphorylation of S418 has a facilitative effect on GIRK activity that was abolished in the GIRK4 (S418A) mutant. To summarize, the present study shows that the receptor-dependent regulation of atrial GIRK channels is attributed to the GqPCR-specific activation of different PKC isoforms. Receptor-specific activated PKC isoforms target distinct phosphorylation sites within the GIRK4 subunit, resulting in differential regulation of GIRK channel activity with either facilitative or inhibitory effects on GIRK currents.
Collapse
Affiliation(s)
- Leonie Inderwiedenstraße
- Department for Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Marie-Cécile Kienitz
- Department for Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Niemeyer A, Rinne A, Kienitz MC. Receptor-specific regulation of atrial GIRK channel activity by different Ca2+-dependent PKC isoforms. Cell Signal 2019; 64:109418. [DOI: 10.1016/j.cellsig.2019.109418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
|
3
|
Abstract
UNLABELLED Inwardly rectifying potassium channels enforce tight control of resting membrane potential in excitable cells. The Kir3.2 channel, a member of the Kir3 subfamily of G-protein-activated potassium channels (GIRKs), plays several roles in the nervous system, including key responsibility in the GABAB pathway of inhibition, in pain perception pathways via opioid receptors, and is also involved in alcoholism. PKC phosphorylation acts on the channel to reduce activity, yet the mechanism is incompletely understood. Using the heterologous Xenopus oocyte system combined with molecular dynamics simulations, we show that PKC modulation of channel activity is dependent on Ser-196 in Kir3.2 such that, when this site is phosphorylated, the channel is less sensitive to PKC inhibition. This reduced inhibition is dependent on an interaction between phospho-Ser (SEP)-196 and Arg-201, reducing Arg-201 interaction with the sodium-binding site Asp-228. Neutralization of either SEP-196 or Arg-201 leads to a channel with reduced activity and increased sensitivity to PKC inhibition. This study clarifies the role of Ser-196 as an allosteric modulator of PKC inhibition and suggests that the SEP-196/Arg-201 interaction is critical for maintaining maximal channel activity. SIGNIFICANCE STATEMENT The inwardly rectifying potassium 3.2 (Kir3.2) channel is found principally in neurons that regulate diverse brain functions, including pain perception, alcoholism, and substance addiction. Activation or inhibition of this channel leads to changes in neuronal firing and chemical message transmission. The Kir3.2 channel is subject to regulation by intracellular signals including sodium, G-proteins, ethanol, the phospholipid phosphatidylinositol bis-phosphate, and phosphorylation by protein kinases. Here, we take advantage of the recently published structure of Kir3.2 to provide an in-depth molecular view of how phosphorylation of a specific residue previously thought to be the target of PKC promotes channel gating and acts as an allosteric modulator of PKC-mediated inhibition.
Collapse
|
4
|
3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP). Proc Natl Acad Sci U S A 2012; 109:10089-94. [PMID: 22645351 DOI: 10.1073/pnas.1203799109] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.
Collapse
|
5
|
Ratzan WJ, Evsikov AV, Okamura Y, Jaffe LA. Voltage sensitive phosphoinositide phosphatases of Xenopus: their tissue distribution and voltage dependence. J Cell Physiol 2011; 226:2740-6. [PMID: 21618529 PMCID: PMC3181042 DOI: 10.1002/jcp.22854] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Voltage-sensitive phosphatases (VSPs) are unique proteins in which membrane potential controls enzyme activity. They are comprised of the voltage sensor domain of an ion channel coupled to a lipid phosphatase specific for phosphoinositides, and for ascidian and zebrafish VSPs, the phosphatase activity has been found to be activated by membrane depolarization. The physiological functions of these proteins are unknown, but their expression in testis and embryos suggests a role in fertilization or development. Here we investigate the expression pattern and voltage dependence of VSPs in two frog species, Xenopus laevis and Xenopus tropicalis, that are well suited for experimental studies of these possible functions. X. laevis has two VSP genes (Xl-VSP1 and Xl-VSP2), whereas X. tropicalis has only one gene (Xt-VSP). The highest expression of these genes was observed in testis, ovary, liver, and kidney. Our results show that while Xl-VSP2 activates only at positive membrane potentials outside of the physiological range, Xl-VSP1 and Xt-VSP phosphatase activity is regulated in the voltage range that regulates sperm-egg fusion at fertilization.
Collapse
Affiliation(s)
- William J. Ratzan
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | - Laurinda A. Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
6
|
Makary S, Voigt N, Maguy A, Wakili R, Nishida K, Harada M, Dobrev D, Nattel S. Differential Protein Kinase C Isoform Regulation and Increased Constitutive Activity of Acetylcholine-Regulated Potassium Channels in Atrial Remodeling. Circ Res 2011; 109:1031-43. [DOI: 10.1161/circresaha.111.253120] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rationale:
Atrial fibrillation (AF) causes atrial-tachycardia remodeling (ATR), with enhanced constitutive acetylcholine-regulated K
+
current (I
KAChC
) contributing to action potential duration shortening and AF promotion. The underlying mechanisms are unknown.
Objective:
To evaluate the role of protein-kinase C (PKC) isoforms in ATR-induced I
KAChC
activation.
Methods and Results:
Cells from ATR-dogs (400-bpm atrial pacing for 1 week) were compared to control dog cells. In vitro tachypaced (TP; 3 Hz) canine atrial cardiomyocytes were compared to parallel 1-Hz paced cells. I
KAChC
single-channel activity was assessed in cell-attached and cell-free (inside-out) patches. Protein expression was assessed by immunoblot. In vitro TP activated I
KAChC
, mimicking effects of in vivo ATR. Discrepant effects of PKC activation and inhibition between control and ATR cells suggested isoform-selective effects and altered PKC isoform distribution. Conventional PKC isoforms (cPKC; including PKCα) inhibited, whereas novel isoforms (including PKCε) enhanced, acetylcholine-regulated K
+
current (I
KACh
) in inside-out patches. TP and ATR downregulated PKCα (by 33% and 37%, respectively) and caused membrane translocation of PKCε, switching PKC predominance to the stimulatory novel isoform. TP increased [Ca
2+
]
i
at 2 hours by 30%, with return to baseline at 24 hours. Buffering [Ca
2+
]
i
during TP with the cell-permeable Ca
2+
chelator BAPTA-AM (1 μmol/L) or inhibiting the Ca
2+
-dependent protease calpain with PD150606 (20 μmol/L) prevented PKCα downregulation and TP enhancement of I
KAChC
. PKCε inhibition with a cell-permeable peptide inhibitor suppressed TP/ATR-induced I
KAChC
activation, whereas cPKC inhibition enhanced I
KAChC
activity in 1-Hz cells.
Conclusions:
PKC isoforms differentially modulate I
KACh
, with conventional Ca
2+
-dependent isoforms inhibiting and novel isoforms enhancing activity. ATR causes a rate-dependent PKC isoform switch, with Ca
2+
/calpain-dependent downregulation of inhibitory PKCα and membrane translocation of stimulatory PKCε, enhancing I
KAChC
. These findings provide novel insights into mechanisms underlying I
KAChC
dysregulation in AF.
Collapse
Affiliation(s)
- Samy Makary
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| | - Niels Voigt
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| | - Ange Maguy
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| | - Reza Wakili
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| | - Kunihiro Nishida
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| | - Masahide Harada
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| | - Dobromir Dobrev
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| | - Stanley Nattel
- From the Department of Medicine and Research Center (S.M., A.M., R.W., K.N., M.H., S.N.), Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Physiology Department, Faculty of Medicine, Suez Canal University, Egypt (S.M.); Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; Division of Experimental Cardiology (S.M., N.V., D.D.), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Medicine I (R.W
| |
Collapse
|
7
|
Sakata S, Hossain MI, Okamura Y. Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity. J Physiol 2011; 589:2687-705. [PMID: 21486809 DOI: 10.1113/jphysiol.2011.208165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The voltage sensing phosphatase Ci-VSP is composed of a voltage sensor domain (VSD) and a cytoplasmic phosphatase domain. Upon membrane depolarization, movement of the VSD triggers the enzyme's phosphatase activity. To gain further insight into its operating mechanism, we studied the PI(4,5)P2 phosphatase activity of Ci-VSP expressed in Xenopus oocytes over the entire range of VSD motion by assessing the activity of coexpressed Kir2.1 channels or the fluorescence signal from a pleckstrin homology domain fused with green fluorescent protein (GFP) (PHPLC-GFP). Both assays showed greater phosphatase activity at 125 mV than at 75 mV, which corresponds to 'sensing' charges that were 90% and 75% of maximum, respectively. On the other hand, the activity at 160 mV (corresponding to 98% of the maximum 'sensing' charge) was indistinguishable from that at 125 mV. Modelling the kinetics of the PHPLC-GFP fluorescence revealed that its time course was dependent on both the level of Ci-VSP expression and the diffusion of PHPLC-GFP beneath the plasma membrane. Enzyme activity was calculated by fitting the time course of PHPLC-GFP fluorescence into the model. The voltage dependence of the enzyme activity was superimposable on the Q-V curve, which is consistent with the idea that the enzyme activity is tightly coupled to VSD movement over the entire range of membrane potentials that elicit VSD movement.
Collapse
Affiliation(s)
- Souhei Sakata
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
8
|
Piron J, Choveau FS, Amarouch MY, Rodriguez N, Charpentier F, Mérot J, Baró I, Loussouarn G. KCNE1-KCNQ1 osmoregulation by interaction of phosphatidylinositol-4,5-bisphosphate with Mg2+ and polyamines. J Physiol 2010; 588:3471-83. [PMID: 20660559 DOI: 10.1113/jphysiol.2010.195313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
KCNQ1 osmosensitivity is of physiological and pathophysiological relevance in epithelial and cardiac cells, but the mechanism involved remains elusive. In COS-7 cells expressing the KCNE1-KCNQ1 fusion protein, extracellular hypoosmolarity and hyperosmolarity modify the channel biophysical parameters. These changes are consistent with hypoosmolarity increasing the level of membrane phosphatidylinositol-4,5-bisphosphate (PIP(2)), which in turn upregulates KCNE1-KCNQ1 channels. We showed that increasing PIP(2) levels with a water-soluble PIP(2) analogue prevented channel upregulation in hypoosmotic condition, suggesting a variation of the channel-PIP(2) interaction during channel osmoregulation. Furthermore, we showed that polyamines and Mg(2+), already known to tonically inhibit KCNQ channels by screening PIP(2) negative charges, are involved in the osmoregulatory process. Indeed, intracellular Mg(2+) removal and polyamines chelation inhibited the channel osmoregulation. Thus, the dilution of those cations during cell swelling might decrease channel inhibition and explain the channel upregulation by hypoosmolarity. To support this idea, we quantified the role of Mg(2+) in the osmodependent channel activity. Direct measurement of intracellular [Mg(2+)] variations during osmotic changes and characterization of the channel Mg(2+) sensitivity showed that Mg(2+) participates significantly to the osmoregulation. Using intracellular solutions that mimic the variation of Mg(2+) and polyamines, we were able to recapitulate the current amplitude variations in response to extracellular osmolarity changes. Altogether, these results support the idea of a modulation of the channel-PIP(2) interactions by Mg(2+) and polyamines during cell volume changes. It is likely that this mechanism applies to other channels that are sensitive to both osmolarity and PIP(2).
Collapse
Affiliation(s)
- Julien Piron
- INSERM U915, l'Institut du Thorax, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Han S, Wilson SJ, Bolter CP. Tertiapin-Q removes a mechanosensitive component of muscarinic control of the sinoatrial pacemaker in the rat. Clin Exp Pharmacol Physiol 2010; 37:900-4. [PMID: 20497420 DOI: 10.1111/j.1440-1681.2010.05408.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. In an isolated right atrial preparation, an increase in right atrial pressure (RAP) produces an increase in atrial rate. This rate response is larger and occurs faster when there is background vagal or muscarinic stimulation. 2. We hypothesized that in the latter situation, an increase in RAP antagonizes the effect of muscarinic stimulation through stretch inactivation of the mechanosensitive muscarinic potassium current I(K,ACh). 3. In two groups of bath-mounted right atria isolated from male Wistar rats (control n = 12; 300 nmol/L tertiapin-Q treated (to block I(K,ACh)) n = 10), we examined the change in atrial rate when RAP was raised from 2 to 8 mmHg; oxotremorine-M (oxo-M; from 10 to 500 nmol/L) was added to incrementally activate muscarinic receptors. 4. In both control and tertiapin-Q-treated groups, oxo-M reduced atrial rate, but its effect was less ( approximately 40-50%) in the latter group (P < 0.001). In control preparations, responses to an increase in RAP became progressively larger and quicker as the concentration of oxo-M was increased, whereas in tertiapin-Q treated preparations oxo-M did not affect either the amplitude or the speed of the response (P < 0.0001 for both). 5. The results support the hypothesis that atrial stretch antagonizes muscarinic slowing by its effect on I(K,ACh). We suggest that through this mechanism, parasympathetic control of heart rate may be modulated continuously by RAP.
Collapse
Affiliation(s)
- SuYoung Han
- Department of Physiology and The Centre for Neuroscience, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
10
|
Sato A, Gambale F, Dreyer I, Uozumi N. Modulation of the Arabidopsis KAT1 channel by an activator of protein kinase C in Xenopus laevis oocytes. FEBS J 2010; 277:2318-28. [DOI: 10.1111/j.1742-4658.2010.07647.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Cadiou H, McNaughton PA. Avian magnetite-based magnetoreception: a physiologist's perspective. J R Soc Interface 2010; 7 Suppl 2:S193-205. [PMID: 20106875 DOI: 10.1098/rsif.2009.0423.focus] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is now well established that animals use the Earth's magnetic field to perform long-distance migration and other navigational tasks. However, the transduction mechanisms that allow the conversion of magnetic field variations into an electric signal by specialized sensory cells remain largely unknown. Among the species that have been shown to sense Earth-strength magnetic fields, birds have been a model of choice since behavioural tests show that their direction-finding abilities are strongly influenced by magnetic fields. Magnetite, a ferromagnetic mineral, has been found in a wide range of organisms, from bacteria to vertebrates. In birds, both superparamagnetic (SPM) and single-domain magnetite have been found to be associated with the trigeminal nerve. Electrophysiological recordings from cells in the trigeminal ganglion have shown an increase in action potential firing in response to magnetic field changes. More recently, histological evidence has demonstrated the presence of SPM magnetite in the subcutis of the pigeon's upper beak. The aims of the present review are to review the evidence for a magnetite-based mechanism in birds and to introduce physiological concepts in order to refine the proposed models.
Collapse
Affiliation(s)
- Hervé Cadiou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
12
|
Boncoeur E, Tardif V, Tessier MC, Morneau F, Lavoie J, Gendreau-Berthiaume E, Grygorczyk R, Dagenais A, Berthiaume Y. Modulation of epithelial sodium channel activity by lipopolysaccharide in alveolar type II cells: involvement of purinergic signaling. Am J Physiol Lung Cell Mol Physiol 2009; 298:L417-26. [PMID: 20008115 DOI: 10.1152/ajplung.00170.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium that causes chronic infection in cystic fibrosis patients. We reported recently that P. aeruginosa modulates epithelial Na(+) channel (ENaC) expression in experimental chronic pneumonia models. For this reason, we tested whether LPS from P. aeruginosa alters ENaC expression and activity in alveolar epithelial cells. We found that LPS induces a approximately 60% decrease of ENaC apical current without significant changes in intracellular ENaC or surface protein expression. Because a growing body of evidence reports a key role for extracellular nucleotides in regulation of ion channels, we evaluated the possibility that modulation of ENaC activity by LPS involves extracellular ATP signaling. We found that alveolar epithelial cells release ATP upon LPS stimulation and that pretreatment with suramin, a P2Y(2) purinergic receptor antagonist, inhibited the effect of LPS on ENaC. Furthermore, ET-18-OCH3, a PLC inhibitor, and Go-6976, a PKC inhibitor, were able to partially prevent ENaC inhibition by LPS, suggesting that the actions of LPS on ENaC current were mediated, in part, by the PKC and PLC pathways. Together, these findings demonstrate an important role of extracellular ATP signaling in the response of epithelial cells to LPS.
Collapse
Affiliation(s)
- Emilie Boncoeur
- Département de Médecine, Centre de Recherche, Centre Hospitalier de l'Université de Montréal-Hôtel-Dieu, 3840 St. Urbain, Montréal, PQ, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Arrhythmias arise from a complex interaction between structural changes in the myocardium and changes in cellular electrophysiology. Electrophysiological balance requires precise control of sarcolemmal ion channels and exchangers, many of which are regulated by phospholipid, phosphatidylinositol(4,5)bisphosphate. Phosphatidylinositol(4,5)bisphosphate is the immediate precursor of inositol(1,4,5)trisphosphate, a regulator of intracellular Ca2+ signalling and, therefore, a potential contributor to arrhythmogenesis by altering Ca2+ homeostasis. The aim of the present review is to outline current evidence that this signalling pathway can be a player in the initiation or maintenance of arrhythmias.
Collapse
Affiliation(s)
- Elizabeth A Woodcock
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, 8008 Victoria, Australia.
| | | | | |
Collapse
|
14
|
Wang Y, Shyy JYJ, Chien S. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 2008; 10:1-38. [PMID: 18647110 DOI: 10.1146/annurev.bioeng.010308.161731] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence proteins (FPs) have been widely used for live-cell imaging in the past decade. This review summarizes the recent advances in FP development and imaging technologies using FPs to monitor molecular localization and activities and gene expressions in live cells. We also discuss the utilization of FPs to develop molecular biosensors and the principles and application of advanced technologies such as fluorescence resonance energy transfer (FRET), fluorescence recovery after photobleaching (FRAP), fluorescence lifetime imaging microscopy (FLIM), and chromophore-assisted light inactivation (CALI). We present examples of the application of FPs and biosensors to visualize mechanotransduction events with high spatiotemporal resolutions in live cells. These live-cell imaging technologies, which represent a frontier area in biomedical engineering, can shed new light on the mechanisms regulating mechanobiology at cellular and molecular levels in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
15
|
Missan S, Linsdell P, McDonald TF. Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea-pig ventricular myocytes. Pflugers Arch 2007; 456:489-500. [DOI: 10.1007/s00424-007-0424-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 11/30/2022]
|
16
|
Tong J, Nguyen L, Vidal A, Simon SA, Skene JHP, McIntosh TJ. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to Raft bilayers. Biophys J 2007; 94:125-33. [PMID: 17827240 PMCID: PMC2134862 DOI: 10.1529/biophysj.107.110536] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP(2) that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP(2) molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP(2) was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP(2) were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP(2) from detergent-soluble membranes to detergent-resistant membranes by -1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP(2) was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP(2) into rafts. These data indicate that sequestration of PIP(2) to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
17
|
Rojas A, Cui N, Su J, Yang L, Muhumuza JP, Jiang C. Protein kinase C dependent inhibition of the heteromeric Kir4.1-Kir5.1 channel. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2030-42. [PMID: 17585871 PMCID: PMC2228331 DOI: 10.1016/j.bbamem.2007.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 03/22/2007] [Accepted: 04/04/2007] [Indexed: 11/13/2022]
Abstract
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO(2)/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K(+) homeostasis and central CO(2) chemoreception. It is known that K(+) transport in renal epithelium and brainstem CO(2) chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the P(open). The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP(2) depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Ningren Cui
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Junda Su
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Liang Yang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Jean-Pierre Muhumuza
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Chun Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| |
Collapse
|
18
|
Murata Y, Okamura Y. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J Physiol 2007; 583:875-89. [PMID: 17615106 PMCID: PMC2277204 DOI: 10.1113/jphysiol.2007.134775] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-evoked signals play critical roles in neural activities, muscle contraction and exocytosis. Ciona voltage-sensor containing phosphatase (Ci-VSP) consists of the transmembrane voltage sensor domain (VSD) and a cytoplasmic domain of phosphoinositide phosphatase, homologous to phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Previous experiments utilizing potassium channels as the sensor for phosphoinositides have demonstrated that phosphatase activities of Ci-VSP are voltage dependent. However, it still remained unclear whether enzyme activity is activated by depolarization or hyperpolarization. Further, a large gap in voltage dependency was found between the charge movement of the VSD and potassium channel-reporting phosphatase activities. In this study, voltage-dependent dynamics of phosphoinositides mediated by Ci-VSP were examined by confocal imaging and electrical measurements in Xenopus oocytes. Imaging of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) using green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains from phospholipase C delta subunit (PLC-delta) showed that PtdIns(4,5)P(2) concentration is reduced during depolarization. In the presence of Ci-VSP, IRK1 channels with higher sensitivity to phosphoinositide than GIRK2 channels decreased their magnitude during depolarization over 0 mV, indicating that the PtdIns(4,5)P(2) level is reduced upon depolarization. KCNQ2/3 channels coexpressed with Ci-VSP exhibited voltage-dependent decay of the outward current that became sharper with higher depolarization in a voltage range up to 100 mV. These results indicate that Ci-VSP has an activity that depletes PtdIns(4,5)P(2) unlike PTEN and that depolarization-activated voltage sensor movement is translated into activation of phosphatase activity.
Collapse
Affiliation(s)
- Yoshimichi Murata
- Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaijicho, Okazaki, Aichi 444-8787, Japan
| | | |
Collapse
|
19
|
Ma HP, Chou CF, Wei SP, Eaton DC. Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Arch 2007; 455:169-80. [PMID: 17605040 DOI: 10.1007/s00424-007-0294-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies suggest that the activity of epithelial sodium channels (ENaC) is increased by phosphatidylinositides, especially phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)). Stimulation of phospholipase C by either adenosine triphosphate (ATP)-activation of purinergic P2Y receptors or epidermal growth factor (EGF)-activation of EGF receptors reduces membrane PI(4,5)P(2), and consequently decreases ENaC activity. Since ATP and EGF may be trapped in cysts formed by the distal tubule, it is possible that ENaC inhibition induced by ATP and EGF facilitates cyst formation in polycystic kidney diseases (PKD). However, some results suggest that ENaC activity is increased in PKD. In contrast to P2Y and EGF receptors, stimulation of insulin-like growth factor-1 (IGF-1) receptor by aldosterone or insulin produces PI(3,4,5)P(3), and consequently increases ENaC activity. The acute effect of aldosterone on ENaC activity through PI(3,4,5)P(3) possibly accounts for the initial feedback for blood volume recovery after hypovolemic hypotension. PI(4,5)P(2) and PI(3,4,5)P(3), respectively, interacts with the N terminus of beta-ENaC and the C terminus of gamma-ENaC. However, whether ENaC selectively binds to PI(4,5)P(2) and PI(3,4,5)P(3) over other anionic phospholipids remains unclear.
Collapse
Affiliation(s)
- He-Ping Ma
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1530 Third Avenue South, ZRB 510, Birmingham, AL, 35294, USA.
| | | | | | | |
Collapse
|
20
|
Cobine CA, Callaghan BP, Keef KD. Role of L-type calcium channels and PKC in active tone development in rabbit coronary artery. Am J Physiol Heart Circ Physiol 2007; 292:H3079-88. [PMID: 17277031 DOI: 10.1152/ajpheart.01261.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated active tone development in isolated ring segments of rabbit epicardial coronary artery. Endothelium-denuded (E-) or endothelium-intact (E+) vessels treated with the NO synthase inhibitor N(omega)-nitro-L-arginine (100 microM) developed active tone, which was enhanced by stretch and reversed by the NO donor sodium nitroprusside (SNP; IC(50)=9 nM). Nifedipine abolished active tone and the contractile response to phorbol dibutyrate (PDBu; 10 nM) with the same potency (IC(50)=8 nM), whereas 300 nM PDBu responses were only partially blocked by nifedipine. The classical and novel PKC inhibitors GF-109203X (IC(50)=1-2 microM) and chelerythrine (IC(50)=4-5 microM) and the classical PKC inhibitor Gö-6976 (IC(50)=0.3-0.4 microM) blocked both active tone and 10 nM PDBu responses with similar potency. Active tone development was associated with depolarization of membrane potential (E(m)) and a shift to the left of the E(m)-vs.-contraction relationship determined by varying extracellular potassium. The depolarization and leftward shift were reversed by either chelerythrine (10 microM) or SNP (30 nM). PDBu (100-300 nM) increased peak L-type calcium channel (Ca(v)) currents in isolated coronary myocytes, and this effect was reversed by chelerythrine (1 microM) or Gö-6976 (200 nM). SNP (500 nM) reduced Ca(v) currents only in the presence of the PKA blocker 8-bromo-2'-O-monobutyryl-cAMPS, Rp isomer (10 microM). In conclusion, active tone development in coronary artery is suppressed by basal NO release and is dependent on both enhanced Ca(v) activity and classical PKC activity. Both E(m)-dependent and -independent processes contribute to contraction. Our results suggest that one E(m)-independent process is direct enhancement of Ca(v) current by PKC.
Collapse
Affiliation(s)
- Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno, Anderson Medical Science Bldg. MS 352, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
21
|
Abstract
Transient receptor potential (TRP) channels are regulated by a wide variety of physical and chemical factors. Recently, several members of the TRP channel family were reported to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2), PIP(2)). This review will summarize the current knowledge on PIP(2) regulation of TRP channels and discuss the possibility that PIP(2) is a common regulator of mammalian TRP channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
22
|
McIntosh TJ, Simon SA. ROLES OF BILAYER MATERIAL PROPERTIES IN FUNCTION AND DISTRIBUTION OF MEMBRANE PROTEINS. ACTA ACUST UNITED AC 2006; 35:177-98. [PMID: 16689633 DOI: 10.1146/annurev.biophys.35.040405.102022] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural, compositional, and material (elastic) properties of lipid bilayers exert strong influences on the interactions of water-soluble proteins and peptides with membranes, the distribution of transmembrane proteins in the plane of the membrane, and the function of specific membrane channels. Theoretical and experimental studies show that the binding of either cytoplasmic proteins or extracellular peptides to membranes is regulated by the presence of charged lipids and that the sorting of transmembrane proteins into or out of membrane microdomains (rafts) depends on several factors, including bilayer material properties governed by the presence of cholesterol. Recent studies have also shown that bilayer material properties modify the permeability of membrane pores, formed either by protein channels or by cell-lytic peptides.
Collapse
Affiliation(s)
- Thomas J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
23
|
Abstract
Anionic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP(2)) and phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) are normally located in the inner leaflet of the plasma membrane, where these anionic phospholipids can regulate transmembrane proteins, including ion channels and transporters. Recent work has demonstrated that (1) ATP inhibits the renal epithelial sodium channel (ENaC) via a phospholipase C-dependent pathway that reduces PIP(2), (2) aldosterone stimulates ENaC via phosphoinositide 3-kinase, and (3) PIP(2) and PIP(3) regulate ENaC. Several lines of evidence show that ATP stimulation of purinergic P2Y receptors hydrolyzes PIP(2) and that aldosterone stimulation of steroid receptors induces PIP(3) formation. These studies together suggest that one primary mechanism for regulating ENaC is by alteration of anionic phospholipids and that the receptor-mediated and hormonal regulation of ENaC works through a variety of signaling pathways, but many of these pathways finally alter ENaC activity by regulating the formation or degradation of anionic phospholipids. Therefore, changes in the concentration of PIP(2) and PIP(3) are hypothesized to participate in the regulation of ENaC by purinergic and corticoid receptors. The underlying mechanism may be associated with a physical interaction of the positively charged cytoplasmic domains of the beta- and gamma-ENaC with the negatively charged membrane phospholipids. The exact nature of this interaction will require further investigation.
Collapse
Affiliation(s)
- He-Ping Ma
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, 1530 Third Avenue South, Sparks Center 865, Birmingham, AL 35294, USA.
| | | |
Collapse
|
24
|
Cho H, Lee D, Lee SH, Ho WK. Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner. Proc Natl Acad Sci U S A 2005; 102:4643-8. [PMID: 15767570 PMCID: PMC555493 DOI: 10.1073/pnas.0408844102] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylionsitol 4,5-bisphosphate (PIP(2)), a substrate of phospholipase C, has recently been recognized to regulate membrane-associated proteins and act as a signal molecule in phospholipase C-linked Gq-coupled receptor (GqPCR) pathways. However, it is not known whether PIP(2) depletion induced by GqPCRs can act as receptor-specific signals in native cells. We investigated this issue in cardiomyocytes where PIP(2)-dependent ion channels, G protein-gated inwardly rectifying K(+) (GIRK) and inwardly rectifying background K(+) (IRK) channels, and various GqPCRs are present. The GIRK current was recorded by using the patch-clamp technique during the application of 10 microM acetylcholine. The extent of receptor-mediated inhibition was estimated as the current decrease over 4 min while taking the GIRK current (I(GIRK)) value during a previous stimulation as the control. Each GqPCR agonist inhibited I(GIRK) with different potencies and kinetics. The extents of inhibition induced by phenylephrine, angiotensin II, endothelin-1, prostaglandin F2alpha, and bradykinin at supramaximal concentrations were (mean +/- SE) 32.1 +/- 0.6%, 21.9 +/- 1.4%, 86.4 +/- 1.6%, 63.7 +/- 4.9%, and 5.7 +/- 1.9%, respectively. GqPCR-induced inhibitions of I(GIRK) were not affected by protein kinase C inhibitor (calphostin C) but potentiated and became irreversible when the replenishment of PIP(2) was blocked by wortmannin (phosphatidylinositol kinase inhibitor). Loading the cells with PIP(2) significantly reduced endothelin-1 and prostaglandin F2alpha-induced inhibition of I(GIRK). On the contrary, GqPCR-mediated inhibitions of inwardly rectifying background K(+) currents were observed only when GqPCR agonists were applied with wortmannin, and the effects were not parallel with those on I(GIRK). These results indicate that GqPCR-induced inhibition of ion channels by means of PIP(2) depletion occurs in a receptor-specific manner.
Collapse
Affiliation(s)
- Hana Cho
- National Research Laboratory for Cell Physiology, Department of Physiology, Seoul National University College of Medicine, 28 Yonkeun-Dong, Chongno-Ku, Seoul 110-799, Korea
| | | | | | | |
Collapse
|
25
|
Toselli M, Taglietti V. L-type calcium channel gating is modulated by bradykinin with a PKC-dependent mechanism in NG108-15 cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 34:217-29. [PMID: 15536563 DOI: 10.1007/s00249-004-0444-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/14/2004] [Accepted: 09/16/2004] [Indexed: 11/24/2022]
Abstract
Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of G(q/11). In the present study we show that the Ca(2+) current flowing through L-type voltage-gated Ca(2+) channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca(2+) channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK.
Collapse
Affiliation(s)
- Mauro Toselli
- Dipartimento di Scienze Fisiologiche e Farmacologiche Cellulari e Molecolari and INFM, Universita' di Pavia, Via Forlanini 6, 27100 Pavia, Italy.
| | | |
Collapse
|
26
|
Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R. Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 2004; 19:142-3. [PMID: 15504951 DOI: 10.1096/fj.04-2314fje] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stimulation of purinergic receptors inhibits amiloride-sensitive Na+ transport in epithelial tissues by an unknown mechanism. Because previous studies excluded the role of intracellular Ca2+ or protein kinase C, we examined whether purinergic regulation of Na+ absorption occurs via hydrolysis of phospholipid such as phosphatidylinositol-bisphosphates (PIP2). Inhibition of amiloride-sensitive short-circuit currents (Isc-Amil) by adenine 5'-triphosphate (ATP) in native tracheal epithelia and M1 collecting duct cells was suppressed by binding neomycin to PIP2, and recovery from ATP inhibition was abolished by blocking phosphatidylinositol-4-kinase or diacylglycerol kinase. Stimulation by ATP depleted PIP2 from apical membranes, and PIP2 co-immunoprecipitated the beta subunit of ENaC. ENaC was inhibited by ATP stimulation of P2Y2 receptors in Xenopus oocytes. Mutations in the PIP2 binding domain of betaENaC but not gammaENaC reduced ENaC currents without affecting surface expression. Collectively, these data supply evidence for a novel and physiologically relevant regulation of ENaC in epithelial tissues. Although surface expression is controlled by its C terminus, N-terminal binding of betaENaC to PIP2 determines channel activity.
Collapse
Affiliation(s)
- K Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE. Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 2004; 279:37271-81. [PMID: 15155739 DOI: 10.1074/jbc.m403413200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activity of specific inwardly rectifying potassium (Kir) channels is regulated by any of a number of different modulators, such as protein kinase C, G(q) -coupled receptor stimulation, pH, intracellular Mg(2+) or the betagamma-subunits of G proteins. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is an essential factor for maintenance of the activity of all Kir channels. Here, we demonstrate that the strength of channel-PIP(2) interactions determines the sensitivity of Kir channels to regulation by the various modulators. Furthermore, our results suggest that differences among Kir channels in their specific regulation by a given modulator may reflect differences in their apparent affinity of interactions with PIP(2).
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
28
|
Ehrlich JR, Cha TJ, Zhang L, Chartier D, Villeneuve L, Hébert TE, Nattel S. Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. J Physiol 2004; 557:583-97. [PMID: 15020696 PMCID: PMC1665099 DOI: 10.1113/jphysiol.2004.061119] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cardiomyocytes from the pulmonary vein sleeves (PVs) are known to play an important role in atrial fibrillation. PVs have been shown to exhibit time-dependent hyperpolarization-induced inward currents of uncertain nature. We observed a time-dependent K(+) current upon hyperpolarization of PV and left atrial (LA) cardiomyocytes (I(KH)) and characterized its biophysical and pharmacological properties. The activation time constant was weakly voltage dependent, ranging from 386 +/- 14 to 427 +/- 37 ms between -120 and -90 mV, and the half-activation voltage averaged -93 +/- 4 mV. I(KH) was larger in PV than LA cells (e.g. at -120 mV: -2.8 +/- 0.3 versus-1.9 +/- 0.2 pA pF(-1), respectively, P < 0.01). The reversal potential was approximately -84 mV with 5.4 mm[K(+)](o) and changed by 55.7 +/- 2.4 mV per decade [K(+)](o) change. I(KH) was exquisitely Ba(2+) sensitive, with a 50% inhibitory concentration (IC(50)) of 2.0 +/- 0.3 microm (versus 76.0 +/- 17.9 microm for instantaneous inward-rectifier current, P < 0.01), and showed similar Cs(+) sensitivity to instantaneous current. I(KH) was potently blocked by tertiapin-Q, a selective Kir3-subunit channel blocker (IC(50) 10.0 +/- 2.1 nm), was unaffected by atropine and was significantly increased by isoproterenol (isoprenaline), carbachol and the non-hydrolysable guanosine triphosphate analogue GTPgammaS. I(KH) activation by carbachol required GTP in the pipette and was prevented by pertussis toxin pretreatment. Tertiapin-Q delayed repolarization in atropine-exposed multicellular atrial preparations studied with standard microelectrodes (action potential duration pre- versus post-tertiapin-Q: 190.4 +/- 4.3 versus 234.2 +/- 9.9 ms, PV; 202.6 +/- 2.6 versus 242.7 +/- 6.2 ms, LA; 2 Hz, P < 0.05 each). Seven-day atrial tachypacing significantly increased I(KH) (e.g. at -120 mV in PV: from -2.8 +/- 0.3 to -4.5 +/- 0.5 pA pF(-1), P < 0.01). We conclude that I(KH) is a time-dependent, hyperpolarization-activated K(+) current that likely involves Kir3 subunits and appears to play a significant role in atrial physiology.
Collapse
Affiliation(s)
- Joachim R Ehrlich
- Department of Medicine, University of Montral, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|